
Sequentially Composable Information

Theoretically Secure Oblivious Polynomial
Evaluation

Rafael Tonicelli1, Rafael Dowsley1, Goichiro Hanaoka2, Hideki Imai2, Jörn
Müller-Quade4, Akira Otsuka2, Anderson C. A. Nascimento1

1 Department of Electrical Engineering, University of Brasilia
Campus Darcy Ribeiro, 70910-900, Brasilia, DF, Brazil

E-mail: {tonicelli, rafaeldowsley}@redes.unb.br, andclay@ene.unb.br
2 National Institute of Advanced Industrial Science and Technology (AIST)

1-18-13, Sotokanda, Chyioda-ku, 101-0021, Tokyo, Japan
E-mail: {hanaoka-goichiro, h-imai, a-otsuka}@aist.go.jp

3 Universität Karlsruhe, Institut für Algorithmen und Kognitive Systeme
Am Fasanengarten 5, 76128 Karlsruhe, Germany

E-mail: muellerq@ira.uka.de

Abstract. Oblivious polynomial evaluation (OPE) consists of a two-
party protocol where a sender inputs a polynomial P , and a receiver
inputs a single value i. At the end of the protocol, the sender learns
nothing and the receiver learns P (i). This paper deals with the prob-
lem of oblivious polynomial evaluation under an information-theoretical
perspective, which is based on recent definitions of Unconditional Se-
curity developed by Crépeau et al. [6]. In this paper, we propose an
information-theoretical model for oblivious polynomial evaluation rely-
ing on pre-distributed data, and prove very general lower bounds on the
size of the pre-distributed data, as well as the size of the communica-
tions in any protocol. It is demonstrated that these bounds are tight by
obtaining a round-optimal OPE protocol, which meets the lower bounds
simultaneously. Some applications of the proposed model are provided,
such as solutions for the “Millionaire Problem” and the “Oblivious Equal-
ity Testing Problem”. We also present a natural generalization to OPE
called oblivious linear functional evaluation.

1 Introduction

1.1 Secure Function Evaluation

Assume that there are n players, 1, . . . , n; each player i has a private input
xi, which is known only to him/her. Their goal is to collaboratively compute
f(x1, . . . , xn) in such a way that no player has to reveal unnecessary information
about his/her input. A protocol allowing two or more parties to achieve this goal
and satisfying both the correctness and the privacy constraints is called a secure
function evaluation protocol. The correctness constraint implies that the values



the protocol returns are correct, even if some part in the system fails (i.e., the
fault part can choose his/her input to the function, but cannot force the protocol
to output a wrong value as the result of the function evaluation); and the privacy
constraint implies that the joint computation of f(x1, . . . , xn) does not reveal
to each participant i more information that can be deduced from f(x1, . . . , xn)
and his/her own private input xi.

There are two main ways of defining the security of a cryptographic sys-
tem: Information-Theoretic Security (also called Unconditional Security) and
Computational Security. For the former no assumption is assumed about the
computational power of the adversary. For the later, the security is defined in
terms of an adversary with limited computational power. In order to prove that
a system is computationally secure, it is necessary to invoke certain unproven in-
tractability assumptions, e.g., the hardness of computing the discrete logarithm.
In contrast, information-theoretically secure systems do not rely on any hypoth-
esis about the complexity of certain problems, but rely on physical assumptions,
e.g., the existence of noisy channels. In spite of being considered less practical,
information-theoretic security is a permanent and stronger definition of secu-
rity. This work focuses on the oblivious polynomial evaluation problem from
an information-theoretical point of view, and is based on formal definitions of
unconditionally secure evaluation schemes proposed by Crépeau at al. [6] which
corrected many drawbacks present in several ad-hoc definitions of security pro-
posed in the past.

1.2 Oblivious Transfer

Oblivious Transfer (OT), a cryptographic primitive introduced by Rabin [13], is
of particular interest in secure multi-party computation. It has been proven that
any function can be calculated unconditionally securely (without considering
fairness) if oblivious transfer is available [10]. This property is called complete-
ness.

A useful variant of oblivious transfer is one-out-of-n string OT, denoted by(
n
1

)
-OTk. It allows a sender to send n strings (x0,. . . , xn−1) of length k to

a receiver, who is allowed to learn one of them according to his choice c. This
process is illustrated below.

An OT protocol is said to be correct, if for honest players, the receiver obtains
the desired output xc and both players do not abort the protocol. It is said to
be private if the sender learns no information on the receiver’s choice c, while
the receiver gets information concerning at most one of the sender’s inputs.

1.3 Oblivious Polynomial Evaluation

Oblivious Polynomial Evaluation (OPE) is a variant of Oblivious Function Eval-
uation and was introduced in [12]. Like OT, OPE is a very useful tool for achiev-
ing secure distributed computations.
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Fig. 1. One-out-of-n string OT.

OPE is a two-party protocol where a sender (Alice) inputs a polynomial over
a finite field and a receiver (Bob) inputs a single point of the same finite field.
At the end of the protocol, Alice receives nothing and Bob should receive the
polynomial input by Alice, evaluated on the point chosen by him. The protocol
is secure if Alice learns nothing on which point was chosen by Bob and Bob
evaluates the polynomial input by Alice on at most one point.
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Fig. 2. Oblivious Polynomial Evaluation. Note that Fq denotes a finite field.

Since its introduction in [12] OPE has been extensively studied. In [5] the
problem of implementing OPE was efficiently reduced to that of achieving OT.
Also, in [5] an information theoretically secure protocol for implementing OPE
was proposed. The security of that protocol was based on trustiness of a third
party which took an active role in the protocol execution.

In this paper, we analyze the problem of achieving information theoretical
oblivious polynomial evaluation without using an active (on-line) trusted party.

1.4 Commodity-Based Cryptography

Many security schemes demand an active server for intermediating the inter-
actions among the participants of the protocol. Thus, information exchanged
among the participants will depend on the reliability and trustiness of the
server during all the protocol execution. One alternative to this is the so-called
Commodity-Based Cryptography, introduced by Beaver [1].

The protocols proposed in this paper rely on the commodity cryptographic
model, where players buy cryptographic primitives from “off-line” servers. These
primitives can be used later on to implement general cryptographic protocols.



The commodity based model was inspired on the Internet architecture, which
is usually based on the “client-server” paradigm. Once the primitives, or com-
modities as they are called by Beaver, are acquired, no further interactions be-
tween server and users are required. Therefore, the servers need not to know
the values which are computed by the players. Moreover, if several servers are
available, they need not to be completely trusted, that is, the system is secure
even if some servers collude with the users of the commodities and/or among
themselves. Another interesting feature of Beaver’s model is that no interaction
among the servers is required.

In this contribution, we show that the use of “off-line” servers provides very
efficient and simple protocols for secure oblivious polynomial evaluation over a
finite field.

Although this model was formalized just in [1], several independent works
share the same flavor. We cite key-pre-distribution schemes [11], uncondition-
ally secure bit commitments [14, 4] and unconditionally secure digital signature
schemes [9].

Fig. 3. Process (a) represents the setup phase and process (b) represents the interac-
tions where no further intervention of the commodity server is needed.

1.5 Contributions and Related Works

Seminal works on secure function evaluation and OPE were computationally se-
cure. For instance, Naor and Pinkas proposed in [12] an OPE scheme which was
based on the intractability assumption of noisy polynomial interpolation. Later,



Bleichenbacher and Nguyen demonstrated in [3] that this assumption could be
less strong than expected and proposed a new intractability assumption based
on the polynomial reconstruction problem. While the hardness of these problems
remains an open question in the foundations of Computer Science, our OPE
model is information-theoretically secure, i.e., it is secure even against a compu-
tationally unbounded adversary and does not rely on unproven computational
hypotheses.

Recently, Crépeau et al. [6] constructed a new formal definition of uncondi-
tional security, which is based on the ideal/real model paradigm, and established
conditions for two-party secure function evaluation in a scenario where the play-
ers have infinite computational resources. By proving the security of our model,
this work aims at revisiting the problem of oblivious polynomial evaluation from
this new information-theoretical point of view.

We propose and solve the problem of implementing information theoretically
secure OPE with the help of an off-line party which pre-distributes some data
during a setup phase, the so-called commodity-based cryptography model [1].
Our solution is optimal in terms of communication complexity.

We provide a model (section 2), bounds for the amount of memory which is
required from players taking part in the protocol (section 3) and a construction
which achieves these bounds, thus showing their tightness (section 4).

Finally, we propose a more general protocol called oblivious linear functional
evaluation (OLF) in section 5. In OLF Alice inputs a linear functional while
Bob evaluates this linear functional on a vector of his choice. As a side result of
our bounds, we prove the optimality of oblivious transfer protocols proposed by
Rivest [14] and Beaver [1]. We also showed that these ideas can be used to solve
the “Millionaire Problem” and the “Oblivious Equality Testing Problem”.

2 Definitions

In this section, the general OPE model and important definitions used through-
out the text are provided. These definitions include the security requirements
for OPE realization and the scenarios in which our model is applicable.

2.1 Notation

We denote the random variables using overline and letters (e.g., X). Its distri-
bution is denote by PX and its domain by X . X denotes a realization of the
random variable X. When it is necessary, we use subscripted numbers to dis-
tinguish different realizations of a random variable. The mutual information of
two random variables X and Y is denoted by I(X; Y ). The Shannon entropy
of a random variable X is denoted by H(X). Similarly, I(X ; Y |Z) and H(X|Z)
denote the conditional mutual information and the conditional entropy when
conditioned on the random variable Z.



2.2 Security Definitions

A two-party protocol consists of a program which describes a series of messages
to be exchanged and local computations to be performed by the two parties.
The protocol is said to halt if no more local computations or message exchanges
are required. At the end of an execution of a protocol, each party emits an
accept/reject message, depending on the messages he/she received and on the
result of local computations.

Defining the security of a two-party protocol, where Oblivious Polynomial
Evaluation is an important special case, represents a challenging task. We con-
sider scenarios where the parties are computationally unbounded and the ex-
istence of active and passive adversaries. An active (or malicious) adversary
may change his/her behavior arbitrarily and cooperate in order to disrupt the
correctness and privacy of the computation. On the other hand, a passive (or
semi-honest) adversary is the one who follows the protocol, but may try to ac-
quire more information than what he/she is allowed to know.

The definitions for information-theoretically secure two-party function eval-
uation used in this text are strongly related to the real/ideal model paradigm. In
the ideal model, the parties are admitted to have access to a trusted third party,
who would receive their private inputs, compute the outcome of the desired func-
tionality f and send to each party the corresponding output. In the real model,
no trusted party for computing the functionality f exists (possibly the parties
have access to some functionality g), and the mutually distrustful parties should
run some protocol to compute f . Intuitively speaking, if the real life protocol
can emulate the ideal model, the protocol is said to be secure. In other words,
a real life protocol is considered secure, if no adversary can cause more damage
in a real execution than an ideal adversary (also known as simulator) can cause
in an execution of the ideal protocol. Thus, if a protocol is secure according to
this paradigm, an attack against the real life protocol has an effect similar to
an attack against the ideal model, where the participants have only a black-box
access to the desired functionality.

We shall now define when a protocol perfectly securely evaluates a function
f : X × Y → U × V . To accomplish this task, we will use the formalism and
definitions of [6] (that are based on those of [8]). Let X ∈ X be the input of
the first player and Y ∈ Y the input of the second player. Consider also an
additional auxiliary input Z ∈ {0, 1}∗ that can be potentially used by both
players. An honest player will ignore this additional input. A g-hybrid protocol
consists of a pair of algorithms Π = (A1, A2) that can interact by means of
two-way message exchange and have access to some functionality g. A pair of
algorithms Ã = (Ã1, Ã2) is admissible for protocol Π if at least one of the parties
is honest, that is, if at least one of the equalities Ã1 = A1 and Ã2 = A2 is true.
Note that no security is required when both parties are dishonest ((Ã1 �= A1)
and (Ã2 �= A2)).

The Real Model. In the real model, the players have no access to a trusted
intermediary and must compute the desired functionality by means of a g-hybrid



protocol Π = (A1, A2). Consider Ã = (Ã1, Ã2) an admissible pair of algorithms
for the protocol Π . The joint execution of Π under Ã in the real model,

REALg

Π, ˜A(Z)
(X, Y ),

denotes the resulting output pair, given the input pair (X, Y ) ∈ X × Y , the
auxiliary input Z and the functionality g used by Ã.
The Ideal Model. In the ideal model, both players have access to a trusted
third party to evaluate the functionality f . The trivial protocol B = (B1, B2)
is the protocol where both parties send their inputs to the functionality f and
output the values that the functionality f outputs to them. The algorithms B̃1

and B̃2 of the protocol B̃ = (B̃1, B̃2) receive the inputs X and Y , respectively,
and the auxiliary input Z. The algorithms send the values X ′ and Y ′ to the
trusted party, who returns the value (U ′, V ′) = f(X ′, Y ′). Finally, B̃1 and B̃2

output the values U and V . Let B̃ = (B̃1, B̃2) be an admissible pair of algorithms
for B. The joint execution of f under B̃ in the ideal model on input pair (X, Y )
and auxiliary input Z, given by

IDEAL
f,˜B(Z)

(X, Y ),

represents the output pair that results from the interaction between ˜B1(X, Z)

and ˜B2(Y, Z) under the functionality f .

Definition 1 (Perfect Security). A g-hybrid protocol Π evaluates a function
f perfectly securely if for every admissible pair of algorithms Ã = (Ã1, Ã2) in
the real model for the protocol Π, there exists an admissible pair of algorithms
B̃ = (B̃1, B̃2) in the ideal model for the trivial protocol B, such that

REALg

Π, ˜A(Z)
(X, Y ) ≡ IDEAL

f,˜B(Z)
(X, Y ).

for all input pair (X, Y ) ∈ X ×Y and auxiliary input Z ∈ {0, 1}∗. Note that the
symbol ≡ denotes identical distributions.

Next we present a theorem from [6].

Theorem 1. A protocol Π is said to securely evaluate the deterministic func-
tionality f perfectly, if and only if for every pair of algorithms Ã = (Ã1, Ã2) that is
admissible in the real model for the protocol Π and for all inputs (X, Y ) ∈ X ×Y
and for all auxiliary input Z ∈ {0, 1}∗, Ã produces outputs (U, V ), such that the
following conditions are satisfied:

– (Correctness) If both players are honest, we have (U, V ) = f(X, Y ).
– (Security for Alice) If Alice is honest then there exist random variables Y ′

and V ′ such that (U, V ′) = f(X, Y ′),

I(X ; Y ′|ZY ) = 0, and I(UX; V |ZY Y ′V ′) = 0.



– (Security for Bob) If Bob is honest then there exist random variables X ′
and U ′ such that (U ′, V ) = f(X ′, Y ),

I(Y ; X ′|ZX) = 0, and I(V Y ; U |ZXX ′U ′) = 0.

The security definitions are now applied to the Oblivious Polynomial Evalu-
ation problem adapting the random variables denotation to the one that we use
henceforth in this paper. The ideal functionality fOPE is denoted by

fOPE(P, i) := (⊥, P (i))

such that i, P (i) ∈ Fq, where Fq is a finite field, P is a polynomial defined over
Fq and ⊥ denotes a constant random variable. P and i can have an arbitrary
probability distribution.

Theorem 2. A protocol Π realizes an OPE perfectly securely if and only if for
every admissible pair of algorithms Ã = (Ã1, Ã2) for protocol Π and for all inputs
(P, i) and auxiliary input Z, Ã produce outputs (U, V ) such that the following
conditions are satisfied:

– (Correctness) If both players are honest, then (U, V ) = (⊥, P (i))
– (Security for Alice) If Alice is honest, then we have U =⊥ and there exists

a random variable i′, such that

I(P ; i′|Zi) = 0, and I(P ; V |Zii′P (i′)) = 0

– (Security for Bob) If Bob is honest, then we have

I(i; U |ZP ) = 0

Proof. We have to prove the equivalence between the privacy conditions for Bob
in Theorems 1 and 2. This proof is analogous to the one presented in [6] for
one-out-of-n string OT.

According to Theorem 1, we must have that

I(i; P ′|ZP ) = 0 and I(P (i)i; U |ZPP ′U ′) = 0

or equivalently,
I(i; P ′|ZP ) + I(P ′(i)i; U |ZPP ′) = 0.

P ′(i) is a function of i and the polynomial P ′ so

I(P ′(i)i; U |ZPP ′) = I(i; U |ZPP ′) + I(P ′(i); U |iZPP ′)
= I(i; U |ZPP ′).

Then, I(P ′(i)i; U |ZPP ′) = 0 is equivalent to I(i; U |ZPP ′) = 0.

Applying the chain rule for mutual information we obtain

I(i; P ′|ZP ) + I(i; U |ZPP ′) = I(i; P ′U |ZP )
= I(i; U |ZP ) + I(i; P ′|ZPU)
= I(i; U |ZP ).



The last equality follows from the fact that P ′ and i are independent given
ZPU . Bob has q available inputs belonging to the finite field Fq, which are
denoted by J = (j0, j1, . . . , jq−1). The set P ′(J) = (P ′(j0), P ′(j1), . . . , P ′(jq−1))
is obtained by evaluating P ′ on the q possible inputs. The value P ′(jk) is chosen
according to the conditional distribution PV |ZPU,i=jk

except for P ′(i). We make
P ′(i) = V (where V is the output received by Bob). Since all P ′(jk), such that
k ∈ [0, q−1], have distribution PV |ZPU,i=jk

, P ′ does not depend on i given ZPU .
Mathematically, V = P ′(i), PV |ZPU,i = PV |ZPU and I(i; P ′|ZPU) = 0.

We also consider the security of Oblivious Linear Functional (OLF) evalua-
tion where Bob inputs w ∈ W (vector space) and Alice inputs a linear functional
l ∈ W ∗ (the dual vector space of linear functionals on W ). w and l can have an
arbitrary probability distribution. The security conditions are analogous to the
ones of the previous theorem. The ideal functionality fOLF is denoted by

fOLF(l, w) := (⊥, l(w)).

Theorem 3. A protocol Π realizes an OLF perfectly securely if and only if for
every admissible pair of algorithms Ã = (Ã1, Ã2) for protocol Π and for all inputs
(l, w) and auxiliary input Z, Ã produce outputs (U, V ) such that the following
conditions are satisfied:

– (Correctness) If both players are honest, then (U, V ) = (⊥, l(w))
– (Security for Alice) If Alice is honest, then we have U =⊥ and there exists

a random variable w′, such that

I(l; w′|Zw) = 0, and I(l; V |Zww′l(w′)) = 0

– (Security for Bob) If Bob is honest, then we have

I(w; U |Zl) = 0

Proof. We have to prove the equivalence between the privacy conditions for Bob
in Theorems 1 and 3. This proof is analogous to the previous one.

According to Theorem 1, we must have that

I(w; l′|Zl) = 0 and I(l(w)w; U |Zll′U ′) = 0

or equivalently,
I(w; l′|Zl) + I(l′(w)w; U |Zll′) = 0.

l′(w) is a function of w and the polynomial l′ so

I(l′(w)w; U |Zll′) = I(w; U |Zll′) + I(l′(w); U |wZll′)
= I(w; U |Zll′).

Then, I(l′(w)w; U |Zll′) = 0 is equivalent to I(w; U |Zll′) = 0.



Applying the chain rule for mutual information we obtain

I(w; l′|Zl) + I(w; U |Zll′) = I(w; l′U |Zl)
= I(w; U |Zl) + I(w; l′|ZlU)
= I(w; U |Zl).

The last equality follows from the fact that l′ and w are independent given ZlU .
For every w′ ∈ W such that w′ �= w, the value l′(w′) is chosen according to the
conditional distribution PV |ZlU,w=w′ except for l′(w). We make l′(w) = V (where
V is the output received by Bob). Since all l′(w′) have distribution PV |ZlU,w=w′ , l′

does not depend on w given ZlU . Mathematically, V = l′(w), PV |ZlU,w = PV |ZlU

and I(w; l′|ZlU) = 0.

As mentioned in [6] and proved in [7], it is possible to omit the auxiliary
input in the security model, so we will omit it henceforth.

2.3 Commodity-Based OPE

In our model we have three players: Alice, Bob and Ted. We assume the three
players to be interconnected by private pairwise channels. The adversary is ma-
licious and may deviate from the original protocol in an arbitrary way. Ted is a
trusted center who pre-distributes some secret data to Alice and Bob during a
setup phase, but does not take part in the protocol later on. We denote the data
received by Alice and Bob by the random variables Ua and Ub. The domains
where these data are taken from are denoted by Ua and Ub respectively. The
pre-distributed data are chosen independently of the inputs.

In the computation phase, Alice and Bob interact in order to perform an
oblivious polynomial evaluation. We model the probabilistic choices of Alice by
a random variable Ra and those of Bob by a random variable Rb, so we can use
deterministic functions in the protocol. Note that in this way, all the messages
generated by Alice and Bob are well-defined random variables, depending on
the polynomial P defined over Fq that Alice chose and on the evaluation point
i ∈ Fq that Bob chose. The protocol can have many rounds of communication.
Let the random variables e denote all the messages sent by Bob and h denote all
the messages sent by Alice. As usual, we assume that the messages exchanged
by the players and their personal randomness are taken from {0, 1}∗.

We call the view of Alice all the data in her possession, i.e. Ua, Ra, P, e, h and
denote it by V iewa. V iewb is defined similarly for Bob. So V iewa and V iewb

are well-defined random variables.

3 Bounds

In this section we prove bounds for Oblivious Polynomial Evaluation in the
commodity based model as specified in the last section. Since we are interested
on OPE protocols that can be used with any input probability distribution, we



assume in this section that the input probability distribution has some properties
(we assume that P and i are independently and uniformly chosen) and prove
some bounds. In the next section, we present an protocol that meets these bounds
and can be used with any input probability distribution.

The following propositions refer to scenarios in which the players follow the
protocol (are “honest but curious”) and the inputs. We can assume without loss
of generality that the output of a corrupted Alice, U , is her view of the protocol
execution and that the output of a corrupted Bob, V , is his view of the protocol
execution.

It is natural to think that, in our scenario, if Bob is given access to Alice’s
secret data Ua, he should be able to break the secrecy condition completely,
that is he should be able to learn all the information about Alice’s input P . We
formally prove this fact in the next proposition.

Proposition 1. Bob learns all the information on P if he is given access to
Alice’s pre-distributed data Ua after completing a successful execution of oblivious
polynomial evaluation. Mathematically, H(P |ehUaUb) = 0.

Proof. After one successful run of the protocol and after obtaining Alice’s data,
Bob can try to compute eh for all the possible inputs. The correct input will
produce a transcript equal to the one obtained during the protocol execution.
Furthermore, the condition of security for Bob states that I(i; U |P ) = 0. Since
ehUa is part of Alice’s view, I(i; ehUa|P ) = 0 and so

H(i|ehUaP ) = H(i|P ) = H(i),

where the last step follows from the fact that P and i are independent. It follows
that no two different polynomials should produce the same view, otherwise Alice
would obtain knowledge on Bob’s inputs (if two polynomials produce the same
transcript, Bob’s choice must be limited to the points where those polynomials
coincide).

An equivalent result holds for Alice: if she is given access to Bob’s input and
the secret data he received from Ted, she is able to break the protocol’s security
condition for her completely.

Proposition 2. Alice learns the point which was chosen by Bob if she is given
access to the secret data he received from Ted: H(i|ehUaUb) = 0.

Proof. After the real execution of the protocol is finished, we know from propo-
sition 1 that H(P |ehUaUb) = 0. Alice simulates Bob’s inputs and determines
those that are compatible with the transcript eh. By the security for Alice, there
cannot be two different values i1 and i2 compatible with the transcript, oth-
erwise the correctness condition would allow Bob to discover P (i1) and P (i2)
(violating Alice’s security). So we have that H(i|ehUaUb) = 0.

We now prove another auxiliary result: namely, that the messages exchanged
are independent of Alice’s and Bob’s inputs P and i.



Proposition 3. In a secure commodity based polynomial evaluation protocol,
I(Pi; eh) = 0. In particular, H(P |eh) = H(P ).

Proof. We start by rewriting the mutual information of interest:

I(Pi; eh) = I(PiP (i); eh)

= I(iP (i); eh) + I(P ; eh|iP (i))

= I(P (i); eh|i) + I(i; eh) + I(P ; eh|iP (i))

Since the security for Bob states that I(i; U |P ) = 0 and eh is part of Alice’s
view, we have that I(i; eh|P ) = 0 and so I(i; eh) = 0 because P is independent
of i. From the security of Alice it follows that I(P ; V |iP (i)) = 0 and since eh is
part of Bob’s view, we have that I(P ; eh|iP (i)) = 0. Hence we get

I(Pi; eh) = I(P (i); eh|i).

It remains to prove that the right hand side is 0. Assume this were not the
case.

Intuitively, we get a contradiction because i is independent of eh, so Bob
could go through the protocol and after receiving h decide which value P (j) he
wants to obtain information about. Thus, he could not only learn his allotted
P (i) but also some more information, in violation of privacy for Alice.

The formal argument involves our technical condition on the distribution of
P . Let j = i + 1; in this way also j takes on all values with positive probability,
and the first part of our intuitive argument is valid: I(P (j); eh|j) > 0, because
j can be generated by Bob independently of eh, just as i. Now we can estimate

I(P (j); j) < I(P (j); j) + I(P (j); eh|j)
= I(P (j); ehj)

≤ I(P (j); ehijP (i))

= I(P (j); ijP (i)) + I(P (j); eh|ijP (i))

= I(P (j); j) + 0,

a contradiction. We have only used standard identities and inequalities, except
for the last line: there once more security for Alice was brought to bear, and the
independence of P (j) and P (i) for i �= j.

Hence our assumption was wrong, and the proposition is proved.

Now, we use the above propositions to prove a lower bound on the size of
the data which is pre-distributed to Alice.

Theorem 4. In any commodity based secure polynomial evaluation, the size of
the data which is pre-distributed to Alice is as large as the size of the polynomial
to be evaluated: H(Ua) ≥ H(P ).



Proof. Consider I(Ua; P |ehUb): on the one hand we can rewrite it

I(Ua; P |ehUb) = H(P |ehUb) − H(P |ehUaUb)

= H(P ) − 0,

by propositions 3 and 1 and the fact that P is independent of Ub. On the other
hand,

I(Ua; P |ehUb) ≤ H(Ua|ehUb) ≤ H(Ua),

which, put together with our previous identity, proves the theorem.

Another auxiliary result is actually just a corollary of proposition 3:

Proposition 4. In any commodity based secure polynomial evaluation protocol,
H(iP (i)|eh) = H(iP (i)) = H(i) + H(P (i)|i).

Proof. Proposition 3 states I(Pi; eh) = 0. By data processing, we thus have
I(P (i); eh) = 0, which is just a reformulation of the claim.

Here, we show a bound on the size of the data pre-distributed to Bob.

Theorem 5. In any commodity based secure polynomial evaluation, the size of
the data which is pre-distributed to Bob is bounded by the following expression:
for any i ∈ Fq, H(Ub) ≥ H(i) + H(P (i)|i).

Proof. Consider the following:

I(Ub; P (i)i|ehUa) = H(P (i)i|ehUa) − H(P (i)i|ehUaUb)

= H(i) + H(P (i)|i) − 0

using proposition 4 for the first entropy term, and proposition 2 (plus correctness
of the protocol) for the second: i is a function of e, h, Ua and Ub, and all these
data together determine the polynomial value P (i). On the other hand,

I(Ub; P (i)i|ehUa) ≤ H(Ub|ehUa) ≤ H(Ub),

and with the previous identity the claim is proved.

We end this section with bounds on the size of the messages which have to
be exchanged between Alice and Bob.

Theorem 6. H(e) ≥ H(i) and H(h) ≥ H(P ).



Proof. For the first one, use proposition 2 for the first step in the following chain
and then independence of i and hUaUb:

H(i) = I(i; ehUaUb) = I(i; hUaUb) + I(i; e|hUaUb)

= I(i; e|hUaUb) ≤ H(e|hUaUb) ≤ H(e).

For the second one, use proposition 1 for the first step in the following chain
and then independence of P and ijeUaUb:

H(P ) = I(P ; ehUaUb) = I(P ; eUaUb) + I(P ; h|eUaUb)

= I(P ; h|eUaUb) ≤ H(h|eUaUb) ≤ H(h).

4 An Optimal Construction

In this section we present a construction based on polynomials over finite fields
which matches the lower bounds we proved in the last section and is round
optimal, thus proving their tightness. The intuition behind the protocol is that
Ted distributes a random evaluation performed on a random polynomial to Alice
and Bob during a setup phase. Later on, they will exchange messages to turn
the random evaluation into the desired one. The protocol is described below and
illustrated in figure 4.

Protocol OPE

Setup Phase: Ted selects uniformly and at random a polynomial R(X) ∈
Fq[X ] of degree n and a point d ∈ Fq. Ted sends R(X) to Alice and
d, g = R(d) to Bob.

Computing Phase: Alice’s input: P (X) of degree n; Bob’s input: i ∈ Fq

– Bob sends t = i − d to Alice.
– Alice computes F (X) = P (X + t) + R(X) and sends it to Bob.
– Bob computes F (d) − g = P (d + t) + R(d) − R(d) = P (i), the desired

output.

Theorem 7. The above stated protocol is a secure implementation of an obliv-
ious polynomial evaluation protocol. Moreover, it is optimal regarding its space
complexity

Proof. (Correctness) It is easily verifiable the correctness of the protocol. Con-
sidering both parties to be honest, we obtain

F (d) − g = P (d + t) + R(d) − R(d) = P (i)

which proves the correctness property.
(Security for Alice) Let Alice be honest and i′ = d + t. We have

I(P ; i′|i) = I(P ; d + t|i) = 0
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Fig. 4. Optimal OPE protocol construction.

since d is independent of P .
Now we demonstrate that the second condition for Alice is satisfied. We can
assume without loss of generality that Bob outputs his view of the protocol
execution. We have that

I(P ; V |ii′P (i′)) = I(P ; dR(d)ii′tF |ii′P (i′))
= I(P ; dR(d)ii′F |ii′P (i′))
= I(P ; dR(d)F |ii′P (i′))
= I(P ; F |ii′P (i′))
= 0.

where the first step follows from the fact that t is a function of d and i′ and the
last step follows from the fact that F (X) = P (X + t) + R(X) where R(X) is
uniformly random and independent of P .
(Security for Bob) Let Bob be honest. We can assume without loss of generality
that Alice outputs her view of the protocol execution.

I(i; U |P ) = I(i; PRtF |P )
= I(i; Rt|P )
= I(i; R|P ) + I(i; t|PR)
= 0.



where the first step follows from the fact that F is a function of P , R and t.
The last step follows from the fact that the pre-distributed data is independent
of the inputs and from the fact that t = i− d (where d is uniformly random and
independent of R, i and P ).

Finally, our theorems 4, 5 and 6, show that indeed the size of the pre-
distributed data as well as of the communicated data meet the lower bounds.

5 Oblivious Linear Functional Evaluation

Here we generalize the previous protocol to the case where Bob inputs w ∈ W
(vector space) and Alice inputs a linear functional l ∈ W ∗ (the dual vector
space of linear functionals on W ). First, notice that evaluating a polynomial
P (x) = a0 + a1x + a2x

2 + . . . + anxn on a point x is the same as evaluating the
linear functional l = (a0, a1, . . . , an) (as a row vector) on the (column) vector w =
(1, x, x2, . . . , xn)T . Thus OPE can be seen as a particular case of oblivious linear
functional evaluation. This idea can be generalized to affine linear functionals,
but we chose not to break the inherent beautiful symmetry via duality of the
problem.

Protocol OLF

Setup Phase: Ted chooses a uniformly random affine linear function m and a
uniformly random d ∈ W . It gives m to Alice and gives d and c = m(d) to
Bob.

Computing Phase Alice’s input: l ∈ W ∗; Bobs input w ∈ W

– Bob sends t := w − d to Alice
– Alice sends the function n := l + m + l(t) to Bob
– Bob computes n(d) − c = l(d) + m(d) + l(w − d) − m(d) = l(w)

Theorem 8. The above stated protocol is a secure implementation of an obliv-
ious linear functional evaluation protocol.

Proof. (Correctness) It is immediate to verify the correctness of the protocol.
Considering both parties to be honest, we obtain

n(d) − c = n(d) − m(d) = l(d) + l(w − d) = l(w)

(Security for Alice) Let Alice be honest and w′ = d + t. We have

I(l; w′|w) = I(l; d + t|w) = 0

since d is independent of l.
Now we demonstrate that the second condition for Alice is satisfied. We can
assume without loss of generality that Bob outputs his view of the protocol



execution. We have that

I(l; V |ww′l(w′)) = I(l; dm(d)ww′tn|ww′l(w′))
= I(l; dm(d)ww′n|ww′l(w′))
= I(l; dm(d)n|ww′l(w′))
= I(l; n|ww′l(w′))
= 0.

where the first step follows from the fact that t is a function of d and w′ and
the last step follows from the fact that n = l + m + l(t) where m is uniformly
random and independent of l.
(Security for Bob) Let Bob be honest. We can assume without loss of generality
that Alice outputs her view of the protocol execution.

I(w; U |l) = I(w; lmnt|l)
= I(w; mt|l)
= I(w; m|l) + I(w; t|lm)
= 0.

since n is a function of l, m and t. The last step follows from the fact that the
pre-distributed data is independent of the inputs and from the fact that t = w−d
(where d is uniformly random and independent of m, w and l).

6 Examples

Any function in Fq can be expressed as a polynomial and so we can evaluate
them using Oblivious Polynomial Evaluation, examples of such functions are the
Millionaires’ and the Oblivious Equality Testing Problems. We present solutions
to the Millionaires’ and the Oblivious Equality Testing Problems as illustra-
tions of our more general methodology. These solutions are inefficient. Other
applications, e.g. the list intersection problem, are presented in [12].

6.1 “Millionaires’ Problem”

The “Millionaire’s Problem”, introduced by Yao in [16], is considered the first
problem in secure multi-party computation.

Assume Alice and Bob are two millionaires who want to identify which one
is richer, without revealing their actual wealth. Thus, they have to carry out
a protocol that allows them to satisfy their curiosity and, simultaneously, their
protocol must fulfill the requirements of correctness and privacy.

We show that a single OPE execution gives us a solution to the Millionaires’
Problem secure against passive cheating.

Assume that Alice and Bob have values xa and xb, respectively, that are
members of a subset of the integers Q = {0, 1, 2, . . . , p − 2, p − 1} (these values



are encoded as numbers in Zp). To compare the values, Alice chooses a ∈ Zp

and generates a function defined over Zp of the form

PA(x) =
{

a, if x ≥ xa

−a, if x < xa.

Alice and Bob run the protocol described in 4, where Alice’s input is the
function PA(x) and Bob’s input is the value xb. At the end of the protocol, Bob
will receive PA(xb).

If xb � xa, then PA(xb) = a.
If xb < xa, then PA(xb) = −a.
Then, Bob sends the value PA(xb) to Alice.

x

y

ax

a

a

Fig. 5. Function generated to solve the Millionaires’ Problem.

6.2 “Oblivious Equality Testing Problem”

In the Oblivious Equality Testing Problem, Alice and Bob want to know if their
private inputs xa and xb, respectively, are equal without revealing their value.
We present a solution based on OPE.

Alice chooses a ∈ Fq and generates a function defined over Fq of the form

PA(x) =
{

a, if x = xa

0, if x �= xa.
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a
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Fig. 6. Function generated to solve the Equivalence Problem.

7 Conclusions

In this paper we introduced and solved the problem of efficiently evaluating
polynomials obliviously within the so-called commodity-based cryptography, as
proposed by Beaver [1]. We proposed a model and then proved bounds on the
amount of “commodities” which have to be pre-distributed by the trusted center,
thus providing bounds for the amount of memory required by the players engaged
in the protocol, as well as bounds on their communications.

Then, we proved the tightness of our bounds by showing an explicit construc-
tion which meets them.

We also presented in this paper a definition of security for oblivious poly-
nomial evaluation which is equivalent to the standard definition based on the
real/ideal model paradigm. In the light of this new definition, we proved the
unconditional security of our schemes.

Finally, we proposed a generalization of oblivious polynomial evaluation:
oblivious linear functional evaluation and provided some important applications
of OPE.
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