
Computationally Secure Two-Round
Authenticated Message Exchange ?
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Abstract. We prove secure a concrete and practical two-round au-
thenticated message exchange protocol which reflects the authentication
mechanisms for web services discussed in various standardization docu-
ments. The protocol consists of a single client request and a subsequent
server response and works under the realistic assumptions that the re-
sponding server is long-lived, has bounded memory, and may be reset
occasionally. The protocol is generic in the sense that it can be used
to implement securely any service based on authenticated message ex-
change, because request and response can carry arbitrary payloads. The
security analysis we provide is a computational analysis in the Bellare-
Rogaway style and thus provides strong guarantees; it is novel from a
technical point of view since we extend the Bellare-Rogaway framework
by timestamps and payloads with signed parts.

1 Introduction

A characteristic feature of web services (see, e. g., [ML07,LB07]) and other ser-
vices provided in the Internet (such as remote procedure call [Sun98,Win99]) is
their restricted form of communication. Unlike in other cryptographic settings,
these protocols have only two rounds: In the first round, a client sends a single
message (request) to a server; in the second round, the server replies with a
single message (response) containing the result of processing the request. A cen-
tral security goal arising is that of authenticated message exchange: The server
wants to be convinced that the request is new and originated from the alleged
client, while the client wants to be convinced that the response originated from
the intended server and is a response to his request.

Protocols which are as described above are called two-round authenticated
message exchange protocol (2AMEX protocol) in this paper. The underlying au-
thentication issues and mechanisms for dealing with them are discussed in vari-
ous papers, see, for instance, [BFGP03,BFG04], and also dealt with in practice,
see, for instance, [NKMHB06]. However, no concrete 2AMEX protocol has been
formally specified, let alone rigorously analyzed with respect to its security. Our
paper is an attempt at improving the situation. We
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1. specify a concrete and practical 2AMEX protocol, called 2AMEX-1, reflect-
ing what has been discussed in the various standardization documents, see
[NKMHB06,NGG+07],

2. adapt and extend the Bellare-Rogaway framework for analyzing crypto-
graphic protocols to the 2AMEX setting (adjust it to two rounds, incorporate
timestamps and payloads with signed parts), and

3. prove the specified protocol secure.
Our work therefore provides a firm theoretical underpinning for realistic and
secure implementations of services which require authentication.

A simple 2AMEX protocol works as follows: The client appends a message id
(e. g., random nonce or sequence number) to his actual request, signs the result,
and sends the signed message to the server. The server verifies the signature on
the received message and checks that it has not seen the message id previously.
It takes the result of processing the request, appends the message id he received
from the client, signs the message obtained, and sends the signed message to
the client. Finally, the client verifies the signature and the message id.— The
problem here is that the server needs to keep track of all message id’s it has
seen, because otherwise it is easy to mount replay attacks. A natural and widely
considered reasonable approach to solve this problem is to augment messages by
timestamps and use them to filter out replays [CDL06]. 2AMEX-1 follows this
approach.

The requirement of authenticated message exchange shows up in very differ-
ent contexts, while the mechanisms used for implementing it are more or less the
same and independent of the respective context. This is reflected in 2AMEX-1:
request and reply can both carry arbitrary payloads. We even allow that a pay-
load contains parts signed with keys which are used for securing entire requests
and responses, following what web service standards allow [NKMHB06]. Clearly,
the use of the keys is restricted for signing parts, because otherwise security is
compromised.

Our security analysis is based on the seminal work by Bellare and Rog-
away [BR93]. The model developed in this work is, however, not general enough.
We extend it in two directions: first, we add timestamps, and, second, we add
payloads and signature oracles for dealing with signed parts. A crucial point
is that the Bellare-Rogaway framework only considers authentication protocols
with at least three rounds and that this is in fact a fundamental requirement for
their definition of authenticity; our definition is a non-trivial adaptation of theirs.
Another difference is that we carry out a concrete security analysis instead of
an asymptotic one; we obtain the latter as a consequence.
Related work. The Bellare-Rogaway framework is only one option for studying
computational security of cryptographic protocols. Another widely recognized
option are simulation-based frameworks such as Canetti’s Universal Composition
model [Can01], Küster’s model using inexhaustible Turing machines [Küs06]
or Backes, Pfitzmann, and Waidner’s Cryptographic Library [BPW03]. These
frameworks have the feature that they provide a notion of composition which
allows for modular security proofs. However, there does not seem to be a way
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to “decompose” the long-lived server algorithm in our protocol into simpler
components such that the aforementioned frameworks would simplify a security
proof. A more detailed discussion can be found in our recent work [KSW09],
where we treat 2AMEX-1 in a simulation-based framework.

There is a wide range of papers on entity authentication protocols (often in
connection with key exchange). Bellare and Rogaway’s paper [BR93] has a very
brief section about “authenticated exchange of text”, which discusses how in
a three-round entity authentication protocol authenticated data can be trans-
mitted. In that paper, the authors do not, however, give a formal definition of
authenticated exchange of text nor do they consider two-round protocols nor is
their setting general enough to support an arbitrary service using this proto-
col. Entity authentication has also been studied in the Universal Composition
model [CH06] and in combination with the cryptographic library [BP03]; a com-
putational analysis of the Needham-Schroeder-Lowe entity authentication pro-
tocol [NS78,Low96] is given in [War05]. Another crucial difference to our model
is that in the mentioned papers, the responder (server) is short-lived, whereas
in our model a server processes an unbounded number of requests from dif-
ferent clients, which is reminiscent of optimistic contract-signing protocols, see
[ASW98,GJM99], where the trusted third party potentially needs to remember
an unbounded number of requests. In [CCK+08], long-lived principals are dealt
with from a complexity point of view, whereas in our work long-lived servers are
a modeling issue.

Timestamps, which are crucial to our work, have been used in various cryp-
tographic settings, for instance, in a key exchange protocol proposed in [DS81].
In [DG04,BEL05] symbolic models for protocols with timestamps are intro-
duced and techniques to analyze protocols within these models are described.
In [KLP07] the timing model is similar to ours, however, the paper is concerned
with secure multi-party computation.

In our model, we allow the adversary to reset the server at any time; in
[BFGM01] resetting of principals is discussed in a different context. As pointed
out above, the payloads in 2AMEX protocols are determined by the adversary;
in [RS09] a framework will be proposed that models adversarial input in a general
fashion.

2 The Protocol 2AMEX-1—Informal Description

In this section, we describe our protocol 2AMEX-1 informally.
In 2AMEX-1, an authenticated message exchange between a client with iden-

tity c and a server with identity s works as follows.

1. a) c is asked by a user to send the request pc
b) c sends {(From : c,To : s,MsgID : r,Time : t,Body : pc)}skc to s
c) s checks whether the message is admissible and if not, stops
d) s forwards the request (r, pc) to the addressed service

2. a) s receives a response (r, ps) from the service
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b) s checks whether the response is admissible and if not, stops
c) s sends {(From : s,To : c,Ref : r,Body : ps)}sks

to c
d) c checks whether the message is admissible and if not, stops
e) c forwards the response ps to the user

Here, r is a randomly chosen message identity which is also used as a handle
by the server (see steps 1. d) and 2. a)), t is the local time of the client, pc is
the payload the client sends, ps is the payload the server returns, and {·}skc

and {·}sks stand for signing the message by the client and server, respectively.
Repeating the message id of the request allows the client to verify that ps is
indeed a response to the request pc.

The interesting parts are steps 1. c) and 2. b). We assume that there is a
constant caps > 0, the so-called capacity of the server, and a constant tol+s that
indicates its tolerance with respect to inaccurate clocks. At all times the server
keeps a time tmin and a finite set L of triples (t, r, c) of pending and handled
requests. At the beginning or after a reset, tmin is set to ts + tol+s , where ts
denotes the local time of the server, and L is set to the empty set.

Step 1. c). Upon receiving a message as above, s rejects if (t′, r, c′) ∈ L for
some t′ and c′ or if t /∈

[
tmin + 1, ts + tol+s

]
, and otherwise proceeds as follows:

If L contains less than caps elements, it inserts (t, r, c) into L. If L contains at
least caps, the server deletes all tuples containing the oldest timestamp from
L, until L contains less than caps tuples. Then it sets tmin to the timestamp
contained in the last tuple deleted from L, and finally inserts (t, r, c) into L.

Step 2. b). When asked to send a payload ps with message handle r, the server
rejects if there is no triple (t, r, c) ∈ L with c 6= ε. If it does not reject, it updates
L by overwriting c with ε in the tuple (t, r, c) to ensure that the service cannot
respond to the same message twice.

In the rest of this paper we give a formal framework for specifying and ana-
lyzing such protocols, in particular, we define what it means for such protocols
to be correct and secure, and prove that 2AMEX-1 is indeed correct and secure,
provided the underlying signature scheme is so. The formal description of the
protocol can be found in Section 4.

3 Protocol Model

The framework we are working in is an extension and adaptation of the frame-
work for entity authentication introduced by Bellare and Rogaway in [BR93] to
the message authentication setting.

As mentioned earlier, in a bounded memory setting time is necessary to
achieve resistance against replay attacks. We use ltime-bit numbers as time values
for an arbitrary fixed ltime ∈ N. We also assume there is an arbitrary fixed
identifier set IDs ⊆ {0, 1}lID for an arbitrary fixed lID ∈ N whose elements are
called identifiers. We use them to identify principals, which can act both as
clients and as servers.
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3.1 Signature Schemes

Our message exchange protocols use signature schemes, where a signature scheme
S is a triple of algorithms (G,S, V ), satisfying the following conditions:
– G is a key generation algorithm, i. e., a probabilistic algorithm which pro-

duces a pair (pk, sk), where pk is a public key and sk the corresponding
secret key,

– S is a signing algorithm, i. e., a probabilistic algorithm which for any bit
string b ∈ {0, 1}∗ and any secret key sk produces a signature S(b, sk), and

– V is a deterministic verification algorithm which on input ((b, S(b, sk)), pk)
returns true if (pk, sk) has been generated by G.

By {b}sk, we denote the pair (b, S(b, sk)), i. e., the bit string b accompanied by
a valid;signature obtained from the signature scheme. In the remainder of the
paper, we use a fixed signature scheme.

3.2 Clients and Servers

Before defining clients and servers formally, we describe how they are supposed
to operate. An intended run of an authenticated message exchange protocol
between a client c ∈ IDs and a server s ∈ IDs is initiated by the client-side
environment which wants to call some service on the server. The protocol run
consists of two rounds, request and response, modeled by four steps as illustrated
in Figure 1 (cf. our protocol description in Section 2):

client send The client is given a request payload pc by the environment which
is a request to the service provided by the server s. The client encapsulates
the payload, adding security data etc., and sends the resulting message mc

over the network.
server receive The server receives the message mc from the network, accepts

the message and unwraps it, giving the payload pc, a handle h, and the
identified sender of the incoming message c to the service.

server send The server is provided with a response payload ps and the handle h
by the service (which chose ps as a response to the request payload pc). The
server encapsulates the payload and sends a message, ms, over the network.

client receive Finally, the client receives the message ms from the network and
returns ps to the environment.

To give the strongest security guarantees possible, the roles of the environ-
ment, the service, and the network are all played by the adversary in our security
model. As the adversary is free to choose any payload, our protocols support any
service.

This leads to the following formal definitions. A client algorithm is a proba-
bilistic algorithm. As first input parameter, the client gets an instruction which
can either be send or receive. The same is true for a server algorithm with the
only difference that for a server algorithm there is a third instruction, reset.
Table 1 specifies the input parameters and output values of client and server
algorithms. We first explain the input parameters for the client; then we turn to
the server.
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Fig. 1. Message flow in four steps.

Client and Server Algorithms: Input and Output. First, the client algorithm is
provided with the identifier of the principal it is running for, c ∈ IDs, and with
the identifier of the server it is supposed to be talking to, s ∈ IDs. Second, the
client algorithm is provided with the family of public keys, pkIDs = {pka}a∈IDs,
and its own private key skc. Third, it gets the local time t ∈ {0, 1}ltime . Fourth,
the client is provided with the payload p ∈ {0, 1}∗ it is supposed to send to
the server, or with a message m ∈ {0, 1}∗ obtained from the network. Finally,
our client processes multiple requests, one after the other, which means is has
a history or, in other words, a state. We model this by local state information
that it is provided with—the parameter µ ∈ {0, 1}∗, initialized with ε.

For the server instructions, the situation is similar. But a server can receive
input from various clients, so it is not provided with a particular client identifier.
Rather, the server has to extract this from the message it receives and store it to
send a response later on. When asked to respond to a specific message, the server
is also provided by the service with a message handle identifying the message
the service wants to respond to. Also, for a reset instruction, the local state and
the message given to the server is ε.

Next, we explain the output values for the server. First of all, when receiving
a message mc, the server algorithm extracts the payload p ∈ {0, 1}∗ carried by
mc and returns it. Second, the server algorithm reports his decision δ ∈ {A,R}:
A (accept) means that the command was executed successfully, while R (reject)
indicates an error (which can be a failed authentication or another protocol
error). Third, the server algorithm reports the identifier of the client it assumes
it received a message from or it intends to send a message to. When the decision
is R, the dummy value εis used. Fourth, the server outputs a message handle
h ∈ {0, 1}∗. When the service wants to respond to mc, it has to provide the
server with this exact message handle. Finally, the server outputs local state,
which it will be provided with the next time it will be called, unless it is reset.
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input client Γ server Σ

instruction α ∈ {send, receive} α ∈ {send, receive, reset}
identity c ∈ IDs s ∈ IDs
partner’s identity s ∈ IDs
public keys pkIDs pkIDs

private key skc sks

local time t ∈ {0, 1}ltime t ∈ {0, 1}ltime

payload or message p or m ∈ {0, 1}∗ p or m ∈ {0, 1}∗
message handle h ∈ {0, 1}∗
local state µ µ

output client Γ server Σ

message or payload m or p ∈ {0, 1}∗ m or p ∈ {0, 1}∗
decision δ ∈ {A,R} δ ∈ {A,R}
assumed partner c ∈ IDs ∪ {ε}
message handle h ∈ {0, 1}∗
local state µ′ µ′

Table 1. Input and output values of the algorithms Γ and Σ.

Clients have the same output syntax except that there is no need to output
a message handle or the assumed partner, because the latter is contained in the
input values of the algorithm.

Execution Orders. There are only certain sequences of instructions to client
and server algorithms that make sense: We require the client to (i) only accept
the first send request it receives, (ii) accept at most one receive request, and
(iii) accept a receive request only after it accepted a send request. The server is
required to accept a send request with message handle h if there is a previous
receive request it accepted earlier with the same message handle h, and if between
these both requests it accepted no other request.

This can be formalized as follows, where we start with the client. Let c, s
be identifiers, let µ0 = ε, let {αj}j∈N be a sequence of instructions with αj ∈
{send, receive}, let {tj}j∈N be an monotonically increasing sequence of time-
stamps and {bj}j∈N a sequence of bit strings. Assume that for all i ∈ N we
have

Γ (αi, c, s, pkIDs, skc, ti, bi, µi) = (b′i, δi, µi+1) , (1)

then we require that (i) only for the smallest i1 ∈ N with αi1 = send we have
δi1 = A, if such an i1 exists; (ii) there is at most one i2 ∈ N with αi2 = receive
and δi2 = A; and (iii) if there is i2 as in (ii), then there is an i1 as in (i) with
i1 < i2.

For the server, let s, {tj}j∈N and {bj}j∈N be as above, let {hj}j∈N be a
sequence of message handles, and let {αj}j∈N be a sequence of instructions with
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αj ∈ {send, receive, reset} and µ′−1 = ε. If for all i ∈ N we have

Σ(αi, s, pkIDs, sks, ti, bi, hi, µi) = (b′i, δi, ci, h
′
i, µ
′
i) (2)

with µi =
{
ε if αi = reset
µ′i−1 otherwise, (3)

then we require that for each pair i1, i3 ∈ N with i1 < i3, αi1 = receive, δi1 = A,
αi3 = send, and h′i1 = hi3 , that δi3 = A if there is no i2 ∈ N with i1 < i2 < i3
and δi2 = A.

3.3 2AMEX Protocols, Adversary, and the Experiment

We now give the formal definition of a Two-Round Authenticated Message Ex-
change (2AMEX) protocol. Such a protocol is a tuple Π = (Γ,Σ, τ, ϕ,E∗) where
Γ and Σ are the client and server algorithms, τ and ϕ are the time and freshness
functions (see below), and E∗ is an exception set as defined below.

A time function is a function that assigns to each client message mc a time
value τ(mc). The intended interpretation is that τ(mc) is the time at which mc

was supposedly created. The time function will be used to phrase the correctness
condition (see Section 5).

A freshness function is a function which, for an identity s, state information
µs, and a time ts, specifies a freshness interval ϕ(s, µs, ts), see Section 4 for an
example. This is the interval of time values the server s considers fresh, i. e., for
the server to consider a message fresh the time value of that message has to be
in the server’s freshness interval.

An exception set is a set of bit strings called exceptions which is recognizable
in polynomial time. This is the set of bit strings which the signature oracle (see
below) will refuse to sign for the adversary.

The Experiment. We now describe how all these components work together.
This is done, as usual, by defining a notion of experiment, in which the protocol
is running with an adversary. The latter is simply an arbitrary probabilistic
algorithm.

We assume that as a first step the adversary specifies a set of identities
A ⊆ IDs, which has to include both the identities of oracles the adversary calls
and the identities that will occur in messages. For every principal s ∈ IDs a server
instance Σs runs under the identity s. For every pair of principals c, s ∈ IDs
arbitrarily many client instances Γ ic,s can run where c acts as a client and s as
a server, and where i is a natural number. We let the adversary control all these
instances, that is, the adversary can decide when to call such an instance, which
payloads to choose, which local times are used, etc. To set the local clock of
a principal, the adversary can use a time instruction with the only restriction
that the value of the local clock cannot be decreased by the adversary, i. e., each
principal’s clock is monotone.

There is a signature oracle S, which can be used by the adversary (i) to sign
bit strings while he constructs the payload for a send instruction, and (ii) to
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1. Generate keys.
Let the adversary specify a set A ⊆ IDs, and for each a ∈ A:
(a) Let (pka, ska) R←−G().
(b) Send (a, pka) to the adversary.

2. Initialize clocks.
For each a ∈ IDs, let ta ←− 0.

3. Initialize states and traces of the clients.
For each i ∈ N and c, s ∈ IDs, let tri

c,s ←− ε and µi
c,s ←− ε.

4. Initialize states and traces of the servers.
For each s ∈ IDs, let trs ←− ε and µs ←− ε.

5. Initialize step counter.
Let n←− 0.

6. Run the adversary step by step.
Run the adversary, and in each step first increase the counter n and then call client,
server or signature algorithm as follows according to the adversary’s selection:
– Γ i

c,s : send(p)
(i) (m, δ, µ) R←−Γ (send, c, s, pkIDs, skc, tc, p, µ

i
c,s),

(ii) µi
c,s ←− µ,

(iii) tri
c,s ←− tri

c,s · (n, send, tc, p,m, δ),
(iv) return (m, δ, µ) to the adversary.

– Σs : receive(m)
(i) (p, δ, c, h, µ) R←−Σ(receive, s, pkIDs, sks, ts,m, ε, µs),
(ii) µs ←− µ,

(iii) trs ←− trs · (n, receive, ts, p,m, δ, c, h),
(iv) return (p, δ, c, h, µ) to the adversary.

– Σs : send(p, h)
(i) (m, δ, c, h′, µ) R←−Σ(send, s, pkIDs, sks, ts, p, h, µs),
(ii) µs ←− µ,

(iii) trs ←− trs · (n, send, ts, p,m, δ, c, h),
(iv) return (m, δ, c, h′, µ) to the adversary.

– Γ i
c,s : receive(m)
(i) (p, δ, µ) R←−Γ (receive, c, s, pkIDs, skc, tc,m, µ

i
c,s),

(ii) µi
c,s ←− µ,

(iii) tri
c,s ←− tri

c,s · (n, receive, tc, p,m, δ),
(iv) return (p, δ, µ) to the adversary.

– Σs : reset()
(i) (m, δ, c, h, µ) R←−Σ(reset, s, pkIDs, sks, ts, ε, ε, ε),

(ii) µs ←− µ,
(iii) trs ←− trs · (n, reset, ts, ε, ε,A, ε, ε),
(iv) return (m, δ, c, h, µ) to the adversary.

– S : corrupt (a)
(i) trs ←− trs · (n, corrupt, ts, ε, ε,A, ε, ε),

(ii) return ska to the adversary.
– S : sign(a, p)

(i) If p /∈ E∗, return {p}ska , otherwise return ε to the adversary.
– time(a, t)

(i) ta ←− max(ta, t),
(ii) return ta to the adversary.

Table 2. The experiment ExpΠ,A for an adversary A against a protocol Π =
(Γ,Σ, τ, ϕ,E∗).
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corrupt a principal’s key. The corresponding instructions are sign and corrupt.
Clearly, we cannot allow the adversary to use the signature oracle to sign every
bit string. Therefore, the exception set refuses to sign bit strings belonging to
the exception set specified in the protocol description.

The experiment works in steps, where in each step the adversary can perform
an action (send, receive, reset, sign, corrupt, time), for which he provides the
parameters under his control and receives the output values. The details of this
process are given in Table 2.

In the experiment traces are recorded for each instance, which allow us to
define correctness and security of a protocol, see the next section. A trace is
a sequence of tuples containing a step number and the observable action of
the instance in the corresponding step, i. e., the local time t, the payloads and
messages received or sent by the instance in this step, as well as the decision
of the instance (accept or reject), and finally, for servers entries denoting the
identity of the client that the server believes it is communicating with and the
message handle.

The experiment ExpΠ,A for an adversary A against a protocol Π as above
proceeds as described in Table 2, where we use v R←−A to describe assigning the
output of the (randomized) algorithm A to the variable v.

4 The Protocol 2AMEX-1—Formal Description

In this section, we recast our protocol 2AMEX-1 within the formal framework
developed in the previous section, and comment on various aspects of it.

4.1 Formal Description

Recall the informal description from Section 2 and the formal appearance of a
2AMEX protocol from Section 3. What we have to specify is the server algorithm
as well as the client algorithm, the time function as well as the freshness function,
and the exceptions set. We also fix an arbitrary signature scheme and chose some
lnonce ∈ N as the length of the message id’s used in the protocol.

Server Algorithm, Freshness Function, and Time Function. Let s be the identity
that the server algorithm Σ is called with. As local state µ, the server uses a
tuple (tmin, L) consisting of a variable tmin holding a single timestamp and a set
L of triples of the form (t, r, c) where t is a timestamp, r is a message id, and c
is an identity.

The freshness function is defined by ϕ(s, (tmin, L), t) =
[
tmin + 1, t+ tol+s

]
.

The server first checks if it is called with local state ε and if so (i. e. initially
and after each reset), sets tmin to ts + tol+s where ts is the current local time of
the server, and sets L to the empty set. Then the server proceeds according to
the instruction.

Upon receiving mc = {(From : c,To : s′,MsgID : r,Time : t,Body : pc)}skc , at
local server time ts with local state µ = (tmin, L), the server s performs the
following:
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1. If one of the following conditions is met, stop and return (ε,R, ε, ε, µ):
(a) s′ 6= s,
(b) V (mc, pkc) returns false,
(c) t /∈ ϕ(s, µ, ts),
(d) (t′, r, c′) ∈ L for some t′, c′.

2. While |L| ≥ caps,
(a) tmin ←− min{t′ | (t′, r′, c′) ∈ L},
(b) L←− {(t′, r′, c′) ∈ L | t′ > tmin}.

3. L←− L ∪ {(t, r, c)}.
4. Return (pc,A, c, r, (tmin, L)).

Observe that this corresponds to steps 1. c) and 1. d) of the informal description
in Section 2.

The following corresponds to steps 2. a)–c) of the informal description in
Section 2. When asked to send a payload ps with message handle r and state
information µ = (tmin, L), the server algorithm proceeds as follows:

1. Look for (t, r, c) ∈ L with c 6= ε. If no matching triple is found in the list,
return (ε,R, ε, ε, µ).

2. ms ←− {(From : s,To : c,Ref : r,Body : ps)}sks
.

3. L←− (L \ {(t, r, c)}) ∪ {(t, r, ε)}.
4. Return (ms,A, c, ε, (tmin, L)).

The time function is defined by τ(mc) = t where mc is as above.

Client Algorithm. Let c be the client identity that Γ is called with. If the instruc-
tion is to send a payload pc to server s at time t and the local state µ is ε, the al-
gorithm randomly chooses the message id r R←−{0, 1}lnonce , sets mc = {(From : c,
To : s,MsgID : r,Time : t,Body : pc)}skc

and returns (mc,A, r). If requested to
send when µ 6= ε, it returns (ε,R, µ). Note that this corresponds to steps 1. a)
and 1. b) of the informal description in Section 2.

The following steps corresponds to steps 2. c)–e) of the informal description
in Section 2. If the algorithm is instructed to receive a message ms = {(From : s′,
To : c′,Ref : r′,Body : p′s)}sks′ when the local state is µ, it proceeds as follows:

1. If one of the following conditions is met, stop and return (ε,R, µ):
(a) |µ| 6= lnonce,
(b) s′ 6= s,
(c) c′ 6= c,
(d) V (ms, pks) returns false,
(e) r′ 6= µ.

2. Return (ps,A, 01+lnonce).

Bit String Representations and Exceptions. Our description above leaves open
the actual format of the messages. We assume that the tags (From, . . . ) and
tuples which form the messages are represented as bit strings in such a way that
the individual components can be retrieved without ambiguity.
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The set E∗ ⊆ {0, 1}∗ is the set of all bit string representations of messages of
the form (From : c,To : s,MsgID : r,Time : t,Body : pc) or (From : s,To : c,Ref : r,
Body : ps). We assume the bit string representation is such that E∗ is recognizable
in polynomial time. For example, by using SOAP [ML07] one can meet these
requirements.

This completes the definition of our protocol. Note that it can easily be seen
that the restrictions on execution orders from Section 3.2 hold. Also, it is easy to
see that our protocol indeed achieves to work with bounded memory as desired:

Remark 1. The size of the state of a server s is bounded by the size of the bit
string representation of (tmin, L), where tmin ∈ {0, 1}ltime is a timestamp and L is
a list of caps many tuples of the form (t, r, c) with t ∈ {0, 1}ltime , r ∈ {0, 1}lnonce

and c ∈ {0, 1}lID .

4.2 Comments and Caveats

For a fixed protocol run, we will use ta(n) to denote the value of the local clock
of principal a at step n, and µa(n) to denote the local state of the server instance
of a before step n.

Resets. From the specification of 2AMEX-1, it is immediate that after a re-
set there is a delay in accepted messages: If a reset of a server s happens at
a step nr, then the next accepted message must have a timestamp exceeding
ts(nr) + tol+s . However, such a delay is natural, since for any protocol that re-
sists replay attacks, if a reset happens at step nr, and n1 < nr < n2, then the
intervals ϕ(s, µs(n1), ts(n1)) and ϕ(s, µs(n2), ts(n2)) must be disjoint. Due to
asynchronous clocks, we need the interval ϕ(s, µs(n), ts(n)) to exceed the time
ts(n), therefore rejecting valid messages cannot be completely avoided.

To illustrate this, assume that a protocol is designed in such a way that
immediately after a reset, i. e., without an increase in the server time, the interval
of accepted messages is not empty, and there is a message m that the server
accepts. Then the adversary can simply reset the server, deliver the message
m, and then reset and deliver again, without ever changing the value of the
server clock. Since for the server, the two events of receiving the message m are
indistinguishable, it accepts the message twice. Therefore, in any secure protocol,
the interval ϕ will be empty when a reset happened, as long as the clock of s
has not been increased. It easily follows from inspection of our protocol (as well
as from the above reasoning and our later security proof) that in 2AMEX-1 this
is the case.

Parameterization. Our protocol is parameterized, since lnonce, tol+s , and caps can
be chosen freely. We will see that for any choice of tol+s and caps the protocol
is correct and secure—however, our correctness definition relies on “reasonable”
values for the intervals ϕ. A message m sent by a client c in step n1 and received
by a server s in step n2 is rejected if tc(n1) = τ(m) /∈ ϕ(s, µs(n2), ts(n2)).
By construction of the protocol, there are two ways in which this can happen:
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(i) tc(n1) > ts(n2) + tol+s , or (ii) tc(n1) ≤ t′min where t′min is s’s internal variable
tmin before step n2.

The first of these issues can occur when the clocks of client and server are
asynchronous, which in realistic environments is very likely. To circumvent this
problem, one should choose the constant tol+s large enough to deal with usually
occurring time differences between the local clocks of the principals.

The second case occurs after a reset or if, in step n2, the server s has accepted
more messages with timestamps in the future of tc(n1) than the maximal number
of message id entries it can maintain in the set L. This can happen, for instance,
due to network properties that slow down the delivery of messages. Obviously,
increasing caps makes this case occur less frequently, in particular, if the servers
would have unbounded memory, it would not occur at all.

Responding to old Messages. A protocol is only required to allow the service
to respond to the most recently received and accepted message (see Execution
Orders in Section 3.2). But a good protocol should allow the service to respond
to more, i. e. older messages, while still accepting incoming messages. In our
protocol, we can give the following guarantee on how long the service will be
able to respond to a message:

Let t be a timestamp and let µ = (tmin, L) be the local state of a server
s. Assume that L already contains n1 tuples whose timestamps are older than
t, and let n2 = caps − |L|. Now if a message m is received and accepted with
τ(m) > tmin, the service will be able to respond to m using its message handle
as long as the server, after accepting m, does not accept more than n1 + n2

messages with a timestamp greater than or equal to τ(m).

Dishonest Timestamps. In a way, the protocol 2AMEX-1 gives the clients in-
centive to “lie” in their timestamps, since for the clients, it is advantageous to
claim a timestamp in the future, as long as the timestamp does not exceed the
sum of the server clock plus its tolerance. Assume, for example, that the server
tolerance tol+s is very large, let’s say 24 hours. Then a client has an advantage
if it adds 24 hours to the timestamp of each message that it sends to the server
s, since its messages will most likely not be rejected due to old timestamps.
This has an unwanted effect on the operation of the server: If this client (or a
group of clients acting in the same way) sends many requests to the server, and
if the server does not have enough memory, the value tmin of s will soon be in
the future as well, which leads to the rejection of valid incoming messages. The
consequence of this line of thought is that in practice, it is desirable that the
“center” of the intervals ϕ should always be the present time, so that the most
successful strategy for the clients is to use truthful timestamps. In Appendix A,
we explain how this can be achieved.

5 Correctness and Security Definitions

We now define what it means that a protocol is correct and secure in our model.
For a fixed execution of the experiment, an identifier s and a natural number n,
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we use µs(n) to denote the content of the local state µs before the nth step. We
say that for a principal a ∈ IDs the principal’s key is corrupted in the experiment
at step n, if there is a step number n′ ≤ n such that in step n′, the adversary
performed a S : corrupt (a) query.

From now on, with tric,s and trs, we refer to the corresponding traces after
running the experiment.

5.1 Correctness Definition

Informally, our notion of correctness requires that if messages are delivered as
intended by the network (i. e., the adversary), then all parties accept (given that
the messages are considered fresh by the servers), the sender of each message is
correctly determined, and the payloads are delivered correctly. Formally, we say
that an adversary A is benign if it only delivers messages that were obtained from
a client or server instance, and delivers a message at most once to every instance.
This models a situation in which arbitrary payload is sent over a network in which
messages may get lost, all messages can be read by anybody, and servers can
loose local state information, but no message is altered, no false messages are
introduced, and no replay attacks are attempted.

Definition 2. A 2AMEX protocol Π is (n, ε)-correct for any benign adversary
A that starts at most n many client sessions, and any c, s ∈ IDs:
1. If (n1, send, t1, pc,mc,A) ∈ tric,s, (n2, receive, t2, p

′
c,mc, δs, c

′, h) ∈ trs, and
τ(mc) ∈ ϕ(s, µs(n2), t2), then c′ = c, pc = p′c, and δs = A, with probability
at least 1− ε.

2. If additionally (n3, send, t3, ps,ms,A, c
′, h) ∈ trs and (n4, receive, t4, p

′
s,

ms, δc) ∈ tric,s with n2 < n3 and n1 < n4, but with no (n′, . . . ,A, . . .) ∈ trs
having n2 < n′ < n3, then we also require that ps = p′s and δc = A.

Note that this definition leaves a loop hole for “correct”, but utterly useless
protocols: The freshness function ϕ is part of the specification, and a protocol
only has to be correct with regard to this choice of ϕ. Hence a protocol in which
ϕ always returns the empty interval is not required to accept any messages. For
protocols to be useful in practice, it is desirable to have a large freshness interval.

Similarly, this definition only guarantees that the service can respond to the
last message that the server received and accepted. Using message handles, a
good protocol should allow the service to respond to any of the recently received
messages.

The reason why we only require the server to accept with high probability is
that we allow randomness in our algorithms, and therefore collisions cannot be
ruled out completely.

5.2 Running Time

For the security definition, we need the notion of running time of algorithms.
We will use a probabilistic RAM model based on [CR73], in which arbitrary
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registers can be accessed in constant time. We also adopt the convention that
“time” refers to the actual running time plus the size of the code (relative to some
fixed programming language), see, e. g., [BDJR97]. Oracle queries are answered
in unit time. We assume that the running time of the algorithms of the signature
scheme is as follow: Generating a key pair takes time tG, signing or verifying a
bit-string with l bits takes time tS(l) or tV (l), respectively.

5.3 Security Definition

We now define when a protocol is called secure by defining a function which
matches client and server traces. We will only consider the acceptance trace of
a client instance Γ ic,s, which is the subsequence of all steps in the trace tric,s of
the form (n, . . . ,A). We also say that an instance accepts at step n if there is an
entry of the form (n, . . . ,A) or (n, . . . ,A, . . .) in its trace.

Depending on the result of the experiment, we define the event
NoMatchingΠ,A, which is intended to model the event that the adversary
A has successfully “broken” the protocol Π. A partner function is a partial map
f : IDs× IDs×N 99K N. Informally, for each client instance Γ ic,s, the function f
points to a step (identified by step counter n) in which the server accepts the
message sent from c to s in session i, if there is such a step.

If a “matching” partner function (see below) can be defined, then the ex-
periment was successful in the sense that the adversary did not compromise
authenticity of the message exchange. More formally, matching w. r. t. a given
partner function is defined as follows.
1. A trace tric,s of a client c matches the server trace trs of the server s w. r. t.

a given partner function f if the acceptance trace of Γ ic,s is of the form
(n1, send, t1, pc,mc,A)(n4, receive, t4, ps,ms,A) and there are timestamps
t2, t3, step numbers n1 < n2 < n3 < n4, and a handle h such that
(n2, receive, t2, pc,mc,A, c, h) ∈ trs and (n3, send, t3, ps,ms,A, c, h) ∈ trs,
and f(c, s, i) = n2.

2. A step (n2, receive, t2, pc,mc,A, c, h) in the trace trs of a server s matches the
client trace tric,s of the client c w. r. t. a given partner function f if f(c, s, i) =
n2 and the first accepting step in tric,s is of the form (n1, send, t1, pc,mc,A)
for some t1 and n1 < n2.

For a partner function f , the event NoMatchingfΠ,A (designed to model that f
is not a partner function that validates the communication in the result of the
experiment) consists of two cases:
(a) There are parties c and s, a session number i, and a step number n4, such

that c and s are not corrupted at step n4, the client instance Γ ic,s accepts at
step n4, but the trace tric,s does not match the server trace trs w. r. t. f , or

(b) there are parties c and s and a step number n2, such that c is not corrupted
at step n2, and there is a step (n2, receive, t2, pc,mc,A, c, h) ∈ trs for which
no session number i exists such that the step matches the client trace tric,s
w. r. t. f .

The event NoMatchingΠ,A denotes the event that NoMatchingfΠ,A occurs for all
partial functions f : IDs×IDs×N 99K N when the experiment is run with protocol
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Π, and adversary A, i. e., the event that there does not exist a partner function
that validates the success of the experiment.

The advantage of an adversary A running against Π is the probability
that the adversary is successful in breaking the protocol, formally defined by
AdvΠ,A = Pr

[
NoMatchingΠ,A

]
.

An adversary is called (t, nrcv, nsend, nsign, ntime, ncor, ldata)-adversary if the fol-
lowing holds: Its overall running time is bounded by t; the adversary selects no
more than nID identities in its first step, and for each of these identities, the
number of calls with receive, send, sign, or time instructions is bounded by nrcv,
nsend, nsign, and ntime, respectively; in each of these calls, the size of the payload
or message provided to the principal is no more than ldata; and the total number
of principals corrupted by the adversary is not larger than ncor.

Definition 3. A 2AMEX protocol Π is (t, nID, nrcv, nsend, nsign, ntime, ncor, ldata,
ε)-secure if we have AdvΠ,A ≤ ε for any (t, nID, nrcv, nsend, nsign, ntime, ncor, ldata)-
adversary A.

Note that our notion of security also takes care of replay attacks: If
a server accepts a message mc twice from the same client c, then in the
trace trs there are two different entries (n1, receive, t1, p

1
c ,mc,A, c, h

1) and
(n2, receive, t2, p

2
c ,mc,A, c, h

2), where n1 6= n2. If the event NoMatching does
not occur, then, by definition, there must be a partner function f and tuples
(c, s, i1) and (c, s, i2) such that f(c, s, i1) = n1 and f(c, s, i2) = n2. Since f is a
function and n1 6= n2, it follows that i1 6= i2. Therefore, the client c did send
the message mc twice: once in session i1, and once in session i2.

Hence, our notion of security does allow a server to accept the same message
twice, but only if it also has been sent twice. However, since there is no com-
munication between server and client except for the exchanged messages, the
server has no way of knowing whether a message that has been received twice
was also sent twice. Therefore, protocols satisfying our security definition will
have to be designed in such a way that a message is accepted at most once by a
server (with all but negligible probability).—Observe that it is of course allowed
for the server to accept the same payload twice from the same client.

6 Correctness and Security of 2AMEX-1

First, we state that 2AMEX-1 is indeed correct:

Theorem 4. The protocol 2AMEX-1 with message id length lnonce is an (n, ε)-
correct 2AMEX protocol, where ε = 1− 2−n·lnonce ·

∏n+1
i=0 (2lnonce − i).

Now, following a standard approach, we show that 2AMEX-1 is “secure”: For
each adversary against 2AMEX-1 we construct an adversary against the under-
lying signature scheme with comparable running time and success probability.
Hence we first recall a standard notion of security for signature schemes: An
adversary against a signature scheme is a probabilistic algorithm that as input
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receives a public key pk generated by the key generation algorithm, and has
access to a signature oracle O, which on input m generates a valid signature of
m corresponding to the public key pk. The adversary is successful if it produces
a pair (m,σ) with a valid signature σ of m (corresponding to pk), and m has not
been used as a query for the oracle O. For a running time t, natural numbers q
and l, and a probability ε, the adversary (t, q, l, ε)-breaks the signature scheme
if it runs in time bounded by t, uses at most q oracle queries, each query is of
length at most l, and is successful with probability at least ε. Consequently, a
signature scheme is (t, q, l, ε)-secure if there is no adversary that (t, q, l, ε)-breaks
it.

Theorem 5. 2AMEX-1 is (t1, nID, nrcv, nsend, nsign, ntime, ncor, ldata, ε1)-secure if
the signature scheme used is (t2, q2, l2, ε2)-secure with

t2 ∈ O(t1 + nID · (tG + nops · (capmax · (lID + ltime) + tS(lmsg))), (4)
q2 ≤ nsign + nsend, (5)
l2 ≤ lmsg, (6)

ε2 ≥ ε1 ·
1
nID
· 2lnonce !

(2lnonce − nID · nsend)! · 2lnonce·nID·nsend
(7)

where nops = nrcv + nsend + nsign + ntime, the maximum of the capacities of all
servers is capmax, and lmsg ∈ O(lID + lnonce + ltime + ldata).

The security proof for our protocol, see Section 8, first establishes that in
2AMEX-1, no server accepts the same message twice, therefore replay-attacks
in their most obvious form are impossible. We then prove that every “break” of
our protocol (i.e., every occurrence of NoMatchingΠ,A) implies that collision of
message id’s or existential forgery of a signature happened. We then use this fact
to construct a simulator that uses an adversary against 2AMEX-1 and a “sim-
ulated” protocol environment to construct an adversary against the signature
scheme. Theorem 5 then follows from a precise analysis of the resources used
and success probability achieved by the thus-obtained adversary. We mention in
passing that the constants hidden in the O-notation in Theorem 5 are reasonably
small (≤ 100).

Often, a Turing-machine based asymptotic notion of security is considered,
where it is required that the success probability of every polynomial-time ad-
versary drops rapidly when the security parameter (in our case, this reflects the
length of the keys for the signature scheme as well as the nonce length lnonce)
increases. Since Cook and Reckhow proved that RAM machines and Turing ma-
chines are polynomially equivalent [CR73], the above Theorem 5 implies the
following (see [KSW08] for details):

Corollary 6. 2AMEX-1 is asymptotically secure if the it is used with a signa-
ture scheme that is asymptotically secure against existential forgery.
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7 Correctness of 2AMEX-1 (Proof of Theorem 4)

We now prove Theorem 4.
Note that there are 2lnonce different message id’s, hence the probability of all

of these message id’s being different is exactly

2lnonce · (2lnonce − 1) · (2lnonce − 2) · · · · · (2lnonce − n+ 1)
(2lnonce)n

, (8)

thus ε from the statement of the theorem is the probability of a collision of
message id’s. It therefore suffices to show that the relevant messages are always
accepted, unless there are two different client sessions that choose the same
message id.

So assume that there are no collisions of message id’s, let (n1, send, t1, pc,mc,
A) ∈ tric,s and (n2, receive, t2, p

′
c,mc, δs, c

′, h) ∈ trs in an experiment where A is
a benign adversary, and assume that t1 ∈ ϕ(s, µs(n2), t2).

First, note that the message id of mc can only be the same as that of a
message that was previously delivered to s if a collision in the above sense occurs,
since A is benign and therefore delivers mc at most once to s. Hence, we can
assume n1 < n2. We show that none of the four cases that lead to rejection
of the message on the server side happens, unless a collision of message id’s
has occurs. Since mc was created by the client instance Γ ic,s, we know that the
To- and From-fields of mc are s and c, respectively, and that mc was signed
with c’s private key. Due to the above, we also know that unless a collision
appeared, mc’s message id does not already appear in the set L maintained by s.
Finally, the message cannot be rejected in step 1(c), since by the prerequisites,
τ(mc) = t1 ∈ ϕ(s, µs(ns), t2). Thus, the server accepts in all cases where no
collision has occurred. By construction of the protocol, it is also clear that the
server concludes that the message has been sent by c, and that p′c = pc because
the Body-Field of mc equals pc.

Now assume that additionally (n3, send, t3, ps,ms,A, c
′, h) ∈ trs and (n4,

receive, t4, p
′
s,ms, δc) ∈ tric,s with n2 < n3 and n1 < n4, but with no (n′, . . . ,

A, . . .) ∈ trs having n2 < n′ < n3.
First, we know that the server only generates one response for the incoming

message mc (as he overwrites c with ε in the tuple (t, r, c) in L after sending the
response), and since the adversary is benign, this response is delivered only once
to c, so n4 is the only step in which a response can be accepted by c. Now we
know that the probability of rejection by the client is zero, because the To-field
of the response is set to c, the message id is correct as it was stored in the server’s
memory (which was not reset between n2 and n3), and the server’s signature is
correct. Thus, the client accepts the message at n4 and we also have p′s = ps
because the Body-field of the response is set to ps by the server. ut

8 Security of 2AMEX-1 (Proof of Theorem 5)

We now perform a concrete security analysis of 2AMEX-1: We show that an
adversary with a given resource bound and success probability against 2AMEX-1
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immediately leads to an attack on the signature scheme with resource bound and
success probability “close” to the ones of the given adversary against 2AMEX-1.

We proceed in two steps: We first show that every successful attack against
2AMEX-1 must involve the forgery of a signature of an uncorrupted principal,
or the collision of two nonces chosen by the client algorithm. Since both of
these events happen with very low probability only (provided that the signature
scheme is secure), this implies that 2AMEX-1 is secure in an asymptotic sense.

In a second step, for a more detailed analysis, we provide a simulator S (see
Appendix B) which turns any adversary A against 2AMEX-1 into an adversary
SA against the signature scheme. We then analyze the success probability of SA,
which is “close” to the success probability of A, and the running time of SA,
which is, roughly speaking, linear in the running time of A.

Note that the first part of the proof does not rely on any assumptions about
the security of the signature scheme.

8.1 Attack implies collision or forgery

Theorem 7. Let A be an arbitrary adversary. Then for every run of the exper-
iment Exp2AMEX−1,A in which the event NoMatching2AMEX−1,A occurs, one of
the following events occurs as well:

– There are two client instances Γ ic,s and Γ i
′

c,s with i 6= i′, and both client
sessions chose the same message id,

– A produced a bitstring that is accepted as a valid signature for an uncorrupted
identity a, which was not obtained from the client or server algorithms or
the signature oracle.

Note that to achieve the properties mentioned in the theorem, the client
algorithm could also use a counter to determine fresh message id’s for each
message. This would be sufficient to ensure security of our protocol, but comes
with the price of the client having to maintain a long-term state. To prove
Theorem 7, we first show that 2AMEX-1 is resistant against replay attacks. The
following lemma states that the same message is not accepted twice by a server
during a protocol run:

Lemma 8. Let A be an adversary and s ∈ IDs. Then in every run of
Exp2AMEX-1,A, if (n1, receive, ts(n1), p1,m1,A, c1, h1) and (n2, receive, ts(n2), p2,
m2,A, c2, h2) are entries in trs with m1 = m2, then n1 = n2.

For the proof, we define the following notation: For a server identity s, let
tsmin(n) denote the value of s’s internal variable tmin before step n.

Assume that a server s accepts a message m = {(From : c,To : s,MsgID : r,
Time : t,Body : x)}skc twice, at steps n1 and n2, where n1 < n2. Then at the step
n1, the pair (t, r, c) is inserted into L. At point n2, since s accepts the message
m again, we know that (t, r, c) is not contained in L anymore. Also, tsmin(n2) < t
(otherwise, s rejects).
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Assume there was no reset between n1 and n2. Since (t, r, c) has been re-
moved from L at some point before n2, we know that tsmin(n2) ≥ t due to the
construction of the protocol. This is a contradiction to the above.

Hence a reset happened at step nr, where n1 < nr < n2. Due to the mono-
tonicity of the clocks, ts(n1) ≤ ts(nr). Since the server accepted the message m
with timestamp t at point n1, we know that t ≤ ts(n1)+tol+s . We also know that
ts(nr)+tol+s ≤ tsmin(n2), since the server runs 2AMEX-1. Therefore we conclude
tsmin(n2) < t ≤ ts(n1) + tol+s ≤ ts(nr) + tol+s ≤ tsmin(n2)—a contradiction. ut

Note that the preceding proof is the only situation where we actually use
monotonicity of the clocks—it is obvious that clocks are needed only to cir-
cumvent replay attacks. Also, it is immediate from the proof that it suffices to
demand that clocks of participants who act in the server role are monotone.

We now prove Theorem 7: Fix a run of the experiment Exp2AMEX-1,A in
which the event NoMatching2AMEX-1,A appears. Note that by construction of
the experiment, every signature for a valid 2AMEX-1 message that AAUT did
not generate internally (possibly with access to the secret key after corruption)
appears in the trace of the corresponding principals: By definition, such messages
are elements of the exception set E∗, and hence the signature oracle S refuses
to sign these bitstrings. We now define a partner function as follows: For every
client instance Γ ic,s, if the first accepting step in tric,s (which must be a send-
instruction) is (n, send, t, p,m,A), then let f(c, s, i) = n′, where n′ is the smallest
step number referring to an accepting receive-query of the server instanceΣs with
incoming message m, if such a step exists. Let f(c, s, i) be undefined otherwise. In
particular, NoMatchingf appears. By the prerequisites, we know that NoMatching
occurs in the protocol run. Now indirectly assume that neither existential forgery
against an uncorrupted key, nor collision of message id’s for client sessions Γ ic,s
and Γ i

′

c,s for i 6= i′ occurs. We distinguish the two cases in the definition of
NoMatchingf (see Section 5.3).

First Case. Assume that case (a) occurs. By definition of the NoMatching event,
there are parties c, s, a session number i, and a step n4 such that c and s are not
corrupted at step n4, the client Γ ic,s accepted at n4, but tric,s does not match the
server trace trs w. r. t. f . This means that the accepting steps of tric,s are of the
form (n1, send, t1, pc,mc,A)(n4, receive, t4, ps,ms,A), but there are no t2, t3, n2,
n3, h′ with n1 < n2 < n3 < n4, such that (n2, receive, t2, pc,mc,A, c, h

′) ∈ trs
and (n3, send, t3, ps,ms,A, c, h

′) ∈ trs with f(c, s, i) = n2. Since both c and s are
not corrupt at step n4, the signature oracle available to A does not allow the
signing of valid protocol messages, and we assumed that existential forgery did
not occur, it follows that every valid protocol message signed with the keys of c
or s that was obtained before the step n4 were obtained by a call of the client
or server instance.

Since the client Γ ic,s accepted the incoming message ms, we know that ms

is a valid 2AMEX-1 message send by a server with s’s signature. Note that
2AMEX-1 allows to distinguish messages sent by client or by servers: The former
contain a message id, the latter a reference to one. By the above, this means
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that A obtained ms from a call to the server instance Σs. By construction of
the protocol, this means that there is an entry (n3, send, t3, p

′
s,ms,A, c

′, h) in the
server trace trs, and since A had access to ms in step n4, it follows that n3 < n4.
Since the client instance Γ ic,s extracted the payload ps from ms, and the server
instance Σs encapsulated the payload p′s into ms, it follows that ps = p′s. Since
Γ ic,s accepts ms, it is addressed to c, and by construction of the protocol it follows
that c = c′. Therefore the above step in trs is (n3, send, t3, ps,ms,A, c, h), with
n3 < n4.

Further, we know that a server s accepts a send-request only if there is a
preceding receive-request accepted by s with a matching message handle (i. e., a
message id). Hence there is an entry (n2, receive, t2, p

′
c,m

′
c,A, c

′′, h) in the trace
trs with n2 < n3, and there is no accepted receive instruction or send instruc-
tion with message handle h in trs with a step number between n2 and n3. By
construction of the protocol, it follows that c′′ = c. Since Σs accepts the mes-
sage m′c and determines the sender to be c′′ = c, it follows that m′c is a valid
2AMEX-1 client message, is addressed to s, and carries a correct signature for
c’s key. Due to the above, and since m′c is addressed to the server s, we can
assume that m′c was obtained by the call of a client instance Γ i

′

c,s. Hence there is
an entry (n′1, send, t′1, p

′′
c ,m

′
c,A) with n′1 < n2 in the client trace tri

′

c,s. Since the
payload p′′c was encapsulated into m′c, and p′c was extracted from m′c, it follows
that p′′c = p′c.

Since Γ ic,s accepts ms, we know that (due to the verification of message id’s,
and since we assumed that collision of id’s between Γ ic,s and Γ i

′

c,s for i 6= i′ does
not occur) ms contains a reference to the message id of mc, which encapsulated
the payload pc. Since ms was created by Σs using the message handle that
Σs output when processing m′c, we know from the construction of 2AMEX-1
that ms carries a reference to the message id contained in m′c. Hence mc and
m′c have the same message id, and by the above assumption it follows that
m′c = mc, implying p′c = pc = p′′c . It follows that the above step in trs is of the
form (n2, receive, t2, pc,mc,A, c, h). Again due to our assumption that collisions
of message id’s do not occur, and since mc was created in both the client session
i and in the session i′, it further follows that i = i′ and thus n1 = n′1, which
implies n1 < n2 < n3 < n4. In particular, the message mc was sent by the client
instance Γ ic,s.

We now show that f(c, s, i) = n2. By construction, since mc is the message
created by the client instance Γ ic,s, f(c, s, i) = n, where n is the lowest step
number such that Σs accepted the message mc in step n. By the above, we
know that Σs accepted mc in step n2. By Lemma 8, we know that a server
accepts a message at most once. Hence it follows that n2 = n, and by the steps
exhibited in the server trace trs above, we know that the trace tric,s matches the
server trace trs w. r. t. f—a contradiction.

Second Case. In case (b), there are parties c and s and a step n2 such that c is
not corrupted in step n2, and there is a step (n2, receive, t2, pc,mc,A, c, h) in the
trace trs which does not match tric,s for any session number i, i. e., there is no i
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such that the first accepting entry in tric,s is of the form (n1, send, t1, pc,mc,A)
for some n1 < n2 such that f(c, s, i) = n2.

Since s accepts mc and determines that it has been sent by c, we know
that mc carries a valid signature by c, and is a 2AMEX-1 message. Since we
assume that existential forgery does not occur, c is not corrupt in step n2, and
mc is addressed to s, we know that mc was obtained from a client instance
Γ ic,s. Hence there is an entry (n1, send, t1, p

′
c,mc,A) in tric,s, with n1 < n2 (since

mc must be obtained before the adversary can use it). Since p′c is the payload
encapsulated in mc and pc is the payload extracted from pc, it follows that
pc = p′c. Hence the above step is of the form (n1, send, t1, pc,mc,A). Since mc is
the message created by the instance Γ ic,s and mc was accepted by Σs in step n2

(and, by Lemma 8, in no other step), it follows that f(c, s, i) = n2. Hence the
step (n2, receive, t2, pc,mc,A) matches the trace tric,s—a contradiction. ut

8.2 Security Proof

We now prove Theorem 5. As noted above, we provide a simulator S (see Ap-
pendix B) which turns an adversary A against 2AMEX-1 into an adversary
SA against the signature scheme. By abuse of terminology, we also refer to the
adversary SA as “the simulator” to distinguish it from the adversary A.

Let A be a (t, nID, nrcv, nsend, nsign, ntime, ncor, ldata)-adversary against the pro-
tocol 2AMEX-1 which has an advantage AdvΠ,A. Let S = (G,S, V ) be the sig-
nature scheme used in the protocol. We will analyze the adversary SA against
the signature scheme S. Thus, SA will be given a public key pk? and a signature
oracle O?; and to successfully break the signature scheme, it has to provide a
message m and a signature σ such that V ((m,σ), pk?) returns true.

We briefly sketch what the simulator does. Roughly speaking, the simulator
runs the experiment from Table 2, where it replaces one of the public keys with
pk?. If a message has to be signed with the corresponding private key or if the
adversary uses the corresponding signature oracle, the simulator uses O? and
logs the signature. If the adversary is successful because it manages to forge a
signature which has not been produced by O? and thus not logged, the simulator
outputs this forgery. All other queries of the adversary are answered according
to the protocol specification.

Success probability First, we analyze the advantage AdvS,SA of the simulator
SA against the signature scheme S.

Due to Theorem 7 we know that the simulator is successful in breaking
the signature scheme if (i) the adversary A is successful against the protocol Π,
(ii) no collision of message id’s occurred, (iii) the adversary did not try to corrupt
pk?, and (iv) the adversary forged a signature for the principal that corresponds
to key pk?. Thus, the resulting advantage is the product of the probabilities of
these four events.

The probability of a collision of message id’s Prcoll. can be calculated as
follows: For each send instruction at a client, one message id of length lnonce is
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randomly chosen. Thus, at most nID ·nsend message id’s are chosen from a set of
size 2lnonce . The resulting probability of a collision is

Prcoll. = 1− 2lnonce !
(2lnonce − nID · nsend)! · 2lnonce·nID·nsend

. (9)

The adversary we simulate has access to nID identities. Each of those has a
key pair, and the simulator randomly chooses which of those corresponds to pk?.
Thus, if the adversary corrupts ncor different identities, the probability Prcorr.

that it does not “hit” the key pk? is

Prcorr. =
ncor−1∏
i=0

nID − 1− i
nID − i

=
nID − ncor

nID
. (10)

If the adversary forges a signature, the probability that the corresponding
key is pk? is

Prkey =
1

nID − ncor
. (11)

Thus, the overall advantage of the simulator is

AdvS,SA ≥ AdvΠ,A · (1− Prcoll.) · Prcorr. · Prkey (12)

= AdvΠ,A ·
2lnonce !

(2lnonce − nID · nsend)! · 2lnonce·nID·nsend
· 1
nID

. (13)

Running Time We now analyze the running time of the simulator SA. We first
give an asymptotic analysis and then simplify the resulting term for the running
time given certain assumptions. First, let capmax = max{caps | s ∈ IDs}.

As we use the algorithms of the signature scheme, we use the following vari-
ables and functions to denote their running time: Generating a key pair takes
tG time, signing or verifying a bit-string with l bits takes tS(l) or tV (l) time,
respectively. We assume that tV (l) ∈ O(tS(l)) and tS(l) ∈ Ω(l).

We also use maps to store keys and associated values. We assume the time to
initialize a new map is constant, we denote the time of the other operations on
the map (add, remove, lookup) with tmap(n, l) where n is the maximal number
of entries in the map and l is the maximal length of the keys. On the machine
model we use, the operations (add, remove, lookup) can be performed in time
linear in l, e. g., by using Tries.

Another prerequisite we use is a pair of an encoding function and a decoding
function (E,D) which can merge multiple bit strings into a single bit string and
extract a number of bit strings from a single bit string, respectively. For each
operation mode (o, n) ∈ {(tuple, 2), (request, 5), (response, 4), (signature, 2)} and
all bit strings β1, . . . , βn, we assume D(o, E(o, β1, . . . , βn)) = (β1, . . . , βn) and
|E(o, β1, . . . , βn)| ∈ O(

∑n
i=1 |βi|).

Now, the running time of the single functions can be bounded as shown in
Tabular 3 for a fixed lmsg ∈ O(lID + lnonce + ltime + ldata). Then the overall
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ttime ∈ O(tuserNr) (14)

tclientSend ∈ O(tuserNr + tsign) (15)

tserverReceive ∈ O(tuserNr + tverify + capmax · (lID + ltime) + tmap(capmax, lnonce)) (16)

tserverSend ∈ O(tuserNr + tsign + tmap(capmax, lnonce)) (17)

tclientReceive ∈ O(tuserNr + tverify) (18)

tcorrupt ∈ O(tuserNr) (19)

tsign ∈ O(tuserNr + tS(lmsg) + tmap(nsign + nsend, lmsg)) (20)

tverify ∈ O(tuserNr + tV (lmsg) + tmap(nsign + nsend, lmsg)) (21)

tuserNr ∈ O(tmap(nID, lID)) (22)

Table 3. Running time of the procedures of the simulator

running time of the simulator S is bounded by the following set, where nops =
nrcv + nsend + nsign + ntime:

O(tA + nID · tG + ncor · tcorrupt + nID · nsign · tsign+ (23)
nID · ntime · ttime + nID · (nsend · (tclientSend + tserverSend)+
nrcv · (tclientReceive + tserverReceive))

=O(tA + nID · (tG + nops · (tS(lmsg) + tmap(capmax, lnonce)+ (24)
tmap(nsign + nsend, lmsg) + tmap(nID, lID)) + capmax · (lID + ltime)))

=O(tA + nID · (tG + nops · (tS(lmsg) + capmax · (lID + ltime)))) (25)

Note that the machine model we use would allow us to address arbitrary
registers, e. g., we could directly use bitstrings (encoded as numbers) as register
numbers to store or retrieve information and thus replace, e. g., the map which
stores information about messages signed so far and their signatures—this would
result in an unrealistic speedup for our algorithms and the use of an exponential
number of registers in the length of messages. In fact we only addresses in O(nID ·
nops · lmsg).

Finally, note that the simulator SA makes at most nsign +nsend queries to the
signature oracle it is provided with, as this is the maximal number of calls to the
sign function per identity. In each of these calls, at most lmsg are being signed.
Thus, the total number of bits signed by the oracle is at most (nsign +nsend) · lmsg.

ut

9 Conclusion

We provided a model that allows to analyze cryptographic protocols for the
practically relevant goal of two-round authenticated message exchange, taking
into account common protocol elements such as timestamps, nonces, signatures,
and signed parts. For the first time, this allows sound cryptographic security
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proofs of protocols in this setting. Using our new model we proved secure the
protocol 2AMEX-1, which had not been specified in detail before, but variants
of which are widely used in practice.
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A Choice of Parameters

A weakness of the protocol as stated in Section 4 are the rather vague guarantees
implied by our security definition. As discussed at the end of Section 4.2, a
certain type of denial-of-service attack can be mounted against the protocol,
which results in the intervals ϕ being empty, or to be in the future entirely,
essentially rendering a server inaccessible for all parties who set their clocks
honestly.

Therefore, as mentioned before, it is important to choose the parameters
for the server, i. e., the tolerance tol+s and the capacity caps in a way that
circumvents problems like this. In the following theorem, we specify one way of
choosing values for these parameters, that imply “liveliness” of the servers at all
times.

Theorem 9. Let s be a server running 2AMEX-1, and let tol−s be a real number
such that

– the minimal time (measured by the server’s local clock) between accepting
two messages as well as between a reset and accepting the first message is at
least tdiff ,

– the server tolerance is tol+s ,

– caps >
(tol+s + tol−s )

tdiff
.

Then for any local server time ts, if the last reset (or initialization) of s happened
before ts − (tol+s + tol−s ), then tsmin ≤ ts − tol−s .

Before proving the theorem, we explain its significance. The claim that it
it establishes is that (resets aside), the value tmin is always at least tol−s units
of time before the current server time. Hence tol−s is the minimal amount of
time that the server can “look into the past” via its recorded set of messages,
and by the way that the protocol is designed, this means that messages with
a timestamp set this much in the past (relative to the local server time) can
still get accepted. Hence the value tol−s is a “backwards tolerance” with respect
to out-of-sync clocks in the same way as tol+s gives “forward tolerance”. For
practical choices of these values, one should keep in mind that tol−s also needs
to compensate for the network delay between sending and receiving a message,
hence arguably “backward tolerance” should be higher than “forward tolerance”.

The reason why the theorem only guarantees the inequality for the case that
at least tol−s units of time have passed since the last reset is that as discussed in
Section 4.2, after a reset, there must be a time where no incoming message can
be accepted, and obviously one has to wait longer to ensure that messages with
timestamps further in the past can be accepted again.

We now prove the theorem.
Assume the last reset (or initialization, which for the server is the same

event) of s happened at the time tsr (measured in the clock of s). Fix a sequence
of incoming messages since the last reset. We obviously are only interested in
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accepted messages, since rejected messages do not lead to an advance of the value
tmin. Further, assuming that all messages in the sequence are accepted, we are not
interested in the messages themselves or even the sender and message id’s, but
only in the time at which they are received by s, and the timestamp they carry.
Hence we consider a sequence of messages as a sequence of pairs M = (tci , t

s
i )i∈N,

where a pair (tci , t
s
i ) represents a message that the server s receives at time tsi ,

and which carries the client’s timestamp tci . Since the minimal delay between
incoming messages and between a reset and an incoming message is tdiff , we
require that tsr + tdiff ≤ ts0, and tsi + tdiff ≤ tsi+1 for all i. We also require that
tci ≤ tsi + tol+s for all i (other sequences cannot be accepted by the server). With
tsmin(M)(ts) we denote the value of tmin at the local server time ts, when the
server s receives the sequence M (obviously, for this value only the elements in
M with an incoming time of at most ts are considered).

It is easy to see that tsmin(M)(ts) for a fixed ts, considered as a function
in M , is monotone in the following sense: Lowering an incoming-time value
of a pair or increasing the timestamp of a pair in M does not decrease the
value of tsmin(M)(ts), as long as the modified sequence still obeys the restrictions
explained above. It therefore follows that we only have to consider the extreme
case where messages come with the highest possible frequency and having the
highest (at that time) admissible timestamp, i. e., we only need to consider the
canonical sequence Mc = (tsr + i · tdiff , t

s
r + tol+s + i · tdiff)i≥1. This sequence Mc

can be thought of as the optimal denial of service attack against the server s. By
construction of the protocol and due to choice of caps, s only removes elements
from L if there are more than (tol+s +tol−s )/tdiff elements in the set L.

The claim that we need to prove is:

if t ≥ tsr + tol+s + tol−s then tsmin(Mc)(t) ≤ t− tol−s .

We first consider the case t = tsr+tol+s +tol−s . In this case, exactly tol+s +tol−s
units of time have passed since the last reset. In this time, s has accepted exactly
(tol+s +tol−s )/tdiff messages, which is less than caps. Therefore, no element has been
removed from the set, and tmin still has the value that it was set to at the last
reset, which is tsr+tol+s by the specification of the protocol. Hence tsmin(Mc)(t) =
tsr + tol+s = t − tol−s , which proves the required inequality. For points in time
beyond t = tsr +tol+s +tol−s , it suffices to prove that tmin does not advance faster
than ts. This is easy to see, since by the setup of the sequence Mc, tmin advances
by exactly tdiff for each element removed from the set L, and for each received
message, at most one message is removed from this set (since all messages have
different timestamps). Finally, the delay between the acceptance of two messages,
and hence the minimal delay between advancements of tmin, is exactly tdiff .
Therefore, given the sequence Mc, the value tmin increases at most as fast as the
server clock, and hence the inequality is maintained. ut
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B The Simulator

We now define the simulator S. The addition on time values, i. e. on ltime bit
numbers, is denoted by +̇. We assume the simulator is provided with a public key
pk? and a signature oracle O? which it is supposed to attack, it has access to the
capacities and tolerances of the servers (i. e., to caps and tol+s for each s ∈ IDs),
the signature scheme (G,S, V ), and the encoding and decoding functions (E,D).

main

1 let u = 0
2 let U = newMap()
3 let M = newMap()
4 let A choose a set A ⊆ IDs with |A| = nID

5 choose x ≤ nID at random
6 for a ∈ A
7 let ā = userNr(a)
8 let tā = 0
9 if ā = x,
10 let pkx = pk?

11 else,
12 let (pkā, skā) = G()
13 send (a, pkā) to the adversary
14 simulate A
15 if A sends time(a, t)
16 return time(a, t)
17 if A sends send(p) to Γ i

c,s

18 return clientSend(c, s, i, p)
19 if A sends receive(m) to Σs

20 return serverReceive(s,m)
21 if A sends send(p, h) to Σs

22 return serverSend(s, p, h)
23 if A sends receive(m) to Γ i

c,s

24 return clientReceive(c, s, i,m)
25 if A sends corrupt(a) to S
26 return corrupt(a)
27 if A sends sign(a, p) to S
28 if D(request, p) or D(response, p) is successful
29 return ε
30 return sign(a, p)

time(a, t)
31 let ā = userNr(a)
32 if t ≥ tā, set tā = t
33 return tā
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clientSend(c, s, i, p)
34 let c̄ = userNr(c) and s̄ = userNr(s)
35 if µi

c̄,s̄ 6= ε
36 return (ε, 0)
37 let r be a random lnonce-bit number
38 let µi

c̄,s̄ = r
39 let m = E(request, c, s, r, tc̄, p)
40 let σ = sign(c,m)
41 let m̂ = E(signature,m, σ)
42 return (m̂, 1)

serverReceive(s, m̂)
43 let s̄ = userNr(s)
44 if µtmin

s̄ = ε
45 let µtmin

s̄ = ts̄ +̇ tol+s and µL
s̄ = newMap()

46 try
47 let (m,σ) = D(signature, m̂)
48 let (c, s′, r, t, p) = D(request,m)
49 if any error occurred while decoding
50 or s′ 6= s or verify(c,m, σ) = 0
51 or t ≤ µtmin

s̄ or t > ts̄ +̇ tol+s or lookup(µL
s̄ , r) 6= ε

52 return (ε, 0, ε, ε)
53 if size(µL

s̄ ) ≥ caps

54 let µtmin
s̄ = ts̄ +̇ tol+s

55 for v in allValues(µL
s̄ )

56 let (t′, a) = D(tuple, v)
57 if t′ < µtmin

s̄ , let µtmin
s̄ = t′

58 for v in allValues(µL
s̄ )

59 let (t′, a) = D(tuple, v)
60 if t′ ≤ µtmin

s̄ , remove(T, v)
61 add(T, r, E(tuple, t, c))
62 return (p, 1, c, r)

serverSend(s, p, h)
63 let s̄ = userNr(s)
64 if µtmin

s̄ = ε
65 let µtmin

s̄ = ts̄ +̇ tol+s and µL
s̄ = newMap()

66 let v = lookup(µL
s̄ , h)

67 if v = ε, return (ε, 0, ε, ε, µs̄)
68 let (t, c) = D(tuple, v)
69 if c = ε, return (ε, 0, ε, ε, µs̄)
70 remove(µL

s̄ , h)
71 add(µL

s̄ , h, E(tuple, t, ε))
72 let m = E(response, s, c, r, p)
73 let σ = sign(s,m)
74 let m̂ = E(signature,m, σ)
75 return (m̂, 1, c, ε)
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clientReceive(c, s, i, m̂)
76 let c̄ = userNr(c) and s̄ = userNr(s)
77 if |µi

c̄,s̄| 6= lnonce, return (ε, 0, µi
c̄,s̄)

78 try
79 let (m,σ) = D(signature, m̂)
80 let (s′, c′, r, p) = D(response,m)
81 if any error occurred while decoding or c′ 6= c
82 or s′ 6= s or verify(s,m, σ) = 0
83 or r 6= µi

c̄,s̄

84 return (ε, 0)
85 let µi

c̄,s̄ = 0lnonce+1

86 return (p, 1)

corrupt(a)
87 let ā = userNr(a)
88 if ā = x
89 stop the simulation, but return no forgery
90 return skā

sign(a, β)
91 let ā = userNr(a)
92 if ā 6= x
93 return S(β, skā)
94 else
95 let σ = O?(β)
96 add(M,β, σ)
97 return σ

verify(a, β, σ)
98 let ā = userNr(a)
99 let b = V (β, σ, pkā)
100 if ā = x and b = 1 and lookup(M,β) = ε
101 stop the simulation and return (β, σ) as a forgery
102 return b

userNr(a)
103 let ā = lookup(U, a)
104 if ā = ε
105 let ā = u
106 let u = u+ 1
107 add(U, a, ā)
108 return ā
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