
Formally and Practically Relating the CK,
CK-HMQV, and eCK Security Models for

Authenticated Key Exchange

Cas J.F. Cremers?

Department of Computer Science, ETH Zurich
8092 Zurich, Switzerland
cas.cremers@inf.ethz.ch

August 6, 2009

Abstract. Many recent protocols for Authenticated Key Exchange have
been proven correct in the CK, CK-HMQV, or eCK security models. The
exact relation between the security models, and hence between the secu-
rity guarantees provided by the protocols, is unclear. We show that the
CK, CK-HMQV, and eCK security models are formally incomparable
for a number of reasons. Second, we show that these models are also
practically incomparable, by providing for each model attacks on exist-
ing protocols that are not considered by the other models. Our analysis
exposes many subtleties of these models, some of which can even be gen-
eralized to reveal shortcomings in security proofs in related AKE security
models.

Keywords. Security Models, Authenticated Key Exchange, Session-
state, Ephemeral-key, Perfect Forward Secrecy, Weak Perfect Forward
Secrecy, Key Compromise Impersonation, Matching sessions, Partnering

1 Introduction

Authenticated Key Exchange (AKE) protocols form a crucial component
in many network protocols. As such, they have been subject to increasing
requirements in terms of efficiency as well as security. In terms of secu-
rity, one of the goals has been to design protocols that are secure in the
presence of the strongest possible adversaries.

During the last ten years, many newly proposed AKE protocols have
been proven secure with respect to strong security models. Some examples
are the 2-pass ISO signed Diffie-Hellman protocol in the CK model from
[1], the HMQV protocol in a closely related model CKHMQV in [2], and the

? This work was partially supported by the Hasler Foundation within the ComposeSec
project.



Naxos [3] and Okamoto [4] protocols in the eCK model [3]. The underlying
idea is that the newer security models are stronger, and hence protocols
proven in the newer models are at least as secure as the protocols proven
in earlier models. However, given the subtle differences among the models,
this conclusion is not obvious. In fact, many technical differences suggest
that the models are formally incomparable. However, even if two models
are incomparable for minor technical reasons, it may still be that one
model is stronger than the other for all realistic protocols.

The fact that the relation between strong AKE security models has
not been made precise, combined with the unproven assumption that
some models are stronger than others in practice, hinders the objective
comparison of the security properties of the various protocol proposals.
We address this situation by relating three recent (and closely related)
security models for indistinguishability-based proofs of AKE security that
have been used for the analysis of a larger number of protocols. The results
we establish refute several claims made previously in the literature.

Contributions. First, we show that the CK, CKHMQV, and eCK models
are formally incomparable, by showing differences in application domain,
adversary model, and correctness prerequisites.

Second, we show the practical differences, by presenting protocols that
are correct in one model but cannot be shown to be correct in the others,
and vice versa. Therefore, we establish that the three models are not only
formally but also practically incomparable.

Third, our analysis reveals subtleties about the interaction between
matching sessions and key derivation that can be applied to these models
but also to related models. Using our observations we reveal previously
unreported shortcomings in protocol proofs.

We proceed as follows. In Section 2 we recall the ideas underlying
indistinguishability-based AKE security models, and describe the eCK,
CK and CKHMQV models. In Section 3 we show formal incomparability
of the models. In Section 4 we show practical incomparability of the three
models using protocols from the literature. Additionally, we discuss pos-
sible practical interpretations of each model. In Section 5 we generalize
our observations for symmetric-role protocols and apply them to a set
of protocols and their proofs. We discuss related work in Section 6 and
provide conclusions and future work in Section 7.

2



Acknowledgements

The author is grateful to Berkant Ustaoglu and Alfred Menezes, whose
constructive comments and insightful discussions have lead to a complete
rewrite of an earlier version of this paper.

2 Three security models for Authenticated Key Exchange

In this section we describe the CK, eCK, and CKHMQV security models for
authenticated key exchange. In order to provide some context for the tech-
nical definitions, we first describe the general setup of indistinguishability-
based security models for AKE, after which we present the three models
in detail.

2.1 Indistinguishability-based security models for
Authenticated Key Exchange

Security models for authenticated key exchange (AKE) models define
properties of protocols. At a conceptual level, AKE security models con-
tain at least three elements: the execution model, the security property
that should be satisfied, and the adversary model.

The execution model defines how protocols are executed, i. e., how the
protocol is executed by regular participants. The execution model defines
elements of protocol execution that are not mentioned in the protocol
specification. For example, the details of session creation or session ter-
mination may involve setting up session identifiers, accepting or rejecting
particular incoming requests, or erasing session state. Between AKE secu-
rity models there are many technical differences in the execution models
that have implications for the judgements made on protocols.

The security property defines what the combined system, consisting
of the interaction between participants and the adversary, should satisfy.
In AKE security models the main properties of interest are that (1) in-
tended communication partners compute the same key, and that (2) the
adversary is not be able to distinguish the established session key from a
random bit string.

The adversary model describes the capabilities of the adversary, in
whose presence the protocol should satisfy the security property. We as-
sume that the adversary has complete control over the network and can
eavesdrop, remove, or insert messages. The models differ in the addi-
tional powers attributed to the adversary, which include revealing some

3



long-term or session keys, revealing the random numbers generated by
participants, or revealing parts of the session-state of some sessions.

Besides the three aspects described above, AKE security proofs of-
ten involve additional parameters. Proofs may e. g. rely on various as-
sumptions such as the computational or the decisional Diffie-Hellman as-
sumption. Furthermore, some protocol proofs assume the Random Oracle
Model, others the so-called standard model.

One aspect which will play an important role in our discussion is
the notion of matching sessions (sometimes referred to as partnering)
which aims to capture when two sessions are “intended communication
partners”. This notion is both used in the specification of the security
property (matching sessions should compute the same key) as well as in
the definition of the adversary capabilities (e. g., the adversary can reveal
the session key of non-matching sessions.)

2.2 Preliminaries and notational conventions

A protocol consists of two or more roles, such as initiator, A, or respon-
der, B. We assume any number of participants (A, B, . . . ) execute role
instances. We call each such instance of a protocol role a session. Partic-
ipants can execute multiple sessions concurrently.

During a normal protocol run (without adversary interference) be-
tween two participants A and B, there is a session at A and a session at
B. For AKE models, we require that both sessions compute the same ses-
sion key. The notion of matching sessions (sometimes called partnering),
as described in detail for each model separately below, aims to make pre-
cise when two sessions are partners, and thus should compute the same
key.

For technical reasons, the security definitions involve the notion of a
particular protocol instance referred to as the test session, for which the
indistinguishability of the established key is proven. This test session rep-
resents an arbitrary session, but is given a particular identifier to enable
formulation of adversarial capabilities, such as the capability to reveal
e. g. session keys of other sessions.

Below we recall (parts of) the definitions of the three security models
that can be skipped by readers familiar with the details of the models. In
Section 3 we formally compare the models.

4



2.3 The eCK security model

We now present the eCK security model as defined in [3]. A unique fea-
ture of the eCK model is that it includes an adversary that, under some
restrictions, can reveal part of the state of the test session. In particular,
the ephemeral keys can be revealed. The “ephemeral key” terminology
stems from the use of randomness for generating the short-term key pair
in a Diffie-Hellman style protocol.

Definition 1 (Session identifier). The session identifier of a session
sid is defined as the tuple (role, ID , ID∗, comm1, . . . , commn), where role
is the role performed by the session (here initiator or responder), ID is
the name of the participant executing sid, ID∗ the name of the intended
communication partner, and comm1, . . . , commn the list of messages that
were sent and received.

Definition 2 (Matching sessions for two-party protocols). For a
two-party protocol, sessions sid and sid′ are said to match if and only if
there exist roles role, role′ (role 6= role′), participants ID , ID ′, and mes-
sage list L = comm1, . . . , commn, such that the session identifier of sid
is (role, ID , ID ′, L) and the session identifier of sid′ is (role′, ID ′, ID , L).

Definition 3 (Ephemeral keys). The ephemeral keys of a protocol are
defined as the random values generated during the execution of the proto-
col.

Definition 4 (clean for eCK). In an AKE experiment (e. g. as defined
in Definition 5 below), let sid be a completed AKE session performed by
A, supposedly with some party B. Then sid is said to be clean if all of
the following conditions hold:

1. A and B are not adversary-controlled, i. e., the adversary does not
choose or reveal both the long-term and ephemeral keys of the partic-
ipant and performs on its behalf.

2. The experiment does not include Reveal(sid), i. e., the session key of
session sid is not revealed.

3. The experiment does not include both Long-term Key Reveal(A) and
Ephemeral Key Reveal(sid).

4. If no session exists that matches sid, then the experiment does not
include Long-term Key Reveal(B).

5. If a session sid∗ exists that matches sid, then the experiment does not
include:

5



(a) Reveal(sid∗), i. e. the session key of session sid∗ is not revealed,
and

(b) both Long-term Key Reveal(B) and Ephemeral Key Reveal(sid∗).

Definition 5 (AKE security experiment for eCK). In the eCK
AKE security experiment, the following steps are allowed:

1. The adversary may perform Send(A,B, comm), Long-term Key Reveal(A),
and Reveal(sid) queries as in [3].

2. The adversary may perform an Ephemeral Key Reveal(sid) query, re-
vealing the ephemeral keys of the session sid.

3. The adversary performs a Test(sid) query on a single clean session
sid. A coin is flipped: b $← {0, 1}. If b = 0, the test query returns a
random bit string. If b = 1, the query returns the session key of sid.
This query can be performed only once.

4. The adversary outputs a Guess(b′) bit b′, after which the experiment
ends.

An adversary M wins the experiment if the Guess(b) bit b is equal to the
bit b′ from the Test(b′) query.

Definition 6 (eCK security). The advantage of the adversary M in
the eCK AKE experiment with AKE protocol Π is defined as AdvAKEΠ (M) =
Pr[M wins]− 1

2 . We say that an AKE protocol is secure in the eCK model
if matching sessions:

1. compute the same session keys, and
2. no efficient adversary M has more than a negligible advantage in

winning the above experiment.

2.4 The CK security model

The CK model [1] is a predecessor of the other two models. For our results,
we do not need to consider the full details of CK and only describe the
main differences with respect to the eCK model.

Definition 7 (CK security). The CK security model is similar to the
eCK model, except for the following main differences.

1. The notion of matching sessions is defined as sessions having the same
session identifiers and reversed name assignments, i. e., a session with
identifier sid executed by Alice talking to Bob, matches with a session
with identifier sid executed by Bob communicating with Alice. The

6



session identifiers are assumed to be externally provided to the security
model, by e. g. the application layer. The session identifiers are subject
to some constraints which we detail in the next section.

2. The CK model has no Ephemeral Key Reveal query. Instead, the CK
has a similar query called Session-state Reveal. The Session-state Reveal
query reveals the contents of the session state. The contents of the ses-
sion state are not specified within the CK model, but are assumed to
be defined separately for each protocol. Therefore the contents of the
session state can either be equal to, or differ from, the ephemeral keys
that are revealed by the similar Ephemeral Key Reveal query in the eCK
model.

3. The Session-state Reveal query may only be performed on a session
that is not the test session or its matching session. In contrast, the
Ephemeral Key Reveal query in the eCK model may also be performed
on the test session or its matching session.

4. The long-term private key of the participant that executes the test
session may not be revealed before the end of the test session. In the
eCK model, the long-term private key of the participant that executes
the test session may be revealed.

5. If A executes the test session, supposedly with B, the long-term private
key of B may be revealed after the test session or its matching session
ends. In the eCK model the long-term private key of B may only be
revealed if a matching session exists for the test session.

In existing proofs in the CK model such as for the signed Diffie-Hellman
protocol, the session state is defined as the ephemeral keys, or the random
coins drawn by the participant. In general, the long-term private keys are
not considered to be part of the session state in the CK model, as this
would trivially allow for violation of the security property.

2.5 The CKHMQV security model

Definition 8 (CKHMQV security). The CKHMQV security model is
similar to the CK model with the modifications described in [2]:

1. The definition of matching sessions is related to that of Def. 2 ex-
cept that the role is omitted from the session identifier and the mes-
sages are ordered differently, i. e., in Def. 1 the session identifier
consists of the tuple (ID , ID∗, comm, comm∗) where ID is the par-
ticipant name and comm the message it sent. The starred variants
are respectively the partner name and the received message. A session
(ID , ID∗, comm, comm∗) matches with the session (ID∗, ID , comm∗, comm).

7



2. As in the eCK model, the long-term private key of the participant that
executes the test session, may be revealed before the end of the test
session.

3. As in the eCK model, if A executes a test session, supposedly with B,
for which no matching session exists, then the long-term private key
of B may not be revealed after the test session.

4. A separate analysis is performed in which the adversary is allowed to
learn the ephemeral keys of the test session or the matching session.

Changing the definition of matching sessions is relevant for protocols that
have symmetrical roles such as MQV [5] and HMQV [2]. We will discuss
this in detail in Section 3.3.

3 Formally relating the three security models

We first discuss the formal differences between the three models. We clas-
sify the differences into three categories: application domain, adversary
capabilities, and correctness prerequisites. Afterwards we summarize the
differences in Table 1.

3.1 Differences in application domain

In general, the AKE security models are at least applicable to two-party
protocols that aim to establish a fresh shared key. However, for the CK
model, an additional domain restriction holds.

CK application domain. Establishing a protocol correctness proof in
the CK model requires the definition of a session identifier within the
protocol. Each session is assigned a session identifier. If two participants
want to agree on a session key their respective sessions are assigned the
same session identifier. How these session identifiers are established or
identified in a given protocol is not specified in the CK model. However,
the following constraints are given:

– A participant never uses the same session identifier twice [1, p. 4].
– Every message contains the session identifier [1, p. 11].

In contrast, the other two models do not require the existence of a session
identifier.

3.2 Differences in adversarial capabilities

The models differ most in their definitions of adversarial capabilities.

8



CK adversary capabilities. The CK model allows for state-reveal
queries. These allow the adversary to learn the contents of the local state
of all sessions except for the test session and its matching session. The
state contents act as a parameter of the security model. The only re-
quirement is that the local state does not contain the long-term private
keys [1, p. 6].

The compromise of the long-term private key of the actor (the par-
ticipant that executes the test session) before the test session expires, is
not allowed in the CK model [1, p. 14]. As a result, the CK model is not
able to detect key compromise impersonation (KCI) attacks [6].

After the test session expires, the adversary is allowed to corrupt the
participant that executes the test session [1, p. 12]. Similarly, after the
session that matches the test session expires, the adversary is allowed
to corrupt the participant that executes the matching session. Unlike in
the CKHMQV and eCK models, this is allowed regardless of whether the
adversary actively interferes with the communication between the test
session and its partner. This corresponds to checking for Perfect Forward
Secrecy.

Attacks on regular protocol sessions (during which the adversary is
passive with respect to the test session and its partner) in which Alice
talks to Alice are not considered in the CK model. This is a side effect of
the definition of the session identifiers: Once Alice starts a session with
identifier s and sends a message m (that contains s), other sessions of
Alice can not accept this incoming message, as a session can only occur
once at a single participant [1, p. 11].

CKHMQV adversary capabilities. The CKHMQV model allows for
state-reveal queries [2, p. 6] as in the CK model.

In order to detect KCI attacks [6], the CKHMQV model allows the
compromise of the long-term private key of the actor (also before the test
session ends) [2, p. 41].

The extended analysis model of CKHMQV [2, p. 54] allows for revealing
the ephemeral key of test session of its matching session, provided that the
long-term private key of the agent that generated the revealed ephemeral
key, remains secret.

The corruption of the actor or the peer (the intended partner partici-
pant) after the end of the test session is only allowed if a matching session
exists [2, p. 42]. Secrecy with respect to this definition is defined as Weak
Perfect Forward Secrecy.

9



eCK adversary capabilities. The eCK model does not include the
state-reveal query but instead defines the ephemeral-key reveal query. This
reveals the ephemeral secrets, i. e., the randomness, of a session [3, p. 6].

The ephemeral-key reveal query also allows for revealing the ephemeral
secrets of a session s that computes the same key as the test session (i. e.,
the test session or its matching session), provided that the long-term pri-
vate key of the participant executing s is not revealed.

The eCK model allows for the reveal of the long-term private key of
the actor before the end of the test session [3, p. 8] and thus can be used
to detect KCI attacks.

The corruption of the peer after the end of the test session is only al-
lowed if a matching session exists [3, p. 9], corresponding to Weak Perfect
Forward Secrecy.

3.3 Correctness prerequisites in each model

The three models differ in a further aspect, which is neither strictly part of
the application domain nor of the adversary model. In each model, certain
generic attacks exist: some classes of AKE protocols are by definition of
incorrect in the model. For each of the models here, different generic
attacks exist. We refer to this aspect as the correctness prerequisites of
a model: a protocol can only possibly be correct in a model, if it does
not belong to the class of protocols for which generic attacks exist in
the model. If these prerequisites are met, one can attempt a proof in the
model (which may then still succeed or fail.)

Before we describe the detailed prerequisites of each model, we in-
troduce notation to express similar prerequisites in a uniform way. The
reason behind this is that many of our generic attacks depend on a mis-
match between the key derivation function and session matching, which
we explain below. We will re-use this notation later in Section 5.

Preliminaries: matching keys versus matching sessions. In AKE
security models the definitions of matching sessions are strongly con-
nected to the key derivation functions used in protocols. Intuitively, this
stems from the following two requirements in AKE models. First, AKE
models require matching sessions to compute the same key. Second, the
adversary is able to reveal the session key of a non-matching session.
Together these conditions imply that for protocols that are correct in a
security model, two completed sessions match in the model if and only if
they compute the same key.

10



For example, in the CKHMQV model, two completed sessions s and
s′ are said to match if and only if: the participant executing one session
is the peer of the other and its sent messages are the received messages
of the other, and vice versa [2, p. 29]. Thus, the key derivation function
must meet a similar condition in all valid experiments: exactly when two
sessions match then their key derivations must yield identical results.

Below we formalize this insight and use it later to infer conditions
that protocols must meet to be correct in each of the models.

Notational conventions. Let s be a completed session in a security ex-
periment. Then sR denotes the role (initiator, responder) performed by
the session, sA the participant that executes s, and sB the intended peer
of the session. Furthermore, ssend denotes the concatenation of the mes-
sages sent by s and srecv the concatenation of the messages received. In
the context of the CK model we write ssid to denote the session identifier
of the session.

We now define four relations between sessions which we will use to
categorize the AKE models in the following sections.

Definition 9 (Relation ≈A). Given two completed sessions s and s′,
we define

s ≈A s′ ⇔
(
sA = s′

B ∧ s′
A = sB ∧ ssend = s′

recv ∧ s′
send = srecv

)
In the CKHMQV model we have that two completed sessions s and ′s
are matching if and only if s ≈A s′. For symmetric-role protocols, this
definition allows two initiator sessions to be partners.

Definition 10 (Relation ≈B). Given two completed sessions s and s′,
we define

s ≈B s′ ⇔
(
(sR 6= s′

R ∨ sA = sB) ∧ s ≈A s′)
Relation ≈B is a variant of ≈A and does not occur in matching session
definitions of the models described here. Instead, the relation occurs in
some key derivation functions used in the examples below.

Definition 11 (Relation ≈C). Given two completed sessions s and s′,
we define

s ≈C s′ ⇔
(
sR 6= s′

R ∧ s ≈A s′)
Relation ≈C corresponds to the matching sessions definition in the eCK
model. It explicitly requires the roles to be distinct, thereby excluding
two initiators from having matching sessions.

11



Definition 12 (Relation ≈D). In the context of the CK model, for two
completed sessions s and s′, we define

s ≈D s′ ⇔
(
sA = s′

B ∧ s′
A = sB ∧ ssid = s′

sid

)
Relation ≈D corresponds to the matching sessions definition in the CK
model. It depends on the session identifiers, but allows for two initiators
of symmetric-role protocols to have matching sessions.

The above definitions now allow us to categorize the AKE models and
describe generic attacks. We will use the definitions to make statements
about matching sessions in the models, e. g., two completed sessions s
and s′ match iff s ≈A s′. We will relate this to classes of protocols with
particular key derivation functions.

Definition 13 (Key type). Let P be an AKE protocol and let ≈ be a
relation on completed sessions. Let KDFP (s) denote the key computed by
the key derivation function of P for any completed session s.

We say P has key type ≈ if and only if for all completed sessions s
and s′ we have that

KDFP (s) = KDFP (s′)⇔ s ≈ s′.

Here we will not explore the matching behaviour of non-completed
sessions, even though this is another important aspect in which the models
differ.

CK correctness prerequisites. In the CK model, completed sessions
s and s′ are matching iff s ≈D s′ [1, p. 11].

Theorem 1. Protocols with session identifiers that do not include the
session identifier in a cryptographic operation, and for which the outer
(final) operation of the key computation is a cryptographic operation, are
incorrect in CK.1

Proof. Let P be a protocol that has the properties described in the theo-
rem. Let s be the test session of a role of P (Alice talking to Bob), and s′

a session of the other role (Bob talking to Alice), and assume ssid 6= s′
sid.

The adversary intercepts all messages sent, and replaces ssid by ssid′ , and
vice versa, before forwarding the messages. According to the matching
sessions definition of CK (type ≈D) s and s′ are not matching. However,
1 A preliminary version of this theorem and its proof are due to A. Menezes (private

communication.)

12



s and s′ compute the same key (as the session identifier is not used in
the key computation.) Thus the adversary can reveal the session key of
s′ thereby learning the (identical) session key of the test session s, and P
is thus not correct in the CK model.

Theorem 2. Protocols with symmetric roles and key type ≈B or ≈C are
not correct in CK.

Proof. Let P be a symmetric-role protocol with key type ≈B or ≈C . Let s
be the test session, in particular, an initiator session of Alice communicat-
ing with Bob. Let s′ be an initiator session of Bob communicating with
Alice. Because P has symmetric roles, it is possible that the messages
sent by s are received by s′ and vice versa. Because the messages contain
the session identifier in the CK model, and the names of the participants
match, s and s′ are matching in the CK model (as can be seen from the
definition ≈D.) However, we have that sA 6= sB and sR = s′

R and the
key type is ≈B or ≈C . This implies that s and s′ compute different keys.
This violates condition 1 of SK-security in the CK model [1, p. 14] and
therefore P is not secure in the CK model.

CKHMQV correctness prerequisites. In CKHMQV, completed sessions
s and s′ are matching iff s ≈A s′ [2, p. 10].

Theorem 3. Protocols with symmetric roles and key type ≈B or ≈C do
not satisfy CKHMQV security.

Proof. The proof is similar to the proof of Theorem 2, except that the
reason that s and s′ are matching in CKHMQV is based on the relation
≈A, and the violated condition is (1) in Def. 11 of [2, p. 11].

eCK correctness prerequisites. In eCK, completed sessions s and s′

are matching iff s ≈C s′ [3, p. 7].

Theorem 4. Protocols with symmetric roles and key type ≈A or ≈B are
not correct in eCK.

Proof. Let P be a symmetric-role protocol with key type ≈A or ≈B. First
consider the case in which P has key type ≈A. Let s be the test session
in the initiator role, executed by Alice communicating with Bob. Let s′

be an initiator session of Bob communicating with Alice. Because P has
symmetric roles, it is possible that the messages sent by s are received
by s′ and vice versa. Because the definition of matching sessions in eCK

13



follows ≈C , which requires roles to be distinct, s and s′ are not matching
in the eCK model. Thus the adversary can do a Reveal(s′) query to reveal
the session key of s′. However, because the key type is ≈A, we have that
s and s′ compute the same keys. Thus, the adversary trivially breaks
the security definition [3, p. 9] and therefore P is not secure in the eCK
model. For the second case, in which P has key type ≈B, we define s and
s′ are executed by Alice while communicating with Alice, and proceed
analogously.

3.4 Summary of formal differences

In Table 1 we summarize the formal differences between the models.
The first column lists abbreviates according to the aspects described be-
fore, e. g., “D1” is the first Domain restriction, and “A2” is the second
Adversary capability.

Table 1. Summary of formal differences between the models.

Difference Description CK CKHMQV eCK

D1 Session identifier Yes No No
A1 Can reveal more of state than eph. keys Yes Yes No
A2 Can reveal eph. keys of session that com-

putes session key
No Yes2 Yes

A3 Can reveal key of peer after test session,
even the adversary interferes with the test
session3

Yes No No

A4 Can reveal key of actor before the end of
test session

No Yes Yes

C1 Session identifier must occur in crypto-
graphic operations

Yes No No

C2 Incompatible key equivalence types for
symmetric-role protocols

≈B , ≈C ≈B , ≈C ≈A, ≈B

2 Revealing the ephemeral keys of the test session is not covered in the basic analysis
of [2], but it is covered in the extended analysis [2, p. 54].

3 This aspect defines the difference between Perfect Forward Secrecy and Weak Perfect
Forward Secrecy, and is reflected in the models by the requiring that the matching
session must exist (indicating that the adversary did not interfere with the commu-
nicated messages) in order to allow reveal of the long-term key of the peer after the
test session.

14



4 Practically relating the CK, CKHMQV, and eCK
security models

The outcome of our analysis is that the three models defined in Section 2
are formally incomparable, i. e., security in one security model does not
imply security any of the other two models. Additionally, we show practi-
cal incomparability, i. e., we show that in each model, attacks on protocols
from literature exist that are not considered by the other models.

4.1 CKHMQV security does not imply CK security

As a counterexample, we point out that the HMQV protocol [2] was
proven correct in CKHMQV, but is not secure in CK because it has no
session identifiers that occur in all messages and is therefore outside of
the application domain of CK.

4.2 CK security does not imply eCK security

A counterexample using difference A2 from Table 1 is described in [3]. The
basic signed Diffie-Hellman protocol from [1] provides CK-security, but is
subject to a straightforward attack if the adversary learns the ephemeral
key of one of the participants by means of an Ephemeral Key Reveal query.
This allows the adversary to compute the session key.

4.3 eCK security does not imply CKHMQV security

The basic two-message Naxos protocol [3] has key type ≈C and is there-
fore not correct in CKHMQV (conform difference C2), even though it was
proven correct in eCK. Another type of attack in CKHMQV on Naxos,
which exploits difference A1, is described in [7]. The attack occurs when
the session state of the protocol contains the inputs to the hash function
H2 that is used in the final step of the session key computation.

4.4 CK security does not imply CKHMQV security

The counterexample of Section 4.2 also applies for the extended analysis
model of CKHMQV.

4.5 CKHMQV security does not imply eCK security

The HMQV protocol is not correct in eCK because of difference C2: the
adversary can trivially reveal the session key in the two-initiators scenario,
as in the proof of Theorem 4.

15



4.6 eCK security does not imply CK security

The counterexample from Section 4.2. applies here as well.

4.7 Possible practical interpretations of the security models

Interpreting the magic session identifiers One of the interpretations sug-
gested in the CK model description is that the application that invokes
the protocol instance supplies the session identifier s. In practical ap-
plications, CK seems to imply that an information exchange mechanism
precedes the actual protocol steps, e. g., by exchanging nonces between
the participants and defining s as the concatenation of these nonces. An
alternative interpretation (suggested by the examples in CK) is that the
initiating participant chooses a fresh s and includes it explicitly in the
cryptographic operations of the transmitted messages. On receipt of the
first message, the responder checks whether s was used by him as a ses-
sion identifier before. If so, he aborts. If not, s is stored as the session
identifier of the current session. One way to implement this behaviour
requires storage of previously observed session identifiers (at least in the
order of magnitude of the security parameter.)

The Ephemeral-key Reveal query, which is the only query unique
to the eCK model, corresponds to an adversary capable of learning the
ephemeral key after it was generated (but not any other elements of the
state) of any session. A corresponding practical scenario is a random
number generator (RNG) that leaks values upon generation. This may
be due to the fact that the values can be retrieved, e. g., by eavesdrop-
ping communications or side-channel attacks. The RNG is not malicious
in the sense that values can be manipulated, i. e., the adversary cannot
choose the values. Furthermore, the RNG is also not predictable, because
the adversary can only learn the ephemeral keys after they have been
generated.

The Session-State reveal query of the CK and CKHMQV models al-
lows the adversary to learn part of the session state. Two elements of the
definition are that (1) the session state contents should not reveal the
long-term keys of the participant, and (2) the adversary only passively
learns the contents and cannot manipulate the state. Thus a practical
scenario would be an implementation of the protocol using a Tamper-
Proof Module or cryptographic coprocessor, which protects at least the
long term keys, while other parts of the protocol are executed in unpro-
tected memory. The adversary then is able to gain read-only access to
this memory, e. g., by side channel attacks, or by attacks such as freezing

16



the memory. The model does not realistically model an adversary gaining
administrator/root access to the machine, as that would require modeling
active manipulation of the session-state.

The CKHMQV security notion was developed in tandem with the
HMQV protocol, and it seems that the requirements on HMQV have
influenced the security model. Relaxing the condition of Perfect Forward
Secrecy to Weak Perfect Forward Secrecy seems driven by the requirement
of implicit authentication. Similarly, the change of partnering function
seems driven by the requirement of symmetry of the roles. Otherwise,
the model is similar to the CK model but additionally considers Key
Compromise Impersonation attacks.

5 Matching sessions and key equivalence types for
symmetric role AKE protocols

In Section 3.3, and in particular in Table 1, we clarified the difference
between the models in terms of their matching sessions definitions, and
how these relate to the key type, leading to generic attacks.

However, our observations are not limited to the CK, CKHMQV and
eCK models only, as the same analysis can also be applied to symmetric-
role protocols that were proven correct in other (but related) AKE secu-
rity models.

In Table 2 we summarize the results of analyzing a number of protocols
and their proofs in the models discussed here, as well as in related security
models. If the key equivalence type defined by the protocol differs from
the matching sessions equivalence type used in the proof, the proof is
incorrect. Note that this does not imply that there are practical attacks,
rather, side cases may have been missed in the proofs.

In particular, Table 2 shows that the core MQV and HMQV protocols
as described in the papers do allow for two matching initiators to compute
the same key. However, in further variants (such as the NIST version of
MQV) the agents names are included in a particular order in the key
derivation. This changes the key derivation function to type ≈B which
implies that they are strictly speaking incorrect in CKHMQV (but also in
eCK.) Furthermore, the Okamoto [4] and CMQV [9] protocols use key
derivation functions of type ≈C but their respective proofs use matching
session definitions of type ≈A. Consequently partners will not always
compute the same keys.

Discussion. In general, it seems that the protocol designer can choose
either behaviour ≈A or ≈C for a symmetric-role protocol: either the sym-

17



Table 2. Key equivalence versus matching sessions in protocols

protocol
key equivalence type

of protocol

matching sessions
equivalence type in

proof
HMQV [2, p. 3] ≈A ≈A

MQV [5, p. 131] ≈A n.a.
MQV (NIST) [8, p. 46] ≈B n.a.
HMQV variant [2, p. 54] ≈B n.a.
Okamoto [4] ≈C ≈A

CMQV [9] ≈C ≈A

Naxos [3] ≈C ≈C

BCNP-1 [10] ≈C ≈C

BCNP-2 [10] ≈C ≈C

metric behaviour is intended and used in practice, leading to ≈A, or the
symmetric behaviour is only a theoretical option and should not allow
for shared key establishment, leading to ≈C . We do not see immediate
reasons to choose ≈B or ≈D. This choice should not lead to a different
security model: rather, one would expect both options to be alternatives
of a single security model. The matching sessions definition could then be
set to ≈A or ≈C in line with the key symmetry type.

In case of MQV and HMQV, it seems the core designs allow for two
matching initiators to compute the same key, which would allow them
to communicate. However, if the NIST variant of MQV is implemented
then this functionality is not provided when two different agents execute
the initiator role. A similar observation holds for the HMQV variant. For
Okamoto’s protocol and CMQV, whose proofs use type ≈A matching ses-
sions, a user may falsely assume that a similar matching-initiators func-
tionality is provided. Clearly, protocol designers could be explicit about
this choice which would avoid confusion for users as well as avoid mistakes
in proofs.

6 Related work

Many indistinguishability-based proof models for AKE security have been
proposed, e. g., [1–3, 11, 12]. Some earlier models have been compared
in [13]. The use of session identifiers has been studied in [14]. Recently,
the CK [1] model has been related to one of its variants with respect to
specification of peers before or after the session in [15].

Several authors have suggested that the eCK model is the strongest
security model, e. g., [4, 9, 16, 17]. In [7] it was shown that this is not the

18



case. In contrast to [7], our work focusses not on a single query difference
between two models but on the full security models, and relates them in
detail. We observe that the proof of the theorem in [17] that eCK is the
strongest security model, only considers the existence of certain query
types, and not the conditions under which these queries may occur in the
security experiment.

Alternative definitions of AKE security in a simulation-based context
have been suggested in, e. g., [18]. The definitions in [18] are intended for
protocol construction and not immediately applicable to the analysis of
existing protocols.

7 Conclusions and Future Work

We have shown that the CK, eCK, and CKHMQV models for AKE security
are not only formally but also practically incomparable, thereby refuting
several (informal) claims made in the literature in e. g. [4,9,16,17] about
the relation between the models. For each model, there exist protocols
that can be shown correct in it, but that cannot be shown correct in the
other models. This both shows the implications of the differences as well
as provides a new view on some of these protocols.

The complexity of strong AKE security models makes them hard to
compare or to relate to practice. This complexity seems to be caused by
the aim of making the security notion, and thus the adversary, as strong
as possible, such that any stronger adversary would be able to break all
protocols. However, because there is no total order on adversaries, there
is no single strongest model for which there are still correct protocols. As
a result, multiple “strong” models can coexist. However, if the practical
implications of a security model are made clear, as in Section 4.7, it
becomes possible to choose among the security models based on the target
application domain.

In Section 5 we argued that designers of symmetric-role protocols
should explicitly specify whether or not matching initiators compute the
same key, both to provide clarity for users as well as avoid mistakes in
proofs. Our analysis reveals subtle mistakes in the existing security proofs
of the Okamoto08 [4] and CMQV [9] protocols. Additionally, we show that
a simple operation such as adding ordered names to the key derivation
function can remove functionality, as for example the NIST version of
MQV [8], or even invalidate a proof, as for example in the case of the
HMQV variant in [2].

19



As future work it would be of interest to determine the exact rela-
tion between the guarantees provided by simulation based AKE security
notions [18] and the security models considered here.

References

1. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: EUROCRYPT’01. Volume 2045 of LNCS., Springer
(2001) 453–474

2. Krawczyk, H.: HMQV: A high-performance secure Diffie-Hellman protocol. In:
CRYPTO 2005. Volume 3621 of Lecture Notes in Computer Science., Springer-
Verlag (2005) 546–566

3. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key ex-
change. In: ProvSec. Volume 4784 of Lecture Notes in Computer Science., Springer
(2007) 1–16

4. Okamoto, T.: Authenticated key exchange and key encapsulation in the standard
model. In: ASIACRYPT. Volume 4833 of Lecture Notes in Computer Science.
(2007) 474–484

5. Law, L., Menezes, A., Qu, M., Solinas, J., Vanstone, S.: An efficient protocol
for authenticated key agreement. Designs, Codes and Cryptography 28 (2003)
119–134

6. Just, M., Vaudenay, S.: Authenticated multi-party key agreement. In: Advances
in Cryptology-ASIACRYPT 1996. Volume 1163 of Lecture Notes in Computer
Science. (1996) 36–49

7. Cremers, C.: Session-state Reveal is stronger than Ephemeral Key Reveal: Attack-
ing the NAXOS key exchange protocol. In: ACNS’09. Lecture Notes in Computer
Science (2009)

8. Barker, E., Johnson, D., Smid, M.: Nist special publication 800-56a: Recommenda-
tion for pair-wise key establishment schemes using discrete logarithm cryptography
(revised). Technical report (March 2007)

9. Ustaoglu, B.: Obtaining a secure and efficient key agreement protocol from
(H)MQV and NAXOS. Des. Codes Cryptography 46(3) (2008) 329–342

10. Boyd, C., Cliff, Y., Nieto, J., Paterson, K.: Efficient one-round key exchange in the
standard model. In: ACISP. Volume 5107 of Lecture Notes in Computer Science.,
Springer (2008) 69–83

11. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: CRYPTO
’93: Proceedings of the 13th annual international cryptology conference on Ad-
vances in cryptology, New York, NY, USA, Springer-Verlag (1994) 232–249

12. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: EUROCRYPT’00. Lecture Notes in Computer Sci-
ence, Springer (2000) 139–155

13. Choo, K.K., Boyd, C., Hitchcock, Y.: Examining indistinguishability-based proof
models for key establishment proofs. In: ASIACRYPT. Volume 3788 of Lecture
Notes in Computer Science., Springer (2005) 624–643

14. Choo, K.K., Boyd, C., Hitchcock, Y., Maitland, G.: On session identifiers in prov-
ably secure protocols. 3352 (2005) 351–366

15. Menezes, A., Ustaoglu, B.: Comparing the pre- and post-specified peer models for
key agreement. In: Proceedings of ACISP 2008. Volume 5107 of Lecture Notes in
Computer Science. (2008) 53–68

20



16. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. Cryptology ePrint Archive, Report 2006/073 (2006) http://eprint.

iacr.org/.
17. Xia, J., Wang, J., Fang, L., Ren, Y., Bian, S.: Formal proof of relative strengths

of security between ECK2007 model and other proof models for key agreement
protocols. Cryptology ePrint Archive, Report 2008/479 (2008) http://eprint.

iacr.org/, retrieved on April 1st, 2009.
18. Canetti, R., Krawczyk, H.: Universally composable notions of key exchange and se-

cure channels. In: EUROCRYPT’02. Lecture Notes in Computer Science, Springer-
Verlag (2002) 337–351

21

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

	Formally and Practically Relating the CK, CK-HMQV, and eCK Security Models for Authenticated Key Exchange
	Cas J.F. Cremers

