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Abstract. A system of Boolean equations is called sparse if each equa-
tion depends on a small number of variables. Finding efficiently solu-
tions to the system is an underlying hard problem in the cryptanalysis
of modern ciphers. In this paper we study new properties of the Agree-
ing Algorithm, which was earlier designed to solve such equations. Then
we show that mathematical description of the Algorithm is translated
straight into the language of electric wires and switches. Applications
to the DES and the Triple DES are discussed. The new approach, at
least theoretically, allows a faster key-rejecting in brute-force than with
Copacobana.
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1 Introduction

Let X = {x1, x2, . . . , xn} be a set of Boolean variables. By Xi, 1 ≤ i ≤ m we
denote subsets of X of size li ≤ l. The system of equations

f1(X1) = 0, . . . , fm(Xm) = 0 (1)

is considered, where fi are Boolean functions (polynomials in algebraic normal
form) and they only depend on variables Xi. Such equations are called l-sparse.
We look for the set of all 0, 1-solutions to (1). Obviously, the equation fi(Xi) = 0
is determined by the pair Ei = (Xi, Vi), where Vi is the set of 0, 1-vectors in
variables Xi, also called Xi-vectors, where fi is zero. In other words, Vi is the
set of all solutions to fi = 0. The function fi is uniquely defined by Vi. Given
fi, the set Vi is computed with 2li trials.

In [13] Agreeing and Gluing procedures were described. Then they were com-
bined with variables guessing to solve (1). See also earlier work [20]. Table 1 sum-
marizes expected complexity estimates for simple combinations of the Agreeing
and Gluing in case of m = n and a variety of l. Each instance of (1) may be
encoded by a CNF formula with clause length l and the same variables. So l-SAT
solving algorithms provide with worst case complexity estimates. The table data
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Table 1. Algorithms’ running time.

l 3 4 5 6

the worst case,[11] 1.324n 1.474n 1.569n 1.637n

Gluing1, expectation,[16] 1.262n 1.355n 1.425n 1.479n

Gluing2, expectation,[16] 1.238n 1.326n 1.393n 1.446n

Agreeing-Gluing1, expectation,[17] 1.113n 1.205n 1.276n 1.334n

.

suggests that Agreeing-Gluing based methods should be very fast in practice.
This is the reason why a hardware implementation of the Agreeing Algorithm
is here proposed. In spite of relatively high worst case bound on l-SAT prob-
lem complexity, there exist a number of efficient l-SAT solvers. They became
useful tool in cryptanalysis [4, 5]. However, an efficient hardware version of the
approach is still unknown.

Conjectured asymptotic bounds on the complexity of the popular Gröbner
Basis Algorithm and its variants as XL, see [8, 3], are found in [1, 18]. They are
far worse than the estimates by the brute force approach except for quadratic
and very over-defined equation system. It was found in [14] that a linear alge-
bra variant of the Agreeing-Gluing significantly overcomes(on AES type Boolean
equations in around 50 variables) F4 method, a Gröbner Basis Algorithm im-
plemented in Magma.

We first study here a new property of the Agreeing Algorithm. This al-
gorithm implements pairwise simplification to the initial equations after some
suitable guess. We will show that the result only depends on a smaller subset of
equation pairs. This significantly reduces memory requirements for the Agreeing
Algorithm. E.g. for the DES instead of 3545 pairs, the algorithm should only
run through 1404 of them with the same output. In case of the Triple DES the
figure is 3929 instead of 16831, see Table 2.

Then we suggest implementing the Agreeing Algorithm in hardware. The
main features of the related device are:

– No memory locations are necessary as no one bit is kept by the device in
common sense. Solutions to particular equations are circuits with two type
of switches and the whole system is a network of connections between them
represented as a circuit lattice. See Fig. 4 for instance.

– Voltage is induced by variables guess. Its expansion is then directed by
switches implemented as electronic relays or transistors on a semiconductor
chip. The potential difference detected in some particular circuits indicates
the system is inconsistent after the guess.

– The number of input contacts is essentially 2s, where s is the number of
variables guessed during the solution of the system. That is at most 2n
anyway. Some power contacts and one output contact that sends out a signal
when the system is found inconsistent should be added.

– The speed of the device is determined by the time of switching, where lots
of switches turn simultaneously.



It is very unlikely to solve the system by Agreeing alone. So some guesses on
the variable values should be made. The system is then checked for consistence
with the Agreeing Algorithm. As most of the guesses should be incorrect, it
is important to have an efficient way to check the system’s inconsistence. The
suggested device is designed to achieve this goal. Implementing equations from
a cipher, it may be used for a brute force attack. When trying the current
key, one introduces the guess into the device, and checks whether the system is
inconsistent.

Common approaches to the key search [6, 19, 2, 7, 15, 12] are based on the
parallelization of the job to many special purpose chips, which efficiently im-
plement the encryption. The best reported speed for one DES encryption is 0.1
GHz per chip, [12]. Therefore 0.034 GHz for the Triple DES. This is the key
rejecting rate.

In contrast, our idea is to not implement any encryption. Having been con-
structed, the device might achieve a higher key rejecting rate, see the discussion
in Section 6. Moreover, depending on the equation system from the cipher, the
number of key bits necessary to guess before solving or observing an inconsis-
tence may vary. For instance, in [13] it was reported that 37-38 key variables out
of 56 are guessed and the rest of the system from 6 rounds of the DES is solved
by the Agreeing Algorithm alone. So it is sometimes not necessary to guess all
key bits. There may exist a lot of equation systems describing one particular ci-
pher produced, for instance, with the Gluing procedure. Our approach therefore
has more flexibility.

It was also reported in [14] that admitting up to 2s right hand sides(produced
with Gluing) in MRHS equations for the AES-128, one should only guess 128−s
of the key bits before the system is solved. A fast way, based on some physical
principle, for checking the system’s inconsistence after the guess might result in
breaking a real world cipher. Two principles may be in use here: electric potential
expansion and the expansion of light. We will presently follow the first principle.

The author is grateful to H̊avard Raddum for useful discussions, Thorsten
Schilling for indicating a flaw in the first version of Lemma 2 and one of the
anonymous referees from WCC’09 for suggestions on improving the presentation.

2 Agreeing Procedure

For equations E1 = (X1, V1) and E2 = (X2, V2), let X1,2 = X1 ∩X2. Then let
V1,2 be the set of X1,2-subvectors of V1, that is the set of projections of V1 to
variables X1,2. Similarly, the set V2,1 of X1,2-subvectors of V2 is defined. We say
the equations E1 and E2 agree if V1,2 = V2,1. Otherwise, we apply the procedure
called Agreeing. All vectors whose X1,2-subvectors are not in V2,1 ∩ V1,2 are
deleted from V1 and V2. Obviously, we delete Vi-vectors which can’t make part
of any common solution to the equations. Then we put Ei ← (Xi, V

′
i ), where

V ′i ⊆ Vi consist of the survived vectors.



2.1 Agreeing Algorithm

The goal of the Agreing Algorithm is to identify wrong solutions to equations Ei
and remove them from Vi by pairwise application of the Agreeing Procedure. The
output doesn’t depend on the order of pairwise agreeings, see [14]. Application
of the procedure to Ei and Ej where Xi ∩Xj = ∅ can be avoided. We will show
that some pairs Ei, Ej can be avoided too even if Xi∩Xj 6= ∅. This significantly
optimizes memory requirement of the Agreeing Algorithm and the hardware
implementation described in Section 3.

The equations E1, . . . , Em are vertices in an equations graph G. Vertices Ei
and Ej are connected by the edge (Ei, Ej) labeled with Xi,j = Xi ∩ Xj 6= ∅.
There may occur different edges with the same labels. The Agreeing Procedure,
being applied to Ei and Ej , implements a kind of information exchange between
them through the edge (Ei, Ej). That is for Y ⊆ Xi,j the information Y 6= a for
some binary string a is transmitted from Ei to Ej or backwards. We will now
show that some of the edges in the graph G are obsolescent in this respect.

A subgraph Gm of G is called minimal if it is on the same vertices and

1. For any (Ei, Ej) in G, there exists a sequence of vertices

Ei, Ek, El, . . . , Er, Ej , (2)

where (Ei, Ek), (Ek, El), . . . , (Er, Ej) are in Gm and Xi,j is a subset in each
label Xi,k, Xk,l, . . . , Xr,j .

2. Gm has minimal number of edges.

The edges of a minimal subgraph are called maximal and denoted A for some
fixed Gm. They are not uniquely defined.

Lemma 1. The Agreeing Algorithm output doesn’t depend on whether the Agree-
ing procedure runs through all edges of G or through only maximal edges.

Proof. Let Y ⊆ Xi,j for the equations Ei and Ej . Assume we learn, from the
equation Ei, that Y 6= a for some string a. The Agreeing procedure expands
Y 6= a from Ei to Ej . Therefore, there exists a path (2), where

Y ⊆ Xi,j ⊆ Xi, Xk, Xl, . . . , Xr, Xj .

So Y 6= a is expanded from Ei to Ej through the path (2) by agreeing pairwise
Ei, Ek, then Ek, El,... and Er, Ej . This proves the Lemma.

We now formulate the algorithm to compute a minimal subgraph of G:

1. For any Y = Xi,j find all edges (Es, Er) in G such that Y ⊆ Xs,r. Denote
a subgraph of G on the vertices Es, Er, . . . with all such edges (Es, Er) by
GY . Remark that GY is a complete graph.

2. Find the set VY of edges (Es, Er) in GY , where Xs,r = Y . Find a largest
subset WY ⊆ VY such that GY is connected after removing the edges WY .

3. Remove the edges WY from G for all Y = Xi,j and get Gm.



Lemma 2. Let Gm be the algorithm’s output graph. Then Gm is minimal.

Proof. We first prove that for any edge (Ei, Ej) in G there is a path (2) on Gm.
Let Y = Xi,j . If (Ei, Ej) is not in WY , then it is nothing to prove as (Ei, Ej)
is in Gm. Assume (Ei, Ej) ∈ WY . Then there is a path on GY from Ei to Ej
through the edges (Er, Es) not in WY and Y ⊆ Xr,s. This is because GY remains
connected after removing WY . If all such (Er, Es) are not in WXr,s

, then the
required path is found, as all these edges are in Gm.

Otherwise, assume some (Er, Es) ∈WZ , where Z = Xr,s. Therefore (Er, Es)
was removed from G. Then there is a path on GZ from Er to Es through edges
(Ek, El) not occurring inWZ . This is becauseGZ is still connected after removing
the edges WZ . Moreover, Y ⊆ Z ⊆ Xk,l for such (Ek, El). If all such (Ek, El)
are not in WXk,l

, then the required path is found, as all these edges are in Gm.
Otherwise, we continue so on. One stops at some point as the sequence of

the graphs GY ⊃ GZ ⊃ . . . is strictly decreasing.
The resulting graph Gm is with minimal number of edges. Otherwise, let be

possible to remove one more edge (Er, Es) from Gm and still have some path
(2) for any (Ei, Ej). Then one finds a bigger set WZ , where Z = Xr,s, such that
removing WZ from GZ keeps this graph connected. That is impossible by the
definition of WZ . This proves the Lemma.

Example. Let there be five Boolean equations in four variables, where X1 =
{x1, x2}, X2 = {x2, x3}, X3 = {x3, x4}, X4 = {x1, x3} and X5 = {x2, x4}. The
graph G has 5 vertices and 7 edges: (E1, E2) labeled with X1,2 = {x2}, (E2, E3)
labeled with X2,3 = {x3}, and so on. Two edges (E1, E2) and (E2, E4) are to be
removed as they are obsolescent for the Agreeing Algorithm.

2.2 Agreeing2 Algorithm

This is an asymtotically faster variant of the Agreeing Algorithm, see [14].

(Precomputation.) For each maximal edge (Ei, Ej) find the set Xi,j and the
number r = |Xi,j |. For each r-bit address b unordered tuple of lists

{Vi,j(b);Vj,i(b)} (3)

is precomputed. The lists Vi,j(b) and Vj,i(b) consist of vectors from Vi and
respectively Vj whose projection to variables Xi,j is b. The set of tuples is
sorted using some linear order. The algorithm marks vectors in tuples (3),
then deletes all marked vectors from Vi. We say list Vi,j(b) empty if it does
not contain entries or all they are marked.

(Agreeing.) The Algorithm starts with the first tuple {Vi,j(b);Vj,i(b)}, where
just one list is empty and follows the rules:
1. Let the current tuple be {Vi,j(b);Vj,i(b)}, where Vi,j(b) is empty, while
Vj,i(b) is not. Then all the vectors a in Vj,i(b) are made marked one after
one.



2. For a in Vj,i(b) the projection d of a to variables Xj,k is computed, where
(Ej , Ek) is a maximal edge. Then a in Vj,k(d) is made marked. The tuple
{Vj,k(d);Vk,j(d)} is now current.

3. If just one of Vj,k(d) or Vk,j(d) is found empty, then apply step 1. If
not, then take another maximal edge (Ej , Ek) or mark another a in
Vj,i(b). If Vj,i(b) is already empty, then backtrack to the tuple last to
{Vi,j(b);Vj,i(b)}.

4. For each starting tuple the algorithm walks through a search tree with
backtracking. If new deletions do not occur in the current tree, then the
next tuple, where just one list is empty, is taken.

5. The algorithm stops when in all tuples {Vi,j(b);Vj,i(b)} the lists both
are empty or both non-empty. Then all vectors that have been earlier
marked in the tuples are now deleted from Vi.

Lemma 3. Equations (1) are pairwise agreed if and only if in all {Vi,j(b);Vj,i(b)}
defined for maximal edges (Ei, Ej) the lists both are empty or both non-empty.

Lemma 4. Let for at least one maximal edge (Ei, Ej) the lists Vi,j(b) be empty
for all b. Then the system is inconsistent.

2.3 Example

Let three Boolean equations E1, E2, E3 be given in algebraic normal form:

x3 + x1x2 + x1x3 + x1x2x3 = 0,
1 + x1 + x4 = 0,

x3 + x2x4 + x3x4 + x2x3x4 = 0.

Represent them as lists of solutions:

x1 x2 x3

a1 0 0 1
a2 0 1 1
a3 1 1 0

,
x1 x4

b1 0 1
b2 1 0

,

x2 x3 x4

c1 0 1 0
c2 1 0 1
c3 1 1 0

. (4)

The list of tuples is: T1 = {a1, a2; b1}, T2 = {a3; b2}, T3 = {b1; c2}, T4 =
{b2; c1, c3}, T5 = {a1; c1}, T6 = {a2; c3}, T7 = {a3; c2}. As there are no tuples
with just one list empty, a guess is necessary to start marking. We mark with a
bar.

Assume x4 = 0. So b1 should be marked. We now have two tuples, where just
one of the lists is empty: {b̄1; a1, a2} and {b̄1; c2}. According to the algorithm,
take the first of two. Then a1 got marked in {b̄1; a1, a2} and in {a1; c1}. Therefore,
c1 got marked in {ā1; c1} and then in {c1, c3; b2}. Now backtrack and mark a2

in {b̄1; ā1, a2} and in {a2; c3}, and so on. This implies one search tree:

{b̄1; ā1, ā2}
↗ {ā1; c̄1} → {c̄1, c3; b2}

↘ {ā2; c̄3} → {c̄1, c̄3; b̄2} → {b̄2; ā3} → {ā3; c̄2} → {c̄2; b̄1}.



The vectors in all tuples have been marked. The guess was wrong. We alterna-
tively could add {b1; ∅} to the tuple list and start marking. Similarly, all tuple
lists become empty in case x4 = 1. The system has no solution.

3 Agreeing with a circuit lattice

Switches. Circuit lattice is a combination of switches and wires. There are two
types of switches as in Fig. 1. Type 1 switch controls the vertical circuit by the
horizontal circuit, which means that voltage detected in the horizontal circuit
makes the switch close. That may induce voltage in the vertical circuit if other
type 1 switches on that circuit are closed too. Similarly, type 2 switch controls
the horizontal circuit by the vertical circuit, which means that voltage detected
in the vertical circuit makes the switch close. That may induce voltage in the
horizontal circuit.

Fig. 1. Type 1 and 2 switches.

Circuit lattice construction. Assume the list of tuples (3) is precomputed. The
device is a lattice of horizontal and vertical circuits with intersections at switches
of two types as in Fig. 4. The horizontal circuits are in one-to-one correspondence
with solutions a ∈ Vi to equations Ei in (1) taken separately. So

1. each a ∈ Vi defines the horizontal circuit marked a as in Fig. 2. Type 1
switches on the horizontal circuit a are connected in series. Type 2 switches
are connected in parallel.

2. each tuple {a1, . . . , ar; b1, . . . , bs} defines two vertical circuits, see Fig. 3.
Both of them cross horizontal circuits marked a1, . . . , ar, b1, . . . , bs. One
crosses horizontal circuits a1, . . . , ar at switches of type 1 and b1, . . . , bs at
switches of type 2. Another vertical circuit crosses a1, . . . , ar at switches of
type 2 and b1, . . . , bs at switches of type 1. Also see Fig. 4, which represents
circuit lattice for equations (4).

The number of type 1 switches equals the number of type 2 switches on each
horizontal circuit. This is the number of tuples (3), where a occurs. As the hori-
zontal circuits are marked by vectors a ∈ Vi, there are

∑
i |Vi| horizontal circuits.

Switches of type 1 control vertical circuits by horizontal circuits and switches of



Fig. 2. Horizontal circuit for a particular solution a.

type 2 control horizontal circuits by the vertical. Assume voltage(potential) is
detected in a horizontal circuit. That is due to one of type 2 switches on that
circuit was closed. Then all type 1 switches on this circuit get closed too. This
may imply voltage in vertical circuits, e.g. in circuits T1 and T2 in Fig. 2. That
happens if all other type 1 switches on these vertical circuits(e.g. on T1 and T2)
are closed. Then their type 2 switches get closed. That affects new horizontal
circuits and voltage expands so on. We remark that all horizontal circuits con-
sume power from the same battery. All vertical circuits may be powered from
another battery.

Fig. 3. Two vertical circuits defined by {a1, . . . , ar; b1, . . . , bs}.



Solving. Solving starts with inducing potential into the circuit lattice. The po-
tential may appear due to the tuples with just one of the lists empty. That is
similar to Agreeing2 method explained before, as we start the algorithm with
such tuples. So potential appears in one of two vertical circuit constructed from
{∅; b1, . . . , bs} as soon as the battery is switched on. This induces voltage in the
horizontal circuits b1, . . . , bs. Voltage may be then induced in some new vertical
and horizontal circuits, and so on. Potential is detected in the horizontal circuit
a if and only if a is marked by Agreeing2 algorithm. That is a can’t be a part
of any common solution to equations (1). Therefore, the following statement is
obvious.

Lemma 5. Assume that after inducing potential in the circuit lattice, it is de-
tected in each horizontal circuit aj ∈ Vi for at least one Vi. Then the system is
inconsistent.

If there are no tuples with just one empty list, then the device won’t start. So
variable guesses are to be introduced to start voltage expansion. Assume we are
to guess the value of x ∈ Xi for some equation Ei. Let a1, . . . , at be all vectors in
Vi, where x = 0, and at+1, . . . , ar all vectors in Vi, where x = 1. Each horizontal
circuit a ∈ Vi is provided with one additional type 2 switch connected in parallel
with other type 2 switches. Two vertical circuits are constructed: S1 and S2 by
connecting new type 2 switches above on horizontal circuits at+1, . . . , ar and
a1, . . . , at respectively. It is not necessary to use type 1 switches here as they
won’t play any role. Guessing x = 0 is accomplished by switching on the vertical
circuit S1, while S2 is off, and guessing x = 1 is done by switching on another
vertical circuit S2 with S1 is off. See Figure 4 for an example. Remark that S1

and S2 are there implementations for guessing the value of x4 in E2.

Example. Circuit lattice in case of (4) is represented in Fig. 4. Two vertical
circuits related to tuples Ti are denoted T ′i and T ′′i . There are two additional
circuits S1 and S2 used for introducing guesses on x4. Each of these two circuits
incorporates one additional type 2 switch. So the device composes of 34 switches
on the whole. In order to check x4 = 0, one makes the circuit S1 switch on,
while S2 is off. This results in type 2 switch on the circuit S1 get close and
voltage appears in the horizontal circuit b1. Two type 1 switches on b1 get closed
and therefore voltage appears in two vertical circuits T ′′3 and T ′′1 . All type 2
switches on them become closed and voltage expands to the horizontal circuits
a1, a2, c2 and so on. Finally, after a number of simultaneous switch turns, voltage
is detected in all horizontal circuits. The guess was wrong. Similarly, the circuit
S2 is switched on, S1 is off, in order to check x4 = 1. All horizontal circuits get
voltage. The guess was wrong too. The system is therefore inconsistent.

The number of switches. The main characteristic of the device is the number of
switches. This is twice the number of vectors in all tuples (3) for maximal edges
and computed by the formula

2
∑
A

∑
b

(|Vi,j(b)|+ |Vj,i(b)|) = 2
∑
A

(|Vi|+ |Vj |). (5)



Fig. 4. Circuit lattice for equations (4).



The external sum is over all maximal edges (Ei, Ej) ∈ A in G. For guessing s
variables x1 ∈ Xi1 , . . . , xs ∈ Xis there should be also |Vi1 |+ . . .+ |Vis | additional
switches.

The number of wires. We also count the number of wires necessary to connect
switches in the circuit lattice. The number of wires in all vertical circuits is
obviously the number of the lattice switches (5) plus the number of vertical
circuits themselves. The latter value equals twice the number of tuples. In a
horizontal circuit the type 2 switches are connected in parallel. So the number
of wires is the number of type 1 switches plus twice the number of type 2 switches
plus two. Therefore, the number of wires in all horizontal circuits is 3

∑
A(|Vi|+

|Vj |) + 2
∑
i |Vi|. So the total number of wires should be

5
∑
A

(|Vi|+ |Vj |) + 2
∑
i

|Vi|+ 2
∑
Ti

1. (6)

For guessing s variables x1 ∈ Xi1 , . . . , xs ∈ Xis there should be also |Vi1 |+ . . .+
|Vis |+ 2s additional wires.

4 Guessing the variable values

Equations from a cipher. The number of key variables is commonly very small
if compared with all system variables. Guessing all key variables results in the
whole system collapses by any of the Agreeing Algorithms. This is a variant of
the brute force attack. If the Agreeing works faster than this cipher encryption,
then an advantage over common brute force attack is observed. It might be well
that a proper subset of key variables should be guessed before the system is
solved with Agreeing, see this paper Introduction, where the issue was briefly
discussed.

Random equations. Generally, s-variable guesses result in 2s trials(Agreeing
runs). However, in randomly generated sparse equations there is a more effi-
cient approach based on Gluing [13]. Assume that an s-bit guess is enough for
solving (1) with this method. Look at the gluing of some t equations:

(X(t), Ut) = (Xi1 , V1) ◦ (Xi2 , V2) ◦ . . . ◦ (Xit , Vt),

where s = |X(t)| and X(t) = Xi1 ∪Xi2 ∪ . . .∪Xit . In other words, Ut is the set
of all common solutions to the equations Ei1 , . . . , Eit . The number of vectors in
Ut is 2s−t on the average, see Lemma 4 in [16]. The vectors Ut are produced one
after one as in [16]. The cost per vector is proportional to t. This is true for t
smaller than some critical value α0n

l , where α0 = 21/l ln( 1−1/2
1−(1/2)1/l ), see [16]. So

the total complexity of solving is roughly proportional to 2s−t of Agreeing runs.



Table 2. DES and Triple DES equations implementation.

Nmbr of eqns vrbls edges mx.edges tuples switches wires

DES 128 632 3545 1409 16636 3.9× 108 9.5× 108

TDES 384 1712 16831 3929 71320 1.1× 109 2.7× 109

.

5 DES and Triple DES equations

The DES and the Triple DES equation systems are constructed in Appendix B.
Assume that the input/output 64-bit blocks are variables. Then each equation
comprises 20 variables and admits 216 solutions. The device may be used to
compute the key for any given plain-texts and related cipher-texts. These are
introduced to the solver similarly to the guessed bits. However plain-text, cipher-
text bits are not changing during the computation.

For both DES and Triple DES Table 2 represents data on the equation sys-
tems describing the ciphers: the number of equations, the number of variables,
the number of edges of the adjacent graph with nonempty labels, the number
of maximal edges and the number of tuples (3). Then the number of necessary
switches and wires in the related circuit lattice is computed by formulas (5) and
(6). Two plain-text, cipher-text 64-bit blocks uniquely define 112-bit key in the
Triple DES. So for the key search there should be two above described devices
working in parallel. The speed of computation is determined by the time that a
switch takes to turn. However, how many switch turns are necessary before the
system is found inconsistent looks generally difficult to estimate. This is an open
problem. Voltage expands in a highly parallel manner through several circuits
which affect each other and many switches turn simultaneously. Fortunately, this
is easy for round ciphers like DES or Triple DES. Assume guessing all key vari-
ables at once. Then all Type 1 switches in tuples related to pairs of equations in
subsequent rounds turn simultaneously when voltage expands from one round
to another. That makes related Type 2 switches turn too. This is so even if the
Agreeing only runs through maximal edges of the adjacent graph. Therefore the
time measured in switch turns that the solver takes to agree pairwise all equa-
tions is twice the number of rounds. In particular, to reject one wrong key in the
Triple DES takes at most 2× 48 switch turns.

6 Conclusion, open problems and discussion

The paper describes a hardware implementation of the Agreeing Algorithm
aimed to find solutions to a system of sparse Boolean equations, e.g. coming
from ciphers. Some variables guess is introduced into the device which signals
out if the system is inconsistent after that guess. The device architecture im-
plemented with a lattice of circuits is transparent. However, this is an open
problem whether the circuit lattice for a real world cipher like DES or Triple
DES is implementable within the current technology in computer industry.

There are several related problems:



1. The number of switches is the most important parameter of the solver. Table
2 data shows that the equation systems representing the DES and the Triple
DES require the number of switches which is within the number of transistors
now available on one semiconductor crystal. For instance, Intel announced
Dual-Core Itanium2 processor with more than 1.7 billion transistors, see [9].
Obviously, a transistor is able to work as a switch.

2. Special purpose hardware to supply one after one guesses on fixed variables
is to be devised. Its speed should be comparable with that of the solver. The
device is also constructed in wires and switches and controlled by the output
signal from the solver. It is easy to understand, it should be only 2 switch
turns on the average.

3. The transistor speed(the speed of a turn) is constantly increasing. E.g., his-
torical 17% year performance improvement is also predicted in [21] for the
next decade. Then a new speed record for the world fastest transistor which
is more than 1THz(1000GHz), see [10], was reported. However, to be on the
safe side we assume available transistors with speed about 100GHz. Assume
it is feasible to integrate one billion or so such transistors on one semiconduc-
tor chip as a Triple DES circuit lattice. Then average time for producing a
guess on 112 key variables and finding the system’s inconsistence is approxi-
mately 2×48+2 = 98 switch turns. So the key rejecting rate is approximately
1GHz in this case. It is compared favorably with what is currently achieved,
about 0.034GHz.
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7 Appendix

In this Appendix we describe how to make the equation system from the DES
algorithm. The similar equations are constructed for the Triple DES. The in-
put and output applications of the permutation IP are ignored as well as the
final swap between 32-bit sub-blocks. The 64-bit internal state of the cipher
after the i-th round is denoted by (Ri−1, Ri). In particular, (R−1, R0) denotes
the 64-bit plain-text block and (R15, R16) is the related cipher-text block. All
these 128 bits are generally considered known constants. But we write them
variables. So that when the Agreeing algorithm is being run, these 128 variables
are substituted by constants as if for guessing. Therefore, 576 state variables are
bits of R−1, R0, R1, . . . , R15, R16. They are numbered −63,−62, . . . , 512. 56 key
variables are numbered by 512 + j, where 1 ≤ j ≤ 64 and j 6= 8, 16, . . . , 64.

At every round i = 1, 2, . . . , 16, sub-blocks Ri are related as

Ri ⊕Ri−2 = PS(Ri−1 ⊕Ki), (7)

where Ri−1 is the 48-bit expansion of the 32-bit Ri−1 and Ki is the round key. P
denotes the fixed permutation on 32 symbols and S is the transform implemented
by 8 S-boxes. The equation (7) is equivalent to 8 equations related to each of
the S-boxes Sj :

(P−1(Ri))j ⊕ (P−1(Ri−2))j = Sj((Ri−1)j ⊕Ki,j), (8)



where Ri,j is a 4-bit sub-block of Ri, and Ki,j is a 6-bit sub-block of Ki and
(T )j denotes a 6(or 4)-bit sub-block of T . The equation (8) is denoted by Ei,j =
Ej+8(i−1). The full system of the DES equations consists of 128 equations Et,
t = 1, 2, . . . , 128. One equation incorporates 20 variables. For instance, E8,4 =
E60 depends on 20 variables:

(P−1(R6))4 = (x161, x170, x180, x186),
(R7)4 = (x204, x205, x206, x207, x208, x209),

(P−1(R8))4 = (x225, x234, x244, x250),
K8,4 = (x514, x529, x538, x539, x556, x561).

These variables compose the set X60. For any values of the following 16 variables:

x204, x205, x206, x207, x208, x209, x225, x234,

x244, x250, x514, x529, x538, x539, x556, x561,

the values of x161, x170, x180, x186 are uniquely defined by (8). So 216 vectors of
length 20 compose the list V60. That is all equations have 216 solutions. Let
m→ EK(m) denote the encryption function on plain-text blocks with the DES
algorithm. Then the Triple DES implements the mapping:

m→ EK1(EK2(EK1(m))).

Therefore Triple DES equations are determined similarly to those for the DES.


