
Enabling Public Verifiability and Data Dynamics

for Storage Security in Cloud Computing

Qian Wang1, Cong Wang1, Jin Li1, Kui Ren1, and Wenjing Lou2

1 Illinois Institute of Technology, Chicago IL 60616, USA,
{qwang,cwang,jin.li,kren}@ece.iit.edu

2 Worcester Polytechnic Institute, Worcester MA 01609, USA,
{wjlou}@ece.wpi.edu

Abstract. Cloud Computing has been envisioned as the next-generation
architecture of IT Enterprise. It moves the application software and
databases to the centralized large data centers, where the management of
the data and services may not be fully trustworthy. This unique paradigm
brings about many new security challenges, which have not been well un-
derstood. This work studies the problem of ensuring the integrity of data
storage in Cloud Computing. In particular, we consider the task of allow-
ing a third party auditor (TPA), on behalf of the cloud client, to verify
the integrity of the dynamic data stored in the cloud. The introduc-
tion of TPA eliminates the involvement of client through the auditing of
whether his data stored in the cloud is indeed intact, which can be impor-
tant in achieving economies of scale for Cloud Computing. The support
for data dynamics via the most general forms of data operation, such as
block modification, insertion and deletion, is also a significant step to-
ward practicality, since services in Cloud Computing are not limited to
archive or backup data only. While prior works on ensuring remote data
integrity often lacks the support of either public verifiability or dynamic
data operations, this paper achieves both. We first identify the difficulties
and potential security problems of direct extensions with fully dynamic
data updates from prior works and then show how to construct an el-
egant verification scheme for seamless integration of these two salient
features in our protocol design. In particular, to achieve efficient data
dynamics, we improve the Proof of Retrievability model [1] by manip-
ulating the classic Merkle Hash Tree (MHT) construction for block tag
authentication. Extensive security and performance analysis show that
the proposed scheme is highly efficient and provably secure.

1 Introduction

Several trends are opening up the era of Cloud Computing, which is an Internet-
based development and use of computer technology. The ever cheaper and more
powerful processors, together with the “software as a service” (SaaS) computing
architecture, are transforming data centers into pools of computing service on a
huge scale. Meanwhile, the increasing network bandwidth and reliable yet flexible

2

network connections make it even possible that clients can now subscribe high
quality services from data and software that reside solely on remote data centers.

Although envisioned as a promising service platform for the Internet, this
new data storage paradigm in “Cloud” brings about many challenging design
issues which have profound influence on the security and performance of the
overall system. One of the biggest concerns with cloud data storage is that of
data integrity verification at untrusted servers. For example, the storage service
provider, which experiences Byzantine failures occasionally, may decide to hide
the data errors from the clients for the benefit of their own. What is more serious
is that for saving money and storage space the service provider might neglect to
keep or deliberately delete rarely accessed data files which belong to an ordinary
client. Consider the large size of the outsourced electronic data and the client’s
constrained resource capability, the core of the problem can be generalized as how
can the client find an efficient way to perform periodical integrity verifications
without the local copy of data files.

In order to solve this problem, many schemes are proposed under different
systems and security models [1–10]. In all these works, great efforts are made to
design solutions that meet various requirements: high scheme efficiency, stateless
verification, unbounded use of queries and retrievability of data, etc. Considering
the role of the verifier in the model, all the schemes presented before fall into
two categories: private verifiability and public verifiability. Although schemes
with private verifiability can achieve higher scheme efficiency, public verifiability
allows anyone, not just the client (data owner), to challenge the cloud server for
correctness of data storage while keeping no private information. Then, clients
are able to delegate the evaluation of the service performance to an independent
third party auditor (TPA), without devotion of their computation resources. In
the cloud, the clients themselves are unreliable or cannot afford the overhead of
performing frequent integrity checks. Thus, for practical use, it seems more ratio-
nal to equip the verification protocol with public verifiability, which is expected
to play a more important role in achieving economies of scale for Cloud Com-
puting. Moreover, for efficiency consideration, the outsourced data themselves
should not be required by the verifier for the verification purpose.

Another major concern among previous designs is that of supporting dynamic
data operation for cloud data storage applications. In Cloud Computing, the re-
motely stored electronic data might not only be accessed but also updated by the
clients, e.g., through block modification, deletion and insertion. Unfortunately,
the state-of-the-art in the context of remote data storage mainly focus on static
data files and the importance of this dynamic data updates has received limited
attention in the data possession applications so far [1–4,6,9,11,12]. Moreover, as
will be shown later, the direct extension of the current provable data possession
(PDP) [2] or proof of retrievability (PoR) [1,3] schemes to support data dynam-
ics may lead to security loopholes. Although there are many difficulties faced by
researchers, it is well believed that supporting dynamic data operation can be of
vital importance to the practical application of storage outsourcing services. In
view of the key role of public verifiability and the supporting of data dynamics

3

for cloud data storage, in this paper we present a framework and an efficient
construction for seamless integration of these two components in our protocol
design. Our contribution can be summarized as follows: (1) We propose a general
formal PoR model with public verifiability for cloud data storage, in which block-
less verification is achieved; (2) We equip the proposed PoR construction with
the function of supporting for fully dynamic data operations, especially to sup-
port block insertion, which is missing in most existing schemes; (3) We prove the
security of our proposed construction and justify the performance of our scheme
through concrete implementation and comparisons with the state-of-the-art.

1.1 Related Work

Recently, much of growing interest has been pursued in the context of remotely
stored data verification [1–9, 11, 13–15]. Ateniese et al. [2] define the “provable
data possession” (PDP) model for ensuring possession of files on untrusted stor-
ages. In their scheme, they utilize RSA-based homomorphic tags for auditing
outsourced data, thus can provide public verifiability. However, Ateniese et al.

do not consider the case of dynamic data storage, and the direct extension of
their scheme from static data storage to dynamic case brings many design and
security problems. In their subsequent work [11], Ateniese et al. propose a dy-
namic version of the prior PDP scheme. However, the system imposes a priori
bound on the number of queries and does not support fully dynamic data oper-
ations, i.e., it only allows very basic block operations with limited functionality
and block insertions cannot be supported. In [13], Wang et al. consider dynamic
data storage in distributed scenario, and the proposed challenge-response proto-
col can both determine the data correctness and locate possible errors. Similar
to [11], they only consider partial support for dynamic data operation. Juels
et al. [3] describe a “proof of retrievability” (PoR) model and give a more rig-
orous proof of their scheme. In this model, spot-checking and error-correcting
codes are used to ensure both “possession” and “retrievability” of data files on
archive service systems. Specifically, some special blocks called “sentinels” are
randomly embedded into the data file F for detection purpose and F is further
encrypted to protect the positions of these special blocks. However, like [11], the
number of queries a client can perform is also a fixed priori and the introduc-
tion of pre-computed “sentinels” prevents the development of realizing dynamic
data updates. In addition, public verifiability is not supported in their scheme.
Shacham et al. [1] design an improved PoR scheme with full proofs of security
in the security model defined in [3]. Like the construction in [2], they use pub-
licly verifiable homomorphic authenticators built from BLS signatures [16] and
provably secure in the random oracle model. Based on the BLS construction,
public retrievability is achieved and the proofs can be aggregated into a small
authenticator value. Still the authors only consider static data files. Erway et

al. [14] was the first to explore constructions for dynamic provable data posses-
sion. They extend the PDP model in [2] to support provable updates to stored
data files using rank-based authenticated skip lists. This scheme is essentially a
fully dynamic version of the PDP solution. In particular, to support updates,

4

Data Flow Cloud Service ProviderClients CloudStorageServersS ecurityM essageFl ow Security Message Flow
SecurityMessage FlowThird PartyA uditor

Fig. 1: Cloud data storage architecture

especially for block insertion, they try to eliminate the index information in
the “tag” computation in Ateniese’s PDP model [2]. To achieve this, before the
verification procedure, they employ authenticated skip list data structure to au-
thenticate the tag information of challenged or updated blocks first. However,
the efficiency of their scheme remains in question. It can be seen that while ex-
isting schemes are proposed to aiming at providing integrity verification under
different data storage systems, the problem of supporting both public verifiabil-
ity and data dynamics has not been fully addressed. How to achieve a secure
and efficient design to seamlessly integrate these two important components for
data storage service remains an open challenging task in cloud computing.

Organization. The rest of the paper is organized as follows. In section 2,
we define the system model, security model and our goal. Then, we present our
scheme in section 3 and provide security analysis in section 4. We further analyze
the experiment results and show the practicality of our schemes in section 5.
Finally, we conclude in section 6.

2 Problem Statement

2.1 System Model

A representative network architecture for cloud data storage is illustrated in
Fig. 1. Three different network entities can be identified as follows: Client : an
entity, which has large data files to be stored in the cloud and relies on the
cloud for data maintenance and computation, can be either individual consumers
or organizations; Cloud Storage Server (CSS): an entity, which is managed by
Cloud Service Provider (CSP), has significant storage space and computation
resource to maintain clients’ data; Third Party Auditor (TPA): a TPA, which
has expertise and capabilities that clients do not have, is trusted to assess and
expose risk of cloud storage services on behalf of the clients upon request.

In the cloud paradigm, by putting the large data files on the remote servers,
the clients can be relieved of the burden of storage and computation. As clients
no longer possess their data locally, it is of critical importance for the clients
to ensure that their data are being correctly stored and maintained. That is,

5

clients should be equipped with certain security means so that they can peri-
odically verify the correctness of the remote data even without the existence
of local copies. In case that clients do not necessarily have the time, feasibility
or resources to monitor their data, they can delegate the monitoring task to a
trusted TPA. In this paper, we only consider verification schemes with public
verifiability: any TPA in possession of the public key can act as a verifier. We
assume that TPA is unbiased while the server is untrusted. Note that we don’t
address the issue of data privacy in this paper, as the topic of data privacy in
Cloud Computing is orthogonal to the problem we study here. For application
purposes, the clients may interact with the cloud servers via CSP to access or
retrieve their pre-stored data. More importantly, in practical scenarios the client
may frequently perform block-level operations on the data files. The most general
forms of these operations we consider in this paper are modification, insertion,
and deletion.

2.2 Security Model

Shacham and Waters propose a security model for PoR system in [1]. Generally,
the checking scheme is secure if (i) there exists no polynomial-time algorithm
that can cheat the verifier with non-negligible probability; (ii) there exists a
polynomial-time extractor that can recover the original data files by carrying out
multiple challenges-responses. Under the definition of this PoR system, the client
can periodically challenge the storage server to ensure the correctness of the
cloud data and the original files can be recovered by interacting with the server.
The authors in [1] also define the correctness and soundness of PoR scheme:
the scheme is correct if the verification algorithm accepts when interacting with
the valid prover (e.g., the server returns a valid response) and it is sound if any
cheating server that convinces the client it is storing the data file is actually
storing that file. Note that in the “game” between the adversary and the client,
the adversary has full access to the information stored in the server, i.e., the
adversary can play the part of the prover (server). In the verification process,
the adversary’s goal is to cheat the client successfully, i.e., trying to generate
valid responses and pass the data verification without being detected.

Our security model has subtle but crucial difference from that of the original
PoRs in the verification process. Note that the original PoR schemes [1,3,4,15] do
not consider dynamic data operations and the block insert cannot be supported
at all. This is because the construction of the signatures is involved with the file
index information i. Thus, once a file block is inserted, the computation overhead
is unacceptable since the signatures of all the following file blocks should be re-
computed with the new indexes. To deal with this limitation, we remove the index
information i in generating the signatures and use H(mi) as the tag for block
mi (see section 3.3) instead of H(name||i) [1] or h(v||i) [3], so individual data
operation on any file block will not affect the others. Recall that H(name||i)
or h(v||i) should be generated by the client in the verification process [1, 2].
However, in our new construction the client without the data information has
no capability to calculateH(mi). In order to successfully perform the verification

6

x1 x2

hc

h(x1) h(x2)

x3 x4

hd

h(x3) h(x4)

x5 x6

he

h(x5) h(x6)

x7 x8

hf

h(x7) h(x8)

ha hb

Root
hr

A B

C D E F

: the sequence of access to the ordered set of leaves

Fig. 2: Merkle hash tree authentication of data elements. We treat the leaf nodes
h(x1), . . . , h(xn) as the left-to-right sequence.

while achieving blockless, the server should take over the job of computingH(mi)
and then return it to the prover. The consequence of this variance will lead to
a serious problem: it will give the adversary more opportunities to cheat the
prover by manipulating H(mi) or mi. Due to this construction, our security
model differs from that of the original PoR in both the verification and the data
updating process. Specifically, in our scheme tags should be authenticated in
each protocol execution other than calculated or pre-stored by the verifier (The
details will be shown in section 3). Note that we will use server and prover (or
client, TPA and verifier) interchangeably in this paper.

2.3 Design Goals

Our design goals can be summarized as the following: (1) Public verification for
storage correctness assurance: to allow anyone, not just the clients who originally
stored the file on cloud servers, to have the capability to verify the correctness
of the stored data on demand; (2) Dynamic data operation support: to allow
the clients to perform block-level operations on the data files while maintaining
the same level of data correctness assurance. The design should be as efficient
as possible so as to ensure the seamless integration of public verifiability and
dynamic data operation support; (3) Blockless verification: no challenged file
blocks should be retrieved by the verifier (e.g., TPA) during verification process
for both efficiency and security concerns. (4) Stateless verification: to eliminate
the need for state information maintenance at the verifier side between audits
throughout the long term of data storage.

7

3 The Proposed Scheme

3.1 Notation and Preliminaries

Bilinear Map. A bilinear map is a map e : G × G → GT , where G is a Gap
Diffie-Hellman (GDH) group and GT is another multiplicative cyclic group of
prime order p with the following properties [16]: (i) Computable: there exists an
efficiently computable algorithm for computing e; (ii) Bilinear: for all h1, h2 ∈ G
and a, b ∈ Zp, e(h

a
1 , h

b
2) = e(h1, h2)

ab; (iii) Non-degenerate: e(g, g) 6= 1, where g
is a generator of G.
Merkle Hash Tree. A Merkle Hash Tree (MHT) is a well-studied authenti-
cation structure [17], which is intended to efficiently and securely prove that
a set of elements are undamaged and unaltered. It is constructed as a binary
tree where the leaves in the MHT are the hashes of authentic data values. Fig.
2 depicts an example of authentication. The verifier with the authentic hr re-
quests for {x2, x7} and requires the authentication of the received blocks. The
prover provides the verifier with the auxiliary authentication information (AAI)
Ω2 =< h(x1), hd > and Ω7 =< h(x8), he >. The verifier can then verify x2 and
x7 by first computing h(x2), h(x7), hc = h(h(x1)||h(x2))), hf = h(h(x7)||h(x8))),
ha = h(hc||hd), hb = h(he||hf) and hr = h(ha||hb), and then checking if the
calculated hr is the same as the authentic one. MHT is commonly used to au-
thenticate the values of data blocks. However, in this paper we further employ
MHT to authenticate both the values and the positions of data blocks. We treat
the leaf nodes as the left-to-right sequence, so any leaf node can be uniquely
determined by following this sequence and the way of computing the root in
MHT.

3.2 Definition

(pk, sk)← KeyGen(1k). This probabilistic algorithm is run by the client. It takes

as input security parameter 1k, and returns public key pk and private key sk.

(Φ, sigsk(H(R)))← SigGen(sk, F). This algorithm is run by the client. It takes

as input private key sk and a file F which is an ordered collection of blocks {mi},
and outputs the signature set Φ, which is an ordered collection of signatures {σi}
on {mi}. It also outputs metadata-the signature sigsk(H(R)) of the root R of a

Merkle hash tree. In our construction, the leaf nodes of the Merkle hash tree are

hashes of H(mi).

(P) ← GenProof(F,Φ, chal). This algorithm is run by the server. It takes as

input a file F , its signatures Φ, and a challenge chal. It outputs a data integrity

proof P for the blocks specified by chal.

{TRUE,FALSE} ← V erifyProof(pk, chal, P). This algorithm can be run by

either the client or the third party auditor upon receipt of the proof P . It takes

as input the public key pk, the challenge chal, and the proof P returned from

the server, and outputs TRUE if the integrity of the file is verified as correct,

or FALSE otherwise.

8

(F ′, Φ′, Pupdate)← ExecUpdate(F,Φ, update). This algorithm is run by the server.

It takes as input a file F , its signatures Φ, and a data operation request “update”
from client. It outputs an updated file F ′, updated signatures Φ′ and a proof

Pupdate for the operation.

{(TRUE, sigsk(H(R′))), FALSE} ← V erifyUpdate(pk, update, Pupdate). This

algorithm is run by the client. It takes as input public key pk, the signature

sigsk(H(R)), an operation request “update”, and the proof Pupdate from server.

If the verification successes, it outputs a signature sigsk(H(R′)) for the new root

R′, or FALSE otherwise.

3.3 Our Construction

Given the above discussion, in our construction, we use BLS signature [16] as
a basis to design the system with data dynamics support. As will be shown,
the schemes designed under BLS construction can also be implemented in RSA
construction. In the discussion of section 3.4, we will show that direct extensions
of previous work [1,2] have security problems and we believe that protocol design
for supporting dynamic data operation is a major challenging task for cloud
storage systems.

Now we start to present the main idea behind our scheme. As in the previous
PoR systems [1,3], we assume the client encodes the raw data file F̃ into F using
Reed-Solomon codes and divides the encoded file F into n blocks m1, . . . ,mn

3,
where mi ∈ Zp and p is a large prime. Let e : G × G → GT be a bilinear map,
with a hash function H : {0, 1}∗ → G, viewed as a random oracle [1]. Let g be
the generator of G. h is a cryptographic hash function. The procedure of our
protocol execution is as follows:

� Setup: The client’s public key and private key are generated by invoking
KeyGen(·). By running SigGen(·), the raw data file F is pre-processed and the
homomorphic authenticators together with metadata are produced.

KeyGen(1k). The client generates a random signing key pair (spk, ssk). Choose
a random α← Zp and compute v ← gα. The secret key is sk = (α, ssk) and the
public key is pk = (v, spk).

SigGen(sk, F). Given F = (m1, . . . ,mn), the client chooses a random element
u← G. Let t = name||n||u||SSigssk(name||n||u) be the file tag for F . Then the
client computes signature σi for each block mi (i = 1, . . . , n) as σi ← (H(mi) ·
umi)α. Denote the set of signatures by Φ = {σi}, 1 ≤ i ≤ n. The client then
generates a root R based on the construction of Merkle Hash Tree (MHT),
where the leave nodes of the tree are an ordered set of BLS hashes of “file tags”
H(mi) (i = 1, . . . , n). Next, the client signs the root R under the private key α:
sigsk(H(R)) ← (H(R))α. The client sends {F, t, Φ, sigsk(H(R))} to the server
and deletes {F,Φ, sigsk(H(R))} from its local storage.

� Default Integrity Verification: The client or the third party, e.g., TPA,

3 We assume these blocks are distinct with each other and a systematic code is used
for encoding.

9

TPA CSS

1. Generate a random
set {(i, νi)}i∈I ;

{(i,νi)}i∈I
−−−−−−−−−−−−−−−→
challenge request chal

2. Compute µ =
∑

i
νimi;

3. Compute σ =
∏

i
σ

νi
i ;

{µ,σ,{H(mi),Ωi}i∈I ,sigsk(H(R))}
←−−−−−−−−−−−−−−−−−−−−−−−

Integrity proof P

4. Compute R using
{H(mi), Ωi}i∈I ;

5. Verify sigsk(H(R))
and output FALSE if fail;

6. Verify {mi}i∈I .

Fig. 3: Protocols for Default Integrity Verification

can verify the integrity of the outsourced data by challenging the server. Before
challenging, the TPA first use spk to verify the signature on t. If the verification
fails, reject by emitting FALSE ; otherwise, recover u. To generate the message
“chal”, the TPA (verifier) picks a random c-element subset I = {s1, . . . , sc} of set
[1, n], where we assume s1 ≤ · · · ≤ sc. For each i ∈ I the TPA chooses a random
element νi ← Zp. The message “chal” specifies the positions of the blocks to be
checked in this challenge phase. The verifier sends the chal {(i, νi)}s1≤i≤sc

to
the prover (server).

GenProof(F,Φ, chal). Upon receiving the challenge chal = {(i, νi)}s1≤i≤sc
, the

server computes

µ =

sc∑

i=s1

νimi ∈ Zp and σ =

sc∏

i=s1

σνi

i ∈ G.

In addition, the prover will also provide the verifier with a small amount of aux-
iliary information {Ωi}s1≤i≤sc

, which are the node siblings on the path from the
leaves {h(H(mi))}s1≤i≤sc

to the root R of the MHT. The prover responds the
verifier with proof P = {µ, σ, {H(mi), Ωi}s1≤i≤sc

, sigsk(H(R))}.

V erifyProof(pk, chal, P). Upon receiving the responses from the prover, the
verifier generates rootR using {H(mi), Ωi}s1≤i≤sc

and authenticates it by check-

ing e(sigsk(H(R)), g)
?
= e(H(R), gα). If the authentication fails, the verifier re-

jects by emitting FALSE. Otherwise, the verifier checks

e(σ, g)
?
= e(

sc∏

i=s1

H(mi)
νi · uµ, v).

If so, output TRUE; otherwise FALSE. The protocol is illustrated in Fig. 3.

� Dynamic Data Operation with Integrity Assurance: Now we show how
our scheme can explicitly and efficiently handle fully dynamic data operations

10

Client CSS

1. Generate σ′
i = (H(m′

i) · u
m′

i)α;
(M(I),i,m′

i
,σ′

i
)

−−−−−−−−−−−−−−−→
update request update

2. Update F and
compute R′.

(Ωi,H(mi),sigsk(H(R)),R′)
←−−−−−−−−−−−−−−−−−−

update proof Pupdate

3. Compute R using
{H(mi), Ωi};

4. Verify sigsk(H(R)).
Output FALSE if fail.

5. Compute Rnew using
{Ωi, H(m′

i)}. Verify
update by checking

Rnew
?
= R′. Sign R′ if succeed.

sigsk(H(R′))
−−−−−−−−→ 6. Update R’s signature.

Fig. 4: The protocol for provable data update (Modification and Insertion)

including data modification (M), data insertion (I) and data deletion (D) for
cloud data storage. Note that in the following descriptions for the protocol design
of dynamic operation, we assume that the file F and the signature Φ have already
been generated and properly stored at server. The root metadata R has been
signed by the client and stored at the cloud server, so that anyone who has the
client’s public key can challenge the correctness of data storage.

-Data Modification : We start from data modification, which is one of the
most frequently used operations in cloud data storage. A basic data modification
operation refers to the replacement of specified blocks with new ones.

Suppose the client wants to modify the i-th block mi to m′
i. The protocol

procedures are described in Fig. 4. At start, based on the new block m′
i, the

client generates the corresponding signature σ′
i = (H(m′

i) ·u
m′

i)α. Then, he con-
structs an update request message “update = (M, i,m′

i, σ
′
i)” and sends to the

server, whereM denotes the modification operation. Upon receiving the request,
the server runs ExecUpdate(F,Φ, update). Specifically, the server (i) replaces the
blockmi with m′

i and outputs F ′; (ii) replaces the σi with σ′
i and outputs Φ′; (iii)

replaces H(mi) with H(m′
i) in the Merkle hash tree construction and generates

the new root R′ (see the example in Fig. 5). Finally, the server responses the
client with a proof for this operation, Pupdate = (Ωi, H(mi), sigsk(H(R)), R′),
where Ωi is the AAI for authentication of mi. After receiving the proof for modi-
fication operation from server, the client first generates rootR using {Ωi, H(mi)}

and authenticates the AAI or R by checking e(sigsk(H(R)), g)
?
= e(H(R), gα).

If it is not true, output FALSE, otherwise the client can now check whether the
server has performed the modification as required or not, by further computing
the new root value using {Ωi, H(m′

i)} and comparing it with R′. If it is not true,
output FALSE, otherwise output TRUE. Then, the client signs the new root
metadata R′ by sigsk(H(R′)) and sends it to the server for update.

11

h(n1) h(n2) h(n3) h(n4)

ha hb

Roothr

A B

h(n1) h(n3) h(n4)

h'a hb

Root'h’r

A B

h(n’2)

h(n2) is replaced by h(n’2)

: the sequence of access to the ordered set of leaves

Fig. 5: Example of MHT update under block modification operation. Here, ni

and n′
i are used to denote H(mi) and H(m′

i), respectively.

h(n1) h(n2) h(n3) h(n4)

ha hb

Roothr

A B

n3

h(n1) hc h(n3) h(n4)

h'a hb

Root'h’r

A B

h(n*)h(n2)

C

Insert h(n*) after h(n2)

: the sequence of access to the ordered set of leaves

Fig. 6: Example of MHT update under block insertion operation. Here, ni and
n∗ are used to denote H(mi) and H(m∗), respectively.

hc hd he hf

ha hb

Roothr

A B
Delete h(n5)

: the sequence of access to the ordered set of leaves

h(n1) h(n2) h(n3) h(n4) h(n5) h(n6) h(n7) h(n8)

hc hd hf

ha h’b

Root’h’r

A B

h(n1) h(n2) h(n3) h(n4)

h(n6)

h(n7) h(n8)

Fig. 7: Example of MHT update under block deletion operation.

-Data Insertion : Compared to data modification, which does not change
the logic structure of client’s data file, another general form of data operation,
data insertion, refers to inserting new blocks after some specified positions in
the data file F .

Suppose the client wants to insert block m∗ after the i-th block mi. The
protocol procedures are similar to the data modification case (see Fig. 4, now
m′

i can be seen as m∗). At start, based on m∗ the client generates the cor-
responding signature σ∗ = (H(m∗) · um∗

)α. Then, he constructs an update

request message “update = (I, i,m∗, σ∗)” and sends to the server, where I
denotes the insertion operation. Upon receiving the request, the server runs
ExecUpdate(F,Φ, update). Specifically, the server (i) stores m∗ and adds a leaf
h(H(m∗)) “after” leaf h(H(mi)) in the Merkle hash tree and outputs F ′; (ii)

12

adds the σ∗ into the signature set and outputs Φ′; (iii) generates the new root R′

based on the updated Merkle hash tree. Finally, the server responses the client
with a proof for this operation, Pupdate = (Ωi, H(mi), sigsk(H(R)), R′), where
Ωi is the AAI for authentication of mi in the old tree. An example of block
insertion is illustrated in Fig. 6, to insert h(H(m∗)) after leaf node h(H(m2)),
only node h(H(m∗)) and an internal node C is added to the original tree, where
hc = h(h(H(m2))||h(H(m∗))). After receiving the proof for insert operation from
server, the client first generates root R using {Ωi, H(mi)} and authenticates the
AAI or R by checking if e(sigsk(H(R)), g) = e(H(R), gα). If it is not true, output
FALSE, otherwise the client can now check whether the server has performed
the insertion as required or not, by further computing the new root value using
{Ωi, H(mi), H(m∗)} and comparing it with R′. If it is not true, output FALSE,
otherwise output TRUE. Then, the client signs the new root metadata R′ by
sigsk(H(R′)) and sends it to the server for update.

-Data Deletion : Data deletion is just the opposite operation of data insertion.
For single block deletion, it refers to deleting the specified block and moving
all the latter blocks one block forward. Suppose the server receives the update
request for deleting block mi, it will delete mi from its storage space, delete the
leaf node h(H(mi)) in the MHT and generate the new root metadata R′ (see
the example in Fig. 7). The details of the protocol procedures are similar to that
of data modification and insertion, which are thus omitted here.

� The Enhancement for Multi-client Verification: As cloud servers may
concurrently handle multiple verification sessions from different clients, given
K signatures on K distinct data files from K clients, it is more advantageous
to aggregate all these signatures into a single one and verify it at one time.
We can extend our scheme to allow for provable data updates and verifica-
tion in a multi-client system. The key idea is to use the bilinear aggregate sig-
nature scheme [18], which has the following property: for any u1, u2, v ∈ G,
e(u1u2, v) = e(u1, v) · e(u2, v) and for any u, v ∈ G, e(ψ(u), v) = e(ψ(v), u). As
in the BLS scheme, the aggregate signature scheme allows the creation of signa-
tures on arbitrary distinct messages. Assume there are K clients in the system,
and each client k has data files Fi = (mk,1, . . . ,mk,n), where k ∈ {1, . . . ,K}. For
a particular client k, pick random xk ← Zp, and compute vk = gxk . The client’s
public key is vk ∈ G and the public key is vk ∈ Zp. In the SigGen phase, given
the file Fk = (mk,1, . . . ,mk,n), client k chooses a random element uk ← G and
computes signature σk,i ← [H(mk,i) · u

mk,i

k]xk ∈ G. In the challenge phase, the
verifier sends the query Q = {(i, νi)}s1≤i≤sc

to the prover (server) for verification
of all K clients. In the GenProof phase, upon receiving the chal, for each client
k (k ∈ {1, . . . ,K}), the prover computes µk =

∑
{(i,νi)}s1≤i≤sc

νimk,i ∈ Zp and

σ =
∏K

k=1(
∏

{(i,νi)}s1≤i≤sc
σνi

k,i) =
∏K

k=1(
∏

{(i,νi)}s1≤i≤sc
[H(mk,i) · u

mk,i

k]xkνi).

The prover then responses the verifier with {σ, {µk}1≤k≤K , {Ωk,i}, {H(mk,i)}}.
In the VerifyProof phase, similar as the single client case, the verifier first au-
thenticates tags H(mk,i) by verifying signatures on the roots (for each client’s
file). If the authentication succeeds, then, using the properties of the bilinear

13

map, the verifier can check if the following equation holds:

e(σ, g) =

K∏

k=1

e(
∏

{(i,νi)}s1≤i≤sc

[H(mk,i)]
νi · (uk)µk , vk).

This establishes the validity of the scheme. The proof of security of this scheme
is similar to the multi-client case, thus omitted here.

3.4 Discussion on Design Considerations

Instantiations based on BLS and RSA. As discussed above, we present a
BLS-based construction that offers both public verifiability and data dynamics.
In fact, our proposed scheme can also be constructed based on RSA signatures.
Compared with RSA construction [2, 14], as a desirable benefit, the BLS con-
struction can offer shorter homomorphic signatures (e.g., 160 bits) than those
that use RSA techniques (e.g., 1024 bits). In addition, the BLS construction has
the shortest query and response (we does not consider AAI here): 20 bytes and
40 bytes [1]. However, while BLS construction is not suitable to use variable sized
blocks (e.g., for security parameter λ = 80, mi ∈ Zp, where p is a 160-bit prime),
the RSA construction can support variable sized blocks. The reason is that in
RSA construction the order of QRN is unknown to the server, so it is impossible
to find distinct m1 and m2 such that gm1 mod N = gm2 mod N according to the
factoring assumption. But the block size cannot increase without limit, as the
verification block µ =

∑sc

i=s1
νimi grows linearly with the block size. Recall that

h(H(mi)) are used as the MHT leaves, upon receiving the challenge the server
can calculate these tags on-the-fly or pre-store them for fast proof computation.
In fact, one can directly use h(gmi) as the MHT leaves instead of h(H(mi)).
In this way at the verifier side the job of computing the aggregated signature
σ should be accomplished after authentication of gmi . Now the computation of
aggregated signature σ is eliminated at the server side, as a trade-off, additional
computation overhead may be introduced at the verifier side.

Support for Data Dynamics. The direct extension of PDP or PoR schemes
to support data dynamics may have security problems. We take PoR for exam-
ple, the scenario in PDP is similar. When mi is required to be updated, σi =
[H(name||i)umi]x should be updated correspondingly. Moreover, H(name||i)
should also be updated, otherwise by dividing σi by σ′

i, the adversary can ob-
tain [u∆mi]x and use this information and ∆mi to update any block and its
corresponding signature for arbitrary times while keeping σ consistent with µ.
This attack cannot be avoided unless H(name||i) is changed for each update op-
eration. Also, because the index information is included in computation of the
signature, an insertion operation at any position in F will cause the updating
of all following signatures. To eliminate the attack mentioned above and make
the insertion efficient, as we have shown, we use H(mi) instead of H(name||i)
as the block tags, and the problem of supporting fully dynamic data operation

14

is remedied in our construction. Note that different from the public informa-
tion name||i, mi is no longer known to client after the outsourcing of original
data files. Since the client or TPA cannot compute H(mi), this job has to be as-
signed to the server (prover). However, by leveraging the advantage of computing
H(mi), the prover can cheat the verifier through the manipulation of H(mi) and
mi. For example, suppose the prover wants to check the integrity of m1 and m2

at one time. Upon receiving the challenge, the prover can just compute the pair
(σ, µ) using arbitrary combinations of two blocks in the file. Now the response
formulated in this way can successfully pass the integrity check. So, to prevent
this attack, we should first authenticate the tag information before verification,
i.e., ensuring these tags are corresponding to the blocks to be checked.

Designs for Blockless and Stateless Verification. The naive way of realiz-
ing data integrity verification is to make the hashes of the original data blocks as
the leaves in MHT, so the data integrity verification can be conducted without
tag authentication and signature aggregation steps. However, this construction
requires the server to return all the challenged blocks for authentication, and thus
is not efficient for verification purpose. Moreover, due to concern for security in
the context of public verification, the original data files should not be revealed
to TPA during verification process. To overcome these deficiencies, most exist-
ing works in remote data checking adopt a blockless strategy for data integrity
verification. For the same reason, this paper adopts the blockless approach, and
we authenticate the block tags instead of original data blocks in the verification
process. As we have described, in the setup phase the verifier signs the metadata
R and stores it on the server to achieve stateless verification. Making the scheme
fully stateless may cause the server to cheat: the server can revert the update
operation and keep only old data and its corresponding signatures after com-
pleting data updates. Since the signatures and the data are consistent, the client
or TPA may not be able to check whether the data is up to date. Actually, one
can easily defend this attack by storing the root R on the verifier, i.e., R can be
seen as public information. However, this makes the verifier not fully stateless
in some sense since TPA will store this information for the rest of time.

After a series of data operations like insertion and deletion, if assuming client
or TPA does not keep structure of MHT locally, the verifier may have no knowl-
edge of the MHT. At first sight, it seems that the server can reply to the client’s
challenge with any blocks it is willing to provide. However, this assumption is
not true, as the client has tree root R. Even if the MHT is stored on the server,
the server cannot make any change of the MHT. Therefore, whenever necessary,
the verifier can always ask the server to reveal the MHT structure during the au-
diting. Because that revealed MHT must be correctly authenticated by the tree
root R. Therefore, knowing the structure of MHT is not a big issue for the veri-
fier. As an example, if the server loses some data blocks, and it proposes to cheat
and pass the first challenge using other data blocks. Then, the MHT structure
must have been changed on the server side, which means the server must create
some artificial leaf nodes in the “new” MHT. Note that these artificial leaf nodes
cannot be arbitrarily created. Instead, the server must pick these artificial nodes

15

only from the non-leaf nodes in the original MHT (to make the “new” MHT still
correctly verifiable with the tree root R). Also, once the “new” MHT structure
is constructed, it cannot be changed arbitrarily as the server’s responses must
commit to the “new” MHT structure. Now, if the client later lunches a series of
challenges to the remaining blocks of the file, the server’s answers (i.e., the way
it chooses the block index) must be consistent with the “new” MHT structure.
Otherwise, the inconsistencies between the challenges will be easily detected by
the verifier. However, just being consistent with the “new” MHT does not keep
the server safe yet. Its misbehavior can also be detected if the client challenges
those artificial leaf nodes in the “new” MHT. This is because those artificial
leaf nodes cannot be used to pass the storage verification equation (recall that
these artificial leaf nodes are non-leaf nodes in the original MHT and they were
not involved in the computation of the homomorphic authenticator at all). In
short, as long as the client keeps track of the random sampling challenges be-
tween any two update operations (when the MHT structure keeps stable), with
non-negligible probability the server’s misbehavior will always be detected.

4 Security Analysis

In this section, we present a formal analysis of the security of our proposed
scheme.

Definition 1. (CDH Problem) The Computational Diffie-Hellman problem

is that, given g, gx, gy ∈ G for unknown x, y ∈ Zp, to compute gxy.

We say that the (t, ǫ)-CDH assumption holds in G if no t-time algorithm
has the non-negligible probability ǫ in solving the CDH problem. A proof-of-
retrievability protocol is sound if any cheating prover that convinces the veri-
fication algorithm that it is storing a file F is actually storing that file, which
we define in saying that it yields up the file F to an extractor algorithm which
interacts with it using the proof-of-retrievability protocol. We say that the ad-
versary (cheating server) is ǫ-admissible if it convincingly answers an ǫ-fraction
of verification challenges. We formalize the notion of an extractor and then give
a precise definition for soundness.

Theorem 1. If the signature scheme is existentially unforgeable and the compu-

tational Diffie-Hellman problem is hard in bilinear groups, no adversary against

the soundness of our public-verification scheme could cause verifier to accept in

a proof-of-retrievability protocol instance with non-negligible probability, except

by responding with correctly computed values.

Proof. It is easy to prove that the signature scheme is existentially unforgeable
with the assumption that BLS [16] short signature scheme is secure. In concrete,
assume there is a secure BLS signature scheme, with public key y = gα and
a map-to-point hash function H. If there is an adversary that can break our
signature scheme, we show how to use this adversary to forge a BLS signature as
follows: Set u = gx0 by choosing x0 from Zp. For any signature query on message

16

m, we can submit this message to BLS signing oracle and get σ = H(m)α.
Therefore, the signing oracle of this new signature scheme can be simulated as
σ′ = σymx0=(H(m)gmx0)α. Finally, if there is any adversary can forge a new
signature σ′=(H(m′)um′

)α on a message m′ that has never been queried, we
can get a forged BLS signature on the message m′ as σ=σ′/ym′x0=H(m′)α.
This completes the proof of the new signature scheme that the BLS signature
scheme is secure.

We then prove the theorem by using a sequence of games. The first game,
Game 0, is simply the challenge game, which is also similar to [1], with the
changes for public verifiability sketched. Game 1 is the same as Game 0, with
one difference. The challenger keeps a list of all signed tags ever issued as part of
a store-protocol query. If the adversary ever submits a tag either in initiating a
proof-of-retrievability protocol or as the challenge tag, the challenger will abort
if it is a valid tag that has never been signed by the challenger. Based on the
definition of Game 0 and Game 1, it is obviously that we can use the adversary
to construct a forger against the signature scheme, if there is a difference in the
adversary’s success probability between Games 0 and 1.

Game 2 is the same as Game 1, except that in Game 2, the challenger keeps
a list of its responses to queries from the adversary. Now the challenger observes
each instance of the proof-of-retrievability protocol with the adversary. Let P =
{µ, σ, {H(mi), Ωi}s1≤i≤sc

, sigsk(H(R))} be the expected response that would
have been obtained from an honest prover. The correctness of H(mi) can be ver-
ified through {H(mi), Ωi}s1≤i≤sc

and sigsk(H(R)). The correctness of the proof
can be verified based on the following equation e(σ, g) = e(

∏
{(i,νi)}s1≤i≤sc

H(mi)
νi ·

uµ, v). Assume the adversary’s response is P ′. Because of the authentication in
MHT, the second part in P ′ should be the same with {H(mi), Ωi}s1≤i≤sc

and
sigsk(H(R)). Suppose P ′ = {µ′, σ′, {H(mi), Ωi}s1≤i≤sc

, sigsk(H(R))} is the ad-
versary’s response. The verification of (µ′, σ′) is e(σ′, g) = e(

∏
{(i,νi)}s1≤i≤sc

H(mi)
νi ·

uµ′

, v). Obviously, µ′ 6= µ, otherwise, σ′ = σ, which contradicts our assump-
tion in this game. Define ∆µ=µ′ − µ. With this adversary, the simulator could
break the challenge CDH instance as follows: Given (g, gα, h) ∈ G, the sim-
ulator is asked to output hα. The simulator sets v = gα and u = gahb for
a, b ∈ Z∗

p . The simulator could answer the signature query with similar method
as described in [1], by letting H(mi) = grih−mi . Finally, the adversary out-
puts P ′ = {µ′, σ′, {H(mi), Ωi}s1≤i≤sc

, sigsk(H(R))}. We obtain e(σ′/σ, g) =
e(u∆µ, v)=e((gahb)∆µ, gα). From this equation, we have e(σ′σ−1v−a∆µ, g) =

e(h, v)b∆µ. Therefore, hα = (σ′σ−1va∆µ)
1

b∆µ because v = gα. To analyze the
probability that the challenger aborts in the game, we only need to compute
the probability that b∆µ = 0 mod p. Because b is chosen by the challenger and
hidden from the adversary, the probability that b∆µ = 0 mod p will be only 1/p,
which is negligible.

Game 3 is the same as Game 2, with the following difference: As before, the
challenger observes proof-of-retrievability protocol instances. Suppose the file
that causes the abort is that the signatures are {σi}. Suppose Q = (i, vi)s1≤i≤sc

is the query that causes the challenger to abort, and that the adversary’s re-

17

sponse to that query was P ′ = {µ′, σ′, {H(mi), Ωi}s1≤i≤sc
, sigsk(H(R))}. Let

P = {µ, σ, {H(mi), Ωi}s1≤i≤sc
, sigsk(H(R))} be the expected response obtained

from an honest prover. We have proved in Game 2 that σ = σ′. It is only
the values µ and µ′ that can differ. Define ∆µ = µ′ − µ. The simulator an-
swers the adversary’s queries. Finally, The adversary outputs a forged signa-
ture P ′ = {µ′, σ′, {H(mi), Ωi}s1≤i≤sc

, sigsk(H(R))}. Now we have e(σ′, g) =

e(
∏

{(i,νi)}s1≤i≤sc
H(mi)

νi · uµ′

, v)=e(σ, g)= e(
∏

{(i,νi)}s1≤i≤sc
H(mi)

νi · uµ, v).

From this equation, we have 1 = u∆µ. In this case, ∆µ = 0 mod p. There-
fore, we have µ = µ′ mod p.

As we analyzed above, there is only negligible difference probability between
these games. This completes the proof.

Theorem 2. Suppose a cheating prover on an n-block file F is well-behaved in

the sense above, and that it is ǫ-admissible. Let ω = 1/♯B + (ρn)ℓ/(n− c+ 1)c.

Then, provided that ǫ− ω is positive and non-negligible, it is possible to recover

a ρ-fraction of the encoded file blocks in O(n/(ǫ− ρ)) interactions with cheating

prover and in O(n2 + (1 + ǫn2)(n)/(ǫ− ω)) time overall.

Proof. The verification of the proof-of-retrievability is similar with [1], due to
space limitation, we omit the details of the proof here. The difference in our
work is to replace H(i) with H(mi) such that secure update can still be realized
without including the index information. These two types of tags are used for the
same purpose (i.e., to prevent potential attacks), so this change will not affect
the extraction algorithm defined in the proof-of-retrievability. We can also prove
that extraction always succeeds against a well-behaved cheating prover, with the
same probability analysis given in [1].

Theorem 3. Given a fraction of the n blocks of an encoded file F , it is possible

to recover the entire original file F with all but negligible probability.

Proof. Based on the rate-ρ Reed-Solomon codes, this result can be easily derived,
since any ρ-fraction of encoded file blocks suffices for decoding.

5 Performance Analysis

We list the features of our proposed scheme in Table 1 and make a comparison of
our scheme and state-of-the-art. The scheme in [14] extends the original PDP [2]
to support data dynamics using authenticated skip list. Thus, we call it DPDP
scheme thereafter. For the sake of completeness, we implemented both our BLS
and RSA-based instantiations as well as the state-of-the-art scheme [14] in Linux.
Our experiment is conducted using C on a system with an Intel Core 2 processor
running at 2.4 GHz, 768 MB RAM, and a 7200 RPM Western Digital 250 GB
Serial ATA drive with an 8 MB buffer. Algorithms (pairing, SHA1 etc.) are
implemented using the Pairing-Based Cryptography (PBC) library version 0.4.18
and the crypto library of OpenSSL version 0.9.8h. To achieve 80-bit security
parameter, the curve group we work on has a 160-bit group order and the size

18

h
h

h
h

h
h

h
h

h
h

h
h

hh

Metric
Scheme

[2] [1] [11]∗ [14] Our Scheme

Data dynamics No Yes

Public verifiability Yes Yes No No
†

Yes

Sever comp. complexity O(1) O(1) O(1) O(log n) O(log n)
Verifier comp. complexity O(1) O(1) O(1) O(log n) O(log n)

Comm. complexity O(1) O(1) O(1) O(log n) O(log n)
Verifier storage complexity O(1) O(1) O(1) O(1) O(1)

Table 1: Comparisons of different remote data integrity checking schemes. The
security parameter λ is eliminated in the costs estimation for simplicity. ∗ The
scheme only supports bounded number of integrity challenges and partially data
updates, i.e., data insertion is not supported. † No explicit implementation of
public verifiability is given for this scheme.

of modulus N is 1024 bits. All results are the averages of 10 trials. Table 2 lists
the performance metrics for 1 GB file under various erasure code rate ρ while
maintaining high detection probability (99%) of file corruption. In our schemes,
rate ρ denotes that any ρ-fraction of the blocks suffices for file recovery as proved
in Theorem 3, while in [14], rate ρ denotes the tolerance of file corruption.
According to [2], if t fraction of the file is corrupted, by asking proof for a
constant c blocks of the file, the verifier can detect this server misbehavior with
probability p = 1 − (1− t)

c
. Let t = 1 − ρ and we get the variant of this

relationship p = 1−ρc. Under this setting, we quantify the extra cost introduced
by the support of dynamic data in our scheme into server computation, verifier
computation as well as communication overhead.

From table 2, it can be observed that the overall performance of the three
schemes are comparable to each other. Due to the smaller block size (i.e., 20bytes),
our BLS-based instantiation is more than 2 times faster than the other two in
terms of server computation time. However, its has larger computation cost at
the verifier side as the paring operation in BLS scheme consumes more time
than RSA techniques. Note that the communication cost of DPDP scheme is
the largest among the three in practice. This is because there are 4-tuple values
associated with each skip list node for one proof, which results in extra commu-
nication cost as compared to our constructions. The communication overhead
(server’s response to the challenge) of our RSA-based instantiation and DPDP
scheme [14] under different block sizes is illustrated in Fig. 8. We can see that
the communication cost grows almost linearly as the block size increases, this is
mainly caused by the increasing in size of the verification block µ =

∑sc

i=s1
νimi.

However, at very small block sizes (less than 20KB), both schemes can achieve
an optimal point that minimizes the total communication cost.

6 Conclusion

To ensure cloud data storage security, it is critical to enable a third party au-
ditor (TPA) to evaluate the service quality from an objective and independent

19

Our BLS-based instantiation Our RSA-based instantiation [14]
Metric \ Rate-ρ 99% 97% 99% 97% 99%

Sever comp. time (ms) 6.52 2.29 13.42 4.76 13.80
Verifier comp. time (ms) 1154.39 503.88 794.27 208.28 807.90

Comm. cost (KB) 243 80 223 76 280
Table 2: Performance comparison under different tolerance rate ρ of file corrup-
tion for 1GB file. The block size for RSA-based instantiation and scheme in [14]
is chosen to be 4KB.

0 20 40 60 80 100 120 140 160 180
200

220

240

260

280

300

320

340

360

380

400

Block size (KB)

C
om

m
un

ic
at

io
n

co
st

 (
K

B
)

DPDP
Our RSA−based Instantiation

Fig. 8: Comparison of communication complexity between our RSA-based instan-
tiation and DPDP [14], for 1 GB file with variable block sizes. The detection
probability is maintained to be 99%.

perspective. Public verifiability also allows clients to delegate the integrity ver-
ification tasks to TPA while they themselves can be unreliable or not be able
to commit necessary computation resources performing continuous verifications.
Another major concern is how to construct verification protocols that can accom-
modate dynamic data files. In this paper, we explored the problem of providing
simultaneous public verifiability and data dynamics for remote data integrity
check in Cloud Computing. Our construction is deliberately designed to meet
these two important goals while efficiency being kept closely in mind. We ex-
tended the PoR model [1] by using an elegant Merkle hash tree construction to
achieve fully dynamic data operation. Experiments show that our construction
is efficient in supporting data dynamics with provable verification.

20

Acknowledgment

This work was supported in part by the US National Science Foundation un-
der grant CNS-0831963, CNS-0626601, CNS-0716306, CNS-0831628 and CNS-
0716302.

References

1. H. Shacham and B. Waters, “Compact proofs of retrievability,” in Proc. of ASI-

ACRYPT’08. Springer-Verlag, 2008, pp. 90–107.
2. G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and

D. Song, “Provable data possession at untrusted stores,” in Proc. of CCS’07. New
York, NY, USA: ACM, 2007, pp. 598–609.

3. A. Juels and B. S. Kaliski, Jr., “Pors: proofs of retrievability for large files,” in
Proc. of CCS’07. New York, NY, USA: ACM, 2007, pp. 584–597.

4. K. D. Bowers, A. Juels, and A. Oprea, “Proofs of retrievability: Theory and im-
plementation,” Cryptology ePrint Archive, Report 2008/175, 2008.

5. M. Naor and G. N. Rothblum, “The complexity of online memory checking,” in
Proc. of FOCS’05, 2005, pp. 573–584.

6. E.-C. Chang and J. Xu, “Remote integrity check with dishonest storage server,”
in Proc. of ESORICS’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 223–237.

7. M. A. Shah, R. Swaminathan, and M. Baker, “Privacy-preserving audit and ex-
traction of digital contents,” Cryptology ePrint Archive, Report 2008/186, 2008.

8. A. Oprea, M. K. Reiter, and K. Yang, “Space-efficient block storage integrity,” in
Proc. of NDSS’05, 2005.

9. T. Schwarz and E. L. Miller, “Store, forget, and check: Using algebraic signatures
to check remotely administered storage,” in Proc. of ICDCS’06, 2006.

10. Q. Wang, K. Ren, W. Lou, and Y. Zhang, “Dependable and secure sensor data
storage with dynamic integrity assurance,” in Proc. of IEEE INFOCOM’09, Rio
de Janeiro, Brazil, Appril 2009.

11. G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik, “Scalable and efficient
provable data possession,” in Proc. of SecureComm’08, 2008.

12. C. Wang, K. Ren, and W. Lou, “Towards secure cloud data storage,” Proc. of

IEEE GLOBECOM’09, submitted on March 2009.
13. C. Wang, Q. Wang, K. Ren, and W. Lou, “Ensuring data storage security in cloud

computing,” in Proc. of IWQoS’09, Charleston, South Carolina, USA, 2009.
14. C. Erway, A. Kupcu, C. Papamanthou, and R. Tamassia, “Dynamic provable data

possession,” Cryptology ePrint Archive, Report 2008/432, 2008.
15. K. D. Bowers, A. Juels, and A. Oprea, “Hail: A high-availability and integrity layer

for cloud storage,” Cryptology ePrint Archive, Report 2008/489, 2008.
16. D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil pairing,” in

Proc. of ASIACRYPT’01. London, UK: Springer-Verlag, 2001, pp. 514–532.
17. R. C. Merkle, “Protocols for public key cryptosystems,” Proc. of IEEE Symposium

on Security and Privacy’80, pp. 122–133, 1980.
18. D. Boneh and C. Gentry, “Aggregate and verifiably encrypted signatures from

bilinear maps,” in Proc. of Eurocrypt’03, volume 2656 of LNCS. Springer-Verlag,
2003, pp. 416–432.

