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Abstract. This article proposes dealer-free dynamic secret sharing schemes
where parameters of the protocol, such as the threshold and the secret, can
be changed after the initialization. Our motivation is to tackle the following
two problems: (a) In practice, the ability of the adversary might be enhanced
over time, for instance, by compromising more players. A possible solution to
this problem is to increase the threshold and/or change the secret. (b) On the
other hand, another common problem with almost all secret sharing schemes
is that they are one-time meaning that after secret recovery both the secret
and shares are known to everyone. This problem might be resolved if the
dealer shares several secrets at the beginning but a better solution for players
is to dynamically generate new secrets in the absence of the dealer. As our
contribution, we first propose a new scheme, called incremental multilevel
secret sharing, in order to motivate secret changeability. We then formally
analyze the well-known re-sharing technique for threshold changeability and
show its drawbacks. Finally, we present our solutions for dealer-free dynamic
schemes in both passive and active adversary models. In our constructions,
players do not need to save extra shares beforehand, and both the threshold
and the secret can be changed multiple times to arbitrary values. In the
proposed schemes, each secret is changed based on the linear combination of
previous secrets. As a result, we are able to recover old secrets at any time.

Keywords: threshold changeability, secret changeability

1 Introduction

In a secret sharing scheme, a secret is divided into different shares for distribution
among several players, and a subset of players then collaborate to recover the secret
[22, 3]. In particular, the (t, n)-threshold secret sharing scheme is proposed in which
the secret is divided into n shares in such a way that any t players can combine
their shares to reveal the secret, but any set of t− 1 parties cannot learn the secret.
Our goal is to construct a dynamic secret sharing scheme where parameters of the
protocol are changed after the initialization. We would like to change the threshold
and the secret simultaneously in the absence of the dealer.

We consider various types of adversaries in our constructions. In the passive
adversary setting, players follow protocols correctly but are curious to learn the
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secret. On the other hand, in the active adversary model, players may deviate from
protocols (e.g., prevent the secret recovery or reconstruct an incorrect secret) while
trying to learn the secret. In addition, the passive or active adversary can be static
or mobile. The former refers to the adversary who corrupts players ahead of time,
while in the latter case, the adversary may corrupt players at different stages of
the protocol’s execution. Finally, the entire security model can be computational,
where the security of the protocols relies on computational assumptions such as
the hardness of factoring, or unconditional, in which the adversary has unlimited
computational power.

1.1 Motivation

Secret sharing is an essential tool used in many cryptographic constructions such
as secure multiparty computation [30] where various players cooperate to perform
a computational task based on the private data they each provide. In this article,
our motivation is to tackle the following two major problems:

1. In practice, the ability or the computational power of the adversary might be
enhanced over time, for instance, by compromising more participants. In other
words, increasing the threshold and/or changing the secret might be required
throughout the lifetime of a secret. This problem can be resolved by changing
these parameters in the absence of the dealer (i.e., the entity who initiates the
scheme). In the literature, there exist some techniques to address this issue but
these solutions suffer from either of the following drawbacks, they:

• assume the existence of a trusted authority.
• have a large storage requirement.
• are limited to predefined modifications.
• rely on computational assumptions.

In addition, they may only modify the threshold at the side of the combiner
(i.e., the entity who recovers the secret) rather than the entire scheme. In that
case, the secret can be reconstructed if an adversary attacks a subset of players
instead of the combiner.

2. Another well-known problem with almost all secret sharing schemes is that they
are one-time meaning that after secret recovery both the secret and shares are
known to everyone. To resolve this issue, the concept of multistage secret sharing
is proposed [10], where many independent secrets are shared by the dealer ahead
of time, but a better solution for players is to dynamically generate new secrets
in the absence of the dealer.

Our motivation is therefore to apply existing tools and develop new techniques
in order to tackle these problems and add more utility to secret sharing schemes.
We construct new protocols with the ability of (a) threshold increase as well as (b)
secret changeability based on the linear combination of previous secrets.

We motivate our constructions by two applications: incremental multilevel secret
sharing and sealed-bid auctions. It worth mentioning that in the context of the
secret sharing, a dynamic scheme refers to a protocol with threshold and/or access
structure changeability. To the best of our knowledge, all those constructions update
the threshold without changing the secret.
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1.2 Our Contributions

The contribution of this paper is to construct dynamic secret sharing schemes with
a variety of desirable properties. Our protocols are (a) dealer-free, which means
that players change both the secret and the threshold based on a group agreement
after the initialization. They are (b) unconditionally secure in the sense that they
do not rely on any computational assumptions. They have a (c) minimum storage
cost since players do not need to save extra shares beforehand in order to modify
those parameters. They are (d) flexible because the secret and the threshold can be
changed to arbitrary values multiple times with the presence of enough participants.
Our contribution therefore is as follows:

1. First of all, we motivate secret and threshold changeability by constructing a
new scheme, called incremental multilevel secret sharing. To further motivate
our dynamic scheme, we illustrate a sealed-bid auction protocol in which secrets,
i.e., bids, are changed in order to determine the winner in a secure fashion.

2. We then analyze the well-known re-sharing technique, also known as 2-level
sharing. We initially show the security and correctness of the re-sharing method
under the passive adversary model and then illustrate two major drawbacks of
this approach in the active adversary setting. More precisely:

• We formally show that the 2-level sharing under the active adversary model
is not secure against a mobile adversary.

• Moreover, each player has to store several shares unless parties agree on a
set of exactly t good players (t is the initial threshold).

3. Finally, we propose a solution for a dealer-free dynamic secret sharing scheme
in both passive and active adversary models. To change the secret, we generate
a random symmetric polynomial in the absence of the dealer by a new protocol,
called dealer-free verified polynomial production. To adjust the threshold, we
extend the degree reduction and randomization approach of [9] to the verified
symmetric bivariate polynomials.

1.3 Organization

The paper is organized as follows. Section 2 reviews existing protocols for changing
the threshold in the secret sharing schemes. Section 3 provides some preliminaries.
Section 4 illustrates two applications of secret and threshold changeability. Section
5 formally analyzes the well-known re-sharing approach. Section 6 demonstrates our
dealer-free dynamic secret sharing, and Section 7 contains concluding remarks.

2 Previous Work

Martin et al. [14] design a threshold changeable secret sharing scheme, in the absence
of secure channels, based on two methods. The first one can be implemented by the
Shamir approach and the second one is a geometric construction. They make two
assumptions. First, the original shares must contain the required information for
extracting both the shares of the initial scheme and the shares of the future scheme,
known as shares and subshares. Consequently, the size of the stored shares grows
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linearly with the number of required modifications to the threshold. Second, the
proposed construction assumes that shareholders behave honestly in the sense that
they only use the subshares that are relevant to the threshold in current use.

Using the prior approach, Maeda et al. [13] propose an unconditionally secure
verifiable scheme where the threshold can be changed several times, say N , but only
to the values determined in advance. In this protocol, each player receives one full
share and extracts the subsequent subshares from it by N public functions released
by the dealer at the time of the initialization. The dealer also has to distribute N
polynomials ahead of time. The authors assume that the secret is not recovered
before the threshold changes, therefore, no share has been pooled.

Steinfeld et al. [24] construct a threshold changeability mechanism for the Shamir
secret sharing scheme. The general idea is that players add an appropriate amount
of random noise to their shares in order to create subshares that contain incomplete
information regarding the primary shares. As a result, t subshares are not sufficient
to recover the secret, but by using a relatively large number of subshares, say t′,
the secret can be reconstructed.

Tartary and Wang [28] propose a dealer-free threshold changeable scheme in
which the problem of secret recovery is reduced to the polynomial reconstruction
problem. In this construction, players send some fake shares along with their real
shares to increase the threshold t at the side of the combiner to a new value t′.
First, the threshold stays constant among players. Second, their algorithm does not
allow any value t′ to be chosen.

In addition to the drawbacks we mentioned regarding the existing techniques,
there is one common problem with all of these solutions. That is, if an adversary
attacks the shareholders (not the combiner) then he can have access to the (a)
original shares, (b) shares related to various thresholds, or (c) shares without any
noise. Consequently, the secret can be recovered by the attacker.

Other techniques are proposed in the literature for threshold changeability in a
secret sharing scheme, for instance: re-sharing existing shares of a (t, n)-threshold
scheme by a set of new polynomials of degree t′ [7]; redistribution of secret shares
to new access structures in which participants of a scheme send information to a
new set of players in such a way that the old secret is shared among a new access
structure [6, 15]; dynamic secret sharing schemes where the dealer triggers a specific
access structure out of a given set, or enables the players to recover various secrets in
different times by sending them the same broadcast message [4]. The paper [1] also
considers schemes with changeable parameters, e.g., the threshold and the number
of players, in order to minimize both the storage costs (size of shares) and the size
of broadcast messages.

3 Preliminaries

3.1 Secure Multiplication of Secrets

Ben-Or et al. [2] proposed a method for the secure multiplication of two secrets.
Suppose secrets α and β are encoded by two polynomials f(x) and g(x) of degree
t − 1, and each player Pi holds one share on each of these polynomials, f(i) and
g(i) respectively. The product of these two secrets αβ is the constant term of the
polynomial h(x) = f(x)× g(x).
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If each player multiplies his shares together, the resulting value is a point on
h(x). There are two problems with this approach. First, the degree of h(x) is 2t− 2
instead of the desired t−1. Second, h(x) is reducible as a product of two polynomials,
which may not be secure. To overcome these problems, [2] uses a degree reduction
protocol in which the polynomial h(x) is truncated in the middle to decrease its
degree to t − 1. Let k(x) be the resulting truncation of h(x). Subsequently, they
apply a simple procedure to randomize the coefficients of k(x), except the constant
term which is the product of the two secrets.

Later on, this method was simplified by Gennaro et al. [9], his approach is
illustrated in the second phase of our constructions in Section 6. They combine the
randomization and degree reduction stage by a simpler approach.

3.2 Lagrange Interpolation Formula

In this part, we recall the Lagrange method for the polynomial interpolation [25].
Let q be a prime number. Let x1, x2, ..., xt and f1, f2, ..., ft be distinct elements in
Zq. Then, there is a unique polynomial f(x) ∈ Zq[x] of degree at most t − 1 such
that f(xi) = fi for 1 ≤ i ≤ t:

f(x) =
t∑
i=1

( ∏
1≤j≤t,j 6=i

x− xj
xi − xj

× fi
)

(1)

In the case of bivariate polynomials, y1, y2, ..., yt are distinct elements in Zq and
f1(x), f2(x), ..., ft(x) are polynomials of degree at most t−1 in Zq[x]. Consequently,
there is a unique polynomial f(x, y) ∈ Zq[x, y] of degree at most t − 1 such that
f(x, yi) = fi(x) for 1 ≤ i ≤ t:

f(x, y) =
t∑
i=1

( ∏
1≤j≤t,j 6=i

y − yj
yi − yj

× fi(x)
)

(2)

4 Security Applications

As we stated earlier, dealer-free threshold increase along with secret changeability
(based on the linear combination of previous secrets) is our new approach motivated
by the following applications. For the sake of simplicity, we only consider the passive
adversary model in this section.

4.1 Incremental Multilevel Secret Sharing

In this new approach, players are able to progressively construct a multilevel secret
sharing scheme with several secrets in the absence of the dealer, that is, players
change both the access structure and the threshold while generating multiple secrets.
Simmons [23] first proposed a disjunctive multilevel secret sharing, and then Tassa
[29] extended that construction to a conjunctive multilevel secret sharing. They both
use a single secret to construct those hierarchical threshold secret sharing schemes.
We first state the following definitions and then show our new secret sharing scheme.
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Definition 1. An access structure Γ defines different authorized subsets of users
and satisfies two conditions: (a) if A ∈ Γ and A ⊆ B then B ∈ Γ , i.e., monotonicity,
and (b) if A ∈ Γ then |A| > 0. In a threshold access structure, |A| ≥ t where t− 1
is the degree of the secret sharing polynomial.

Definition 2. An incremental multilevel secret sharing scheme is a construction
where several secrets α1 · · ·αi · · ·αl are shared among players with monotonically
increasing thresholds t1 < · · · < ti < · · · < tl. Let P be a set of n players and assume
P is composed of different levels where Pi-s show disjoint subsets of players.

P =
l⋃
i=1

Pi where Pi ∩ Pj = ∅ for all 1 ≤ i 6= j ≤ l

Then αk is recovered if players
⋃l
i=k Pi, where |Pi| ≥ ti, cooperate and first recover

their secrets sequentially, i.e., from the highest level l to the level k.

Secret Sharing (Sha)

1. Suppose, a dealer distributes shares of an initial secret α1 with a polynomial of
degree t0 − 1 among players P = {P1, · · · , Pn}, and then leaves the scheme.

2. Subsequently, players perform the following steps for 1 ≤ i ≤ l− 1 to construct
an incremental l-level secret sharing:

(a) Players P generate a random polynomial of degree ti − 1 (that is, ti is the
threshold) with an unknown constant term βi where ti−1 < ti.

(b) They compute shares of αi+1 = αiβi where |P| ≥ t0 + ti − 1, and adjust its
threshold tk to be 2 ≤ tk ≤ t0 + ti − 1. They finally erase shares of αi.

(c) A subset of players, say Pi ⊂ P where |Pi| ≥ ti, only keep shares of βi and
the rest of players, i.e., P − Pi, only keep shares of αi+1.

(d) Finally, P = P − Pi and t0 = tk. Players in this new set P go to (a) to
construct another level of secret sharing.

Secret Recovery (Rec)
1. Players first cooperate to recover αl and βl−1 · · ·βi · · ·β1. They may recover

these secrets up until to a specific level i.
2. After that, they solve the following system of linear congruence equations:
αi+1

q
≡ αiβi for i = l − 1 to i = 1. Therefore, αl · · ·αi · · ·α1 are recovered.

Since q is a prime number, each congruence equation has a unique solution for αi. We
later show how to generate shares of βi, compute shares of αi+1 = αiβi, and adjust
its threshold through a dynamic secret sharing. It is worth mentioning that our
approach can also be implemented by the addition operation, i.e., αi+1 = αi + βi,
where the polynomial encoding βi has a higher degree. In this case, we need to
randomize the coefficients of the polynomial encoding αi+1.

Example 1. Consider the following incremental 3-level secret sharing. If participants
cooperate to recover α3, β2 and β1, they can then solve the following system of linear
congruence equations: α3

q
≡ α2β2, α2

q
≡ α1β1. As a result, α2 and α1 are recovered.

α1 : P = {P1, · · · , P13}t0=2 and β1 : P1 = {P1, P2, P3}t1=3

α2 : P = {P4, · · · , P13}t0=3 and β2 : P2 = {P4, P5, P6, P7}t2=4

α3 : P3 = {P8, P9, P10, P11, P12, P13}t3=6
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Players from P1 are only able to recover the original secret α1, if the larger group
of players from P3 and consequently from P2 first cooperate to reveal α3 and β2, i.e.,
balance of power. You can imagine the president and vice president, ministers, and
senators accordingly as the realization of this hierarchical authority. Any decision
on troops by the president and vise president is subject to the confirmations of
ministers and senators. On the other hand, even by having those confirmations, it
is the president office that makes the final decision.

To explain how our incremental multilevel secret sharing differs from existing
protocols, consider the above hierarchy along with those thresholds, as shown in
Example 1. In the case of the disjunctive multilevel secret sharing, players from P1

are enough to recover the secret without the contributions of other players, i.e.,
cooperations of all levels are not required. In the case of the conjunctive multilevel
secret sharing, all players from P1, and one player from P2, and two players from
P3 are enough to recover the secret. In both cases, we only have a single secret.

4.2 Sealed-Bid Auctions

We demonstrate another application of secret changeability by a simple example,
in which we can also increase the threshold if it is being required. Suppose in a
secure auction protocol, two bidders distribute shares of their bids (α1 and α2)
among auctioneers. Assume auctioneers first receive shares of a random polynomial
with an unknown constant term β (known as the multiplicative factor) from a
trusted initializer, and then receive shares of two random polynomials with unknown
constant terms δ1 and δ2 (known as additive factors), where 1 ≤ δ1 6= δ2 < β.

Subsequently, they compute shares of α′1 = α1β + δ1 and α′2 = α2β + δ2, and
recover α′1 and α′2 in the absence of the bidders. As a result, they can define the
winner who proposed the higher valuation without revealing the actual bids or
the relative difference between them. (To prevent the modular reduction, assume
q > β(κ+ 1), where κ denotes the maximum possible price and q shows the size of
the finite filed.) This method are used in the proposed constructions of [20].

There exist other protocols in the literature using a similar masking approach.
For instance, the authors in [18, 27] only use the additive factor in their masking
method. In the first paper, the authors apply a bitwise technique in the passive
adversary model to generate shares of a mask. In the second article, the authors
rely on the mask publishers (i.e., trusted parties) to generate shares of the masks in
a secure combinatorial auction protocol; in this construction, the secret is encoded
as a degree of a secret sharing polynomial.

5 Formal Analysis of an Existing Approach

In this section, we review a well-known technique for threshold changeability in the
absence of the dealer (as we mentioned earlier, in all the existing dynamic schemes,
only the threshold is changed and the secret remains the same). The general idea
is to re-share existing shares of a (t, n)-threshold scheme by a set of polynomials of
a higher degree t′, i.e., converting a (t, n)-threshold scheme into a (t′, n)-threshold
scheme [7]. In the passive adversary model, there are only private channels between
each pair of players, but in the active adversary setting, a synchronous broadcast
channel are also considered. All computations are performed in the finite field Zq.
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If the decision is to keep the same secret (a desirable property in the case where
the secret is difficult or expensive to change), then at least n−t+1 participants have
to erase their old shares honestly. Erasing old shares is an inevitable assumption in
a threshold changeable scheme with a constant secret [14], and even in proactive
secret sharing schemes [21, 11]. Otherwise, the secret itself must be changed (this
issue is discussed in Section 6).

5.1 Passive Adversary Model

In the initial setting, we present a secret sharing scheme with threshold changeability
under the passive adversary model [7].

Secret Sharing (Sha). Suppose, the dealer initiates a secret sharing protocol and
then leaves the scheme. That is, he randomly generates a polynomial f(x) ∈ Zq[x]
of degree t − 1 in which its constant term is the secret f(0) = α, and then sends
share f(i) to player Pi for 1 ≤ i ≤ n [22].

Re-sharing Shares (Pre). Now, suppose the participants decide to switch to a
new threshold of t′ > t in the absence of the dealer.

1. Each player Pi randomly generates a polynomial gi(x) of degree t′−1 such that
its constant term is the player’s share on f(x):

gi(0) = f(i) (3)

2. Each player Pi sends gi(j) to player Pj for 1 ≤ i, j ≤ n, i.e., re-sharing the
original shares by auxiliary shares. The share-exchange matrix En×n, where
each player generates a row and receives a column, is as follows:

En×n =


g1(1) g1(2) · · · g1(n)
g2(1) g2(2) · · · g2(n)

...
...

. . .
...

gn(1) gn(2) · · · gn(n)


3. At this step, a set ∆ is determined such that it contains the identifiers of t

elected players. Consequently, the following constants are publicly computed:

γi =
∏

j∈∆,i6=j

0− j
i− j

where 1 ≤ i, j ≤ n represent players’ ids (4)

4. Each player Pj erases his old shares, and then combines the auxiliary shares he
has received from other players to compute his new share as follows:

ϕj =
∑
i∈∆

(
γi × gi(j)

)
(5)
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Secret Recovery (Rec). Now, if at least t′ players Pj cooperate, where j ∈ ∆′
and |∆′| ≥ t′, they can recover α by using the Lagrange interpolation method:

α =
∑
j∈∆′

( ∏
i∈∆′,i6=j

0− i
j − i

× ϕj
)

(6)

Theorem 1. The re-sharing protocol Pre for threshold changeability is secure un-
der the passive adversary model, and correctly computes secret α.

Proof. Initially a set ∇ of colluders, where |∇| = t− 1, are not able to recover the
secret. In the next stage, players re-share their shares with gi(x)′s of degree t′ − 1
where t′ > t. Consequently, colluders cannot reconstruct any of those re-sharing
polynomials in order to reveal the good players’ shares. Finally, all players erase
their old shares to compute the new ones. Therefore, the protocol is secure under
the passive (honest-but-curious) adversary model. Now, we show its correctness:

α =
∑
j∈∆′

( ∏
i∈∆′,i6=j

0− i
j − i

× ϕj
)

by (6)

=
∑
j∈∆′

( ∏
i∈∆′,i6=j

0− i
j − i

×
∑
i∈∆

(
γi × gi(j)

))
by (5)

=
∑
j∈∆′

( ∏
i∈∆′,i6=j

0− i
j − i

×
∑
i∈∆

( ∏
j∈∆,i6=j

0− j
i− j

× gi(j)
))

by (4)

=
∑
i∈∆

( ∏
j∈∆,i 6=j

0− j
i− j

× gi(0)
)

by (1)

=
∑
i∈∆

( ∏
j∈∆,i 6=j

0− j
i− j

× f(i)
)

by (3)

= f(0) by (1)
ut

Example 2. Suppose the dealer distributes shares of f(x) = 3+2x+x2 ∈ Z19, where
t = 3, among four players as follows: f(1) = 6, f(2) = 11, f(3) = 18, f(4) = 8. The
re-sharing phase has four steps as follows:

1. Players re-share their shares with new polynomials of degree three, i.e., t′ = 4.

f1(x) = 6 + x+ x2 + 2x3

f2(x) = 11 + 2x+ x2 + 3x3

f3(x) = 18 + 3x+ 2x2 + x3

f4(x) = 8 + 2x+ 2x2 + 2x3

2. The En×n, where each Pi generates a row and receives a column, is as follows:

En×n =


10 9 15 2
17 5 12 18
5 2 15 12
14 17 10 5


3. At this stage, each player Pi has to store four shares or players need to define

a set ∆ (in the active adversary setting, this set only contains the identifiers of
t good participants) in order to convert these shares to a single share. Suppose
∆ = {P1, P2, P3}, we therefore have:
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γ1 =
(0− 2)(0− 3)

(1− 2)(1− 3)
= 3 γ2 =

(0− 1)(0− 3)

(2− 1)(2− 3)
= −3 γ3 =

(0− 1)(0− 2)

(3− 1)(3− 2)
= 1

4. At this step, players convert their shares to a single share based on ∆ and γi-s,
and erase their old shares, shown in En×n:

ϕ1(x) = (3)10 + (−3)17 + (1)5 = −16

ϕ2(x) = (3)9 + (−3)5 + (1)2 = 14

ϕ3(x) = (3)15 + (−3)12 + (1)15 = 5

ϕ4(x) = (3)2 + (−3)18 + (1)12 = −17

The original secret α can be reconstructed by the new threshold t′ = 4 as follows:

α =
(0− 2)(0− 3)(0− 4)

(1− 2)(1− 3)(1− 4)
(−16) +

(0− 1)(0− 3)(0− 4)

(2− 1)(2− 3)(2− 4)
(14)

+
(0− 1)(0− 2)(0− 4)

(3− 1)(3− 2)(3− 4)
(5) +

(0− 1)(0− 2)(0− 3)

(4− 1)(4− 2)(4− 3)
(−17) = −16

19≡ 3

5.2 Active Adversary Model

In this section, a modified version of the previous approach is illustrated which is also
secure against an active adversary. The paper [17] presents such a construction and
use it in a different context [16], e.g., for creating a proactive secret sharing scheme.
We present a similar approach in order to change the threshold, and formally prove
that it is not secure in the mobile adversary setting; although this has been stated
in [16], the authors have not provided a formal proof for this claim.

Secret Sharing (Sha). Suppose an honest dealer initiates a secret sharing scheme
by using a symmetric bivariate polynomial, i.e., he randomly generates a polynomial
f(x, y) ∈ Zq[x, y] of degree t− 1 in which its constant term is the secret:

f(x, y) =
t−1∑
i=0

t−1∑
j=0

aijx
iyj where a00 = α and ∀i, j : aij = aji

The dealer then sends shares of Pi for 1 ≤ i ≤ n accordingly, and leaves the scheme:

fi(x) = f(x, ωi) where ω is a primitive element (7)

Definition 3. In a VSS, when the dealer applies a symmetric polynomial f(x, y)
to generate shares, each pair of players Pi and Pj are able to check the validity
of their shares through pairwise channels. The matrix representing those values is
called pairwise check matrix.

Cn×n =


− f1(ω2) · · · f1(ωn)

f2(ω1) − · · · f2(ωn)
...

...
. . .

...
fn(ω1) fn(ω2) · · · −

 where fi(ωj) = fj(ωi) (8)
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Since our focus is to construct a dealer-free protocol, we assume the dealer who
initiates the scheme is honest because we would like all the distributed data to be
verified shares up until the existence of the dealer. As a result of this assumption,
the pairwise check matrix must be symmetric with respect to the main diagonal
(i.e., top left to bottom right) after executing the Sha phase.

In the next re-sharing, details of the accusation and defense procedures among
players are removed to simplify the scheme; see [5, 19] for details of pairwise checks.

Re-sharing Shares (Are). Now, suppose the players decide to switch to a new
threshold of t′ > t in the absence of the dealer.

1. Each Pi randomly creates a symmetric polynomial gi(x, y) of degree t′ − 1 s.t.:

gi(x, 0) = fi(x) (9)

(a) Generate the symmetric bivariate polynomial g′i(x, y), where ak0 = a0l = 0
for 0 ≤ k, l ≤ t′ − 1.

(b) Extend fi(x) to a symmetric polynomial f ′i(x, y) by adding corresponding
y-terms.

(c) Finally, compute gi(x, y) = f ′i(x, y) + g′i(x, y), which satisfies the condition
gi(x, 0) = fi(x).

2. Each player Pi sends gi(x, ωj) to player Pj for 1 ≤ i, j ≤ n, i.e., re-sharing
the original shares by auxiliary shares. The share-exchange matrix En×n, where
each player generates a row and receives a column, is as follows:

En×n =


g1(x, ω1) g1(x, ω2) · · · g1(x, ωn)
g2(x, ω1) g2(x, ω2) · · · g2(x, ωn)

...
...

. . .
...

gn(x, ω1) gn(x, ω2) · · · gn(x, ωn)


3. Players first perform pairwise checks on gi(x, ωj) for 1 ≤ i ≤ n, i.e., n pairwise

check matrices. They then perform a single pairwise check, as shown below, on
gi(0, ωj) to make sure that constant terms of shares are consistent with original
shares distributed by the honest dealer:

− g1(0, ω2) · · · g1(0, ωn)
g2(0, ω1) − · · · g2(0, ωn)

...
...

. . .
...

gn(0, ω1) gn(0, ω2) · · · −

 ?=


− f1(ω2) · · · f1(ωn)

f2(ω1) − · · · f2(ωn)
...

...
. . .

...
fn(ω1) fn(ω2) · · · −


4. A set ∆ is determined s.t. it contains the identifiers of t good players (defined

after pairwise checks), and the following constants are publicly computed:

γi =
∏

j∈∆,i 6=j

0− ωj

ωi − ωj
where 1 ≤ i, j ≤ n represent players’ ids (10)

5. Each player Pj erases his old shares, and then combines the auxiliary shares he
has received from other players to compute his new share as follows:

ϕj(x) =
∑
i∈∆

(
γi × gi(x, ωj)

)
(11)
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Secret Recovery (Rec). Now, if at least t′ players Pj cooperate, where j ∈ ∆′
and |∆′| ≥ t′, they can recover α by using the Lagrange interpolation method:

α =
∑
j∈∆′

( ∏
i∈∆′,i6=j

0− ωi

ωj − ωi
× ϕj(0)

)
(12)

Example 3. Shares of f(x, y) = 11+3x+3y+4x2+4y2+xy2+x2y+7xy+9x2y2 ∈ Z13

are initially distributed by the dealer among four players, where t = 3 and ω = 2:

f1(x) = f(x, 21) = 7 + 8x+ 3x2

f2(x) = f(x, 22) = 9 + 8x+ 9x2

f3(x) = f(x, 23) = 5 + 6x+ 3x2

f4(x) = f(x, 24) = 4 + 7x+ 10x2

1. Players re-share their shares with gi(x, y). For the sake of simplicity, let t′ = 3.

g1 = f ′1 + g′1 = (7 + 8x+ 3x2 + 8y + 3y2) + (3xy + 7xy2 + 7x2y + 5x2y2)
g2 = f ′2 + g′2 = (9 + 8x+ 9x2 + 8y + 9y2) + (7xy + 8xy2 + 8x2y + 7x2y2)
g3 = f ′3 + g′3 = (5 + 6x+ 3x2 + 6y + 3y2) + (8xy + 5xy2 + 5x2y + 3x2y2)
g4 = f ′4 + g′4 = (4 + 7x+ 10x2 + 7y + 10y2) + (4xy + 9xy2 + 9x2y + 2x2y2)

2. The En×n, where each Pi generates a row and receives a column, is as follows:
9 + 3x+ 11x2 9 + 2x+ 7x2 3 + 12x+ 2x2 6 + 2x+ 4x2

9 + 2x+ x2 3 + 8x+ 10x2 12 + 4x+ x2 10 + 10x+ 5x2

3 + 3x+ 12x2 12 + x+ 6x2 11 + x2 11 + 10x+ 6x2

6 + 12x+ 10x2 10 + 11x 11 + 4x+ 2x2 11 + 9x+ 3x2


3. They then perform n pairwise checks on the shares that they have received.

These matrices must be symmetric with respect to the main diagonal:
0 2 9 0
2 0 5 0
9 5 0 5
0 0 5 0




0 7 11 11
7 0 5 0
11 5 0 7
11 0 7 0




0 12 2 3
12 0 1 4
2 1 0 7
3 4 7 0




0 6 1 2
6 0 7 4
1 7 0 2
2 4 2 0


4. Now, each Pi has to store four shares or players need to define a set ∆, which

contains the identifiers of t good players, in order to convert these shares to a
single share. Suppose ∆ = {P1, P2, P3}, we therefore have (in mod 13):

γ1 =
(0− 4)(0− 8)

(2− 4)(2− 8)
= 7 γ2 =

(0− 2)(0− 8)

(4− 2)(4− 8)
= 11 γ3 =

(0− 2)(0− 4)

(8− 2)(8− 4)
= 9

5. Players convert their shares to a single share and erase their shares in En×n:

ϕ1(x) = 7 + 5x+ x2

ϕ2(x) = 9 + 7x+ 5x2

ϕ3(x) = 5 + 11x+ 8x2

ϕ4(x) = 4 + 6x+ 7x2

Players, say P2, P3, P4, can recover the secret α by the threshold t′ = 3 as follows:

α =
(0− 8)(0− 16)

(4− 8)(4− 16)
(9) +

(0− 4)(0− 16)

(8− 4)(8− 16)
(5) +

(0− 4)(0− 8)

(16− 4)(16− 8)
(4) = 11
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It is not difficult to show that, in the active adversary model, it suffices to use
the constant terms to reconstruct the secret. In other words, if at least t players Pj
interpolate fj(0)-s, the secret α = f(0, 0) is revealed:

α =
t∑

j=1

( ∏
1≤i≤t,i6=j

0− ωi

ωj − ωi
× fj(0)

)
by (1)

=
t∑

j=1

( ∏
1≤i≤t,i6=j

0− ωi

ωj − ωi
× f(0, ωj)

)
by (7)

= f(0, 0) by (2)

Claim. The re-sharing protocolAre is not secure under the mobile adversary model.
This means the constant terms of the players’ shares stay the same after re-sharing;
whether we change the threshold or not.

Proof. If these constants stay the same, the mobile adversary can incrementally
collect players’ shares in different time periods in order to recover the secret. We
simply prove the equality ϕj(0) = fj(0) for Pj where j ∈ {1 . . . n} (see Example 3).

ϕj(0) =
∑
i∈∆

(
γi × gi(0, ωj)

)
by (11)

=
∑
i∈∆

( ∏
j∈∆,i 6=j

0− ωj

ωi − ωj
× gi(0, ωj)

)
by (10)

=
∑
i∈∆

( ∏
j∈∆,i 6=j

0− ωj

ωi − ωj
× gi(ωj , 0)

)
symmetry

=
∑
i∈∆

( ∏
j∈∆,i 6=j

0− ωj

ωi − ωj
× fi(ωj)

)
by (9)

=
∑
i∈∆

( ∏
j∈∆,i 6=j

0− ωj

ωi − ωj
× fj(ωi)

)
by (8)

= fj(0) by (1)
ut

Claim. In the re-sharing protocol Are, each player has to store several shares (this
may threaten the security of the scheme even more) unless participants agree on a
set ∆ of good players with a cardinality exactly equal to t.

Proof. First of all, we should mention that if players do not agree on ∆, they each
need to keep n shares, as shown in Examples 3: steps 2, 4, 5. But this claim says,
even if players agree on a set of good players, the cardinality of this set must be
exactly t. Let assume |∆| 6= t, we therefore have:

1. Suppose |∆| > t. As a result, the number of possible combinations of |∆| values
taken t at a time defines the number of possible sets of constants:(

|∆|
t

)
= d then Φ = {{γ1,1 . . . γ1,t} , . . . , {γd,1 . . . γd,t}} and |Φ| = d

Consequently, each player has to save d possible shares ϕj(x)-s according to
each set of constants in Φ.
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2. If |∆| < t, then players are not able to execute this protocol since we need at
least t shares, in the fourth and fifth steps, in order to make a single share.

If t = |∆|, then players are able to compute a single set of constants Φ = {{γ1 . . . γt}}
because

(
t
t

)
= 1. As a result, each Pi updates his share to a single share ϕj(x). ut

6 Increasing the Threshold and Changing the Secret

In this section, we discuss how to change both the threshold t and the secret α
after the initialization when the dealer no longer exists. Our goal is to generate a
new secret based on the linear combination of the previous secret at each stage, i.e.,
αi+1 = αiβi + δi where βi and δi ∈ Zq are unknown. (The case where βi’s and δi’s
are known is a well-known problem, called secure polynomial evaluation.)

The first problem for players is to generate verified shares of an unknown secret
in the absence of the dealer, named verified polynomial production protocol. It is
also easy to show that the scheme can select βi = 1 in order to increase the threshold
without changing the secret at any stage. We should mention that we only present
the multiplication case since the addition is much simpler.

The proposed protocols in our constructions consist of n participants P1 . . . Pn.
In the passive adversary model (Appendix), there are only private channels between
each pair of players, but in the active adversary setting, we also assume the existence
of a synchronous broadcast channel. Let Zq be a finite field and let ω be a primitive
element in this field. All computations are performed in the field Zq.

6.1 Active Adversary Model

In the active adversary model, the general idea is to multiply the original polynomial
f(x, y) of degree t − 1 with a constant term α, by a random polynomial g(x, y) of
degree t− 1 with an unknown constant term β.

To create g(x, y), we develop a new protocol with a similarity to the initialization
method in [26, 5]. In that construction, a dealer initiates a secret sharing scheme
under the assumption that t−1 ≤

⌊
n−1

4

⌋
. The reason behind this assumption is that

the dishonest dealer may disrupt 1
4 of the shares in the initialization phase and 1

4 out
of the remaining 3

4 shares might be disrupted by colluders. Therefore, a suitable error
correction technique, such as the Reed-Solomon code [12], can be used to recover
the secret correctly. Our scheme is a dealer-free protocol for generating a verified
random symmetric polynomial g(x, y) under the assumption that t − 1 ≤

⌊
n−1

3

⌋
,

where ξ = t− 1 is the number of colluders that the scheme can tolerate. The reason
for this assumption is the fact that our scheme is dealer-free, therefore, 1

3 of the
entire shares can be corrupted. Suppose f(x, y) is a symmetric polynomial and
f(x, ωi) is the share of each player Pi in the initial setting.

Phase-1: Dealer-Free Verified Polynomial Production

1. To construct g(x, y), t players Pi are chosen based on a group agreement or a
random selection. Suppose the first t players are selected, i.e., 1 ≤ i ≤ t. Each
Pi generates a private random number gii for himself. Subsequently, each pair of
players Pi and Pj agree on a common value gij = gji through private channels:
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Ct×t =

g11 g12 · · · g1t
...

...
. . .

...
gt1 gt2 · · · gtt


2. Each Pk for 1 ≤ k ≤ t computes his new share gk(x) by the Lagrange methods:

gk(x) =
t∑
i=1

( ∏
1≤j≤t,i 6=j

x− ωj

ωi − ωj
× gki

)
In fact, shares gk(x) associated with players’ identifiers generate a symmetric
bivariate polynomial g(x, y) of degree t− 1 with an arbitrary constant term β:

g(x, y) =
t∑

k=1

( ∏
1≤j≤t,k 6=j

y − ωj

ωk − ωj
× gk(x)

)
3. To create shares on g(x, y) for the other n− t players Pj , where t+ 1 ≤ j ≤ n,

the following sub-protocol is repeated n− t times:

(a) Each Pi for 1 ≤ i ≤ t sends gi(ωj) to Pj to help him create his share gj(x).
(b) After that, Pj computes gj(x) through the interpolation of pairs (ωi, gi(ωj)):

gj(x) =
t∑
i=1

( ∏
1≤j≤t,i6=j

x− ωj

ωi − ωj
× gi(ωj)

)
4. Each pair of players Pi and Pj perform the pairwise checks gi(ωj)

?= gj(ωi)
through secure channels. Subsequently, if Pi finds that the above equality does
not hold, he then broadcasts (i, j), that is, Pi is accusing Pj .

5. Each Pi computes a subset Γ ⊆ {1, ..., n} s.t. any ordered pair (i, j) ∈ Γ×Γ has
not been broadcasted (Γ is a clique). The authors in [8] construct this clique
by the maximal matching problem which has a polynomial time solution.

6. If |Γ | ≥ n−ξ, Pi outputs veri = 1, otherwise, Pi outputs veri = 0. Consequently,
if at least n− ξ players output veri = 1, g(x, y) is accepted and players proceed
to the next phase. Otherwise, another set of t players is chosen to create g(x, y).

At the end of the phase-1, all good players belonging to Γ have consistent shares with
respect to an unknown secret β. We should mention that this protocol is successfully
passed if the first t players act honestly even if some of them are malicious; this
is not unlikely since sometimes bad players behave honestly in some steps in order
to remain in the scheme and act maliciously during the secret recovery. As an
alternative solution, we provide another protocol which guarantees a correct solution
but tolerates less colluders, i.e., t−1 ≤

⌊
n−1

4

⌋
, and needs t+1 executions of a VSS.

1. Initially, t+ 1 players Pi are selected at random in order to act as independent
dealers; they each might be honest or malicious.

2. Each Pi shares a secret, say βi, by the VSS of [5] where the degree is t − 1.
Sharing is accepted if all good players have consistent shares with respect to βi.

3. Each player locally adds shares of secrets βi-s together. Now, each player has a
share on a symmetric polynomial of degree t−1 with a constant term β =

∑
βi.
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If a party is disqualified in the second step, another player Pi can be selected to
share a new βi. It also worth mentioning that since we have t+1 dealers, β remains
secret even if t− 1 colluders in our scheme reveal their βi-s.

Phase-2: Secure Multiplication of Two Secrets

In this step, each player Pi simply multiplies his two shares f(x, ωi) and g(x, ωi)
together, and keeps the result, which is a point on the symmetric polynomial
h(x, y) = f(x, y)× g(x, y) of degree 2t− 2 with a constant term αβ. Honest players
also erase all the other values.

An obvious solution for decreasing the threshold is to reveal some shares, but
this approach forces players to save extra information along with their personal
shares, which might be a new threat to the security of the entire scheme. Therefore,
to adjust the threshold, we extend the degree reduction and randomization method
in [9] (the simplified version of [2]) to the case with bivariate polynomials.

Phase-3: Verified Degree Reduction and Randomization

1. Each Pi generates a random symmetric polynomial ri(x, y) of degree t′− 1 (the
new threshold based on the players’ consensus) such that ri(x, 0) = h′(x, ωi).
This is similar to the first step of the protocol Are, where h′(x, ωi) is the
truncation of h(x, ωi), that is, terms with the degree of less than or equal to t′.
Then, player Pi sends ri(x, ωj) to Pj for 1 ≤ j ≤ n:

En×n =


r1(x, ω1) r1(x, ω2) · · · r1(x, ωn)
r2(x, ω1) r2(x, ω2) · · · r2(x, ωn)

...
...

. . .
...

rn(x, ω1) rn(x, ω2) · · · rn(x, ωn)


2. Parties compute the first row of a publicly known matrix V−1

n×n to adjust the
threshold (Vn×n is the Vandermonde matrix for [ω1, ω2, · · · , ωn];Vi,j = (ωi)(j−1)

for 1 ≤ i, j ≤ n). Suppose this vector is V−1
1×n = (v1 v2 · · · vn).

3. Eventually, each player Pj computes his final share by multiplying V−1
1×n by his

vector of shares. In fact, h̃(x, y) is a symmetric polynomial of degree t′− 1 with
the constant term αβ, and randomized coefficients compared to h(x, y):

h̃(x, ωj) =
(
v1 v2 · · · vn

)
·


r1(x, ωj)
r2(x, ωj)

...
rn(x, ωj)


To recover the secret, t′ players Pj have to collaborate in order to construct a
bivariate polynomial of degree t′ − 1, where its constant term is the secret αβ:

h̃(x, y) =
t′∑
j=1

( ∏
1≤i≤t′,i6=j

y − ωi

ωj − ωi
× h̃(x, ωj)

)
⇒ h̃(0, 0) = αβ
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Theorem 2. The proposed protocol for the secret and threshold changeability is
secure under the active adversary model, where t− 1 ≤

⌊
n−1

3

⌋
and ξ = t− 1 is the

degree of the secret sharing polynomials (the assumption is t − 1 ≤
⌊
n−1

4

⌋
if the

alternative solution is used in the first phase).

Proof. The security of this protocol is similar to the proofs in [26, 5], therefore, we
just provide a further clarification. Since our polynomials remain symmetric during
all three phases, players can perform pairwise checks through secure channels at
any time during the execution of the protocol in order to detect malicious players
who deviate (similar to the first phase: steps 4, 5, 6). This is even simpler than the
approach in Appendix B of [9]. For the sake of simplicity, suppose 3|(n − 1), we
therefore have the following assumption for the least possible threshold t (which
might be increased to t′ later on):

t− 1 ≤ (n− 1)/3
3(t− 1) ≤ n− 1

3ξ ≤ n− 1
3ξ + 1 ≤ n

3ξ < n

This means there exist n players for ξ possible faulty shares where 3ξ < n. That
is, 2ξ redundancy in the codewords. Therefore, by using the Reed-Solomon error
correction technique [12], we can correct all 2ξ/2 = ξ faulty shares in our scheme
and interpolate a unique polynomial that encodes our secret.

If we use the alternative solution in the first phase, each Pi (as an independent
dealer) may also disrupt at most t − 1 shares when he is sharing an unknown βi
(otherwise he is disqualified). As a result, the protocol works under the assumption
that t− 1 ≤

⌊
n−1

4

⌋
. ut

7 Conclusion

We constructed a new dealer-free dynamic scheme in the unconditionally secure
setting by applying existing techniques as well as developing new protocols. In our
constructions, participants do not need to save extra shares ahead of time, and
both the threshold and the secret (based on the linear combination of previous
secrets) can be changed to arbitrary values multiple times, which is usable in many
applications as we mentioned.

Our main construction is dealer-free, unconditional, and also is secure in the
active adversary model. In fact, it is quite challenging to design a protocol in this
setting. In other words, if one relaxes any of these assumptions, he can therefore
decrease the computation and communication complexities, for instance, by using
a trusted authority, or relying on computational assumptions such as the hardness
of factoring, or considering the simple passive adversary model.
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Appendix: Passive Adversary Model

The general idea is the same as the active adversary construction. Suppose f(i) is
the share of the player Pi from the original secret sharing polynomial.

Threshold and/or Secret Changeability Protocol

1. Based on a group agreement or a random selection, t players are chosen so that
each generates a private random number for himself. In fact, these t random
values associated with players’ identifiers i implicitly form a polynomial g(x) of
degree t− 1 with an arbitrary constant term β. Suppose the first t players are
selected to generate g(x), i.e., 1 ≤ i ≤ t.

2. To generate shares on g(x) for the other n − t participants, the enrollment
protocol in [19] can be used to create g(k) for the relevant players Pk. Since
t+ 1 ≤ k ≤ n, the following protocol is repeated n− t times:

(a) Each Pi for 1 ≤ i ≤ t computes his corresponding Lagrange interpolation
constant: γi =

∏
1≤j≤t,i6=j(k − j)/(i− j), where i, j, k are players’ ids.

(b) Subsequently, each participant Pi multiplies his share ϕi by his Lagrange
interpolation constant, and randomly splits the result into t portions, i.e.,
g(i)× γi = ∂1i + ∂2i + · · ·+ ∂ti for 1 ≤ i ≤ t.
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(c) Players exchange ∂ji’s accordingly through pairwise channels. Therefore,
each Pj holds t values. Pj adds them together and sends the result to Pk,
that is, σj =

∑t
i=1 ∂ji.

(d) Finally, Pk adds these values σj for 1 ≤ j ≤ t together to compute his share
g(k) =

∑t
j=1 σj .

3. At this stage, each participant Pi simply multiplies his two shares f(i) and g(i)
together, and keeps the result, which is a point on h(x) = f(x)× g(x) of degree
2t− 2 with αβ as a new secret value. Players also erase all of the other values.

4. Each Pi generates a random polynomial ri(x) of degree t′ − 1 with a constant
term equal to his share, i.e., ri(0) = h(i), where t′ is the new threshold based on
the players’ consensus. Then Pi gives ri(j) to Pj for 1 ≤ j ≤ n, as a result, each
player receives a vector of shares, i.e., a column in the share-exchange matrix:

En×n =


r1(1) r1(2) · · · r1(n)
r2(1) r2(2) · · · r2(n)

...
...

. . .
...

rn(1) rn(2) · · · rn(n)


5. Participants then compute the first row of a publicly known matrix V−1

n×n
(mod q) to adjust the threshold, where Vn×n is the Vandermonde matrix, i.e.,
Vi,j = i(j−1) for 1 ≤ i, j ≤ n. Suppose this vector is V−1

1×n = (v1 v2 · · · vn).
6. Eventually, each player Pj computes his final share by multiplying V−1

1×n by his
vector of shares. In fact, h̃(x) is a polynomial of degree t′− 1 with the constant
term αβ, and randomized coefficients compared to h(x):

h̃(j) =
(
v1 v2 · · · vn

)
·


r1(j)
r2(j)

...
rn(j)


To recover the secret, t′ participants Pj have to collaborate in order to construct a
polynomial of degree t′ − 1, where its constant term is the new secret αβ:

h̃(x) =
t′∑
j=1

( ∏
1≤i≤t′,i6=j

x− i
j − i

× h̃(j)
)

⇒ h̃(0) = αβ


