
Universally Composable and Statistically Secure
Verifiable Secret Sharing Scheme Based on

Pre-Distributed Data

Rafael Dowsley1, Jörn Müller-Quade3, Akira Otsuka2, Goichiro Hanaoka2 and
Hideki Imai2, Anderson C. A. Nascimento1

1 Department of Electrical Engineering, University of Brasilia
Campus Darcy Ribeiro, 70910-900, Brasilia, DF, Brazil

E-mail: rafaeldowsley@redes.unb.br, andclay@ene.unb.br
2 National Institute of Advanced Industrial Science and Technology (AIST)

1-18-13, Sotokanda, Chyioda-ku, 101-0021, Tokyo, Japan
E-mail: {a-otsuka, hanaoka-goichiro, h-imai}@aist.go.jp

3 Universität Karlsruhe, Institut für Algorithmen und Kognitive Systeme
Am Fasanengarten 5, 76128 Karlsruhe, Germany

E-mail: muellerq@ira.uka.de

Abstract. This paper presents a non-interactive verifiable secret shar-
ing scheme (VSS) tolerating a dishonest majority based on data pre-
distributed by a trusted authority. As an application of this VSS scheme
we present very efficient unconditionally secure multiparty protocols based
on pre-distributed data which generalize two-party computations based
on linear pre-distributed bit commitments. The main results of this pa-
per are a non-interactive VSS where the amount of data which needs
to be pre-distributed to each player depends on the number of tolerable
cheaters only, a simplified multiplication protocol for shared values based
on pre-distributed random products, and non-interactive zero knowledge
proofs for arbitrary polynomial relations. The security of the schemes
are proved using the UC framework.

Keywords: Verifiable Secret Sharing, Dishonest Majority, Pre-distributed
Data, Unconditional Security, Universal Composable.

1 Introduction

This paper gives a protocol for information theoretically secure verifiable secret
sharing (VSS) in the commodity based model which tolerates a dishonest ma-
jority. On the basis of pre-distributed data a dealer can share a secret such that
all players are convinced that the shares they hold are valid, i. e., sets of players
larger than a threshold t can reconstruct the shared secret. When dealing with
an adversary which is able to corrupt a majority of the players, this requirement
is slightly relaxed, since corrupted players are always able to abort the protocol.



As an application of this VSS scheme we present very efficient multiparty
protocols in the commodity based model which can tolerate up to t < n cor-
rupted parties. If the number t is known the protocols can be chosen to be robust
against n−t players trying to abort the calculation. The protocols can be seen as
a generalization of [21] to multiparty protocols. But the multiplication procedure
used here is much simpler than the one in in [21] and compared to trivial exten-
sions of [21] like pre-distributing two-party computations like oblivious transfer
and then applying a general construction like [19] we save data. The amount of
data to be pre-distributed to one party depends, for fixed security parameter and
fixed size of the field, only on t and not on the total number n of parties. Due to
the advantages of the commodity based model we can obtain a non-interactive
VSS allowing non-interactive zero knowledge proofs.

VSS Tompa and Wolf [35] and McEliece and Swarte [28] were the first to
study the problem of secret sharing in presence of a corrupted majority. They
proposed solutions which work when the dealer is honest and corrupted players
may attempt to cheat during the reconstruction of the secret. Later, Chor et
al. [10] defined a complete notion of VSS, and gave a solution which was based
on some intractability assumptions.

In Ben-Or et al. [5], an information theoretically secure VSS scheme was
proposed which worked against any adversary which corrupts up to less than
1/3 of the players and the dealer. In [5], it was assumed that the players are
connected by pairwise secure channels (the so-called secure channels model).
As VSS, when implemented without a broadcast channel, implies Byzantine
Agreement, the results of [26] show that the solution of [5] is optimal in the
secure channels model.

Rabin and Ben-Or [33] were able to show that in the secure channels plus
broadcast channel model unconditionally secure VSS is possible against any
dishonest minority. In [11], Cramer et al. proposed a VSS scheme secure against
an adaptive adversary which can corrupt any dishonest minority by using a linear
information checking protocol. The protocols of [11] and [33] are interactive.

While secrecy in the secure channels plus broadcast channel model can easily
be maintained even against an adversary which corrupts a majority of players,
the same cannot be said of the validity of the shares. Clearly, correct verifiability
of the shares in the presence of a faulty majority cannot be achieved in the secure
channels plus broadcast channel model without further assumptions [33].

Assuming that the discrete logarithm problem is intractable Feldman pro-
posed a VSS scheme [15] where the verifiability of the shares is information
theoretically secure but the secrecy of the secret is only computationally secure.
Pedersen [31] proposed a “dual” of Feldman’s scheme. Pedersen’s scheme pro-
tects the secrecy of the secret unconditionally, while verifiability is protected
only computationally under the assumption that the discrete logarithm problem
is intractable.

In this paper, we introduce a VSS scheme based on pre-distributed data
which is information theoretically secure against dishonest majorities, that is,



both the secrecy of the secret and the verifiability of the shares are achieved
independently of how much computational power is available to an adversary.
Moreover, our solution is non-interactive.

Multiparty Computation As an application of our protocol, we provide a
very simple and efficient information theoretically secure multiparty computa-
tion protocol based on pre-distributed data which is secure against dishonest
majorities. In [3, 4, 12] protocols for multiparty computations secure against a
faulty majority were proposed. In these papers, it was assumed that all the play-
ers were connected by oblivious transfer channels and a broadcast channel was
available. Due to the use of pre-distributed data instead of oblivious transfer
the protocols presented here are more efficient and do not need zero-knowledge
proofs based on cut-and-choose arguments which increase the round complexity
of protocols. Furthermore our protocol performs computations directly over a
field GF (q) and not only over binary fields.

Finally, it should be remarked that, if a protocol is secure against any dis-
honest majority, even a single player should be able to abort the computation
as was pointed out in [12]. However, the protocols for secure computation pro-
posed in [3, 4, 12, 19] can be aborted by a single player even when the number of
honest players is known to be much larger than one. This is not the case with
our protocol. Given that there are n players of which at most t are dishonest,
then there exists a secure VSS protocol for which n− t players are necessary to
abort the execution of this protocol. This property also holds for the application
to multiparty protocols.

Universal Composable Multiparty Computation Universally Composable
(UC) Security [7] is a notion of security that holds even when the protocol is
concurrently composed with an arbitrary set of protocols. This is a very desirable
property for a protocol, since the protocols are normally executed concurrently
to other tasks by each party. Canetti and Fischlin [8] showed that there exists
functionalities that cannot be securely realized in the UC framework without
any setup assumption in the case of an honest minority of parties. Some setup
assumptions that allow UC secure multiparty computation are common refer-
ence string (CRS) model [8, 9, 14, 13], PKI model [1], random oracle model [23],
signature cards[24] and tamper-proof hardware [25, 30]. Prabhakaran and Sa-
hai [32] introduced a model in which the environment, the adversary and the
simulator are given oracle access to super-polynomial angels. In this model one
can securely implement any multiparty functionality without setup assumptions.

1.1 Commodity Based Cryptography and Related Work

In [2] the commodity based cryptographic model was introduced on which the
protocols presented here are based. In this model players buy cryptographic
primitives from “off-line” servers. These primitives can be used later on to im-
plement general cryptographic protocols. The commodity based model was in-
spired on the Internet architecture, which is usually based on the “client-server”



paradigm. Once the primitives, or commodities as they are called by Beaver, are
acquired, no further interaction between the server and the users is required.
Therefore, the server need not know any secret values of the players.

In this contribution, we show that the use of off-lines servers provides very
efficient and simple protocols for verifiable secret sharing and secure function
evaluation over GF (q) in the presence of a faulty majority.

Although this model was formalized just in [2], several independent works
share the same flavor. We cite key-pre-distribution schemes [27], uncondition-
ally secure bit commitments [34, 6] and unconditionally secure digital signature
schemes [22].

The work which comes closest to the application of our VSS scheme to mul-
tiparty computations is [21]. There secure protocols for two-party computations
in the commodity based model are proposed. Our protocol for multiparty secure
computation can be understood as an extension of [21].

1.2 Our Contribution

In this Section we summarize our contribution. Due to the assumption that there
is a trusted center which pre-distributes data during a setup phase, we could
design a protocol for verifiable secret sharing which has the following interesting
features.

− It is the first VSS protocol where the security of the secret and of the ver-
ifiability are achieved even against an all-mighty adaptive adversary which
can corrupt any majority of the players and the dealer.

− It is non-interactive
− The verifiability of the protocol is not based on any cut-and-choose argument

or expensive zero knowledge proofs.
− It is conceptually very simple and proven secure in the UC framework.

Furthermore for a fixed security parameter k and a fixed field size q the
amount of data which has to be pre-distributed depends on t only.

As an application of our VSS, we propose a protocol for secure multiparty
computations which also shows very interesting features (which to the best of
our knowledge for the first time appear together in a single protocol): It is based
on novel verifiable primitives in the commodity based model which allow two
players to perform secure multiplication of shares over GF (q); It is information
theoretically secure against any adversary which can corrupt any majority of
the players; and given that there are n players of which at most t are dishonest,
n− t players are necessary to abort an execution of the multiparty computation
protocols.

Finally, to the best of our knowledge, our work is the first that formalizes
the commodity based model in the UC framework.



2 The UC Framework

This section briefly review the main concepts of UC Framework, we refer the
reader to [7] for a more detailed explanation of this framework. We also describe
the ideal functionalities that we use in this work.

2.1 Overview

In the UC framework, the security of a protocol to carry out a task is established
in three phases:

1. We formalize the process of executing a protocol in the presence of an ad-
versary and an environment.

2. We formalize an ideal protocol for carrying out the task using a “trusted
party”. In the ideal protocol the trusted party captures the requirements of
the desired task and the parties cannot communicate among themselves.

3. We prove that the real protocol emulates the ideal protocol.

The environment in the UC framework represents all activity external to the
running protocol, so it provides inputs to the parties running the protocol and
receives the outputs that the parties generate during the execution of the pro-
tocol. The environment tries to distinguish between attacks on real executions
of the protocol and simulated attacks against the ideal functionality. If no envi-
ronment can distinguish the two situations, the real protocol emulates the ideal
functionality.

Proving that a protocol is secure in the UC framework provides the following
benefits:

1. The ideal functionality describes intuitively the desired properties of the
protocol.

2. The protocols are secure under composition.
3. The security is retained when the protocol is used as a sub-protocol to replace

an ideal functionality that it emulates.

The ideal protocol. An ideal functionality F represents the desired properties
of a given task. Conceptually, F is treated as a local subroutine by the several
parties that use it, and so the communication between the parties and F is
supposedly secure (i.e., messages are sent by input and output tapes).

The ideal protocol for an ideal functionality F involves an ideal protocol
adversary S, an environment Z on input z and a set of dummy parties that
interacts as defined below. Whenever a dummy party is activated with input x,
it writes x onto the input tape of F . Whenever the dummy party is activated with
value x on its subroutine output tape, it writes x on subroutine output tape of
Z. The ideal protocol adversary S has no access to the contents of messages sent
between dummy parties and F , and it should send corruption messages directly
to F that is responsible for determining the effects of corrupting any dummy



party. The ideal functionality receives messages from the dummy parties by
reading its input tape and sends messages to them by writing to their subroutine
output tape. In the ideal protocol there is no communication among the parties
using the adversary to deliver the message. The environment machine, Z, can
set the inputs to the parties, and read their outputs, but it cannot see the
communication with the ideal functionality.

The real protocol. In the real world, the protocol π is executed by parties
P1, . . . , Pn with some adversary A and an environment machine Z with input z.
Z can set the inputs for the parties and see their outputs, but it cannot see the
communications among the parties.

The parties of π can invoke subroutines, pass inputs to them and receive
outputs from them. They can also write messages on the incoming communica-
tion tape of the adversary. These messages may specify the identity of the final
destination of the message. A can send messages to any party (A delivers the
message). In addition, they may use the ideal functionalities that are provided
to the real protocol.
A can communicate with Z and the ideal functionalities that are provided to

the real protocol. A can also corrupt parties. After receiving a special message
(Corrupt id) from the environment, the adversary corrupt a party by deliver-
ing the message (Corrupt). By the definition of the process of corrupting, the
environment always knows which parties are corrupted.

The adversarial model. The parties have unique identities and are locally PPT.
The network is asynchronous without guaranteed delivery of messages. The com-
munication is authenticated and secure, and the parties have access to an au-
thenticated broadcast channel. The secure channel between the parties and the
authenticated broadcast channel can be pre-distributed by the trusted author-
ity [2]. The adversary is adaptive in corrupting parties, and is active in its control
over corrupted parties. The adversary can corrupt up to t parties. Finally, the
adversary, the environment allowed unbounded complexity. The simulator is al-
lowed to be polynomial in the complexity of the adversary.

Realizing an ideal functionality. We say that a protocol π statistically UC-
realizes an ideal functionality F if for any real-life adversary A there exists
an ideal-protocol adversary S such that no environment Z, on any input z, can
tell with non-negligible probability whether it is interacting with A and parties
running π in the real-life process, or it is interacting with S and F in the ideal
protocol. This means that, from the point of view of the environment, running
protocol π is statistically indistinguishable of interacting with an ideal protocol
for F .

2.2 The Commodity Functionality

We describe below the functionality (FCommodity) that captures the Commodity
Based Model [2] in which offline servers provides cryptographic primitives to the
parties and do not engage in the rest of the protocol.



1. Upon receiving an input (Distribute, sid, PX1,...,Xn
) where PX1,...,Xn

is the
specification of a probability distribution, verify that sid = (sid1, . . . , sidn, sid

′)
where sidi identifies a party; else halt. Next choose randomly x1, . . . , xn ac-
cording to PX1,...,Xn and send a message (Distributed, sid, PX1,...,Xn , xi)
to the party specified by sidi for i = 1, . . . , n.

Since the specification of the probability distribution PX1,...,Xn
and sid (that

contains the identities of all participant parties in an ordered way) are specified
in the outputs of the functionality, a corrupted party cannot gain advantage
by choosing a probability distribution differing from the one specified in the
protocol that utilizes this functionality.

2.3 The Multiplicative and Additive Verifiable Secret Sharing
Functionality

We describe below a Multiplicative and Additive Verifiable Secret Sharing Func-
tionality (FMA−V SS). In this functionality, various secrets can be shared among
one set of parties (even secrets that have different dealers). Some specified sub-
sets of the parties can together reconstruct the secrets. These subsets can also
ask the functionality to multiply two secrets. In addition, a party can ask the
functionality to compute a linear operation between two secrets. In linear and
multiplication operations the secrets involved on the operation are not revealed
to the parties.

1. Upon receiving an input (Share, sid, vssid, xvssid) from some dealer D,
verify that sid = (Q, sid′) where Q = {Q} is an access structure, namely a
collection of sets of identities Q ⊂ {0, 1}∗, that vssid = (D, vssid′) and that
there is no recorded secret for this vssid; else halt. Next, record (vssid, xvssid)
and generate a public delayed output (Shared, sid, vssid) to the parties in
R =

⋃
Q∈QQ. Ignore subsequent (Share, sid, . . . ) messages that have sid

different from sid.
2. Upon receiving a message (Open, sid, vssid) from party P , add P to the

(initially empty) list of parties that ask to open the secret and send a public
delayed output (Opening-Asked, sid, vssid, P ) to the parties in R. If there
is a set Q ∈ Q where all parties in Q have provided an (Open, sid, vssid)
input, and there is a recorded shared value xvssid, then generate a public
delayed output (Open, sid, vssid, xvssid) to the parties in R.

3. Upon receiving an input (Linear-Operation, sid, vssid1, λ, vssid2) if
there are recorded shared values xvssid1 and xvssid2 , compute xvssid = xvssid1+
λxvssid2 , record (vssid, xvssid) where vssid = (⊥, vssid′) is an identifica-
tion to this new secret and generate a public delayed output (Linear-
Operation-Computed, sid, vssid1, λ, vssid2, vssid) to the parties in
R =

⋃
Q∈QQ.

4. Upon receiving a message (Multiply, sid, vssid1, vssid2) from party P ,
add P to the (initially empty) list of parties that ask to multiply the secrets
and send a public delayed output (Multiplication-Asked, sid, vssid1,



vssid2, P ) to the parties in R. If there is a set Q ∈ Q where all parties
in Q have provided an (Multiply, sid, vssid1, vssid2) input and there are
recorded shared values xvssid1 and xvssid2 , then compute xvssid = xvssid1 ×
xvssid2 , record (vssid, xvssid) where vssid = (⊥, vssid′) is an identification
to this new secret and generate a public delayed output (Multiplication-
Computed, sid, vssid1, vssid2, vssid) to the parties in R =

⋃
Q∈QQ.

5. Upon receiving a message (Corrupt, sid, P ) from the adversary, add P to
the list of parties that ask to open of all secrets (the corrupted party will also
be present in the opening list of all secrets recorded after the corruption).
Furthermore, send to the adversary all the recorded values (vssid, xvssid) in
which P is the dealer. Next, if the adversary provides some list of new values
(vssid, x′vssid), change the recorded values in which P is the dealer and the
Shared message were not yet written on the tape of any honest party in R.

The linear and multiplicative operation among the shared secrets are de-
fined inside the functionality in order to use the homomorphic properties of the
instantiation of VSS to compute these operations.

3 The Verifiable Secret Sharing Protocol

In this section we describe first the VSS using the commodity functionality. Later
we explain the protocol that can be used in order to prove polynomial relations
among shared secrets using the VSS. In the next section we prove that together
these protocols UC-realize the functionality FMA−V SS .

3.1 A VSS Protocol based on Pre-distributed Data

For a VSS scheme Π with access to a commodity functionality FCommodity, a
set of dealers D, and a finite set of players P the protocol consists of (U , K, V,
C, Ui Commit, Share, Verify, Reconstruct), where

− U is a finite set of possible secrets,
− K is a finite set of possible signing-keys,
− V is a finite set of possible verification-keys,
− C is a finite set of possible commitments,
− Ui is a finite set of possible shares,
− Commit : U × K → C is a commitment-algorithm,
− Share : C × P → Ui is a share-generation-algorithm, and
− Verify : C × Ui × V → {accept, reject} is a verification-algorithm.
− Reconstruct : U t+1

i → U is a reconstruction algorithm which regains a secret
u from t+ 1 valid shares.

We assume the existence of an authenticated broadcast functionality. Note
that this assumption is made only to simplify the protocol presentation as a
broadcast channel can as well be pre-distributed by the trusted center during a
setup phase [2].



In the unconditionally secure protocol below the probability of cheating suc-
cessfully equals the probability to successfully guess an element from the field
over which computations are done. Hence we choose a prime power q and the
field GF (q) with q elements depending on the security parameter, e. g., q = 2k.

For simplicity, we assume U = C = GF (q), K ∈ GF (q)[x, y], V = GF (q) ×
GF (q)[y] and Ui = GF (q)[x] as in the following construction.

The basic intuition behind the protocol is simple. The commodity function-
ality will share a random value with the players in a way that each player is
committed to his share to each other player. When executing the Share algo-
rithm, the dealer changes this random number, to which he is committed by the
pre-distributed VSS, into a commitment to his secret.

Setup. When some player require the distribution of the commodities (spec-
ifying the identities of the dealer and the players that will share the secret),
FCommodity chooses for each player Pi a random verification key (a secret point)
wi 6= 0 from GF (q). It also randomly chooses a bivariate polynomial f(x, y) ∈
GF (q)[x, y] such that

f(x, y) =
t∑

i=0

t∑
j=0

aijx
iyj ,

where each coefficient aij is randomly and uniformly chosen from GF (q), and t
is the threshold of the secret sharing scheme.
FCommodity outputs the bivariate polynomial f(x, y) to the dealer D and for

each player Pi
1 outputs vi = (wi, f(wi, y)) and ui(x) = f(x, i). After delivering

these private keys, FCommodity does not engage in the rest of the protocol.
For the random “secret” a = f(0, 0) the verification key vi = (wi, f(wi, y))

will later be used by Pi to verify shares of other players and the polynomial ui(x)
is the share of the party Pi for a.

Share. In this stage of the protocol the shares of a random secret a as well as the
verification polynomials will be changed to shares and verification polynomials
for a specific secret u.

Let

g(x, y) =
t∑

i=1

t∑
j=1

bijx
iyj

denote a publicly known polynomial for which g(0, 0) = 0. On input u for a secret,
the dealer D computes a value c satisfying c = u − a, where a is computed as:
a = f(0, 0)

Then, D commits to his secret by broadcasting the value c. Next each party
Pi calculates the new values of its verification key v′i = (wi, f(wi, y)+g(wi, y)+c)

1 The index i which is the “name” of a participant is here interpreted as a value of
GF (q). To have enough different names we need q ≥ n.



and its share u′i(x) = f(x, i)+g(x, i)+c for the shared secret u. Each party send
a message (Shared, sid, vssid).

For the secret u = f(0, 0) + g(0, 0) + c the verification functions and the
shares computed above have the same distribution as if u would have been equal
to the value a used in the setup phase.

As f(x, y) is chosen by the trusted center and g(x, y) is publicly known the
validity of the shares computed above is evident and need not be verified at this
stage.

Reconstruct. It is enough to show how a shared random secret a is recon-
structed. The notation will therefore be as in the setup phase. Each player Pi

broadcasts his share ui(x) over the broadcast functionality.

Verify
On receiving a share uj(x) from the player Pj over the broadcast function-

ality, each player Pi checks the share by checking the following equation:

verji =
{
accept if uj(wi) = f(wi, j)

reject otherwise

}
If verji = accept, Pi outputs (Opening-Asked, sid, vssid, Pj). If less

than n − t players are rejected by Pi, there will be a set of t + 1 valid shares
ui1(x), . . . , uit

(x) in possession of Pi. Thus, the secret a = f(0, 0) can be recon-
structed by Lagrange interpolation from ui1(0), . . . , uit+1(0). Each player outputs
(Open, sid, vssid, a). It is easy to see that (with overwhelming probability) all
honest players will obtain the same result in the verification procedure.

3.2 Proving Polynomial Relations Among Shared Secrets

Note that in this protocol, for each player Pi the secret “check” information
wi, 1 ≤ i ≤ n is never released, so it can be distributed only once for several
protocols (even with different dealers). The check information can hence be safely
reused within a bigger protocol and reduce communication from the trusted
center to the players.

Another interesting fact about this VSS scheme is that, given that each player
uses the same verification information wi in all of its executions (in this case all
the commodities must be distributed jointly by FCommodity since wi must be
the same in all polynomials), it is linear, that is, the sum of two shares of two
secrets becomes a verifiable share of the sum of the secrets. We denote by [a]i
the pair of the verification function and the share the player Pi holds from the
secret a.

Proposition 1. For two secrets a, b shared with the above VSS scheme using
the same verification information wi for each player Pi and a value λ ∈ GF (q)
it holds that [a]i + λ[b]i = [a+ λb]i.



When one party wants to execute a linear operation on the sharings, it broad-
casts a message (Linear-Operation, sid, vssida, λ, vssidb) to other parties.
Each party calculates [x]i = [a]i + λ[b]i = [a + λb]i and then outputs (Linear-
Operation-Computed, sid, vssida, λ, vssidb, vssidx).

A linear VSS can be seen as a linear commitment to the shared secret. Using
techniques from [21] it is possible to very efficiently prove polynomial relations
among shared secrets.

For proving a linear relation among commitments one turns this relation into
a set of linear functions which all must equal zero when evaluated on the commit-
ted values if and only if the relation holds. Proving that a given linear function
evaluates to zero on committed values can be done by means of Proposition 1:
using the linearity of the VSS scheme one computes from the given commitments
a new commitment which represents the linear function evaluated on the given
commitments and this new commitment is then opened to be zero.

To be able to prove arbitrary polynomial relations on committed values we
will state a protocol that is based on a previous protocol from [21] which al-
lows the parties to compute a new commitment which represents the product
of two given commitments. This protocol can directly be applied to this lin-
ear secret sharing scheme. Note that the commodity functionality FCommodity

can pre-distribute shares to secrets which have a certain relation. The protocol
for multiplication of secret is called a distributed one time multiplication proof
(DOTMP) and consists of two phases: a pre-distribution phase where the com-
modity functionality shares additional values among the players (in this case all
the commodities must also be distributed jointly by FCommodity since wi must
be the same in all polynomials) and a non-interactive proof where the additional
shared information is used to compute shares to the product of two shared values
without reconstructing these.

Protocol DOTMP.

− Initialization: FCommodity verifiably shares (with the players) three random
numbers l, l′ and l′′, such that l′′ = ll′. Thus, each player Pi receives [l]i, [l′]i
and [l′′ = ll′]i

− Multiplication: Each player Pi now holds shares to three random values l, l′

and l′′, such that l′′ = ll′ as well as two shares [a]i and [b]i to the values
a, b which are to be multiplied, to obtain a share [ab]i to ab each player
Pi computes [y]i = [a]i − [l]i = [a − l]i and [y′]i = [b]i − [l′]i = [b − l′]i,
broadcasts the message (Multiply, sid, vssid1, vssid2), [y]i and [y′]i. When
another party receive these messages, it outputs (Multiplication-Asked,
sid, vssid1, vssid2, Pi). The parties together reconstruct y and y′. Now Pi

calculates [x]i = [ll′]i + y[l′]i + y′[l]i + yy′ and outputs (Multiplication-
Computed, sid, vssida, vssidb, vssidx).

Using this protocol arbitrary polynomial relations can be proven analogously
to the linear relations. The polynomial relations are turned into a set of multivari-
ate polynomials which should simultaneously vanish on the committed values. To



prove that a polynomial vanishes on given committed values a new commitment
representing the polynomial evaluated at the given commitments is computed
step by step using the above multiplication protocol as well as addition and
scalar multiplication which are granted by the linearity of the VSS scheme. The
new commitment is then opened to be zero.

By applying addition of shares and multiplication of shares we can obtain
shares for arbitrary polynomial relations among shares. E.g. to prove that mm′ =
m′′ the dealer lets the players compute [mm′]− [m′′] = [mm′ −m′′] and shows
this to be zero.

For adding two shared values or for multiplication with a constant no-one
has to know the shared values which are linearly transformed. Note that in
DOTMP, too, no-one has to know the shared values which have to be multiplied
in advance as the values y and y′ are reconstructed in the protocol. Hence an
arbitrary polynomial evaluation on shared values works if, and only if, t + 1
players cooperate. This is optimal as n− t players could abort the VSS scheme
anyway. These linear transformations and multiplications on shared values will
be the building blocks for the multiparty protocols presented in Section 5.

4 UC Security

Theorem 1. Assuming the existence of a commodity functionality, the above
protocols together UC-realizes the functionality FMA−V SS.

Proof. We construct the ideal-protocol adversary S as follows. S runs a simulated
copy of A in a black-box way, plays the role of the ideal functionality FCommodity

and simulates a copy of the hybrid interaction of the protocol above (i.e., the real
protocol with access to FCommodity) for the simulated adversary A. In addition,
S forwards all inputs from Z to A′s input and all outputs from A to Z. Below
we describe the procedures of the simulator in each occasion:

Setup: When some party (during the setup phase) demands that FCommodity

distributes the polynomials and points that will be used in the VSS pro-
tocols and to prove polynomial relations among shared secrets, S simulates
FCommodity choosing them using the same verification points for one party in
all polynomials and having the necessary relations among the shared secrets
(as specified by the protocols above). S sends the outputs of the simulated
functionality in the hybrid interaction.

Share - Honest Dealer: If some honest dealer send a secret, the functionality
FMA−V SS sends a message (Shared, sid, vssid) and the simulator views
it. S simulates the honest dealer in the hybrid interaction committing to a
random secret value. It allows FMA−V SS to output (Shared, sid, vssid) in
the ideal protocol to the honest parties if they output this message in the
simulation of the hybrid interaction.

Share - Corrupted Dealer: If some corrupted party send a secret, S (that
plays the role of FCommodity) knows all the polynomials, so it can extract



the unique value for which the secret will be reconstructed with overwhelm-
ing probability (i.e., the constant of the polynomial). S sends this value to
FMA−V SS and allows FMA−V SS to output (Shared, sid, vssid) in the ideal
protocol to the honest parties if they output this message in the simulation
of the hybrid interaction.

Reconstruction - Honest Party: If some honest party wants to open a se-
cret, S receives a message (Opening-Asked, sid, vssid, P ) from FMA−V SS .
S simulates the running of the reconstruction and verification procedures in
the hybrid interaction. S chooses the share to reveal as follows:
− If the dealer is corrupted, S use the share that the dealer had distributed.
− If the dealer is honest and the number of parties in the list that already

asked to open the secret in FMA−V SS is less than t + 1, S do this sim-
ulation using the correct share for P (i.e., the one that it has generated
playing the role of FCommodity and that was modified in the share phase
of the protocol).

− Otherwise, it knows all the verification functions and shares distributed
to the parties and the polynomial distributed to the dealer in the setup
phase, but A knows these information for at most t parties. So, S receives
(Open, sid, vssid, xvssid) from FMA−V SS and can choose a share and
a verification function to P such that the reconstructed secret in the
hybrid interaction will be xvssid with overwhelming probability.

If some honest party output (Opening-Asked, sid, vssid, P ) or (Open,
sid, vssid, xvssid) in the hybrid interaction, S allows FMA−V SS to output
the respective message to that party in the ideal protocol.

Reconstruction - Corrupted Party: If some corrupted party P broadcast a
share, S checks if that is the correct share for that party, S can do this be-
cause it plays the role of FCommodity and so it knows all the shares distributed
in the setup phase. If this condition is satisfied, then S sends the message
(Open, sid, vssid) to FMA−V SS in the name of P and allow FMA−V SS to
send the message (Opening-Asked, sid, vssid, P ) to the honest parties.

Linear Operation - Honest Party: If some honest party ask to realize some
linear operation, S receives a message (Linear-Operation-Computed,
sid, vssid1, λ, vssid2, vssid) from the functionality FMA−V SS . S simulates
the broadcast message (Linear-Operation, sid, vssid1, λ, vssid2) to the
parties in the hybrid interaction. If the honest parties receive the message
in the hybrid interaction, S let FMA−V SS deliver the message (Linear-
Operation-Computed, sid, vssid1, λ, vssid2, vssid) in the ideal protocol.

Linear Operation - Corrupted Party: If some corrupted party broadcasts
a message (Linear-Operation, sid, vssid1, λ, vssid2) asking to realize
some linear operation, S sends the message to FMA−V SS and let FMA−V SS

deliver the message (Linear-Operation-Computed, sid, vssid1, λ, vssid2,
vssid) to the honest parties in the ideal protocol.

Multiplication - Honest Party: If an honest party P tries to multiply two
shares vssid1 and vssid2, S views the message (Multiplication-Asked,
sid, vssid1, vssid2, P ), simulates the broadcast message (Multiply, sid,
vssid1, vssid2) from P in the hybrid interaction and allows FMA−V SS to



send the messages (Multiplication-Asked, sid, vssid1, vssid2, P ) if the
honest parties output these messages in the hybrid interaction. S simulates
the procedures of DOTMP using the procedures of reconstruction described
above to deal with the intermediary secrets, and if the parties correctly re-
construct the intermediary secrets y and y′. S let the functionality FMA−V SS

send in the ideal protocol the message (Multiplication-Computed, sid,
vssid1, vssid2, vssid) to the honest parties if they output this message in
the hybrid interaction.

Multiplication - Corrupted Party: If some corrupted party P tries to mul-
tiply two shares vssid1 and vssid2, S sends the message (Multiply, sid,
vssid1, vssid2) in the name of that party and let FMA−V SS deliver the mes-
sage (Multiplication-Asked, sid, vssid1, vssid2, P ). S simulates the pro-
cedures of DOTMP using the procedures of reconstruction described above
to deal with the intermediary secrets, and if the parties correctly reconstruct
the intermediary secrets y and y′. S let the functionality FMA−V SS send in
the ideal protocol the message (Multiplication-Computed, sid, vssid1,
vssid2, vssid) to the honest parties if they output this message in the hybrid
interaction.

Corruption: If the adversary corrupt some party, S corrupt that party in the
ideal protocol and learns all the unrevealed secrets in which that party is the
dealer. S knows all the verification functions and shares of the parties, but
A knows these values for at most t parties, so from the adversary point of
view the bivariate polynomial is undetermined. Thus, S can choose the poly-
nomials, verification functions and shares for this party and the remaining
honest parties in such way that they are valid and the secrets are equal to
the ones that are recorded in FMA−V SS . If the Shared message was not yet
written on the tape of any uncorrupted party in R, the value broadcasted
by the dealer in the share phase was not yet received, so A can change the
value of the secret and S will give this new value to FMA−V SS .

In order to prove Z’s view when interacting with S and F statistically indis-
tinguishable from its view when interacting with A and parties running π, we
need a few auxiliary propositions.

First we analyze the operations among shared secrets (linear and multiplica-
tive operations). The security and correctness are obvious for the linear opera-
tions among shared secrets. The following proposition proves the security and
correctness for the DOTMP protocol:

Proposition 2. For given shared values a, b it is possible to calculate shares for
the value ab if and only if t+ 1 players cooperate. Especially it is possible to give
zero knowledge proofs for arbitrary polynomial relations on shared values.

Proof. We now analyze the security and correctness of our protocol for proving
multiplicative relations among shares. To show that it is secure, note that the
players only learns the values y and y′, which give no information on a and b,
since l and l′ are random numbers.



To show the correctness of this protocol, we note that [ll′]+y[l′]+y′[l]+yy′ =
[ll′]+(a−l)[l′]+(b−l′)[l]+(a−l)(b−l′) = [ll′+al′−ll′+bl−l′l+ab−lb−l′a+ll′] =
[ab] (due to the linearity of the VSS).

We state now a proposition about the verification procedure:

Proposition 3. With overwhelming probability the verification procedures of all
honest parties will have the same result and will detect any false share.

Proof. Follows from the fact that the adversary can violate these condition only
if it discover the verification point of some party or if it guess correctly the result
of verification procedure of some party (which occur with probability 1

q ).

Proposition 4. For an honest dealer and A that knows at most t shares of some
secret, the secret (i.e., the constant of the polynomial) is completely undetermined
(it can be any element in the field GF (q)) from the point of view of A.

We analyze below the probabilities of the events that can result in different
views in the real execution of the protocol, with adversary A, and in the ideal
execution of the protocol, with simulator S:

− The simulated setup procedure perfectly emulates the real protocol.
− There are at most t corrupted parties, so it follows from proposition 4 that

the share procedure with honest dealer perfectly emulates the real execution
of the protocol.

− From proposition 3, it follows that the procedure used in the share with
corrupted dealer is statistically indistinguishable from the real protocol ex-
ecution.

− From propositions 3 and 4, it follows that S’s procedures for reconstruction
with honest party are statistically indistinguishable from the real protocol
execution.

− The procedure of reconstruction with corrupted party generate a view dif-
ferent from the real execution only if some honest party accept some false
share in the simulated real protocol, but by proposition 3 this probability is
negligible. So the procedure used in the reconstruction for a corrupt party
is statistically indistinguishable from the real protocol execution.

− The procedures to simulate the linear operations perfectly emulates the real
execution of the protocol.

− From proposition 2 and the items above, it follows that the simulator’s pro-
cedures to deal with multiplication of shared secret are statistically indistin-
guishable from the real protocol execution.

− From proposition 4, it follows that S’s procedures for corrupting a party are
statistically indistinguishable from the real protocol execution.

As all events that can result in different views have negligible probabilities,
the protocol UC-realizes FMA−V SS . This completes the security proof of the
protocol.



5 Secure Multiparty Computations

In this section we will sketch a simple way to obtain multiparty protocols for
secure function evaluation from the VSS scheme presented. For details concern-
ing multiparty protocols we refer to the literature, e. g. [3, 17–19, 29]. Intuitively
a multiparty computation is a protocol by which n interacting Turing machines
can map n−tuples of inputs (one input held by each party) into n−tuples of
outputs (one held by each party).

The secure multiparty protocols presented here have four stages. A setup
phase where the trusted center pre-distributes data. An input phase where the
players receive inputs and commit to these by VSS. A computation phase where
linear transformations and multiplications are performed on shared values, but
no information about the inputs is revealed. And the opening stage during which
the results of the computation are reconstructed.

Setup Phase In this stage, the players receive from FCommodity a circuit for se-
curely evaluating the function on a random input. This circuit uses the verifiable
secret sharing for distributing the players inputs and uses addition, scalar mul-
tiplication and multiplication gates to perform the operations. I.e., FCommodity

pre-distributes verifiable secret sharings and the multiplication gates (instances
of DOTMP), since addition and scalar multiplication can be done locally by the
parties that use our VSS scheme. The verification information, wi, used in the
secret sharings and the multiplication gates is the same for each party.

Input Phase The players receive inputs from GF (q) and share their inputs with
the given commodities for VSS as described in the main part of this paper (i.e.,
the players transform the pre-distributed VSS for a random value into a VSS for
the desired value). As each dealer is a participant of the secure computation as
well this party has to compute a share of his own from the pre-distributed data.

Computation Phase During the computation stage, the players evaluate an
arithmetic circuit gate by gate using the linearity of the VSS for computing the
output of the addition and scalar multiplication gates and using the DOTMP
protocol for computing the output of the multiplications gates. Note that com-
putations are necessary on intermediate results as well. Intermediate results are
shared among the players, but not known to any player hence it is important
that the linearity of the VSS and the DOTMP protocol can be used even if
no-one knows the contents of the shared secrets involved.

Opening Phase All players reconstruct the output of the circuit using the VSS
protocol and obtain the output of the function on the desired input.



References

1. B. Barak, R. Canetti, J. B. Nielsen, R. Pass. Universally Composable Protocols
with Relaxed Set-Up Assumptions. 36th FOCS, pp.186-195. 2004.

2. D. Beaver. Commodity-Based Cryptography (Extended Abstract). STOC 1997,
pp. 446–455.

3. D. Beaver, S. Goldwasser. Multiparty Computation with Faulty Majority. Proc. of
FOCS 1989, pp.468–473.

4. D. Beaver, S. Goldwasser. Multiparty Computation with Faulty Majority. Ad-
vances in Cryptology - CRYPTO 89, LNCS 435, 1989, pp. 589–590.

5. M. Ben-Or, S. Goldwasser, A. Wigderson. Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation. 20th STOC, pp. 1–10,
1988.

6. C. Blundo, B. Masucci, D. R. Stinson, R. Wei. Constructions and Bounds for
Unconditionally Secure Non-interactive Commitment Schemes. manuscript, 2001.

7. R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic
Protocols. Available at http://eprint.iacr.org/2000/067. 2005. Extended Abstract
appeared in proceedings of the 42nd Symposium on Foundations of Computer
Science (FOCS), 2001.

8. R. Canetti and M. Fischlin. Universally composable commitments. In Advances
in Cryptology - Crypto 2001, pages 19-40, Berlin, 2001. Springer-Verlag. Lecture
Notes in Computer Science Volume 2139.

9. R. Canetti, Y. Lindell, R. Ostrovsky, A. Sahai. Universally Composable Two Party
and Multi-party Secure Computation. 34th STOC, pp. 494-503, 2002.

10. B. Chor, S. Goldwasser, S. Micali and B. Awerbuch. Verifiable Secret Sharing and
Achieving Simultaneity in the Presence of Faults. 26th IEEE Symp. on Foundations
of Computer Science, pp. 383–395, 1985.

11. R. Cramer, I. Damgard, S. Dziembowski, M. Hirt, T. Rabin. Efficient Multiparty
Computations Secure Against an Adaptive Adversary. EUROCRYPT 99, pp. 311–
326, 1999.

12. C. Crépeau, J. van de Graaf, A. Tapp. Committed Oblivious Transfer and Private
multiparty Computations. CRYPTO 1995, pp. 110–123, 1995.

13. I. Damg̊ard, J. Groth. Non interactive and reusable non-malleable commitment
schemes. 34th STOC, pp. 426-437. 2003.

14. I. Damg̊ard and J. B. Nielsen. Perfect Hiding and Perfect Binding Universally
Composable Commitment Schemes with Constant Expansion Factor. CRYPTO
2002, pp.581-596. 2002.

15. P. Feldman. A practical scheme for non-interactive verifiable secret sharing. 28th
IEEE Symp. on Foundations of Computer Science, pp. 427–437, 1987.

16. O. Goldreich, Foundations of Cryptography : Volume 1 - Basic Tools. Cambridge
University Press. 2001.

17. O. Goldreich: Secure multiparty Computation, lecture notes, available from
http://www.wisdom.weizmann.ac.il/˜oded/pp.html

18. O. Goldreich, S. Micali, and A. Wigderson. How to Play Any Mental Game or
a Completeness Theorem for Protocols with Honest Majority. STOC 1987, pp.
218–229, 1987.

19. S. Goldwasser, L. Levin. Fair Computation of General Functions in Presence of
Immoral Majority. CRYPTO 1990, pp. 77–93.

20. S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of Interactive
Proof Systems, SIAM Journal on Comput., Vol. 18, No. 1, 1989, pp. 186–208.



21. G. Hanaoka, H. Imai, J. Müller-Quade, A. Nascimento, A. Otsuka. Uncondition-
ally Secure Homomorphic Pre-distributed Bit Commitment and Secure Two-Party
Computations. ISC’03.

22. G. Hanaoka, J. Shikata, Y. Zheng, H. Imai. Unconditionally Secure Digital Sig-
nature Schemes Admitting Transferability. Proc. of Asiacrypt ’2000, pp. 130–142,
2000.

23. D. Hofheinz and J. Müller-Quade. Universally Composable Commitments Using
Random Oracles. Theory of Cryptography Conference (TCC), LNCS 2951 pp. 58-
74. 2004.

24. D. Hofheinz, J. Müller-Quade, D. Unruh. Universally composable zero-knowledge
arguments and commitments from signature cards. In 5th Central European Con-
ference on Cryptology, page A version is available at http://homepages.cwi.nl/
hofheinz/card.pdf., 2005.

25. J. Katz. Universally Composable Multi-party Computation Using Tamper-Proof
Hardware. EUROCRYPT 2007. pp. 115–128. 2007.

26. L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM
Trans. on Programming Languages and Systems, 4(3), pp. 382– 401, July 1982.

27. T. Matsumoto and H. Imai. On the Key Pre-distribution Systems: A Practical
Solution to the Key Distribution Problem. CRYPTO 1987, pp. 185–193, 1988.

28. R. J. McEliece and D. V. Sarwate. On sharing secrets and Reed-Solomon codes.
Communications of the ACM, 24, pp. 583–584, 1981.

29. S. Micali and P. Rogaway. Secure Computation (Abstract). CRYPTO 1991: pp.
392–404, 1991.

30. T. Moran and G. Segev. David and Goliath Commitments: UC Computation for
Asymmetric Parties Using Tamper-Proof Hardware. EUROCRYPT 2008. pp. 527–
544. 2008.

31. T. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. CRYPTO ’91, pp. 129–140. Springer-Verlag, 1991.

32. M. Prabhakaran and A. Sahai. New Notions of Security: Achieving Universal Com-
posability without Trusted Setup. In Proc. of STOC, 2004.

33. T. Rabin, M. Ben-Or. Verifiable secret sharing and multiparty protocols with hon-
est majority. Proc. ACM STOC ’89, pp. 73–85, ACM Press, 1989.

34. R.L. Rivest. Unconditionally secure commitment and oblivious transfer schemes
using concealing channels and a trusted initializer. Manuscript, 1999.

35. M. Tompa and H. Wolf. How to share a secret with cheaters. Journal of Cryptology,
1(2):133-138, 1988.


