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Abstract. Many recent protocols for Authenticated Key Exchange have been proven correct
in the CK, CK-HMQV, or eCK security models. The exact relation between the security
models, and hence between the security guarantees provided by the protocols, is unclear. We
show that the CK, CK-HMQV, and eCK security models are not only formally incomparable
but also practically incomparable, by providing for each model attacks on existing protocols
that are not considered by the other models. We analyse a set of recent key exchange protocols
with respect to the models. Finally, we present the first two-message authenticated key
exchange protocol that is correct in the CK-HMQV and eCK models and also provides
Perfect Forward Secrecy.
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1 Introduction

Authenticated Key Exchange (AKE) protocols form a crucial component in many network
protocols. As such, they have been subject to increasing requirements in terms of efficiency
as well as security. In terms of security, one of the goals has been to design protocols that
are secure in the presence of the strongest possible adversaries.

During the last ten years, many newly proposed AKE protocols have been proven
secure with respect to strong security models. Some examples are the 2-pass ISO signed
Diffie-Hellman protocol in the CK model from [1], the HMQV protocol in a closely related
model CKHMQV in [2], and the Naxos [3] and Okamoto [4] protocols in the eCK model [3].
The underlying idea is that the newer security models are stronger, and hence protocols
proven in the newer models are at least as secure as the protocols proven in earlier models.
However, given the subtle differences among the models, this conclusion is not obvious.
In fact, many technical differences suggest that the models are formally incomparable.
However, even if two models are incomparable for minor technical reasons, it may still be
that one model is stronger than the other for all realistic protocols.

The fact that the relation between strong AKE security models has not been made
precise, combined with the unproven assumption that some models are stronger than
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others in practice, hinders the objective comparison of the security properties of the various
protocol proposals. We address this situation by relating three recent (and closely related)
security models for indistinguishability-based proofs of AKE security that have been used
for the analysis of a larger number of protocols. The results we establish refute several
claims made previously in the literature.
Contributions. First, we show that the CK, CKHMQV, and eCK models have different
formal proof obligations. To show the practical differences, we present protocol attacks
(several of which are unreported) that are possible in one model but not in the others,
and vice versa. Therefore, the three models are not only formally but also practically
incomparable.

Second, we analyze a set of recent two-message AKE protocols in the three models,
leading to new insights regarding the security provided by the protocols.

Third, we present (to the best of our knowledge) the first 2-message AKE protocol
that is correct in the CKHMQV and eCK security models and also provides Perfect Forward
Secrecy.

We proceed as follows. In Section 2 we introduce the ideas underlying indistinguishability-
based AKE security models, and describe the eCK, CK and CKHMQV models. In Section 3
we analyse recent two-message AKE protocols with respect to the models. Using the attacks
from the analysis we relate in Section 4 the three models formally as well as practically.
Additionally, we discuss possible practical interpretations of each model. Next we present
a protocol that is correct in CKHMQV and eCK and also provides Perfect Forward Secrecy
in Section 5. We discuss related work in Section 6 and provide conclusions and future work
in Section 7.
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2 Three security models for Authenticated Key Exchange

In this section we describe the CK, eCK, and CKHMQV security models for authenticated
key exchange. In order to provide some context for the technical definitions, we first de-
scribe the general setup of indistinguishability-based security models for AKE, after which
we present the three models in detail.

2.1 Indistinguishability-based security models for Authenticated Key
Exchange

Security models for authenticated key exchange (AKE) models define properties of pro-
tocols. At a conceptual level, AKE security models contain at least three elements: the
execution model, the property that should be satisfied, and the adversary model.
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The execution model defines how protocols are executed, i. e., how the protocol is exe-
cuted by regular participants. The execution model defines elements of protocol execution
that are not mentioned in the protocol specification. For example, the details of session
creation or session termination may involve setting up session identifiers, accepting or re-
jecting particular incoming requests, or erasing session state. Between AKE security models
there are many technical differences in the execution models that have implications for the
judgements made on protocols.

The security property defines what the combined system, consisting of the interaction
between participants and the adversary, should satisfy. In AKE security models the main
property of interest is that the adversary should not be able to distinguish the session key
from a random bit string.

The adversary model describes the capabilities of the adversary, in whose presence the
protocol should satisfy the security property. We assume that the adversary has complete
control over the network and can eavesdrop, remove, or insert messages. The models differ
in the additional powers attributed to the adversary, which include revealing some long-
term or session keys, revealing the random numbers generated by participants, or revealing
parts of the session-state of some sessions.

Besides the three aspects described above, AKE security proofs often involve additional
parameters. Proofs may e. g. rely on various assumptions such as the computational or
the decisional Diffie-Hellman assumption. Furthermore, some protocol proofs assume the
Random Oracle Model, others the so-called standard model.

2.2 Preliminaries

A protocol consists of two or more roles, such as initiator, A, or responder, B. We assume
any number of participants (A, B, . . . ) execute role instances. We call each such instance
of a protocol role a session. Participants can execute multiple sessions concurrently.

During a normal protocol run (without adversary interference) between two partici-
pants A and B, there is a session at A and a session at B. For AKE models, we require
that both sessions compute the same session key. The notion of matching sessions (some-
times called partnering), as described in detail for each model separately below, aims to
make precise when two sessions are partners.

For technical reasons, the security definitions involve the notion of a particular protocol
instance referred to as the test session, for which the indistinguishability of the established
key is proven. This test session represents an arbitrary session, but is given a particular
identifier to be able to formulate the capability of the adversary to reveal e. g. session keys
of other sessions.

2.3 The eCK security model

We now present the eCK security model as defined in [3]. A unique feature of the eCK
model is that it includes an adversary that, under some restrictions, can reveal part of the
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state of the test session. In particular, the ephemeral keys can be revealed. The “ephemeral
key” terminology stems from the use of randomness for generating the short-term key pair
in a Diffie-Hellman style protocol.

Definition 1 (Session identifier). The session identifier of a session sid is defined
as the tuple (role, ID , ID∗, comm1, . . . , commn), where role is the role performed by the
session (here initiator or responder), ID is the name of the participant executing sid,
ID∗ the name of the intended communication partner, and comm1, . . . , commn the list of
messages that were sent and received.

Definition 2 (Matching sessions for two-party protocols). For a two-party protocol,
sessions sid and sid′ are said to match if and only if there exist roles role, role′ (role 6=
role′), participants ID , ID ′, and message list L = comm1, . . . , commn, such that the session
identifier of sid is (role, ID , ID ′, L) and the session identifier of sid′ is (role′, ID ′, ID , L).

Definition 3 (Ephemeral keys). The ephemeral keys of a protocol are defined as the
random values generated during the execution of the protocol.

Definition 4 (clean for eCK). In an AKE experiment (e. g. as defined in Definition 5
below), let sid be a completed AKE session performed by A, supposedly with some party
B. Then sid is said to be clean if all of the following conditions hold:

1. A and B are not adversary-controlled, i. e., the adversary does not choose or reveal
both the long-term and ephemeral keys of the participant and performs on its behalf.

2. The experiment does not include Reveal(sid), i. e., the session key of session sid is not
revealed.

3. The experiment does not include both Long-term Key Reveal(A) and Ephemeral Key
Reveal(sid).

4. If no session exists that matches sid, then the experiment does not include Long-term
Key Reveal(B).

5. If a session sid∗ exists that matches sid, then the experiment does not include:
(a) Reveal(sid∗), i. e. the session key of session sid∗ is not revealed, and
(b) both Long-term Key Reveal(B) and Ephemeral Key Reveal(sid∗).

Definition 5 (AKE security experiment for eCK). In the eCK AKE security exper-
iment, the following steps are allowed:

1. The adversary may perform Send(A,B, comm), Long-term Key Reveal(A), and Reveal(sid)
queries as in [3].

2. The adversary may perform an Ephemeral Key Reveal(sid) query, revealing the ephemeral
keys of the session sid.

3. The adversary performs a Test(sid) query on a single clean session sid. A coin is
flipped: b $← {0, 1}. If b = 0, the test query returns a random bit string. If b = 1, the
query returns the session key of sid. This query can be performed only once.
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4. The adversary outputs a Guess(b′) bit b′, after which the experiment ends.

An adversary M wins the experiment if the Guess(b) bit b is equal to the bit b′ from the
Test(b′) query.

Definition 6 (eCK security). The advantage of the adversary M in the eCK AKE
experiment with AKE protocol Π is defined as AdvAKEΠ (M) = Pr[M wins] − 1

2 . We say
that an AKE protocol is secure in the eCK model if matching sessions compute the same
session keys and no efficient adversaryM has more than a negligible advantage in winning
the above experiment.

2.4 The CK security model

The CK model [1] is a predecessor of the other two models. For our results, we do not need
to consider the full details of CK and only describe the main differences with respect to
the eCK model.

Definition 7 (CK security). The CK security model is similar to the eCK model, except
for the following main differences.

1. The CK model has no Ephemeral Key Reveal query. Instead, the CK has a similar query
called Session-state Reveal. The Session-state Reveal query reveals the contents of the
session state. The contents of the session state are not specified within the CK model,
but are assumed to be defined separately for each protocol. Therefore the contents of the
session state can either be equal to, or differ from, the ephemeral keys that are revealed
by the similar Ephemeral Key Reveal query in the eCK model.

2. The Session-state Reveal query may only be performed on a session that is not the test
session or its matching session. In contrast, the Ephemeral Key Reveal query in the eCK
model may also be performed on the test session or its matching session.

3. The long-term private key of the participant that executes the test session may not be
revealed before the end of the test session. In the eCK model, the long-term private key
of the participant that executes the test session may be revealed.

4. If A executes the test session, supposedly with B, and no matching session for the
test session exists, then the long-term private key of B may be revealed after the test
session. In the eCK model the long-term private key of B may not be revealed in this
case.

5. The notion of matching sessions, as used for specifying the adversary capabilities, is
defined as sessions having the same session identifiers. These session identifiers are
assumed to be externally provided to the security model, by e. g. the application layer.

In existing proofs in the CK model such as for the signed Diffie-Hellman protocol, the
session state is defined as the ephemeral keys. In general, the long-term private keys are
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not considered to be part of the session state in the CK model, as this would trivially allow
for violation of the security property.

Point 3 relates to the ability of the security model to detect so-called Key Compromise
Impersonation (KCI) attacks [5]. Protocols that are proven to be CK-secure may still be
vulnerable to such attacks.

Point 4 relates to Perfect Forward Secrecy (PFS). Protocols proven secure in the CK
model satisfy PFS. In contrast, the eCK model only guarantees the strictly weaker notion
of Weak Perfect Forward Secrecy (WPFS) [2].

2.5 The CKHMQV security model

Definition 8 (CKHMQV security). The CKHMQV security model is similar to the CK
model with the modifications described in [2]:

1. As in the eCK model, the long-term private key of the participant that executes the test
session, may be revealed before the end of the test session.

2. As in the eCK model, If A executes a test session, supposedly with B, for which no
matching session exists, then the long-term private key of B may not be revealed after
the test session.

3. The definition of matching sessions is related to that of Def. 2 except that the role is
omitted from the session identifier and the messages are ordered differently, i. e., in
Def. 1 the session identifier consists of the tuple (ID , ID∗, comm, comm∗) where ID is
the participant name and comm the message it sent. The starred variants are respec-
tively the partner name and the received message. A session (ID , ID∗, comm, comm∗)
matches with the session (ID∗, ID , comm∗, comm).

Changing the definition of matching sessions is relevant for protocols that have symmetrical
roles such as MQV [6], HMQV [2], and CMQV [7]. As we will see in the next section, such
protocols allow for the following behaviour: A and B both execute an initiator session
with the other, and their messages cross, after which they compute the same session key.
According to the matching sessions definition of CKHMQV they will be partners. In contrast,
these sessions are not considered partners in the CK and eCK models. Thus, if the session
of A is the test session, the adversary is capable of revealing the session key of B’s session.

Table 1 provides an overview of adversary capabilities which differ among the models.
We will use this table in Section 4 when explaining the formal difference between models.

3 Analysis of two-message AKE protocols

In this section we analyse a number of recent two-message AKE protocols in the three se-
curity models. We combine known results with a number of previously unreported attacks.
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Table 1. Adversarial capabilities in the CK [1], CKHMQV [2], and eCK [3] security models.
Assume A executes the test session, supposedly with B.

Capability Description CK CKHMQV eCK

C1 Session-state/Ephemeral-key reveal contents can differ from
ephemeral keys.

Yes Yes No

C2 Session-state/Ephemeral-key reveal may be performed on test or
matching session.

No No Yes

C3 Long-term key reveal of A possible before end of test session (part
of checking for KCI.)

No Yes Yes

C4 Long-term key reveal of B possible even if no matching session exists
(part of checking for PFS.)

Yes No No

C5 Reveals on sessions that compute the same session key, but do not
have matching histories, are possible (relates to the matching ses-
sions definition in the CKHMQV model.)

Yes No Yes

In the Venn diagram in Figure 1 each circle represents a security model. Within the
circles, protocols are listed that are correct in the corresponding security model. For ex-
ample, the 2DH-ISO [1] protocol is correct in the CK and CKHMQV models, but admits
an attack in the eCK model. We motivate the placement of each protocol below.

We start with a basic protocol. At the

CKHMQV eCK

CK

Naxos(*2)

2DH−ISO−MAC

2DH−ISO

BCNP−2−NX

Naxos(*1)

CMQVOkamoto

BCNP−2

HMQV

Fig. 1. Security of two-message protocols

core of the signed 2DH-ISO protocol [1] is
a Diffie-Hellman exchange where the mes-
sages are signed using the long-term key
of the sender. As role names are included
in the messages, and the first message can-
not be mistaken for the second, the result-
ing protocol can be proven correct in the
CK model [1]. The use of signatures in all
messages prevents key compromise imper-
sonation. As a result, the protocol seems
also correct in the CKHMQV model. The
signed 2DH-ISO protocol is not correct in
the eCK model as revealing the ephemeral

keys of the test session trivially allows reconstruction of the session key [3]. A variant of the
protocol in which the signatures are replaced by MACs based on the long-term symmetric
keys shared between the participants, denoted by 2DH-ISO-MAC, is also correct in CK
but is vulnerable to key compromise impersonation attacks, and is therefore not correct in
the CKHMQV model.
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The Naxos protocol [3] was proven correct in the eCK model. In [8] it was shown that
if the session-state includes the inputs to the final step of the key derivation, Naxos is
vulnerable to a state-reveal attack, and hence not correct in the CK and CKHMQV models.
To distinguish between two possible definitions of the session-state in Naxos, we write
Naxos(*1) to denote the protocol where the session state contains only the ephemeral
keys. We write Naxos(*2) to denote the version of the Naxos protocol where the session-
state includes the inputs to the final key derivation step (applying a hash function to a
concatenation of messages.) For full details we refer the reader to [3, 8]. Both versions of
the Naxos protocol do not satisfy Perfect Forward Secrecy, as the adversary can generate
an arbitrary value x and send gx to B, as if it were sent by A. B cannot distinguish gx

from what would have been sent by the real A, namely, gH1(eskA,skA). After B sends a
response, the session of B ends, and the adversary can compromise the long-term of A,
and reconstruct the key. As a result, Naxos is not correct in the CK model. This attack is a
variant of the attack scheme on Perfect Forward Secrecy described in [2], and is described
in detail in Appendix A.

The BCNP-2 protocol [9] was proven secure in a variant of the CKHMQV model, under
the assumption that the ephemeral secrets are not in the session state. Furthermore, it was
conjectured in [9] that a transformation1 of the protocol along the lines of the mechanism
used in Naxos [3] would cause the resulting protocol to be correct in the eCK model.
We denote this protocol by BCNP-2-NX. Both protocols are incorrect in the CK model
because they do not provide PFS.

The protocols MQV [6] and HMQV [2] are closely related. HMQV can be viewed as
a “cleaned up” version of MQV and was proven correct in CKHMQV under the assumption
that the session-state contains only the ephemeral keys. As pointed out in [10], both
protocols allow symmetrical behaviour: two initiators may start the protocol with each
other and establish the same session key, even though they are executing the same role.
These sessions are not partners according to the CK and eCK models. If one of the sessions
is the test session, then the adversary can trivially reveal the session key by revealing the
other initiator’s session key. Strictly speaking this leads to attacks in the CK and eCK
model. Furthermore, both protocols only provide weak perfect forward secrecy, and are
also for that reason incorrect in CK.

The CMQV protocol [7] is a variant of HMQV, adapted with a transformation similar
to the one used in Naxos. CMQV was proven secure in an eCK-like model that uses the
session identifier definition from the CKHMQV model. However, because of symmetrical
behaviour similar to (H)MQV, the protocol is strictly speaking not correct in the model
in [7], and also not in CKHMQV. However, the protocol seems correct in the original eCK
model.

1 The transformation used in Naxos consists of replacing each usage of a random value x of a principal A
by H(skA, x), where H is a hash function and skA is the long-term private key of A.
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The Okamoto protocol [4] is proven correct in the eCK model. Assuming that its
session state contains exactly the ephemeral keys, it is also correct in the CKHMQV model.
However, the protocol does not satisfy Perfect Forward Secrecy and is therefore incorrect
in the CK model. An attack on PFS resembling the attack on Naxos is described in detail
in Appendix B.

4 Relating the CK, CKHMQV, and eCK security models

The outcome of our analysis is that the three models defined in Section 2 are formally
incomparable, i. e., security in one security model does not imply security any of the other
two models. Additionally, we show practical incomparability, i. e., we show that in each
model, attacks on protocols from literature exist that are not considered by the other
models. Our formal comparisons are based on differences in proof obligations, summarized
in Table 1, and our practical comparisons build on the attacks described in the previous
section.

4.1 CKHMQV security does not imply CK security

Additional proof obligations: C4 and C5.
Attack example. As pointed out by its author, the (two-message) HMQV protocol
from [2] is not correct in the CK model because it does not satisfy Perfect Forward Secrecy
because of a generic attack described in [2]. The CKHMQV model was designed not to
consider this type of attack, such that a particular class of protocols can be proven secure
in the CKHMQV model. With respect to C5, a key-reveal attack of this type was pointed
out for HMQV in [10].

4.2 CK security does not imply eCK security

Additional proof obligations: C2 and C3.
Attack example. An example using C2 is described in [3]. The basic signed two-pass
Diffie-Hellman protocol provides CK- and CKHMQV-security, but is subject to a straight-
forward attack if the adversary learns the ephemeral key of one of the participants by
means of an Ephemeral Key Reveal query. This allows the adversary to compute the session
key.

4.3 eCK security does not imply CKHMQV security

Additional proof obligations: C1. Additionally, the more liberal notion of matching
sessions underlying C5 leads to an additional proof obligation that two matching sessions
(which could be two initiators) compute the same session key.
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Attack example. An example attack in CKHMQV on the Naxos protocol [3], which was
proven correct in the eCK model, is described in [8]. The attack occurs when the session
state of the protocol contains the inputs to the hash function H2 that is used in the final
step of the session key computation.

With respect to the proof obligations that matching sessions compute the same key
(underlying C5), we observe that the CMQV protocol [7] allows for two initiators to be
in matching sessions in the CKHMQV model, in which case they compute different session
keys, violating CKHMQV security.

4.4 CK security does not imply CKHMQV security

Additional proof obligations: C3.
Attack example. The 2DH-ISO-MAC protocol, as described in the previous section, is
correct in CK but vulnerable to key compromise impersonation: if the adversary learns
the long-term keys used by A, he can impersonate any agent to A.

4.5 CKHMQV security does not imply eCK security

Additional proof obligations: C2 and C5.
Attack examples. Attacks exploiting C2 exists for any basic two-message signed Diffie-
Hellman exchange, as pointed out in [3]. If the adversary reveals the ephemeral private
key of the test session or its matching session, the session key can be computed.

An attack on the HMQV protocol that exploits C5 was presented in [10] and was
described in the previous section. Two sessions, both executing the initiator role, accept
each other’s initial message as the response message. As a result, they compute the same
session key. However, they are not partners in the eCK model and hence the adversary
can reveal the session key of one session even if the other session is the test session.

4.6 eCK security does not imply CK security

Additional proof obligations: C1 and C4.
Attack example. An example involving capability C1 can be found in Section 4.2. With
respect to C4, we observe that the Okamoto protocol [4] does not satisfy Perfect Forward
Secrecy, as described in the previous section.

4.7 Possible practical interpretations of the security models

The Ephemeral-key Reveal query, which is the only query unique to the eCK model,
corresponds to an adversary capable of learning the ephemeral key after it was generated
(but not any other elements of the state) of any session. A corresponding practical scenario
is a random number generator (RNG) that leaks values upon generation. This may be due
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to the fact that the values can be retrieved, e. g., by eavesdropping communications or side-
channel attacks. The RNG is not malicious in the sense that values can be manipulated,
i. e., the adversary cannot choose the values. Furthermore, the RNG is also not predictable,
because the adversary can only learn the ephemeral keys after they have been generated.

The Session-State reveal query of the CK and CKHMQV models allows the adversary to
learn part of the session state. Two elements of the definition are that (1) the session state
contents should not reveal the long-term keys of the participant, and (2) the adversary only
passively learns the contents and cannot manipulate the state. Thus a practical scenario
would be an implementation of the protocol using a Tamper-Proof Module or cryptographic
coprocessor, which protects at least the long term keys, while other parts of the protocol
are executed in unprotected memory. The adversary then is able to gain read-only access
to this memory, e. g., by side channel attacks, or by attacks such as freezing the memory.
The model does not realistically model an adversary gaining administrator/root access to
the machine, as that would require modeling active manipulation of the session-state.

The CKHMQV security notion was developed in tandem with the HMQV protocol, and
it seems that the requirements on HMQV have influenced the security model. Relaxing
the condition of Perfect Forward Secrecy to Weak Perfect Forward Secrecy seems driven
by the requirement of implicit authentication. Similarly, the change of partnering function
seems driven by the requirement of symmetry of the roles. Otherwise, the model is similar
to the CK model but additionally considers Key Compromise Impersonation attacks.

5 Designing a two-message protocol correct in CKHMQV and eCK that
provides Perfect Forward Secrecy

In Figure 2 we present a two-message protocol that is correct in CKHMQV and eCK,
and provides Perfect Forward Secrecy. The protocol design is essentially a straightforward
signed Diffie-Hellman exchange, combined with the Ephemeral Key Reveal countering tech-
nique used for the Naxos protocol in [3]. To the best of our knowledge, protocol 1 is the only
two-message protocol that is correct in the CKHMQV and eCK models that also provides
PFS.

We assume each participantA has a long-term private/public signature key pair (skA, pkA)
and that the agents can verify the signatures of others (e. g. by pre-distribution or the in-
clusion of certificates in the message exchange.) We assume H1 and H2 are hash functions.
The agents A and B perform a basic signed Diffie-Hellman key exchange. However, as in
Naxos, instead of using the random values rA and rB as the exponents in the computation
of the ephemeral public keys, the agents use xA = H1(skA, rA) and xB = H1(skB, rB).
Other design decisions are (1) the first and second message are sufficiently distinct, and
(2) A’s ephemeral public key is contained in the signature of the second message to bind
it to B’s ephemeral key in the response. At the end of a session, all state except for the
session key is erased. (If needed, an explicit session identifier can be defined using a hash
of the agent names, long-term public keys and ephemeral public keys.)
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A B

rA ∈R Z∗
p

XA = gH1(skA,rA)

σA = signskA
(A,XA)

A,XA,σA−−−−−−→ verify signature σA
rB ∈R Z∗

p

XB = gH1(skB ,rB)

σB = signskB
(XB , B,XA)

verify signature σB
XB ,B,XA,σB←−−−−−−−−−

KA = H2((XB)H1(skA,rA)) KB = H2((XA)H1(skB ,rB))

Fig. 2. Protocol 1: A variant of signed Diffie-Hellman using the Naxos transformation

Security argument. A security proof of Protocol 1 will be given in the full version of this
paper. Here we observe that the security proof in the CKHMQV model can reuse existing
proofs of a basic signed Diffie-Hellman key exchange based on the assumption that H1 is
a hash function. With respect to the eCK model, as pointed out in [9], leaking rA using
Ephemeral Key Reveal does not allow the adversary to compute the key unless skA is also
revealed. Revealing both rA of the test session as well as skA (or rB and skB) is disallowed
in the eCK model. With respect to PFS, we remark that revealing the long-term keys of all
agents after the sessions does not yield any additional information about the randomness
used to compute the key.

6 Related work

Many indistinguishability-based proof models for AKE security have been proposed, e. g.,
[1–3,11,12]. Some earlier models have been compared in [13]. The use of session identifiers
has been studied in [14]. Recently, the CK [1] model has been related to one of its variants
with respect to specification of peers before or after the session in [15].

Several authors have suggested that the eCK model is the strongest security model,
e. g., [4, 7, 16, 17]. In [8] it was shown that this is not the case. In contrast to [8], our
work focusses not on a single query difference between two models but on the full security
models, and relates them in detail. We observe that the proof of the theorem in [17] that
eCK is the strongest security model, only considers the existence of certain query types,
and not the conditions under which these queries may occur in the security experiment.

Alternative definitions of AKE security in a simulation-based context have been sug-
gested in [18, 19]. The security models in [19] are weaker than the models described here.
The definitions in [18] are intended for protocol construction and not immediately appli-
cable to the analysis of existing protocols.
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7 Conclusions and Future Work

We have shown that the CK, eCK, and CKHMQV models for AKE security are not only
formally but also practically incomparable, thereby refuting several (informal) claims made
in the literature in e. g. [4,7,16,17] about the relation between the models. For each model,
there exist attacks on protocols that are not considered by the other models. We have
analysed several protocols and determined in which AKE models they are not correct.
This both shows the implications of the differences as well as provides a new view on
some of these protocols. Finally, we presented a new protocol that is (to the best of our
knowledge) the first two-message AKE protocol to be secure in CKHMQV and eCK and
provides Perfect Forward Secrecy.

The complexity of strong AKE security models makes them hard to compare or to relate
to practice. This complexity seems to be caused by the aim of making the security notion,
and thus the adversary, as strong as possible, such that any stronger adversary would be
able to break all protocols. However, because there is no total order on adversaries, there
is no single strongest model for which there are still correct protocols. As a result, multiple
“strong” models can coexist. However, if the practical implications of a security model are
made clear, as in Section 4.7, it becomes possible to choose among the security models
based on the target application domain.

As future work, we consider the possibility of a two-message AKE protocol that is more
efficient than Protocol 1 and additionally provides identity protection. Finally, it would be
of interest to determine the exact relation between the guarantees provided by simulation
based AKE security notions [18] and the security models considered here.
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A Attack on the Naxos protocol in the CK model

The Naxos protocol described in [3] does not satisfy Perfect Forward Secrecy and is there-
fore not correct in the CK model. The idea of the attack is a generalization of the observa-
tion in [2]: if the message exchange is not authenticated initially, an adversary can impose
as the responder B and send messages of the form gz for some z that he knows. Then,
after the test session (of the initiator A) ends, the adversary reveals the long-term private
key of B, and computes the session key. In the case of Naxos, an honest participant in
the responder role would send gH1(eskB ,skB) where eskB is the ephemeral private key of
B. However, since A can only check that the result is a group element, no authentication
takes place.

The attack proceeds as follows. The initiator A starts the test session, trying to com-
municate with B. A generates eskA and computes X = gH1(eskA,skA). This message is sent
to B. The adversary intercepts the message and chooses any z. He computes Y = gz and
sends this to A. A checks that Y is in the group G. A computes the session key as

KA = H2(Y skA , pk
H1(eskA,skA)
B , Y H1(eskA,skA), A,B).

Now the test session ends. The adversary reveals the long-term key skB of B as is allowed
in the CK model. Unfolding Y = gz we get

KA = H2((gz)skA , pkH1(eskA,skA)
B , (gz)H1(eskA,skA), A,B).
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Based on the equivalences (gx)y = (gy)x) and pkX = gskX we find

KA = H2(pkzA, (g
H1(eskA,skA))skB , (gH1(eskA,skA))z, A,B),

which, combined with X = gH1(eskA,skA) yields

KA = H2(pkzA, X
skB , Xz, A,B).

The adversary knows z, X, pkA, and (by long-term key reveal) skB and is therefore able
to compute the session key.

B Attack on the Okamoto protocol in the CK model

The Okamoto protocol from [4] is vulnerable to an attack on Perfect Forward Secrecy
that resembles the attack on Naxos described in Appendix A. The initiator A starts the
test session with B and computes and sends X1, X2, X3. The adversary intercepts the first
message. Instead of computing y, y3 using the long-term private key of B, the adversary
chooses arbitrary values for y, y3. He computes the ephemeral public keys Y1 = gy1 , Y2 = gy2 ,
and Y3 = gy31 , which are sent back to A. The remainder of the attack continues as in the
Naxos example. In particular, A computes

σA = Y a1+ca3
1 Y a2+ca4

2 Y x3
3 pk1Bxpk2Bdx

where a1, . . . , a4 are components of A’s long-term private key, and pk1B = gb11 g
b2
2 and

pk2B = gb31 g
b4
2 . We have that c = HA(A,B, Y1, Y2, Y3) and d = HB(B,A,X1, X2, X3),

where c and d can be computed by a passive adversary. Together with the session identifier,
which is known to the adversary, σA is used to compute the session key. Hence the security
of the key depends on the adversary not being able to compute σA.

After the end ofA’s session the adversary revealsB’s long-term private key (b0, b1, b2, b3, b4).
Now, by the design of the protocol, we have that

σA = σB = Xb1+db3
1 Xb2+db4

2 Xy3
3 pk1Aypk2Acy.

The adversary has chosen y, y3. He knowsA’s public keys pk1A, pk2A, and knowsX1, X2, X3

and b1, . . . , b4. He can compute c and d. Hence he is also able to compute σB and therefore
the session key.
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