
A New Improved Distinguisher for HC-128

Subhabrata Sen1, Rudradev Sengupta1, Subhamoy Maitra1, Goutam Paul2,
Shashwat Raizada1

1 Indian Statistical Institute,
203 B T Road, Kolkata 700 108, India.

subhabratasen.19@gmail.com, rudradevsengupta@gmail.com,

subho@isical.ac.in, shashwat.raizada@gmail.com
2 Department of Computer Science and Engineering,

Jadavpur University, Kolkata 700 032, India.
goutam paul@cse.jdvu.ac.in

Abstract. In this paper we present a new distinguisher for HC-128
which is the best known so far. The distinguisher requires approximately
2106 keystream words with success probability 0.9772.

Keywords: Bias, Cryptography, Distinguishing Attack, eStream,
Keystream, Linear Approximation, Stream Cipher.

1 Introduction

The eSTREAM [2] Portfolio (revision 1 in September 2008) contains the stream
cipher HC-128 [6] in Profile 1 (SW). Apart from the analysis by the author (Wu)
himself to conjecture the security of this cipher, the only other observation is by
Dunkelman [3] in the eSTREAM discussion forum to show that the keystream
words of HC-128 leak information regarding secret states. Recently, generaliza-
tion of these results has been studied in [4]. In this paper, we identify a new
and improved distinguisher for HC-128. To the best of our knowledge, this is
currently the strongest distinguisher available.

Each keystream word of HC-128 is 32 bit long (the 0th bit is the least signifi-
cant bit and the 31st bit is the most significant bit). In [6], bitwise XOR of least
significant bits of 10 (possibly) different keystream words (rotated by certain
amounts) are considered to propose a distinguisher. In [4], the distinguisher is ex-
tended for other bits too. The distinguishers presented in [6, 4] require approximately
2156 words of keystream with success probability of 0.9772. Our distinguisher requires
approximately 2106 keystream words with same success probability. For every block
of 512 many keystream words of HC-128, corresponding to either the P or Q
array, we show that XOR of the least significant bits (LSBs) of four keystream
words (two taken from the upper sub-block of 256 keystream words and two
taken from the lower sub-block of 256 keystream words) is biased towards 0.
The distinguisher can also be extended for bits other than the LSBs.

The complete study of the new distinguisher is presented in Section 3. Let
us start with the description of HC-128 in the following section.

2 Description of HC-128

This is adapted from [6, Section 2].

2.1 Notations and Data Structures

The following operations are used in HC-128:

+ : x+ y means x+ y mod 232, where 0 ≤ x < 232 and 0 ≤ y < 232.
� : x� y means x− y mod 512.
⊕ : bit-wise exclusive OR.
‖ : concatenation.
� : right shift operator. x� n means x being right shifted n bits.
� : left shift operator. x� n means x being left shifted n bits.
≫ : right rotation operator. x ≫ n means ((x � n) ⊕ (x � (32 − n)),
where 0 ≤ n < 32, 0 ≤ x < 232.
≪ : left rotation operator. x ≪ n means ((x� n)⊕ (x� (32−n)), where
0 ≤ n < 32, 0 ≤ x < 232.

Two tables P and Q, each with 512 many 32-bit elements are used as internal
states of HC-128. A 128-bit key array K[0, . . . , 3] and a 128-bit initialization
vector IV [0, . . . , 3] are used, where each entry of the array is a 32-bit element.
Let st denote the keystream word generated at the t-th step, t = 0, 1, 2,

The following six functions are used in HC-128:

f1(x) = (x ≫ 7)⊕ (x ≫ 18)⊕ (x� 3),
f2(x) = (x ≫ 17)⊕ (x ≫ 19)⊕ (x� 10),
g1(x, y, z) =

(
(x ≫ 10)⊕ (z ≫ 23)

)
+ (y ≫ 8),

g2(x, y, z) =
(
(x ≪ 10)⊕ (z ≪ 23)

)
+ (y ≪ 8),

h1(x) = Q[x(0)] +Q[256 + x(2)],
h2(x) = P [x(0)] + P [256 + x(2)],

where x(0) (least significant byte) , x(1), x(2) and x(3) (most significant byte)
are the four bytes of a 32-bit word x = x(3)‖x(2)‖x(1)‖x(0).

2.2 Key and IV Setup

1. Let K[0, . . . , 3] be the secret key and IV [0, . . . , 3] be the initialization vector.
Let K[i+ 4] = K[i] and IV [i+ 4] = IV [i] for 0 ≤ i ≤ 3.

2. The key and IV are expanded into an array W [0, . . . , 1279] as follows.

W [i] =

K[i], 0 ≤ i ≤ 7;
IV [i− 8], 8 ≤ i ≤ 15;
f2(W [i− 2]) +W [i− 7]

+f1(W [i− 15]) +W [i− 16] + i, 16 ≤ i ≤ 1279.

3. Update the tables P and Q with the array W as follows.

P [i] = W [i+ 256], for 0 ≤ i ≤ 511
Q[i] = W [i+ 768], for 0 ≤ i ≤ 511

4. Run the cipher 1024 steps and use the outputs to replace the table elements
as follows.
for i = 0 to 511, do

P [i] =
(
P [i] + g1(P [i� 3], P [i� 10], P [i� 511])

)
⊕ h1(P [i� 12]);

for i = 0 to 511, do
Q[i] =

(
Q[i] + g2(Q[i� 3], Q[i� 10], Q[i� 511])

)
⊕ h2(Q[i� 12]);

2.3 The Keystream Generation Algorithm

i = 0;
repeat until enough keystream bits are generated
{

j = i mod 512;
if (i mod 1024) < 512
{

P [j] = P [j] + g1(P [j � 3], P [j � 10], P [j � 511]);
si = h1(P [j � 12])⊕ P [j];

}
else
{

Q[j] = Q[j] + g2(Q[j � 3], Q[j � 10], Q[j � 511]);
si = h2(Q[j � 12])⊕Q[j];

}
end-if
i = i+ 1;

}
end-repeat

3 Our New Distinguisher

In this section we present our new distinguisher. Before getting into the technical
details, let us explain one more notation. For any n-bit integer I, [I]b denotes
the b-th least significant bit, 0 ≤ b ≤ n − 1. Thus [I]0 denotes the LSB of
I. Also in the following discussion, we abuse the notation of si described in
Section 2.3. Here, by su, we mean a keystream word generated in the u-th step
in a block of 512 words corresponding to either the P array (completely) or the
Q array (completely). As we will be concentrating on the relationship between
four keystream words in a block of 512, (to keep the notation simple) we do not
use any index to identify different blocks.

Consider the term h2(Q[α]), for 0 ≤ α ≤ 511. Note that

h2(Q[α]) = P [β(0)] + P [256 + β(2)],

where β = Q[α] and then we get

h2(Q[α]) = (sβ(0) ⊕h1(P [β(0) � 12]))+ (s256+β(2) ⊕h1(P [256+β(2) � 12])). (1)

As noted in [6], for the least significant bit, ‘+’ can be replaced by ‘⊕’ and hence,

[sβ(0) ⊕ s256+β(2)]0 = [h1(P [β(0) � 12])⊕ h1(P [256 + β(2) � 12])⊕ h2(β)]0. (2)

Denoting u = β(0), l = 256 + β(2), µ = P [β(0) � 12], ν = P [256 + β(2) � 12], we
have

[su ⊕ sl]0 = [h1(µ)⊕ h1(ν)⊕ h2(β)]0.

Thus for u 6= u′ and l 6= l′, we get,

[su ⊕ sl]0 = [su′ ⊕ sl′]0,

if and only if

[h1(µ)⊕ h1(ν)⊕ h2(β)]0 = [h1(µ′)⊕ h1(ν′)⊕ h2(β′)]0,

where µ′, ν′ and β′ correspond to the indices u′ and l′ in the same manner as µ,
ν and β correspond to the indices u and l.

We start concentrating on Q[α] by noting the expression of h2(Q[α]). This
leads to the relationship among the keystream words generated corresponding to
the previous P array.

The function h1 uses actually 16 bits only from the 32-bit input. The situation
is similar for h2. Thus, [h1(.) ⊕ h1(.) ⊕ h2(.)]0 can be approximated (similar to
the idea of [6, Section 4]) as a 48-bit-to-1-bit S-box. Thus, Pr([h1(µ)⊕ h1(ν)⊕
h2(β)]0 = [h1(µ′) ⊕ h1(ν′) ⊕ h2(β′)]0) is equal to the collision probability of a
48-bit-to-1-bit S-box. According to [6, Theorem 1], this is equal to 2−48 + 2−1−
2−48−1. This immediately leads to the following result.

Lemma 1. Consider the consecutive P and Q arrays in the execution of HC-
128 and let st, 0 ≤ t ≤ 511, be the keystream words generated corresponding to
the P array. For 0 ≤ α 6= α′ ≤ 511, we have

Pr
(
[su ⊕ sl]0 = [su′ ⊕ sl′]0

)
=

1
2

+
1

249
,

where u = Q[α](0), l = 256 +Q[α](2), u′ = Q[α′](0) and l′ = 256 +Q[α′](2).

In a similar direction, one can start with P [α] by noting the expression of
h1(P [α]). This will lead to similar relationship among the keystream words gen-
erated corresponding to the previous Q array.

Lemma 2. Consider the consecutive Q and P arrays in the execution of HC-
128 and let st, 0 ≤ t ≤ 511, be the keystream words generated corresponding to
the Q array. For 0 ≤ α 6= α′ ≤ 511, we have

Pr
(
[su ⊕ sl]0 = [su′ ⊕ sl′]0

)
=

1
2

+
1

249
,

where u = P [α](0), l = 256 + P [α](2), u′ = P [α′](0) and l′ = 256 + P [α′](2).

Given α, α′, there is no way to observe the values of Q[α], Q[α′] (or P [α], P [α′])
and hence we cannot identify the indices u, l, u′, l′.

We overcome this problem in the following manner. We know that any el-
ement Q[α] (or P [α]), 0 ≤ α ≤ 511 provides one pair of keystream words of
the form (su, sl). So there are

(
512
2

)
many quadruples of the form (u, l, u′, l′) for

which Lemma 1 (or Lemma 2) holds. We refer to these quadruples as favourable
quadruples. The following result uses Lemma 1 and Lemma 2 to compute the ex-
pression of the probability for “any” quadruple (u, l, u′, l′) where the pair (u, u′)
corresponds to the initial half (0 ≤ u 6= u′ ≤ 255) and the pair (l, l′) corresponds
to the later half (256 ≤ l 6= l′ ≤ 511) of the array Q (or P). Now we present our
main result that will be used to find the new distinguisher.

Theorem 1. Let st, 0 ≤ t ≤ 511, be the keystream words generated correspond-
ing to either P or Q array. For 0 ≤ u 6= u′ ≤ 255, 256 ≤ l 6= l′ ≤ 511,

Pr
(
[su ⊕ sl]0 = [su′ ⊕ sl′]0

)
≈ 1

2
+

1
262

.

Proof. From the ranges of u, u′, l, l′, it is clear that there are
(
256
2

)2
many quadru-

ples of the form (u, l, u′, l′). Let F be the event that an arbitrary quadruple
(u, u′, l, l′) is favourable and further let E be the event

(
[su ⊕ sl]0 = [su′ ⊕ sl′]0

)
.

We can choose any α, α′ for 0 ≤ α 6= α′ ≤ 511 to build one equation of
the form [su ⊕ sl]0 = [su′ ⊕ sl′]0 with the following constraint. If at least one
of the equalities (Q[α](0) = Q[α′](0)) or (Q[α](2) = Q[α′](2)) hold(s), then we
cannot form the above combination of keystream bits to generate the equation.
The situation is similar for the case of P . However, the expected number of such
cases is very small (around 4 out of

(
512
2

)
≈ 217) if we consider that Q (or P)

contains 512 many 32-bit integers chosen uniformly at random from the set of

all 32-bit integers. Thus, we can approximate Pr(F) = (512
2)

(256
2)2 .

Further, from Lemma 1, Lemma 2, Pr(E|F) = 1
2 + 1

249 . We can assume that
for a non-favourable quadruple, the event E occurs due to random association
only, i.e., Pr(E|FC) = 1

2 , where FC is the complement of the event F . Thus,
Pr(E) = Pr(F) · Pr(E|F) + Pr(FC) · Pr(E|FC)

= (512
2)

(256
2)2 · (1

2 + 1
249) +

(
1− (512

2)
(256

2)2

)
· 1

2 ≈
1
2 + 1

262 . ut

Hence, Theorem 1 gives us a distinguisher. The number of keystream words
required to mount the above distinguisher is computed in Theorem 2 below.

Theorem 2. HC-128 can be distinguished from an ideal random word generator
by observing 2106 keystream words with a success probability of 0.9772.

Proof. According to Theorem 1, the event
(
[su ⊕ sl]0 = [su′ ⊕ sl′]0

)
based on

which the distinguisher is constructed occurs with a probability p(1 + q), where
p = 1

2 and q ≈ 1
261 . According to [1, Section 4.1], to get a success probability of

0.9772, one would require 42

pq2 = 2127 many samples. In our case, each sample
consists of a set of 4 keystream words of the form (su, su′ , sl, sl′). Since each

block of 512 = 29 many keystream words (corresponding to either the array P
or the array Q) gives

(
256
2

)2 ≈ 230 many samples, one needs 2127+9−30 = 2106

many keystream words to mount the above distinguisher. ut

In terms of data complexity, we have a significant improvement over [6, 4], where
the number of keystream words required is around 2156 for the same success
probability.

So far we have concentrated on the LSBs and now we extend this to other bits
also. We have replaced the ‘+’ in Equation 1 to get Equation 2 relating the least
significant bits. Note that Equation 2 holds with probability 1. However, one may
write similar equations for the other bits using the result [5] that for two n-bit
integers X and Y , if S = X+Y and T = X⊕Y , then Pr(Sb = T b) = 1

2 (1+ 1
2b).

This XOR-approximation of sum can be used to extend the least significant bit
based distinguisher (Theorem 1) to the other bits too. As the analysis is similar,
we present the following result without proof.

Theorem 3. Let st, 0 ≤ t ≤ 511, be the keystream words generated correspond-
ing to either P or Q array. For 0 ≤ u 6= u′ ≤ 255, 256 ≤ l 6= l′ ≤ 511,

Pr
(
[su ⊕ sl]b = [su′ ⊕ sl′]b

)
≈ 1

2
+

1
262+2b

,

for 0 ≤ b ≤ 31. Thus, if one concentrates on the b-th bit of each keystream word,
HC-128 can be distinguished from an ideal random word generator by observing
2106+4b keystream words with a success probability of 0.9772.

Based on Theorem 3, we can find the following result.

Theorem 4. Let st, 0 ≤ t ≤ 511, be the keystream words generated correspond-
ing to either P or Q array. Then the expected number of 0’s in the bit pattern of
su⊕sl⊕su′⊕sl′ is 16+ 1

3 (1
260− 1

2124), where 0 ≤ u 6= u′ ≤ 255, 256 ≤ l 6= l′ ≤ 511.

Proof. Let ψ = su⊕ sl⊕ su′ ⊕ sl′ . Let mb = 1, if [ψ]b = 0; otherwise, let mb = 0,
0 ≤ b ≤ 31. Hence, the total number of zeros in the bit pattern of ψ is given

by M =
31∑

b=0

mb. From Theorem 3, we have Prob(mb = 1) = 1
2 + 1

262+2b . Hence,

E(mb) = 1
2 + 1

262+2b and by linearity of expectation, E(M) =
31∑

b=0

E(mb) =

16 +
1
3
(

1
260

− 1
2124

). ut

Our result is much sharper than [4, Theorem 4], where the expected number
of 0’s in the bit pattern of the XOR of 10 properly chosen different keystream
words was 16 + 13

12 · 2
−79.

4 Conclusion

In this paper we present the currently best known distinguisher for HC-128 that
requires 2106 keystream words for a success probability of 0.9772. This distin-
guisher involves LSBs of four properly chosen keystream words. Our distinguisher
can be extended to any bit of the keystream words also.

References

1. R. Basu, S. Ganguly, S. Maitra and G. Paul. A Complete Characterization of the
Evolution of RC4 Pseudo Random Generation Algorithm. Journal of Mathematical
Cryptology, pages 257-289, vol. 2, no. 3, October, 2008.

2. http://www.ecrypt.eu.org/stream/ [last accessed on April 15, 2009].
3. O. Dunkelman. A small observation on HC-128. A message dated November 14,

2007 is available at http://www.ecrypt.eu.org/stream/phorum/read.php?1,1143
[last accessed on April 15, 2009].

4. S. Maitra, G. Paul and S. Raizada. Some Observations on HC-128. Pages 527–539
in the workshop pre-proceedings, WCC 2009.

5. O. Staffelbach and W. Meier. Cryptographic Significance of the Carry for Ciphers
Based on Integer Addition. CRYPTO 1990, pages 601-614, vol. 537, Lecture Notes
in Computer Science, Springer.

6. H. Wu. The Stream Cipher HC-128. http://www.ecrypt.eu.org/stream/hcp3.html
[last accessed on April 15, 2009].

