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Abstract. This research proposes dealer-free dynamic secret sharing constructions where different
parameters of the scheme can be changed after the initialization. In practice, the ability of the adversary
might be enhanced over time, for instance, by compromising more players. A possible solution to this
problem is to increase the threshold or change the secret. In the literature, there exist some techniques
to address this issue. These solutions assume the existence of a trusted authority, or have a large
storage requirement, or are limited to a predefined modification. We apply some of the existing tools to
tackle this problem. First, we formally analyze the well-known re-sharing techniques, also called 2-level
sharing. After that, we present our solutions for dealer-free dynamic schemes in both the passive and
active adversary models. In our constructions, players do not need to save extra shares beforehand, and
the secret or threshold can be changed multiple times to any arbitrary values. Moreover, the presented
protocols are unconditionally secure and realize a proactive secret sharing scheme.
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1 Introduction

In secret sharing schemes, a secret is divided into different shares for distribution among several
participants, and a subset of participants then collaborate to recover the secret [22, 3]. In particular,
the (t, n)-threshold secret sharing scheme is proposed in which the secret is divided into n shares
in such a way that any t players can combine their shares to reveal the secret, but any set of t− 1
participants cannot learn anything about the secret.

We consider various types of adversaries in our constructions. In the passive adversary model,
players follow protocols correctly but are curious to learn the secret. On the other hand, in the
active adversary model, participants may deviate from protocols while trying to learn the secret. In
addition, the passive or active adversary can be static or mobile. The former refers to the adversary
who corrupts players ahead of time, while in the latter case, the adversary may corrupt different
players at different stages of the protocols’ executions. Finally, the entire security model can be
conditional where the security of the protocols relies on computational assumptions such as the
hardness of factoring, or unconditional where the adversary has unlimited computation power.

1.1 Motivation

Secret sharing schemes are an essential tool used in secure multiparty computation [27] where various
participants cooperate in order to perform a computation task based on the private data they each
provide. It is also applied in a variety of other applications such as joint signature and decryption
[11], shared RSA keys [5], and electronic auctions with sealed bid [12]. In practice, the ability or
computational power of the adversary might be enhanced over time, for instance, by compromising
more players. In other words, changing the secret or threshold may be required throughout the
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lifetime of a secret. This problem can be tackled by changing these parameters in the absence of
the dealer (i.e., the entity who initiates the scheme).

In the literature, there exist some solutions to address this issue. They assume the existence of a
trusted authority, or have a large storage requirement, or are limited to a predefined modification.
In addition, they may only modify the threshold at the side of the combiner (i.e., the entity who
recovers the secret) rather than the entire scheme. In that case, the secret can be reconstructed if an
adversary attacks a subset of players instead of the combiner. Our motivation is to apply existing
methods in order to tackle these problems and add more utility to the secret sharing schemes.

1.2 Contribution

The contribution of this paper is to construct dynamic secret sharing schemes with a variety of
desirable properties. Our protocols are dealer-free in which players change both the secret and the
threshold based on a group agreement after the initialization. They are unconditionally secure in
the sense that they do not rely on any computational assumptions. They have the minimum storage
cost since players do not need to save extra shares beforehand in order to modify those parameters.
They are flexible because the secret and the threshold can be changed to arbitrary values multiple
times with the presence of enough participants.

First, we formally analyze the well-known re-sharing techniques. Our main contribution in this
part is three theorems. We first show the security and correctness of the re-sharing method under
the passive adversary model, and then illustrate two major drawbacks of the re-sharing approach
in the active adversary setting. More precisely, we show that the 2-level sharing under the active
adversary model is not secure against a mobile adversary. Moreover, each player has to store several
shares unless participants agree on a set of good players.

Second, we propose a new multiplication-based solution for a dealer-free dynamic scheme in
both passive and active adversary models. The proposed protocols change the secret as well as the
threshold at the same time. In the first construction, we apply the enrollment protocol of [20] and
the degree reduction and randomization method of [10] to change the secret and then adjust the
threshold accordingly. In the second one, we develop a new protocol to generate a verified random
symmetric polynomial to change the secret, and also extend the degree reduction and randomization
approach presented in [10] to the symmetric bivariate polynomial for the threshold adjustment.

1.3 Organization

The paper is organized as follows. Section 2 reviews existing constructions for changing the threshold
in the secret sharing schemes. Section 3 provides the required background for this paper. Section 4
formally analyzes the well-known re-sharing approach. Section 5 illustrates the proposed dealer-free
dynamic secret sharing schemes. Finally, Section 6 outlines concluding remarks.

2 Related Work

K. M. Martin et al. [16] design a threshold changeable secret sharing scheme in the absence of secure
channels based on two methods. The first one can be implemented by the Shamir approach and
the second one is a geometrical construction. They have two strong assumptions. First, the original
shares must contain the required information for extracting both the shares of the initial scheme
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and the shares of the future scheme, known as shares and subshares. Consequently, the size of the
stored shares grows linearly with the number of required modifications to the threshold. Second,
the proposed construction assumes that shareholders behave honestly in the sense that they only
use the subshares that are relevant to the threshold in current use.

Using the prior approach, A. Maeda et al. [15] propose an unconditionally secure verifiable
scheme where the threshold can be changed several times, say N , but only to the values determined
in advance. In this construction, each player receives one full share and extracts the subsequent
subshares from that by N public functions released by the dealer at the time of the initialization.
The dealer also has to distribute N polynomials ahead of time. The authors assume that the secret
is not recovered before the threshold changeability.

R. Steinfeld et al. [23] construct a threshold changeable mechanism for the standard Shamir
secret sharing scheme. The general idea is that players add an appropriate amount of random noise
to their shares in order to generate subshares which contain incomplete information regarding the
primary shares. Consequently, t subshares are not sufficient to recover the secret; but, by a relatively
large number of subshares, say t′, the secret can be reconstructed.

C. Tartary and H. Wang [26] propose a dealer-free threshold changeable scheme in which the
problem of secret recovery is reduced to the polynomial reconstruction problem. In this construction,
players send some fake shares based on a mathematical assumption along with their real shares
to increase the threshold t at the side of the combiner. First, the threshold stays constant among
players. Second, their algorithm does not allow any value t′ to be chosen. Third, the original
threshold must be no larger than n

2 . Finally, the scheme increases the asymptotic time complexity
at the combiner side.

In addition to the problems we stated regarding the earlier techniques, there exists one common
problem with all of these solutions. In fact, if an adversary attacks the shareholders (not the
combiner) then he can have access to the original shares, shares related to various thresholds, or
shares without any noise. Consequently, the secret can be recovered by the attacker.

Other techniques are proposed in the literature which can lead to the threshold changeability
of a secret sharing scheme, for instance: re-sharing existing shares of a (t, n)-threshold scheme by
a set of new polynomials of degree t′ [8]; redistribution of secret shares to new access structures in
which participants of a scheme send information to a new set of players in such a way that the old
secret is shared among a new access structure [7, 17]; dynamic secret sharing schemes where the
dealer triggers a specific access structure out of a given set, or enables the players to recover various
secrets in different times by sending them the same broadcast message [4]. The authors in [1] also
consider the scheme with changeable parameters, e.g., the threshold and the number of players, in
order to minimize both the storage costs (size of shares) and the size of broadcast messages.

3 Preliminaries

In this section, we quickly review a secure multiparty computation technique and the Lagrange
method for the polynomial interpolation.

3.1 Secure Multiplication of Secrets

Ben-Or et al. [2] proposed a method for the secure multiplication of two secrets. Suppose secrets α
and β are encoded by two polynomials f(x) and g(x) of degree t− 1, and each player Pi is holding
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one share on each of these polynomials, f(i) and g(i) respectively. The product of these two secrets
αβ is the constant term of the polynomial h(x) = f(x)× g(x).

If each player multiplies his shares together, the resulting value is a point on h(x). There are
two problems with this approach. First, the degree of h(x) is 2t− 2 instead of t− 1. Second, h(x) is
reducible as a product of two polynomials, which may not be secure. To overcome these problems,
the authors in [2] first use a degree reduction protocol in which the polynomial h(x) is truncated
in the middle to decrease its degree to t− 1. Let k(x) be the truncation of h(x). Subsequently, they
apply a simple procedure to randomize the coefficients of k(x), except the constant term which is
the product of the two secrets.

Suppose n ≥ 2t − 1, where n is the number of players, H is the coefficient vector of h(x), S
is an evaluation vector of h(x) at 2t − 1 points (i.e., players’ shares on h(x)), K is the coefficient
vector of k(x), R is an evaluation vector of k(x) at t points (i.e., players’ shares on k(x)), V ′n×n is
the transpose of a Vandermonde matrix, and Pn×n is a projection matrix (i.e., if i = j and i, j ≤ t
then Pij = 1, otherwise Pij = 0).

Before illustrating the degree reduction procedure, the coefficients of h(x) are randomized as
follows: each player Pi for 1 ≤ i ≤ n randomly selects a polynomial qi(x) of degree 2t − 2 with a
zero constant term. After that, they each send qi(j) to Pj for 1 ≤ j ≤ n. Finally, players add these
values to their shares on h(x):

h(x) = h(x) +
n∑
i=1

n∑
j=1

qi(j) and h(0) = α

H · V ′ · V ′−1 = H (a)
H · P = K (b)
K · V ′ = R (c)
H · V ′ = S (d)

(a),(b)⇒ H · V ′ · V ′−1 · P = K (e)
(c),(e) ⇒H · V ′ · V ′−1 · P · V ′ = R (f)
(d),(f) ⇒ S · V ′−1 · P · V ′︸ ︷︷ ︸

publicly known

= R

The above computation shows that if we multiply the evaluation vector of a polynomial h(x)
in a publicly known matrix, we get the evaluation vector of h(x)’s truncation, denoted by k(x),
depending on the number of ones in the projection matrix’s diagonal. Later on, this approach
was simplified by R. Gennaro et al. [10], his approach is illustrated in the second phase of our
constructions in Section 5. They combine the randomization and degree reduction stage by a simpler
approach.

3.2 Lagrange Interpolation Formula

In this part, we illustrate the Lagrange method for the polynomial interpolation [24]. Suppose q is
a prime number and x1, x2, ..., xt are distinct elements in Zq. In addition, suppose f1, f2, ..., ft are
elements in Zq. Then, there is a unique polynomial f(x) ∈ Zq[x] of degree at most t− 1 such that
f(xi) = fi for 1 ≤ i ≤ t:

f(x) =
t∑
i=1

( ∏
1≤j≤t,i 6=j

x− xj
xi − xj

× fi
)

(1)
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In the case of bivariate polynomials, y1, y2, ..., yt are distinct elements in Zq and f1(x), f2(x), ..., ft(x)
are polynomials of degree at most t − 1 in Zq[x]. Consequently, there is a unique polynomial
f(x, y) ∈ Zq[x, y] of degree at most t− 1 such that f(x, yi) = fi(x) for 1 ≤ i ≤ t:

f(x, y) =
t∑
i=1

( ∏
1≤j≤t,i 6=j

y − yj
yi − yj

× fi(x)
)

(2)

4 Changing the Threshold While Keeping the Same Secret

In this section, we review techniques for threshold changeability in the absence of a dealer. The
general idea is to re-share existing shares of a (t, n)-threshold scheme by a set of polynomials of a
higher degree t′, i.e., converting a (t, n)-threshold scheme into a (t′, n)-threshold scheme [8]. In the
first model, there are only private channels between each pair of players, but in the second one, we
also assume the existence of a synchronous broadcast channel. All computations are performed in
a finite field GF (q).

If the decision is to keep the same secret value (a desirable property in the case where the secret
is difficult or expensive to change), then at least n− t+1 participants have to erase their old shares
honestly. Erasing old shares is an inevitable assumption in a threshold changeable scheme with a
constant secret [16], and even in proactive secret sharing schemes [21, 13]. Otherwise, the secret
value itself must be changed (this issue is discussed in Section 5).

4.1 Passive Adversary Model

In the initial setting, we present a secret sharing scheme with threshold changeability under the
passive adversary model.

Secret Sharing (Sha). Suppose, the dealer triggers a secret sharing protocol and then leaves
the scheme. That is, he generates a univariate polynomial f(x) ∈ Zp[x] of degree t− 1 in which its
constant term is the secret f(0) = α, and then sends share f(i) to player Pi for 1 ≤ i ≤ n [22].

Re-sharing Shares (Pre). Now, suppose the participants decide to switch to a new threshold
of t′ > t in the absence of the dealer.

1. Each player Pi generates a polynomial gi(x) of degree t′ − 1 such that its constant term is the
player’s share on f(x):

gi(0) = f(i) (3)

2. Each player Pi sends gi(j) to player Pj for 1 ≤ i, j ≤ n, i.e., re-sharing the original shares
by auxiliary shares. The share-exchange matrix En×n, where each player generates a row and
receives a column, is as follows:

En×n =


g1(1) g1(2) · · · g1(n)
g2(1) g2(2) · · · g2(n)

...
...

. . .
...

gn(1) gn(2) · · · gn(n)
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3. At this step, a set ∆ is determined such that it contains the identifiers of t elected players, i.e.,
|∆| = t. Consequently, the following constants are publicly computed:

γi =
∏

j∈∆,i 6=j

0− j
i− j

where 1 ≤ i, j ≤ n represent players’ ids (4)

4. Each player Pj erases his old shares, and then combines the auxiliary shares he has received
from other players to compute his new share as follows:

ϕj =
∑
i∈∆

(
γi × gi(j)

)
(5)

Secret Recovery (Rec). At this point, if at least t′ players Pj cooperate, where j ∈ ∆′ and
|∆′| ≥ t′, they can recover the secret by using the Lagrange interpolation method:

α =
∑
j∈∆′

( ∏
i∈∆′,i 6=j

0− i
j − i

× ϕj
)

(6)

Theorem 1. The re-sharing protocol Pre for the threshold changeability is secure under the passive
adversary model, and correctly computes secret α.

Proof. Initially a set ∇ of colluders, where |∇| = t−1, are not able to recover the secret. In the next
stage, players re-share their shares with gi(x)′s of degree t′−1 where t′ > t. Consequently, colluders
cannot reconstruct any of those re-sharing polynomials in order to reveal the good players’ shares.
Finally, all players erase their old shares to compute the new ones. Therefore, the protocol is secure
under the passive (honest-but-curious) adversary model. Now, we show its correctness:

α =
∑
j∈∆′

( ∏
i∈∆′,i 6=j

0− i
j − i

× ϕj
)

by (6)

=
∑
j∈∆′

( ∏
i∈∆′,i 6=j

0− i
j − i

×
∑
i∈∆

(
γi × gi(j)

))
by (5)

=
∑
j∈∆′

( ∏
i∈∆′,i 6=j

0− i
j − i

×
∑
i∈∆

( ∏
j∈∆,i 6=j

0− j
i− j

× gi(j)
))

by (4)

=
∑
i∈∆

( ∏
j∈∆,i 6=j

0− j
i− j

× gi(0)
)

by (1)

=
∑
i∈∆

( ∏
j∈∆,i 6=j

0− j
i− j

× f(i)
)

by (3)

= f(0) by (1)
ut

4.2 Active Adversary Model

In this section, a modified version of the previous approach is illustrated which is also secure against
an active adversary model. The authors in [19] present such a construction and use it in a different
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context [18], e.g., for creating a proactive secret sharing scheme. They also mention that the usual
re-sharing technique is not secure against a mobile adversary. However, they do not provide any
formal proof for this claim. We present a similar approach in order to change the threshold, and
formally prove why it is not secure in the mobile adversary setting. For the sake of simplicity, details
of accusation and defense procedures among players are removed.

Secret Sharing (Sha). Suppose, an honest dealer initiates a secret sharing scheme by using a
symmetric bivariate polynomial. That is, he generates a polynomial f(x, y) ∈ Zp[x, y] of degree
t− 1 in which its constant term is the secret:

f(x, y) =
t−1∑
i=0

t−1∑
j=0

aijx
iyj where a00 = α and ∀i, j : aij = aji

The dealer then sends shares of players Pi for 1 ≤ i ≤ n accordingly, and leaves the scheme:

fi(x) = f(x, ωi) where ω is a primitive element (7)

Definition 2. In a secret sharing scheme, when the dealer uses a symmetric polynomial f(x, y) to
generate shares, players Pi are able to check the validity of their shares fi(x) by pairwise checks.
The matrix representing those values is called pairwise check matrix, and is defined as follows:

Cn×n =


null f1(ω2) · · · f1(ωn)
f2(ω1) null · · · f2(ωn)

...
...

. . .
...

fn(ω1) fn(ω2) · · · null

 where fi(ωj) = fj(ωi) (8)

Since our focus is to construct a dealer-free protocol, we assume the dealer who initiates the
scheme is honest because we would like all the distributed data to be verified shares up until the
existence of the dealer. As a result of this assumption, the pairwise check matrix must be symmetric
with respect to the main diagonal (top left to bottom right).

Re-sharing Shares (Are). Now, suppose the players decide to switch to a new threshold of t′ > t
in the absence of the dealer.

1. Each player Pi generates a symmetric polynomial gi(x, y) of degree t′ − 1 such that:

gi(x, 0) = fi(x) (9)

(a) Generate the symmetric bivariate polynomial g′(x, y), where ai0 = a0j = 0 for 0 ≤ i, j ≤ t′.
(b) Extend fi(x) to a symmetric bivariate polynomial f ′i(x, y) by adding corresponding y-terms.
(c) Finally, compute gi(x, y) = g′(x, y) + f ′i(x, y), which satisfies the condition gi(x, 0) = fi(x).

2. Each player Pi sends gi(x, ωj) to player Pj for 1 ≤ i, j ≤ n, i.e., re-sharing the original shares
by auxiliary shares. The share-exchange matrix En×n, where each player generates a row and
receives a column, is as follows:

En×n =


g1(x, ω1) g1(x, ω2) · · · g1(x, ωn)
g2(x, ω1) g2(x, ω2) · · · g2(x, ωn)

...
...

. . .
...

gn(x, ω1) gn(x, ω2) · · · gn(x, ωn)
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3. Players first perform n pairwise checks on gi(x, ωj) for 1 ≤ i ≤ n, and then a single pairwise
check on gi(0, ωj), to make sure that the constant terms of shares are consistent with the original
shares distributed by the honest dealer:

null g1(0, ω2) · · · g1(0, ωn)
g2(0, ω1) null · · · g2(0, ωn)

...
...

. . .
...

gn(0, ω1) gn(0, ω2) · · · null

 ?=


null f1(ω2) · · · f1(ωn)
f2(ω1) null · · · f2(ωn)

...
...

. . .
...

fn(ω1) fn(ω2) · · · null


4. At this step, a set ∆ is determined such that it contains the identifiers of t good players, i.e.,
|∆| = t. Consequently, the following constants are publicly computed:

γi =
∏

j∈∆,i 6=j

0− ωj

ωi − ωj
where 1 ≤ i, j ≤ n represent players’ ids (10)

5. Each player Pj erases his old shares, and then combines the auxiliary shares he has received
from other players to compute his new share as follows:

ϕj(x) =
∑
i∈∆

(
γi × gi(x, ωj)

)
(11)

Secret Recovery (Rec). At this point, if at least t′ players Pj cooperate, where j ∈ ∆′ and
|∆′| ≥ t′, they can recover the secret by using the Lagrange interpolation method:

α =
∑
j∈∆′

 ∏
i∈∆′,i 6=j

0− ωi

ωj − ωi
× ϕj(x)

 (12)

Lemma 3. In the active adversary model, after the initialization protocol Sha, the secret α is
reconstructed only by the constant terms of players’ shares.

Proof. We show that if at least t players Pj interpolate fj(0)′s, the secret α = f(0, 0) is revealed:

α =
t∑

j=1

( ∏
1≤i≤t,i 6=j

0− ωi

ωj − ωi
× fj(0)

)
by (1)

=
t∑

j=1

( ∏
1≤i≤t,i 6=j

0− ωi

ωj − ωi
× f(0, ωj)

)
by (7)

= f(0, 0) by (2)
ut

Theorem 4. The re-sharing protocol Are is not secure under the mobile adversary model, meaning
that, the constant terms of players’ shares fj(0)′s stay the same after the re-sharing protocol.

Proof. If these constant terms stay the same, the mobile adversary can incrementally collect players’
shares in different time periods in order to recover the secret. Therefore, we simply prove the
following equality for all players Pj ;∀j ∈ [1..n]⇒ ϕj(0) = fj(0):
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ϕj(0) =
∑
i∈∆

(
γi × gi(0, ωj)

)
by (11)

=
∑
i∈∆

( ∏
j∈∆,i 6=j

0− ωj

ωi − ωj
× gi(0, ωj)

)
by (10)

=
∑
i∈∆

( ∏
j∈∆,i 6=j

0− ωj

ωi − ωj
× gi(ωj , 0)

)
symmetry

=
∑
i∈∆

( ∏
j∈∆,i 6=j

0− ωj

ωi − ωj
× fi(ωj)

)
by (9)

=
∑
i∈∆

( ∏
j∈∆,i 6=j

0− ωj

ωi − ωj
× fj(ωi)

)
by (8)

= fj(0) by (1)
ut

Theorem 5. In the re-sharing protocols Are for the threshold changeability, each player has to
store several shares unless participants predetermine (i.e., agree on) a set ∆ of good players with
|∆| = t.

Proof. In the first case, we analyze the number of shares that each player has to store. Suppose
t < |∆| = m ≤ n, as shown in the protocol, i and j depend on the set ∆ only in the last two steps.
Therefore, the number of possible combinations of m values taken t at a time defines the number
of possible sets of constants:(

m

t

)
= d then Φ = {{γ1,1, γ1,2, . . . , γ1,t} , . . . , {γd,1, γd,2, . . . , γd,t}} and |Φ| = d

Consequently, each player has to save d possible shares ϕj(x)’s according to each set of constants
in Φ (storing extra shares may threaten the security of the scheme even more). Second, assume
t = |∆|, then players are able to compute a single set of constants Φ = {{γ1, γ2, . . . , γt}} because(
t
t

)
= |Φ| = 1. As a result, each player Pi updates his share to a single ϕj(x). Finally, if t > |∆|,

then players are not able to execute this protocol since it is the condition of the fourth step. It can
be simply seen that determining the set ∆ is crucial in the case of an active adversary model since
∀i ∈ ∆;Pi must be a good player. ut

5 Changing Both the Threshold and the Secret

The goal of this section is to change both the threshold t and the secret α after the initialization,
when the dealer no longer exists, i.e., to immunize the scheme against colluders by changing the
main parameters of the scheme.

In our first solution, players initially generate a random polynomial g(x) of degree t − 1 with
an arbitrary constant term β known to only t participants. After that, the original secret sharing
polynomial f(x) of degree t − 1 is securely multiplied by g(x). As a consequence, the new secret
value of the scheme is αβ with 2t− 1 as a new threshold. This requires the contribution of at least
2t− 1 participants. Finally, by using the degree reduction and randomization approach in [10] (the
simplified version of [2]), the final threshold t′ will be adjusted to something between t < t′ < 2t−1.
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The proposed constructions consist of n participants, P1, P2, . . . , Pn. In the first model, there
are only private channels between each pair of players, but in the second one, we also assume the
existence of a synchronous broadcast channel. Let GF (q) be a finite field and let ω be a primitive
element in this field. All computations are performed in the field GF (q).

5.1 Passive Adversary Model

In this construction, first a new polynomial is generated and then the secret is changed by a
secure multiplication. Finally, the threshold is adjusted while coefficients of the new secret sharing
polynomial are randomized. Suppose the original secret sharing polynomial is f(x) of degree t− 1
with a constant term α, therefore, f(i) is the share of the player Pi.

Phase-1: Polynomial Production

1. Based on a group agreement or a random selection, t players are chosen so that each generates
a private random number for himself. In fact, these t random values associated with players’
identifiers i form a polynomial g(x) of degree t− 1 with an arbitrary constant term β. Suppose
the first t players are selected to generate g(x), i.e., 1 ≤ i ≤ t.

2. To generate shares on g(x) for other n− t participants, the enrollment protocol in [20] is used
to create g(k) for players Pk. Since t+ 1 ≤ k ≤ n, the following protocol is repeated n− t times.

(a) Each player Pi for 1 ≤ i ≤ t computes his corresponding Lagrange interpolation constant:

γi =
∏

1≤j≤t,i 6=j

k − j
i− j

where i, j, k represent players’ ids (13)

(b) After that, each participant Pi multiplies his share by his Lagrange interpolation constant,
and randomly splits the result into t portions, i.e., a row in a share-exchange matrix :

g(i)× γi = ∂1i + ∂2i + · · ·+ ∂ti for 1 ≤ i ≤ t (14)

(c) Players exchange ∂ji’s accordingly by pairwise channels. Then, each Pj holds t values, i.e.,
a column in a share-exchange matrix. Pj adds them together and sends the result to Pk:

σj =
t∑
i=1

∂ji where ∂ji is the jth share-portion of the ith participant (15)

(d) Finally, player Pk adds these values σj for 1 ≤ j ≤ t together to compute his share g(k):

g(k) =
t∑

j=1

σj (16)

Phase-2: Secure Multiplication

At this stage, each participant Pi simply multiplies his two shares f(i) and g(i) together, and
keeps the result, that is, a point on h(x) = f(x) × g(x) of degree 2t − 2 with αβ as a new secret
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value. Players also erase all of the other values. An obvious solution for decreasing the threshold
is to reveal some shares (for instance, players can call the enrollment protocol and run it at some
arbitrary points l /∈ [1, n]), but revealing shares forces players to save extra information along with
their personal shares. This may threaten the security of the entire scheme even more. Therefore, a
better solution is to reduce the degree of the secret sharing polynomial h(x) while randomizing its
coefficients [10].

Phase-3: Threshold Adjustment

1. Each player Pi generates a random polynomial ri(x) of degree t′− 1 with a constant term equal
to his share, i.e., ri(0) = h(i), where t′ is the new threshold based on the players’ consensus.
Then Pi gives ri(j) to Pj for 1 ≤ j ≤ n, as a result, each player receives a vector of shares, i.e.,
a column in the share-exchange matrix:

En×n =


r1(1) r1(2) · · · r1(n)
r2(1) r2(2) · · · r2(n)

...
...

. . .
...

rn(1) rn(2) · · · rn(n)


2. Participants then compute the first row of a publicly known matrix V−1

n×n (mod q) to adjust the
threshold, where Vn×n is the Vandermonde matrix, i.e., Vi,j = i(j−1) for 1 ≤ i, j ≤ n. Suppose
this vector is V−1

1×n = (v1 v2 · · · vn).
3. Eventually, each player Pj computes his final share by multiplying V−1

1×n by his vector of shares.
In fact, h̃(x) is a polynomial of degree t′ − 1 with the constant term αβ, and randomized
coefficients compared to h(x):

h̃(j) =
(
v1 v2 · · · vn

)
·


r1(j)
r2(j)

...
rn(j)


To recover the secret, t′ participants Pj have to collaborate in order to construct a polynomial of
degree t′ − 1, where its constant term is the new secret αβ:

h̃(x) =
t′∑
j=1

( ∏
1≤i≤t′,i 6=j

x− i
j − i

× h̃(j)
)

⇒ h̃(0) = αβ

Theorem 6. The proposed protocol for the secret and threshold changeability is secure under the
passive adversary model.

Proof. The security of the enrollment protocol is illustrated in [20], and the security of the simplified
multiplication is presented in [10].
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5.2 Active Adversary Model

In the case of the active adversary model, the general idea is the same as the earlier protocol, i.e.,
multiplying the original polynomial f(x, y) of degree t − 1 with a constant term α, by a random
polynomial g(x, y) of degree t− 1 with a constant term equal to β.

To generate g(x, y), we develop a new protocol with some similarity to the initialization method
in [25, 6]. In their construction, a dealer initiates a secret sharing scheme under the assumption
that t − 1 ≤

⌊
n−1

4

⌋
. Our construction is a dealer-free protocol for generating a verified random

symmetric polynomial g(x, y) under the assumption that t − 1 ≤
⌊
n−1

3

⌋
, where ξ = t − 1 is the

number of colluders that the scheme can tolerate by using an error correction technique such as
the Reed-Solomon code [14]. Suppose f(x, y) is symmetric and f(x, ωi) is the share of each player
Pi in the initial setting.

Phase-1: Polynomial Production

1. To initiate g(x, y), t players Pi are chosen based on a group agreement or a random selection.
For the sake of simplicity, suppose the first t players are selected, i.e., 1 ≤ i ≤ t. Each player
generates a private random number gii for himself. Subsequently, each pair of players Pi and Pj
agree on a common value gij = gji through private channels:

Ct×t =


g11 g12 · · · g1t
g21 g22 · · · g2t
...

...
. . .

...
gt1 gt2 · · · gtt


2. Each player Pk for 1 ≤ k ≤ t computes his new share gk(x) by the Lagrange method as follows:

gk(x) =
t∑
i=1

( ∏
1≤j≤t,i 6=j

x− ωj

ωi − ωj
× gki

)

In fact, shares gk(x)’s associated with players’ identifiers form a symmetric bivariate polynomial
g(x, y) of degree t− 1 with an arbitrary constant term β:

g(x, y) =
t∑

k=1

( ∏
1≤j≤t,k 6=j

y − ωj

ωk − ωj
× gk(x)

)

3. To generate shares on g(x, y) for other n − t players Pj , where t + 1 ≤ j ≤ n, the following
sub-protocol is repeated n− t times:

(a) Each player Pi for 1 ≤ i ≤ t sends gi(ωj) to Pj to help him create his share gj(x).
(b) After that, player Pj computes gj(x) through the interpolation of pairs (ωi, gi(ωj)):

gj(x) =
t∑
i=1

( ∏
1≤j≤t,i 6=j

x− ωj

ωi − ωj
× gi(ωj)

)
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4. Each pair of players Pi and Pj perform the pairwise checks gi(ωj)
?= gj(ωi) through secure

channels. Consequently, if a player Pi finds that the above equation does not hold while checking
it with Pj , he then broadcasts (i, j), meaning that Pi is accusing Pj .

5. Each player Pi computes a subset Γ ⊆ {1, ..., n} such that any ordered pair (i, j) ∈ Γ × Γ has
not been broadcasted. In fact, Γ is a clique, and its construction is NP-complete. The authors in
[9] resolve this issue by the maximal matching problem which has a polynomial time solution.

6. If |Γ | ≥ n−ξ, then Pi outputs veri = 1, otherwise, Pi outputs veri = 0. Consequently, if at least
n − ξ players output veri = 1, g(x, y) is accepted as a new symmetric polynomial and players
proceed to the next step. Otherwise, another set of t players is selected to initiate g(x, y).

At the end of the phase-1, all good players belonging to Γ have consistent shares with respect to
an arbitrary secret value β.

Phase-2: Secure Multiplication

In this step, each participant Pi simply multiplies his two shares f(x, ωi) and g(x, ωi) together,
and keeps the result, that is, a point on the symmetric h(x, y) = f(x, y)× g(x, y) of degree 2t− 2
with αβ as a new secret value. Honest players also erase all the other values. At this point, the
secret is encoded by a polynomial of degree 2t − 2. To adjust the threshold, we use the extended
version of the degree reduction and randomization method in [10].

Phase-3: Threshold Adjustment

1. Each player Pi generates a random symmetric polynomial ri(x, y) of degree t′ − 1 (the new
threshold based on the players’ consensus) such that ri(x, 0) = h′(x, ωi). This is similar to the
first step of the protocol Are, where h′(x, ωi) is the truncation of h(x, ωi), that is, terms with
the degree of less than or equal to t′. Then, player Pi sends ri(x, ωj) to Pj for 1 ≤ j ≤ n:

En×n =


r1(x, ω1) r1(x, ω2) · · · r1(x, ωn)
r2(x, ω1) r2(x, ω2) · · · r2(x, ωn)

...
...

. . .
...

rn(x, ω1) rn(x, ω2) · · · rn(x, ωn)


2. Participants then compute the first row of a publicly known matrix V−1

n×n (mod q) to adjust the
threshold, where Vn×n is the Vandermonde matrix for [ω1, ω2, · · · , ωn], i.e., Vi,j = (ωi)(j−1) for
1 ≤ i, j ≤ n. Suppose this vector is V−1

1×n = (v1 v2 · · · vn).
3. Eventually, each player Pj computes his final share by multiplying V−1

1×n by his vector of shares.
In fact, h̃(x, y) is a symmetric polynomial of degree t′ − 1 with the constant term αβ, and
randomized coefficients compared to h(x, y):

h̃(x, ωj) =
(
v1 v2 · · · vn

)
·


r1(x, ωj)
r2(x, ωj)

...
rn(x, ωj)
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To recover the secret, t′ players Pj have to collaborate in order to construct a bivariate polynomial
of degree t′ − 1, where its constant term is the secret αβ:

h̃(x, y) =
t′∑
j=1

( ∏
1≤i≤t′,i 6=j

y − ωi

ωj − ωi
× h̃(x, ωj)

)
⇒ h̃(0, 0) = αβ

Theorem 7. The proposed protocol for the secret and threshold changeability is secure under the
active adversary model, where t − 1 ≤

⌊
n−1

3

⌋
and ξ = t − 1 is the degree of the secret sharing

polynomials.

Proof. Since all polynomials remain symmetric during different stages, players can perform the
pairwise checks through secure channels at any time in order to detect malicious players who deviate
from protocols (similar to the first phase). This is even simpler than the approach in Appendix B
of [10]. For the sake of simplicity, suppose 3|(n− 1), then we have:

t− 1 ≤ (n− 1)/3
3(t− 1) ≤ n− 1

3ξ ≤ n− 1
3ξ + 1 ≤ n

3ξ < n

There exist n players for ξ possible faulty shares where 3ξ < n. That is, 2ξ redundancy in the
codewords. Therefore, by using the Reed-Solomon error correction technique [14], we can correct
2ξ/2 = ξ faulty shares and interpolate a unique polynomial of degree t− 1 at any stages. ut

6 Conclusion

We constructed a new dealer-free dynamic scheme in the unconditionally secure setting by using
existing techniques and developing new protocols. In our protocols, participants do not need to save
extra shares ahead of time, and both the secret and the threshold can be modified to any arbitrary
values multiple times.

Our constructions are dealer-free, unconditional, and are secure in the active adversary models.
In fact, it is quite challenging to design protocols in this setting. In other words, if one relaxes
any of these assumptions, then he can decrease the computation and communication complexities.
For instance, by using a trusted authority, or constructing the proposed scheme by relying on
computational assumptions, or considering the simple passive adversary model.
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