
Multicore Implementation of the Tate Pairing
over Supersingular Elliptic Curves

Jean-Luc Beuchat1, Emmanuel López-Trejo2, Luis Mart́ınez-Ramos3, Shigeo
Mitsunari4, and Francisco Rodŕıguez-Henŕıquez3

1 Graduate School of Systems and Information Engineering, University of Tsukuba,
1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan

2 Nehalem Platform Validation, Intel Guadalajara Design Center, Periférico Sur 7980
Edificio 4E, 45600 Tlaquepaque, Jalisco, México.

3 Computer Science Department, Centro de Investigación y de Estudios Avanzados
del IPN, Av. Instituto Politécnico Nacional No. 2508, 07300 México City, México
4 Akasaka Twin Tower East 15F, 2-17-22 Akasaka, Minato-ku, Tokyo 107-0052,

Cybozu Labs, Inc.

Abstract. This paper describes the design of a fast multicore library
for the cryptographic Tate pairing over supersingular elliptic curves. We
report a calculation time of just 3.15 ms and 1.94 ms on the Intel Core2
and Intel Core i7 architectures, respectively, for the computation of the
reduced modified Tate pairing over F3509 . We try also to answer one
important design question that surges: how many cores should be utilized
for a given application?

Keywords: Tate pairing, supersingular curve, finite field arithmetic, multipro-
cessor cores.

1 Introduction

During the early years of this century it was generally assumed that computing
cryptographic bilinear pairings was a computationally expensive task. Taking as
a starting point the breakthrough introduced by Miller [23, 24], who proposed
the first iterative approach to compute a cryptographic pairing, several authors
focused their efforts on finding algorithmic improvements and shortcuts to fur-
ther reduce the complexity of the so-called Miller’s Algorithm [3,4,9,18,19,30].
Those theoretical findings were experimentally validated by different means. At
first, it was thought that the rich parallelization potential shown by hardware
platforms could be exploited in order to produce faster and more compact pair-
ing implementations. Through the years, this assumption has been confirmed in
many research works (see for instance [8, 20, 29] for a comprehensive bibliogra-
phy). Nevertheless, with the only exception of the ASIP in [20], all hardware
accelerators reported in the open literature until today, have targeted low and
medium security levels.

On the other hand, in the last few years a second wave of authors have in-
vestigated the challenges associated to the efficient implementation of pairings

2 J.-L. Beuchat et al.

in software platforms [12,16,17,21]. From the results reported by those research
works, it appears that software pairing libraries can compete and even outper-
form their hardware accelerator counterparts. Furthermore, yet another way to
exploit parallelism can be instrumented when the multiprocessor core architec-
tures introduced just recently by Intel are targeted. Multicore architectures can
be seen as a massive way to obtain parallelism via the concurrent usage of pow-
erful individual processors that are tightly interconnected.

To our knowledge, the only bilinear pairing library targeting a multicore
architecture was reported in [12]. However the results presented in [12] were
not too optimistic. After essaying several scenarios, the authors concluded that
on a Core2 64-bit platform, the best option to parallelize the computation of
multiple pairings in their library was to perform one pairing on each core. They
state that, “if the requirement is for two pairing evaluations, the slightly moronic
conclusion is that one can perform one pairing on each core [. . .], doubling the
performance versus two sequential invocations of any other method that does not
already use multi-core parallelism internally” [12].

This paper is devoted to the design of a software library for the reduced
modified Tate pairing on supersingular elliptic curves defined over characteris-
tics three and two. After a careful selection of the field arithmetic (Section 2) and
pairing algorithms (Section 3) we show that the usage of multicore architectures
can be effectively used to provide significant computational speedups. A sequen-
tial version of our software5 computes the reduced modified Tate pairing in 7.96
and 11.19 ms for the extension fields F3509 and F31223 , respectively on an Intel
Quad Core running at 2.4 GHz. Speedups of approximately 2.6× are obtained
when using the four cores available in the target architecture (Section 4).

2 Finite Field Arithmetic Using SSE

2.1 Characteristic Two Fields F2m

Frobenius and Frobenius Inverse Operators Let f(x) be an irreducible
polynomial of degree m over F2. Then, the binary extension field F2m is defined
as, F2m ∼= F2[x]/ (f(x)). Let a be an arbitrary element in F2m , which in canonical
basis can be written as, a(x) =

∑m−1
0 aix

i, with ai ∈ F2 for i = 0, 1, . . . , m− 1.
Let us also assume that the extension degree m can be expressed as, m = 2u+1,
with u ≥ 1. Then, the Frobenius operator applied to a consists of computing
c = a2 mod f(x), which can be obtained as,

c =
u∑

i=0

aix
2i + xm

u∑
i=1

au+ix
2i−1 mod f(x) = aL + aHxm mod f(x).

The field element c can be efficiently calculated in software by extracting the two
half-length vectors aL and aH along with the computation of an m

2 -bit multipli-
cation by the per-field constant xm. The subsequent reduction process modulo
f(x) is typically implemented in software by using XOR and shift operations.
5 A full-open source code for benchmarking the library will be made available.

Multicore Implementation of the Tate Pairing 3

The Frobenius inverse operator of a is computed by determining the unique
field element b ∈ F2m such that b2 = a holds. The element b can be computed
in terms of the square root of the field constant x as,

b =
bm−1

2 c∑
i=0

a2ix
i + x

1
2

bm−3
2 c∑

i=0

a2i+1x
i mod f(x) = aeven + x

1
2 aodd mod f(x).

The efficient computation in software of b defined as above is performed by
extracting the even and odd bits of a into the half length vectors aeven and aodd,
respectively. This should be followed by multiplying the half length vector aodd

times the pre-computed constant x
1
2 .

In the case that the irreducible polynomial happens to be a trinomial of the
form f(x) = xm+xn+1 withm, n odd numbers, we have that, x

1
2 = x

m+1
2 +x

n+1
2 .

Since x
1
2 · aodd has degree m − 1, it follows that we do not need to perform a

polynomial modular reduction and hence the inverse Frobenius operator of an
arbitrary element a ∈ F2m can be obtained by computing [10],

b =
bm−1

2 c∑
i=0

a2ix
i +
(
x

m+1
2 + x

n+1
2

)
·
bm−3

2 c∑
i=0

a2i+1x
i.

Multiplier We implemented this arithmetic block by using a variation of the
left-to-right comb multiplication scheme presented in [22], one of the fastest
multiplier schemes for binary fields F2m reported in the open literature.

Let w be the processor word size in bits. Then, the number of processor
words required for storing an arbitrary element in the field F2m is s = dm

w e.
From these definitions, authors in [22] found that the computational complexity
of their algorithm (excluding the one associated to the reduction process), was
of s(m

4) w-bit XOR operations and a total of (w/4−1) 4-bit left shift operations
of a 2s-word vector. Additionally, their method makes use of a look-up table
containing sixteen s-word entries, which is queried a total of s(m

4) times. The
look-up table is pre-computed at a cost of three 1-bit left shift operations of an
s-word vector and eleven w-bit XOR operations.

In the case of the SSE instruction set, we have w = 128. Hence, we can invoke
specialized instructions to perform any logic or arithmetic operation over a bank
of 128-bit SSE register operators. It is also possible to manipulate the contents of
the SSE registers by applying left/right shift/rotate operators over them. Those
shift and rotate operations are executed with very high efficiency if the operand
is shifted or rotated by a constant value multiple of 8 bits. This feature motivated
us to propose a right-to-left comb multiplication scheme that trades all but one
of the 4-bit left shift operations required by the multiplier in [22], with 8-bit right
shift operations. In the rest of this subsection, we describe our formulation.

Let us define n = 32 · s. It results convenient to group the bit representation
of a field element a ∈ F2m into 4-bit digits as follows,

a = (am−1 . . . a1a0)⇔ a = (An−1 . . . A1A0),

4 J.-L. Beuchat et al.

where Ai, for i = 0, 1, . . . , n − 1, is defined as, Ai =
∑3

j=0 a4i+jx
4i+j . It is

noticed that each 128-bit SSE register can store thirty-two such digits6.
As it will be discussed below, it results convenient to rearrange the n digits

of the field element a into a 2× 16s matrix Idx as,

Idx[2][16s] =
(
An−1 . . . A33 A31 . . . A3 A1

An−2 . . . A32 A30 . . . A2 A0

)
(1)

In order to calculate the product c = a · b we prepare first a 16-entry look-up
table by pre-computing,

TblMul[i]← (i3x3 + i2x
2 + i1x+ i0) · b,

for i = 0, 1, . . . , 15 and where i = (i3i2i1i0)2 is the binary expansion of i. Then,
the polynomial product c = ab can be computed as follows,

ab =
n−1∑
i=0

Aix
4ib =

16s−1∑
i=0

x8i
(
A2i + x4A2i+1

)
b

=
15∑

i=0

s−1∑
j=0

x8i
(
A32j+2i + x4A32j+2i+1

)
x128jb

=
15∑

i=0

s−1∑
j=0

x8i
(
TblMul[A32j+2i] + x4TblMul[A32j+2i+1]

)
x128j (2)

=

 15∑
i=0

s−1∑
j=0

x8(i−16)TblMul[Idx[1][16j + i]]x128j

x128 +

 15∑
i=0

s−1∑
j=0

x8(i−16)x4TblMul[Idx[0][16j + i]]x128j

x128.

Note that in the last equality of Eq. (2) we used the matrix Idx as defined
in Eq. (1), which allows us to recover the digits A2(16j+i) and A2(16j+i)+1 as,

Idx[1][16j + i] = A2(16j+i) and Idx[0][16j + i] = A2(16j+i)+1.

One can compute Eq. (2) as shown in Algorithm 1. It is worth to stress that,

– In step 5, we extract the bits of a in such a way that its digits Ai for
i = 0, . . . , n − 1, are rearranged into a two dimensional array Idx[2][16s] as
described in Eq. (1).

– The shift operations of step 10, namely, x128, x256 . . . x1152, can be performed
at no cost because they are at the beginning of each one of the 128-bit SSE
registers.

6 Note that the v = 128 − (m mod 128) most significant bits of the last SSE register
should be filled with zeroes.

Multicore Implementation of the Tate Pairing 5

Algorithm 1 SSE Implementation of a Right-to-Left Comb Multiplier over F2m .
Input: a, b ∈ F2m .
Output: c = a · b mod f(x) ∈ F2m .
1. for i← 0 to 15 do
2. Compute the binary expansion of i = (i3i2i1i0)2;
3. TblMul[i]← (i3x

3 + i2x
2 + i1x+ i0) · b(x);

4. end for

5. Idx[2][16s]← extractIdx(a);
6. R← 0;

7. for k ← 0 to 1 do
8. for i← 0 to 15 do
9. for j ← 0 to s− 1 do

10. R← R+ TblMul[Idx[k][i+ 16 · j]]x128·j ;
11. end for
12. R← rotRight Byte(R, 1)
13. end for
14. if i = 0 then
15. R← rotLeft bit(R, 4);
16. end if
17. R← rotLeft Byte(R, 16);
18. end for

19. c← R mod f(x);

20. return C;

– In step 12, a 1-byte right rotation is applied over the contents of the 2s-word
accumulator R. This rotation operation is invoked thirty-two times.

– In step 15, a 4-bit left rotation over the 2s-word accumulator R is performed.
This is the only left rotation by four bits included in the algorithm.

– In step 17, a left rotation by 16 bytes must be executed. This rotation is
almost at free cost as it only implies the reassignment of the SSE registers.

– Finally in Step 19, a modular reduction with the polynomial f(x) must be
performed.

It is easy to verify that the computational cost of Algorithm 1 is of (32 + 11)s
XOR operations, 32s queries to the look-up table TblMul, thirty-two 1-byte right
rotations of a 2s-word vector, one 4-bit left rotation of a 2s-word vector, plus
the computational cost of the reduction operation of Step 19.

As a final remark we state that it is straightforward to generalize the multi-
plier of Algorithm 1 so that it can compute field multiplications over finite fields
with characteristic p > 2.

Multiplicative Inverse We compute the multiplicative inverse of an arbitrary
field element a ∈ F2m by implementing the Almost Inverse Algorithm [15, 27],
which is a variant of the binary extended Euclid algorithm.

6 J.-L. Beuchat et al.

2.2 Characteristic Three Fields F3m

Addition and Subtraction In 2002, Galbraith et al. [11] showed how to com-
pute additions of two elements a, b ∈ F3 using 12 AND, OR, XOR and NOT
Boolean functions. That same year, Harrison et al. [17] noted that this operation
could be computed using only 7 OR and XOR logical instructions. This was con-
sidered the minimal number of logical operations for this arithmetic operation
until Kawahara et al. [21] presented in 2008 an expression that only requires 6
logical instructions. However, our experiments, performed on a multicore proces-
sor environment, showed that the expression in [17] consistently yields a shorter
computation time than the one associated to the expression in [21]. We believe
that this may be due to the fact that the formulation in [21], includes a ANDN
instruction7 that in our platform is implemented less efficiently than the logical
set of functions proposed by Harrison et al. which, as it was mentioned above,
only requires OR and XOR logic operations. Hence, we decided to adopt the
expression reported in [17], which is briefly describe next. Each coefficient (trit)
a ∈ F3 can be encoded as a = 2ah + al. The addition of two elements a, b ∈ F3

can then be computed as [17],

t = (al|bh)⊕ (ah|bl), cl = t⊕ (ah|bh), ch = t⊕ (al|bl).

As mentioned by the authors of [17], the order in which the above expression
is evaluated has a major impact in the performance of its implementation in
software. In fact, we use the following equivalent expression for computing c =
a+ b,

t = (al|ah)&(bl|bh), cl = t⊕ (al|bl), ch = t⊕ (ah|bh).

Similarly, subtraction in F3 can be computed using only 7 instructions as,

t = (al|ah)&(bl|bh), cl = t⊕ (al|bh), ch = t⊕ (ah|bl).

Frobenius and Frobenius Inverse Operators Let f(x) be an irreducible
polynomial of degree m over F3. Then, the ternary extension field F3m can be
defined as, F3m ∼= F3[x]/ (f(x)). Let a be an arbitrary element of that field, which
can be written in canonical basis as a =

∑m−1
i=0 aix

i, ai ∈ F3. Assume that the
extension degree m is an integer of the form m = 3u + r, with u ≥ 1 and
r ∈ {0, 1, 2}. Then, the Frobenius operator applied to a consists of computing
c = a3, which can be obtained as [1],

c = a3 mod f(x) = C0 + xmC1 + x2mC2 mod P (x), (3)

where, C0 =
u∑

i=0

aix
3i, C1 =

u+r−1∑
i=1

ai+ux
3i−r, and C2 =

u+r−1∑
i=r

ai+2ux
3i−2r.

One can evaluate Eq. (3) by determining the constants xm and x2m, which
are per-field constants. The Frobenius inverse operator of a is computed by
7 The logical function ANDN is defined in MMX and SSE implementations as
x ANDN y = x&ȳ.

Multicore Implementation of the Tate Pairing 7

determining the unique field element b ∈ F3m such that b3 = a holds. The
element b can be computed as [2],

b =
u−s∑
i=0

a3ix
i + x1/3 ·

u+r−2∑
i=0

a3i+1x
i + x2/3 ·

u−1∑
i=0

a3i+2x
i mod f(x). (4)

where s = 1 if r = 0, and s = 0, otherwise. Eq. (4) allows us to compute the
Frobenius inverse operator by performing two third-length polynomial multipli-
cations with the per-field constants x

1
3 and x

2
3 .

Table 1. Pre-computation look-up table when using the comb method for a ∈ F3m ,
w = 2.

Entry Value

[00] 0
[01] a
[02] ∼ [01]
[10] [01]� 1
[11] [10] + [01]

Entry Value

[12] [10] + [02]
[20] ∼ [10]
[21] ∼ [12]
[22] ∼ [11]

Multiplier We use here the same comb method discussed previously. As we did
in characteristic two, we selected a window size w = 4, which in characteristic
three means that we have to pre-compute a look-up table containing 34 = 81
entries. Due to the fact that almost half of the entries can be obtained by per-
forming one single logical NOT, pre-computing such look-up table requires a
moderate computational effort. As an example, consider the case where we want
to build a look-up table for a given element a ∈ F3m , with w = 2. Then, we have
to pre-compute 32 = 9 entries. Table 1 shows how to obtain those 9 elements,
where ∼ and � stand for the logical negation and left shift operations, respec-
tively. As it can be seen in Table 1, 4 out of 9 entries can be computed using
logical negation only. Besides these operations, we need to compute two F3m

additions, one initialization to zero and one assignation of the element a. In the
case of w = 4, generating the 81-entry look up table requires a computational
effort of 40, 36 and 3 logical negations, field additions and left shift operations,
respectively.

Multiplicative Inverse In order to compute the multiplicative inverse d of a
field element b ∈ F3m , namely, d = b−1 mod P , we used the ternary variant of
the binary extension Euclid algorithm reported in [17].

8 J.-L. Beuchat et al.

2.3 Field Arithmetic Implementation Timings

We present in Table 2 a timing performance comparison of our field arithmetic
library against the timings reported by Hankerson et al. in [16]. 8 In both works,
the libraries were executed on a Intel Core2 processor running at 2.4 GHz. It
is noticed that our multipliers in characteristic two and three are faster than
their counterparts in [16]. However, the field multiplier for 256-bit prime fields
reported in [16], easily outperforms all the other four multipliers listed in Table 2.

Table 2. A comparison of field arithmetic software implementations on an Intel Core2
processor (clock frequency: 2.4 GHz). All timings are reported in µs.

Field Prime/polynomial xp p
√

x Mult

Hankerson et al. [16] Fp256 256-bit prime – – 0.129

Hamming weight 87
F3509 x509 − x477 + x445 + x32 − 1 0.375 0.500 3.208

F21223 x1223 + x255 + 1 0.250 0.208 3.417

This work F3509 x509 − x318 − x191 + x127 + 1 0.375 0.406 1.811

F21223 x1223 + x255 + 1 0.200 0.312 2.266

3 Pairing Computation on Supersingular Curves in
Characteristics Two and Three

In the following, we consider a supersingular elliptic curve E/Fpm (where p = 2
or p = 3) with a distortion map ψ. The point at infinity is denoted by O. Let
` be a large prime factor of N = #E(Fpm), and suppose that the embedding
degree of the curve k is larger than 1 and that there are no points of order `2 in
E(Fpkm). Let fn,P be a family of normalized Fpkm -rational function with divisor
(fn,P) = n(P)− ([n]P)− (n− 1)(O). The modified Tate pairing of order ` is a
non-degenerate and bilinear pairing given by the map

ê : E(Fpm)[`]× E(Fpm)[`] −→ F∗pkm/(F∗pkm)`

(P,Q) 7−→ f`,P (ψ(Q)).

Note that ê(P,Q) is defined up to a coset of (F∗pkm)`. However, F∗pkm/(F∗pkm)` is
cyclic of order ` and isomorphic to the group of `-th roots of unity µ` = {u ∈
F∗pm : u` = 1} ⊆ F∗pkm . Hence, in order to obtain a unique representative, which
is desirable for pairing-based protocols, it suffices to raise f`,P (ψ(Q)) to the
(pkm−1)/`-th power. This operation is often referred to as final exponentiation.
We define the reduced modified Tate pairing as êr(P,Q) = ê(P,Q)(p

km−1)/`.

8 Our library was compiled using the MS Visual Studio 2008SP1 in 64-bit mode, and
it was executed on the Windows XP 64 bit SP2 environment.

Multicore Implementation of the Tate Pairing 9

3.1 Miller’s Algorithm

Miller [23,24] proposed the first iterative approach to compute the function f`,P .
By proving the equality of the divisors, he showed that:

fa+b,P = fa,P · fb,P ·
l[a]P,[b]P

v[a+b]P
,

where l[a]P,[b]P is the equation of the line through [a]P and [b]P (or the tangent
line if [a]P = [b]P), v[a+b]P is the equation of the vertical line through [a+ b]P ,
and f1,P is a constant function (usually, f1,P = 1). We obtain a double-and-add
algorithm for computing the rational function fn,P in blog2 nc iterations. A nice
property of supersingular elliptic curves is that multiplication by p is a relatively
easy operation: it involves only a few Frobenius maps and additions over Fpm

(see for instance [3] for details) and a p-ary expansion of ` seems perfectly suited
to the computation of f`,P (ψ(Q)).

Several researchers focused on shortening the loop of Miller’s algorithm (see
for instance [18,19,30] for a comprehensive bibliography). Barreto et al. [3] intro-
duced the ηT pairing as “an alternative means of computing the Tate pairing on
certain supersingular curves” [26, page 108]. They suggest to compute êr(P,Q)
using an order T ∈ Z that is smaller than `. Their main result is a lemma giving
a method to select T such that ηT (P,Q) is a non-degenerate bilinear pairing [3].
In the case of characteristics two and three, they show that one can and hence
half the number of basic Miller’s iterations by chosing T = pm −N :

ηT (P,Q) =
{

fT,P (ψ(Q)) if T > 0, or
f−T,−P (ψ(Q)) if T < 0.

It is worth noticing that T has a low Hamming weight and the computation of
fT,P (or f−T,−P) requires (m+ 1)/2 multiplications by p and an addition. It is
therefore possible to pre-compute multiples of P by means of Frobenius maps
and to parallelize Miller’s algorithm on several cores. Multiplications over Fpkm

are of course necessary to obtain ê(P,Q) from the partial results computed on
each core.

3.2 Reduced Modified Tate Pairing in Characteristic Three

We consider a supersingular curve E/F3m with embedding degree k = 6 defined
by E : y2 = x3 − x + b, where m is coprime to 6 and b ∈ {−1, 1}. According
to [3, 6], we have:

êr(P,Q) = ηT

([
−µb3

3m−1
2

]
P,Q

) 36m−1
N

,

where µ = 1 when m ≡ 1, 11 (mod 12); in all other cases, µ = −1. There are
several ways to compute the ηT pairing (see for instance [3,7,8]) and the choice
of an algorithm depends on the target architecture. Here, we decided to minimize

10 J.-L. Beuchat et al.

the number of arithmetic operations over F3m and applied the well-known loop
unrolling technique [13] to [7, Algorithm 3] (technical details are provided in
Appendix A). This approach allows us to save several multiplications over F3m

compared to the original algorithm. Final exponentiation is carried out according
to [7, 8].

3.3 Reduced Modified Tate Pairing in Characteristic Two

We follow [6, Algorithm 1] to compute ê(P,Q) on a supersingluar curve E/F2m

with embedding degree k = 4 given by E : y2 + y = x3 + x+ b, where b ∈ {0, 1}.
The reduced modified Tate pairing is defined by [3, 6]:

êr(P,Q) = ηT ([2m]P,Q)
24m−1

N .

Loop unrolling does not allow one to reduce the number of multiplications over
F2m and Miller’s algorithm requires (m−1)/2 iterations which can be parallelized
on several cores9. Final exponentiation consists of raising ê(P,Q) to the exponent
M = 24m−1

N = (22m−1)·(2m+1−ν2(m+1)/2) [3], where ν = (−1)b when m ≡ 1, 7
(mod 8) and ν = (−1)1−b in all other cases. We perform this operation according
to a slightly optimized version of [6, Algorithm 3] (see Appendices B.1 and B.2
for technical details):

– Raising to the (2m + 1)-th power. Raising the outcome of Miller’s al-
gorithm to the

(
22m − 1

)
-th power produces an element U ∈ F24m of order

22m + 1. This property allows one to save a multiplication over F24m when
raising U to the (2m + 1)-th power compared to [6, page 304].

– Raising to the 2
m+1

2 -th power. Beuchat et al. [8] exploited the linearity of
the Frobenius map in order to reduce the cost of successive cubings over F36m .
The same approach can be straightforwardly transposed to characteristic
two: raising an element of F24m to the 2i-th power involves 4i squarings and
at most four additions over F2m .

4 Results and Comparisons

We list in Table 3 the timings achieved by our library for low, medium and high
security levels (66, 89, and 128 bits, respectively), including the performance
obtained when using one, two, and four Intel Core2 processors. Our library
was compiled using the MS Visual Studio 2008SP1 in 64-bit mode, and it was
executed on the Windows XP 64 bit SP2 environment.
9 Shirase et al. propose a loop unrolling technique in reference [28] and claim that

they reduce the computation time by 14.3%. However, they assume that additions
and multiplications by small constants are almost free, and inverse Frobenius maps
over F2m are m times more expensive than Frobenius maps. Such estimates do not
hold in our context (see for instance Table 2) and we did not investigate further the
approach by Shirase et al.

Multicore Implementation of the Tate Pairing 11

For comparison purposes, we also include in Table 3, the performance re-
ported by Hankerson et al. [16], which is the fastest pairing library that we
know of. The work by Grabher et al. [12] is also of interest as it is the only
pairing library preceding this work that reports a multi-core platform imple-
mentation. All the pairing libraries included in Table 3 were implemented on an
Intel Core2 processor. Table 4 shows the timings achieved by our library when
implemented on an Intel core i7 multi-processor platform running at 2.9 GHz.
Finally, in Table 5 we list some of the fastest hardware accelerators for the Tate
pairing reported at low, medium and high security levels.

Table 3. Performance comparison of software implementations for pairings on an Intel
Core2 processor.

Curve
Security # of Freq. Calc.

[bits] cores [GHz] time [ms]

This work E(F397) 66 1 2.6 0.15
E(F397) 66 2 2.6 0.09

E(F3193) 89 1 2.6 0.98

E(F3193) 89 2 2.6 0.55

Hankerson et al. [16] E(Fp256) 128 1 2.4 6.25
E(F3509) 128 1 2.4 13.75

E(F21223) 128 1 2.4 16.25

Grabher et al. [12] E(Fp256) 128 1 2.4 9.71

E(Fp256) 128 2 2.4 6.01

This work E(F3509) 128 1 2.4 7.59

E(F3509) 128 2 2.4 4.31
E(F3509) 128 4 2.4 3.15

E(F21223) 128 1 2.4 11.19

E(F21223) 128 2 2.4 6.72
E(F21223) 128 4 2.4 4.22

Grabher et al. reported in [12] a multicore implementation of the Ate pairing
defined over a Barreto-Naehrig (BN) curve [5], when using a 256-bit prime. Since
the BN curves have a k = 12 embedding degree, this implies a 128-bit security
level. As shown in Table 3, our pairing implementation in characteristic three is
faster than the prime field pairing library reported in [12].

In Table 4 we report a calculation time for the reduced modified Tate pair-
ing of just 1.94 ms and 3.08 ms for characteristics three and two, respectively.
This performance, that was obtained on a two Intel quad-core i7 multi-processor
platform, appears to be the fastest pairing timings yet reported.

As shown in Table 3, our pairing library achieved on an Intel Core2 Duo pro-
cessor at 2.66 GHz, a computation time of 92 µs and 553 µs, respectively [25].
Although our software implementation outperforms several hardware architec-
tures previously reported for low levels of security, when we compare our results
against the ones in [8, 29], we see that there still exists a large gap between
software and hardware pairing implementations for moderate security levels.

12 J.-L. Beuchat et al.

The computation of the reduced modified Tate pairing over F3193 on a Virtex-4
LX FPGA reported in [8] with a medium speed grade, is for instance roughly
fifty times faster than our software timings. Depending on the application, this
speedup may justify the usage of large FPGAs which are now available in servers
and supercomputers such as the SGI Altix 4700 platform.

Table 4. Implementations timings for the reduced modified Tate pairing at the 128-bit
security level on an Intel core i7 processor (clock frequency: 2.9 GHz).

Curve
of Calc.
cores time [ms]

E(F3509) 1 5.50
E(F3509) 2 3.25

E(F3509) 4 2.37
E(F3509) 8 1.94

Curve
of Calc.
cores time [ms]

E(F21223) 1 7.94
E(F21223) 2 4.53

E(F21233) 4 3.13
E(F21223) 8 3.08

Table 5. Some hardware accelerators for the Tate pairing.

Curve
Security

Platform Area
Freq. Calc.

[bits] [MHz] time [ms]

Shu et al. [29] E(F2239) 66 xc4vlx200 29920 slices 100 0.0365

Beuchat et al. [8] E(F397) 66 xc4vlx60-11 18683 slices 179 0.0048

Shu et al. [29] E(F2457) 88 xc4vlx200 58956 slices 100 0.1

Beuchat et al. [8] E(F3193) 89 xc4vlx100-11 47433 slices 167 0.01

Shu et al. [29] E(F2557) 96 xc4vlx200 37931 slices 66 0.6758

Kammler et al. [20] E(Fp256) 128 130 nm CMOS 97 kGates 338 15.8

5 Conclusion

In this work we presented the multi-core implementation of a software library
that is able to compute the reduced modified Tate pairing on supersingular
elliptic curves at a high speed.

The sequential timings reported in this work are significantly faster than the
ones achieved in [16] for pairings computed over characteristics two and three
fields. We would like to interpret these results as a reduction of the gap between
prime fields and binary/ternary fields.

In the light of the results obtained here, one important design question that
surges is: how many cores should be utilized by a given application? As discussed
in the Appendixes, our pairing library successfully parallelize the computation
of Miller’s algorithm. However, if we use n cores for the implementation of the

Multicore Implementation of the Tate Pairing 13

Miller’s algorithm, in order to combine the n partial products generated by the
n parallel sub-loops executed in each core, we are forced to add n − 1 extra
field multiplications over Fpkm . Furthermore, due to the dependencies among
the different operations involved in the the final exponentiation step, this por-
tion of the pairing has to be computed sequentially. As shown in Table 4, these
two factors cause the acceleration achieved by an n-core implementation to be
always less than the ideal n× speedup factor. From Table 4, we can see for in-
stance that the acceleration provided by the eight-core implementation is modest
compared with the timings achieved by the four-core one. On the other hand,
when comparing the timings of the one-core and two-cores implementations, the
acceleration factor is roughly 1.70× for both, characteristics two and three.

Our future work includes the implementation of pairings for large charac-
teristics on ordinary curves and the SSE Implementation of our pairing library
using the built-in carry-less 64-bit Multiplier recently announced by Intel [14].

References

1. O. Ahmadi and F. Rodŕıguez-Henŕıquez. Low complexity cubing and cube root
computation over F3m in standard basis. Cryptology ePrint Archive, Report
2009/070, 2009.

2. P.S.L.M. Barreto. A note on efficient computation of cube roots in characteristic
3. Cryptology ePrint Archive, Report 2004/305, 2004.

3. P.S.L.M. Barreto, S.D. Galbraith, C. Ó hÉigeartaigh, and M. Scott. Efficient pair-
ing computation on supersingular Abelian varieties. Designs, Codes and Cryptog-
raphy, 42:239–271, 2007.

4. P.S.L.M. Barreto, H.Y. Kim, B. Lynn, and M. Scott. Efficient algorithms for
pairing-based cryptosystems. In M. Yung, editor, Advances in Cryptology –
CRYPTO 2002, number 2442 in Lecture Notes in Computer Science, pages 354–
368. Springer, 2002.

5. P.S.L.M. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order.
In B. Preneel and S. Tavares, editors, Selected Areas in Cryptography – SAC 2005,
volume 3897 of Lecture Notes in Computer Science, pages 319–331. Springer, 2006.

6. J.-L. Beuchat, N. Brisebarre, J. Detrey, E. Okamoto, and F. Rodŕıguez-Henŕıquez.
A comparison between hardware accelerators for the modified tate pairing over F2m

and F3m . In S.D. Galbraith and K.G. Paterson, editors, Pairing-Based Cryptog-
raphy – Pairing 2008, number 5209 in Lecture Notes in Computer Science, pages
297–315. Springer, 2008.

7. J.-L. Beuchat, N. Brisebarre, J. Detrey, E. Okamoto, M. Shirase, and T. Takagi.
Algorithms and arithmetic operators for computing the ηT pairing in characteristic
three. IEEE Transactions on Computers, 57(11):1454–1468, November 2008.

8. J.-L. Beuchat, J. Detrey, N. Estibals, E. Okamoto, and F. Rodŕıguez-Henŕıquez.
Hardware accelerator for the Tate pairing in characteristic three based on
Karatsuba-Ofman multipliers. Cryptology ePrint Archive, Report 2009/122, 2009.

9. I. Duursma and H.S. Lee. Tate pairing implementation for hyperelliptic curves
y2 = xp−x+d. In C.S. Laih, editor, Advances in Cryptology – ASIACRYPT 2003,
number 2894 in Lecture Notes in Computer Science, pages 111–123. Springer, 2003.

10. K. Fong, D. Hankerson, J. López, and A. Menezes. Field inversion and point halving
revisited. IEEE Transactions on Computers, 53(8):1047–1059, August 2004.

14 J.-L. Beuchat et al.

11. S.D. Galbraith, K. Harrison, and D. Soldera. Implementing the Tate pairing. In
C. Fieker and D.R. Kohel, editors, Algorithmic Number Theory – ANTS V, number
2369 in Lecture Notes in Computer Science, pages 324–337. Springer, 2002.

12. P. Grabher, J. Großschädl, and D. Page. On software parallel implementation of
cryptographic pairings. In Selected Areas in Cryptography – SAC 2008, number
5381 in Lecture Notes in Computer Science, pages 34–49. Springer, 2008.

13. R. Granger, D. Page, and M. Stam. On small characteristic algebraic tori in
pairing-based cryptography. LMS Journal of Computation and Mathematics, 9:64–
85, March 2006.

14. S. Gueron and M.E. Kounavis. Carry-less multiplication and its usage for com-
puting the GCM mode. Intel Corporation White Paper, May 2009.

15. D. Hankerson, J. López Hernandez, and A.J. Menezes. Software implementation
of elliptic curve cryptography over binary fields. In Ç.K. Koç and C. Paar, editors,
Cryptographic Hardware and Embedded Systems – CHES 2000, number 1965 in
Lecture Notes in Computer Science, pages 1–24. Springer, 2000.

16. D. Hankerson, A. Menezes, and M. Scott. Software Implementation of Pairings,
chapter 12, pages 188–206. Cryptology and Information Security Series. IOS Press,
2009.

17. K. Harrison, D. Page, and N.P. Smart. Software implementation of finite fields
of characteristic three, for use in pairing-based cryptosystems. LMS Journal of
Computation and Mathematics, 5:181–193, November 2002.

18. F. Hess. Pairing lattices. In S.D. Galbraith and K.G. Paterson, editors, Pairing-
Based Cryptography – Pairing 2008, number 5209 in Lecture Notes in Computer
Science, pages 18–38. Springer, 2008.

19. F. Hess, N. Smart, and F. Vercauteren. The Eta pairing revisited. IEEE Transac-
tions on Information Theory, 52(10):4595–4602, October 2006.

20. D. Kammler, D. Zhang, P. Schwabe, H. Scharwaechter, M. Langenberg, D. Auras,
G. Ascheid, R. Leupers, R. Mathar, and H. Meyr. Designing an ASIP for crypto-
graphic pairings over Barreto-Naehrig curves. Cryptology ePrint Archive, Report
2009/056, 2009.

21. Y. Kawahara, K. Aoki, and T. Takagi. Faster implementation of ηT pairing over
GF(3m) using minimum number of logical instructions for GF(3)-addition. In S.D.
Galbraith and K.G. Paterson, editors, Pairing-Based Cryptography – Pairing 2008,
number 5209 in Lecture Notes in Computer Science, pages 282–296. Springer, 2008.

22. J. López and R. Dahab. High-speed software multiplication in F2m . In B.K. Roy
and E. Okamoto, editors, Progress in Cryptology – INDOCRYPT 2000, volume
1977 of Lecture Notes in Computer Science, pages 203–212. Springer, 2000.

23. V.S. Miller. Short programs for functions on curves. Available at
http://crypto.stanford.edu/miller, 1986.

24. V.S. Miller. The Weil pairing, and its efficient calculation. Journal of Cryptology,
17(4):235–261, 2004.

25. S. Mitsunari. A fast implementation of ηT pairing in characteristic three on Intel
Core 2 Duo processor. Cryptology ePrint Archive, Report 2009/032, 2009.

26. C. Ó hÉigeartaigh. Pairing Computation on Hyperelliptic Curves of Genus 2. PhD
thesis, Dublin City University, 2006.

27. R. Schroeppel, H. Orman, S.W. O’Malley, and O. Spatscheck. Fast key exchange
with elliptic curve systems. In D. Coppersmith, editor, Advances in Cryptology –
CRYPTO ’95, Lecture Notes in Computer Science, pages 43–56. Springer, 1995.

28. M. Shirase, T. Takagi, D. Choi, D. Han, and H. Kim. Efficient computation of Eta
pairing over binary field with Vandermonde matrix. ETRI Journal, 31(2):129–139,
April 2009.

Multicore Implementation of the Tate Pairing 15

29. C. Shu, S. Kwon, and K. Gaj. Reconfigurable computing approach for Tate pairing
cryptosystems over binary fields. IEEE Transactions on Computers, 2009. To
appear.

30. F. Vercauteren. Optimal pairings. Cryptology ePrint Archive, Report 2008/096,
2008.

A Reduced Modified Tate Pairing in Characteristic
Three

In the following, we consider the computation of the reduced modified Tate pair-
ing in characteristic three on several cores. Table 6 summarizes the parameters
of the supersingular curve. Noting T ′ = −µbT and P ′ = (xP ′ , yP ′) =

[
3

3m−1
2

]
P ,

we have to compute:

êr(P,Q) = fT ′,P ′(ψ(Q))M

=

lP ′(ψ(Q)) ·

m−1
2∏

j=0

g»
3

m−1
2 −j

–
P ′

(ψ(Q))3
j

M

, (5)

where, for all V ∈ E(F3m)[`], lV is the equation of the line corresponding to
the addition of [µb]V with

[
3

m+1
2

]
V , and gV is the rational function introduced

by Duursma and Lee [9] and having divisor (gV) = 3(V) + ([−3]V) − 4(O).
Expanding everything, we obtain the following expressions:

lP ′(ψ(Q)) = yQσ + λyP ′(xP ′ + xQ − νb− ρ), and

g»
3

m−1
2 −j

–
P ′

(ψ(Q))3
j

= −λy3−j

P ′ y
3j

Q σ −
(
x3−j

P ′ + x3j

Q − νb− ρ
)2

.

It is worth noticing that the Duursma-Lee functions can be pre-computed by
building a table of all cube roots of xP and yP as well as all cubes of xQ and yQ.

Beuchat et al. described an algorithm to compute êr(P,Q) according to
Eq. (5) (see [7, Algorithm 3]). They took advantage of the sparsity of lP ′ and
gV to reduce the cost of the first multiplication over F3m and needed therefore
m−1

2 iterations of Miller’s algorithm to accumulate the remaining products. We
propose to optimize further the algorithm by computing two iterations at a time
and obtain Algorithm 2 for the case where m−1

2 is even. When m−1
2 is odd, one

has to restrict the loop on j from 1 to m−3
4 , and perform the last product by

means of an iteration of the original loop. Thanks to the sparsity of gV , the cost
of a double iteration is of 25 multiplications over F3m , whereas two iterations of
the original loop involve 28 multiplications [7]. The key observation is that the
sparse multiplication over F36m on line 15 requires only 8 multiplications over
F3m . Keeping in mind that our SSE implementation of multiplication over F3m

involves a precomputation step depending on the second operand, we designed
Algorithm 3 where several multiplications over F3m share a common operand
(lines 5 and 6).

16 J.-L. Beuchat et al.

Table 6. Supersingular curves over F3m (reprinted from [8]).

Underlying field F3m , where m is coprime to 6

Curve E : y2 = x3 − x+ b, with b ∈ {−1, 1}

Number of

rational points

N = #E(F3m) = 3m + 1 + µb3(m+1)/2, with

µ =

(
+1 if m ≡ 1, 11 (mod 12), or

−1 if m ≡ 5, 7 (mod 12)

Embedding degree k = 6

ψ : E(F3m)[`] −→ E(F36m)[`] \ E(F3m)[`]

(x, y) 7−→ (ρ− x, yσ)Distortion map

with ρ ∈ F33m and σ ∈ F32m satisfying ρ3 = ρ+ b and σ2 = −1

Tower field F36m = F3m [ρ, σ] ∼= F3m [X,Y]/(X3 −X − b, Y 2 + 1)

Final exponentiation M =
`
33m − 1

´
· (3m + 1) ·

“
3m + 1− µb3(m+1)/2

”

Parameters of

Algorithm 2

λ =

(
+1 if m ≡ 7, 11 (mod 12), or

−1 if m ≡ 1, 5 (mod 12), and

ν =

(
+1 if m ≡ 5, 11 (mod 12), or

−1 if m ≡ 1, 7 (mod 12)

Since lines 9 and 10 of Algorithm 2 do not present dependencies, the pre-
computation of the Duursma-Lee functions can be performed in parallel on two
cores. Then, one can split the execution of Miller’s algorithm (lines 13 to 16)
into several parts that are run concurrently.

B Reduced Modified Tate Pairing in Characteristic Two

Table 7 summarizes the parameters of the supersingular curve considered to
compute êr(P,Q) in characteristic two. Noting T ′ = −νT and P ′ = [−ν2m]P ,
we have:

êr(P,Q) = fT ′,P ′(ψ(Q))M

=

lP ′(ψ(Q)) ·

m−1
2∏

j=0

g»
2

m−1
2 −j

–
P ′

(ψ(Q))2
j

M

, (6)

where, for all V ∈ E(F2m)[`], lV is the equation of the line corresponding to
the addition of [ν]V with

[
2

m+1
2

]
V and gV is the rational function defined over

E(F24m)[`] corresponding to the straight line in doubling V . More precisely, we

Multicore Implementation of the Tate Pairing 17

Algorithm 2 Unrolled loop for computing the reduced modified Tate pairing
in characteristic three when m−1

2 is even.
Input: P,Q ∈ E(F3m)[`].
Output: êr(P,Q) ∈ F∗36m .
1. xP ← 3

√
xP − (ν + 1)b; (1 R, 1 A when m ≡ 5, 11 mod 12)

2. yP ← λ 3
√
yP ; (1 R)

3. yQ ← −λyQ;

4. t← xP + xQ; (1 A)
5. R← λ(yP t− yQσ − yP ρ) · (−t2 + yP yQσ − tρ− ρ2); (6 M, 1 C, 6 A)

6. xP [0]← xP ; yP [0]← yP ;
7. xQ[0]← xQ; yQ[0]← yQ;
8. for j = 1 to m−1

2
do

9. xP [j]← 3
p
xP [j − 1]; xQ[j]← xQ[j − 1]3; (1 R, 1 C)

10. yP [j]← 3
p
yP [j − 1]; yQ[j]← yQ[j − 1]3; (1 R, 1 C)

11. end for

12. for j ← 1 to m−1
4

do
13. t← xP [2j − 1] + xQ[2j − 1]; u← yP [2j − 1]yQ[2j − 1]; (1 M, 1 A)
14. t′ ← xP [2j] + xQ[2j]; u′ ← yP [2j]yQ[2j]; (1 M, 1 A)
15. S ← (−t2 + uσ − tρ− ρ2) · (−t′2 + u′σ − t′ρ− ρ2); (8 M, 13 A)
16. R← R · S; (15 M, 67 A)
17. end for

18. return RM ;

have:(
g»

2
m−1

2 −j

–
P ′

(ψ(Q))

)2j

= (x2−j

P ′ + α) · (x2j

Q + α) + y2−j

P ′ + y2j

Q + β +

(x2−j

P ′ + x2j

Q + α)s+ t, and

lP ′(ψ(Q)) = g»
2

m−1
2

–
P ′

(ψ(Q)) + x2
P ′ + xQ + α+ s.

Algorithm 4 describes the computation of êr(P,Q) according to Eq. (6) (this
algorithm is based on [6, Algorithm 1]). The equations of all straight lines can
be pre-computed by storing all square roots of xP and yP , as well as all squares
of xQ and yQ (lines 12 and 13 that can be computed in parallel on two cores).
Then, one can split the execution of Miller’s algorithm (lines 16 to 20) into
several parts that are run concurrently. We perform the final exponentiation
according to an improved version of [6, Algorithm 3] detailed in the following.

B.1 Raising an Element of Order 22m + 1 to the (2m + 1)-th Power
over F24m

Let F , U ∈ F24m and assume that U = F 22m−1. According to Fermat’s little
theorem, the result of raising to the

(
22m − 1

)
-th power produces an element of

18 J.-L. Beuchat et al.

Algorithm 3 Computation of (−t2 + uσ − tρ− ρ2) · (−t′2 + u′σ − t′ρ− ρ2).
Input: t, u, t′, and u′ ∈ F3m .
Output: W = (−t2 + uσ − tρ− ρ2) · (−t′2 + u′σ − t′ρ− ρ2).
1. a1 ← t+ u; a2 ← t′ + u′; (2 A)
2. a3 ← t+ t′; a4 ← u+ u′; (2 A)
3. m1 ← t · t′; m2 ← u · u′; m3 ← a1 · a2; (3 M)
4. w3 ← m1 +m2 −m3; (2 A)
5. m4 ← m1 ·m1; m5 ← m1 · a3; m6 ← m1 · a4; (3 M)
6. m7 ← a3 · a3; m8 ← a3 · w3; (2 M)
7. w0 ← m4 −m2 + ba3; (2 A)
8. w1 ← m6 +m8; (1 A)
9. w2 ← m5 + a3 + b; (2 A)

10. w4 ← m7 −m1 + 1; (2 A)
11. w5 ← −a4;
12. return w0 + w1σ + w2ρ+ w3σρ+ w4ρ

2 + w5σρ
2;

order 22m + 1, i.e. U22m+1 = 1. Let us write

U = u0 + u1s︸ ︷︷ ︸
U0

+ (u2 + u3s)︸ ︷︷ ︸
U1

t,

where u0, u1, u2, u3 ∈ F2m and U0, U1 ∈ F22m . Since t2
2m

= 1 + t, we have:

U22m+1 = (U0 + U1t)(U0 + U1t)2
2m

= U2
0 + U0U1 + U2

1 s = 1.

Therefore,
u0u2 + u1u3 = u2

0 + u2
1 + u2

3 + 1, and

u0u3 + u1u2 + u1u3 = u2
1 + u2

2.

Let α = 0 when m ≡ 3 (mod 4) and α = 1 when m ≡ 1 (mod 4). Seeing that
s2

m

= s+ 1 and t2
m

= t+ s+ α+ 1, we obtain:

U2m

=

{
(u0 + u1 + u3) + (u1 + u2)s+ (u2 + u3)t+ u3st if α = 1,
(u0 + u1 + u2) + (u1 + u2 + u3)s+ (u2 + u3)t+ u3st if α = 0.

A first solution to compute U2m+1 would be to multiply U2m

by U . There is
however a faster way to raise U to the power of 2m + 1. Defining m0 = u0u1,
m1 = u0u3, m2 = u1u2, and m3 = u2u3, we have:

U2m+1 = (u0u1 + u0u3 + u1u2 + u2
0 + u2

1) +
(u0u2 + u1u3︸ ︷︷ ︸
=u2

0+u2
1+u2

3+1

+u1u2 + u2u3 + u2
2 + u2

3)s+

(u0u3 + u1u2 + u2u3 + u2
2 + u2

3)t+ (u2u3 + u2
2 + u2

3)st
= (m0 +m1 +m2 + (u0 + u1)2) + (m2 +m3 + (u0 + u1 + u2)2 + 1)s+

(m1 +m2 +m3 + (u2 + u3)2)t+ (m3 + (u2 + u3)2)st,

Multicore Implementation of the Tate Pairing 19

Table 7. Supersingular curves over F2m .

Underlying field F2m , where m is an odd integer

Curve E : y2 + y = x3 + x+ b, with b ∈ {0, 1}

Number of
rational points

N = 2m + 1 + ν2(m+1)/2, with ν = (−1)δ and

δ =

(
b if m ≡ 1, 7 (mod 8),

1− b if m ≡ 3, 5 (mod 8),

Embedding degree k = 4

ψ : E(F2m)[`] −→ E(F24m)[`] \ E(F2m)[`]

(x, y) 7−→ (x+ s2, y + sx+ t)Distortion map

with s and t ∈ F24m satisfying s2 = s+ 1 and t2 = t+ s

Tower field F24m = F2m [s, t] ∼= F2m [X,Y]/(X2 +X + 1, Y 2 + Y +X)

Final exponentiation M =
`
22m − 1

´
·
“
2m + 1− ν2(m+1)/2

”

Parameters of
Algorithm 4

α =

(
0 if m ≡ 3 (mod 4), or

1 if m ≡ 1 (mod 4), and

β =

(
b if m ≡ 1, 3 (mod 8), or

1− b if m ≡ 5, 7 (mod 8)

when α = 1, and

U2m+1 = (u0u2 + u1u3︸ ︷︷ ︸
=u2

0+u2
1+u2

3+1

+u0u1 + u1u2 + u2
0 + u2

1) +

(u0u2 + u1u3︸ ︷︷ ︸
=u2

0+u2
1+u2

3+1

+u0u3 + u2u3 + u2
2 + u2

3)s+

(u0u3 + u1u2)t+ (u2u3 + u2
2 + u2

3)st
= (m0 +m2 + u2

3 + 1) + (m1 +m3 + (u0 + u1 + u2)2 + 1)s+
(m1 +m2)t+ (m3 + u2

2 + u2
3)st,

when α = 0. Thus, computing U2m+1 involves only four multiplications, three
squarings, and eleven additions over F2m (Algorithm 5). This approach allows
us to save one multiplication over F2m compared to [6].

B.2 Computing U2
m+1

2 over F24m

Let U = u0 + u1s + u2t + u3st ∈ F24m . Noting that s2
i

= s + i and t2
i

=
t + is + b i mod 4

2 c, we obtain the following formulae for U2i

, depending on the

20 J.-L. Beuchat et al.

Algorithm 4 Computation of the reduced modified Tate pairing in character-
istic two.
Input: P , Q ∈ F2m [`].
Output: êr(P,Q) ∈ F∗24m .
1. xP ← xP + 1; (1 XOR)
2. yP ← xP + yP + α+ δ̄; (α+ δ̄ XOR, 1 A)

3. u← xP + α; v ← xQ + α (2α XOR)
4. g0 ← u · v + yP + yQ + β; (1 M, 2 A, β XOR)
5. g1 ← u+ xQ; g2 ← v + x2

P ; (1 S, 2 A)
6. G← g0 + g1s+ t;
7. L← (g0 + g2) + (g1 + 1)s+ t; (1 A, 1 XOR)
8. F ← L ·G; (2 M, 1 S, 5 A, 2 XOR)

9. xP [0]← xP ; yP [0]← yP ;
10. xQ[0]← xQ; yQ[0]← yQ;
11. for j = 1 to m−1

2
do

12. xP [j]←
p
xP [j − 1]; xQ[i]← xQ[i− 1]2; (1 R, 1 S)

13. yP [j]←
p
yP [j − 1]; yQ[i]← yQ[i− 1]2; (1 R, 1 S)

14. end for

15. for j = 1 to m−1
2

do
16. u← xP [j] + α; v ← xQ[j] + α (2α XOR)
17. g0 ← u · v + yP [j] + yQ[j] + β; (1 M, 2 A, β XOR)
18. g1 ← u+ xQ[j]; (1 A)
19. G← g0 + g1s+ t;
20. F ← F ·G; (6 M, 14 A)
21. end for

22. return FM ;

value of i modulo 4:

U2i

=

u2i

0 + u2i

1 s+ u2i

2 t+ u2i

3 st when i ≡ 0 (mod 4),

(u0 + u1 + u3)2
i

+(u1 + u2)2
i

s+ (u2 + u3)2
i

t+ u2i

3 st when i ≡ 1 (mod 4),
(u0 + u2)2

i

+ (u1 + u3)2
i

s+ u2i

2 t+ u2i

3 st when i ≡ 2 (mod 4),
(u0 + u1 + u2)2

i

+ (u1 + u2 + u3)2
i

s

+(u2 + u3)2
i

t+ u2i

3 st when i ≡ 3 (mod 4).

According to the value of (m+ 1)/2 mod 4, the computation of U2
m+1

2 requires
2m+ 2 squarings and at most four additions over F2m .

Multicore Implementation of the Tate Pairing 21

Algorithm 5 Computation of U2m+1 over F24m , where U is an element of order
22m + 1.
Input: U = u0 + u1s+ u2t+ u3st ∈ F24m with U22m+1 = 1.
Output: V = U2m+1.
1. m0 ← u0 · u1; m1 ← u0 · u3; m2 ← u1 · u2; m3 ← u2 · u3; (4 M)
2. a0 ← u0 + u1; a1 ← a0 + u2; (2 A)
3. s1 ← a2

1; (1 S)
4. if α = 1 then
5. a2 ← u2 + u3; a3 ← m1 +m2; (2 A)
6. s0 ← a2

0; s2 ← a2
2; (2 S)

7. v3 ← m3 + s2; (1 A)
8. v2 ← v3 + a3; (1 A)
9. v1 ← m2 +m3 + s1 + 1; (3 A)

10. v0 ← m0 + a3 + s0; (2 A)
11. else
12. s0 ← u2

2; s2 ← u2
3; (2 S)

13. v0 ← m0 +m2 + s2 + 1; (3 A)
14. v1 ← m1 +m3 + s1 + 1; (3 A)
15. v2 ← m1 +m2; (1 A)
16. v3 ← m3 + s0 + s2; (2 A)
17. end if
18. Return v0 + v1s+ v2t+ v3st;

