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Abstract. ESSENCE is a hash function submitted to the NIST Hash
Competition that stands out as a hardware-friendly and highly paral-
lelizable design, and that has thus far remained unbroken. Preliminary
analysis in its documentation argues that it resists standard differential
cryptanalysis. This paper disproves this claim, showing that advanced
techniques can be used to significantly reduce the cost of such attacks:
using a manually found differential characteristic and a nontrivial search
algorithm, we obtain shortcut collision attacks on the full ESSENCE-
256 and ESSENCE-512, with respective complexities 291 and 2168. As an
aside, we show how to use these attacks for forging valid message/MAC
pairs for HMAC-ESSENCE-256 and HMAC-ESSENCE-512, essentially
at the same cost as a collision.

1 Introduction

Recent years have seen a surge of research on cryptographic hashing, since dev-
astating attacks [12, 11, 2, 10] on the two most deployed hash functions, MD5
and SHA-1. The consequent lack of confidence in the current NIST standard
SHA-2 [7], stemming from its similarity with those algorithms, motivated NIST
to launch the NIST Hash Competition, a public competition to develop a new
hash standard, which will be called SHA-3 and announced by 2012. NIST re-
ceived 64 submissions, and accepted 51 as first round candidates. As of June
2009, more than 20 of those were shown to have significant weaknesses5. That
competition catches the attention not only from many academics, but also from
industry—with candidates from IBM, Hitachi, Intel, Sony—and from govern-
mental organizations.

ESSENCE [3, 4] is a first round candidate in the NIST Hash Competition that
like many others has two main instances, operating on 32- and 64-bit words, re-
spectively: ESSENCE-256 and ESSENCE-512. These functions process messages
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using a binary tree structure, and use a simple compression algorithm based on
two non-linear feedback shift registers (NFSR’s). ESSENCE shares similarities
with MD6 [9], for example the tree-hashing and the hardware-friendly compres-
sion function.

This paper presents shortcut collision attacks on ESSENCE-256 and ESSENCE-
512. At the heart of our attacks is a single differential characteristic, and our
main technical achievement is a nontrivial method for searching inputs conform-
ing to this differential at a reduced cost. As an aside, we describe how to use
these attacks for forging valid message/MAC pairs for HMAC-ESSENCE-256
and HMAC-ESSENCE-512 in far fewer than 2n/2 trials. These findings show
that ESSENCE does not satisfy the security requirements set by NIST for the
future SHA-3.

In a parallel work, Mouha et al. [6] present results on reduced versions of
ESSENCE, including a pseudo-collision attack on ESSENCE-512 reduced to 31
steps. They exploit a differential characteristic of a different type than ours, and
also use different techniques to search for conforming inputs.

The rest of the paper is organized as follows: §2 briefly introduces ESSENCE;
§3 describes our method for searching collisions and its complexity analysis; §4
shows how to attack the HMAC construction when instantiated with ESSENCE,
and finally §5 concludes.

2 Brief description of ESSENCE

We give a brief description of the ESSENCE hash functions, which should be
sufficient to understand our attacks. A complete specification can be found in [3,
4]. Henceforth statements of (non-) linearity are relative to the field GF(2) =
{0, 1} or to an extension thereof.

2.1 Structure

ESSENCE processes a message by constructing a balanced binary tree of bounded
depth whose leaves correspond to calls to a compression function with message
chunks as input. More precisely, each leaf corresponds to a series of three se-
quential compressions, with a unique initial value for each leaf that depends on
several parameters of the hash function. Likewise, nodes correspond to series of
three compressions, with children chaining values as input.

After creation of all message blocks, one appends a final block to the data to
be hashed. This block contains parameters of the function as well as message-
dependent information, and it potentially assists prevent near-collision attacks.

2.2 Compression Function

The compression function of ESSENCE takes as input an eight-word chaining
value and an eight-word message block. Words are 32-bit for ESSENCE-256
and 64-bit for ESSENCE-512, so those values are respectively 256- and 512-bit.



Versions of ESSENCE with 224- and 384-bit digests are derived from the main
instances by tweaking parameters and truncation of the final digest.

The compression function uses two NFSR’s, each operating on a register of
eight words:

• r = (r0, . . . , r7) is initialized with the chaining value, and
• k = (k0, . . . , k7) is initialized with the message block.

At each step of the compression algorithm, the mechanism in Fig. 1 is clocked
using a non-linear function F (see Fig. 2), and a linear function L that provides
diffusion accross word slices. This mechanism defines a permutation and the
compression function returns as new chaining value the XOR of the r register
with its initial value, as in the Davies-Meyer scheme.

The documentation of ESSENCE recommends at least 24 steps, and set 32
steps in the actual submission for extra precaution [4, §4].

L L

r0r7 r6 r5 r4 r3 r2 r1 k7 k6 k5 k4 k3 k2 k1 k0

F F

Fig. 1. Overview of the compression function of ESSENCE.

F (a, b, c, d, e, f, g) = abcdefg + abcdef + abcefg + acdefg + abceg +

abdef + abdeg + abefg + acdef + acdfg + acefg +

adefg + bcdfg + bdefg + cdefg + abcf + abcg +

abdg + acdf + adef + adeg + adfg + bcde+

bceg + bdeg + cdef + abc+ abe+ abf + abg +

acg + adf + adg + aef + aeg + bcf + bcg + bde+

bdf + beg + bfg + cde+ cdf + def + deg + dfg +

ad+ ae+ bc+ bd+ cd+ ce+ df + dg + ef + fg +

a+ b+ c+ f + 1

Fig. 2. The F function of ESSENCE, which takes seven words as input and operates
in a bitsliced way (that is, the i-th bit of the output word only depends on the i-th
bits of the input words).



Table 1. Differential characteristic for finding collisions on (both versions of)
ESSENCE; α and β are differences such that β = L(α) and α ∨ β ∨ L(β) = α ∨ β. A
“·” denotes an absence of difference. Values in the column “Pr” are heuristical approxi-
mations of the probability to reach the next difference (exact probabilities significantly
differ, and can be estimated empirically, cf. §§3.3).

Pr Chaining value part Message part Pr

1 · · · · · · · · 0 α β · · · · · · 2−|β|

2−|α| · · · · · · · α 1 β · · · · · · α 2−|α|

2−|α| · · · · · · α · 2 · · · · · · α · 2−|α|

2−|α| · · · · · α · · 3 · · · · · α · · 2−|α|

2−|α| · · · · α · · · 4 · · · · α · · · 2−|α|

2−|α| · · · α · · · · 5 · · · α · · · · 2−|α|

2−|α| · · α · · · · · 6 · · α · · · · · 2−|α|

2−|α| · α · · · · · · 7 · α · · · · · · 2−|α|

1 α · · · · · · · 8 α · · · · · · · 1

1 · · · · · · · · 9 · · · · · · · α 2−|α|

1 · · · · · · · · 10 · · · · · · α β 2−|α∨β|

1 · · · · · · · · 11 · · · · · α β · 2−|α∨β|

1 · · · · · · · · 12 · · · · α β · · 2−|α∨β|

1 · · · · · · · · 13 · · · α β · · · 2−|α∨β|

1 · · · · · · · · 14 · · α β · · · · 2−|α∨β|

1 · · · · · · · · 15 · α β · · · · · 2−|α∨β|

1 · · · · · · · · 16 α β · · · · · · 2−|β|

2−|α| · · · · · · · α 17 β · · · · · · α 2−|α|

2−|α| · · · · · · α · 18 · · · · · · α · 2−|α|

2−|α| · · · · · α · · 19 · · · · · α · · 2−|α|

2−|α| · · · · α · · · 20 · · · · α · · · 2−|α|

2−|α| · · · α · · · · 21 · · · α · · · · 2−|α|

2−|α| · · α · · · · · 22 · · α · · · · · 2−|α|

2−|α| · α · · · · · · 23 · α · · · · · · 2−|α|

1 α · · · · · · · 24 α · · · · · · · 1
1 · · · · · · · · 25 · · · · · · · α 1
1 · · · · · · · · 26 · · · · · · α ? 1
1 · · · · · · · · 27 · · · · · α ? ? 1
1 · · · · · · · · 28 · · · · α ? ? ? 1
1 · · · · · · · · 29 · · · α ? ? ? ? 1
1 · · · · · · · · 30 · · α ? ? ? ? ? 1
1 · · · · · · · · 31 · α ? ? ? ? ? ? 1
1 · · · · · · · · 32 α ? ? ? ? ? ? ? 1



3 Collision Attacks on ESSENCE

Table 1 presents a differential characteristic for finding collisions on the compres-
sion function of ESSENCE. It is used for both ESSENCE-256 and ESSENCE-
512. We found this characteristic manually, i.e., without the assistance of any
automated search. Because it has no input difference in the chaining value, it can
directly be used for searching colliding message blocks with respect to a same
chaining value. The collision attack will then consist in

1. Finding one message block that fulfills the differential on the right part.
2. Trying chaining values until one conforms to the differential on the left part.

For the second phase of the attack, distinct pseudorandom chaining values are
obtained by picking a first pseudorandom (sequence of) message block(s), and
then checking differences after the insertion of the next message block.

The subsequent sections work out the details of the attack as follows:

• §§3.1 explains how the characteristic works.
• §§3.2 presents an efficient method for finding a message block that con-

forms to the differential.
• §§3.3 discusses calculation of the complexity; contrary to many similar

differential attacks, an approximation solely based on Hamming weight
is insufficient to obtain accurate probability estimates. Actually such
heuristics underestimate the actual complexity of the attack, as we will
see later.

Thereafter we use the following notations: ∨ for logical OR between two bits
(or two words); ∧ for logical AND; ¬ for bitwise negation; |w| for the Hamming
weight of word w; wi for the i-th bit of word w, 0 ≤ i < 32 for ESSENCE-256,
and 0 ≤ i < 64 for ESSENCE-512.

3.1 The Characteristic

The differential characteristic on Table 1 starts with a difference in the message
block, and no difference in the chaining value. To follow the characteristic, the
only assumption that we will make is that the function F will “absorb” certain
differences (actually most of them) and “preserve” some others (at step 11).
Therefore, the probability that a randomly chosen input conforms to the differ-
ential will essentially depend on the Hamming weight of the wordwise differences
α and β = L(α). Critical steps are listed below:

• Step 0: α is fed back to the rightmost cell of the right register via an
XOR, and it does not enter F , unlike β. To ensure that no difference will
appear in the output of F , we need all the |β| bit differences be absorbed,
which is expected to occur with probability 2−|β| (such heuristical esti-
mates should not be used systematically, as discussed later).



• Step 1: the relation β = L(α) makes differences introduced in the new
rightmost cell vanish. This always works, but we also need that α adds
no difference, that is, F needs to absorb |α| bit differences, thus the
probability 2−|α| on both parts.

• Steps 2 to 7: we assume again that the |α| differences introduced in F
are aborbed.

• Step 8: the two α differences cancel out in the middle of the mechanism,
but α is also fed back to the rightmost cell of the message register.

• Step 9: unlike at step 1, α will introduce a difference L(α) = β, which
will propagate during steps 11 to 17.

• Step 10: to avoid the introduction of new differences, we need the output
of F to have differences L(β), in order the differences to vanish in the
feedback operation. This will only be possible if α ∨ β ∨ L(β) = α ∨ β.
As we will see later, for avoiding impossibilities of differential paths, we
also have to add the condition L(β) ∧ α ∧ ¬β = 0.

• Steps 16 to 24: the characteristic is the same as in steps 0 to 8.
• Steps 25 to 32: note that differences in the right side after 32 steps do

not affect the value returned by the compression function. We thus put
no condition on those particular differences.

After finding this generic characteristic, it remains to search for an α that min-
imizes the cost of the attack. But before that, we will present a generic method
for finding a message block conforming to the right part of the differential.

3.2 Efficient Search for a Conforming Block

Once we have found low-weight α and β = L(α) such that

α ∨ β ∨ L(β) = α ∨ β and
L(β) ∧ α ∧ ¬β = 0 ,

the complexity of finding a conforming block by repeated trials is heuristically

215|α|+2|β|+6|α∨β| .

This complexity is well above the birthday bound 2n/2 for all differences we
found, let alone the fact that it underestimates the real complexity. For example,
for the difference that we use to attack ESSENCE-256, the above expression
yields a complexity 2210, whereas a birthday attack needs only 2128 trials.

To find a conforming block at a reduced cost, we use a strategy somewhat
similar to that of the rebound attack [5], namely, we start by finding conforming
values for the low-probability differential in the middle, then we check that they
follow the simpler differentials in both directions. What we call the middle section
will corresponds to steps 10 to 17, inclusive. More precisely, we will

1. Find many values that conform to the middle section (i.e., steps 10 to 17);



2. Search, among those values, one that conforms to the differential in steps 0
to 9, and 18 to 23 (any such value will then follow the characteristic up to
step 32).

Note that we need to find approximately 215|α|+|β| messages in the first phase,
in order to have a conforming one with high probability in the second phase.
Below we expose our strategy for efficiently finding many values conforming to
the differential between steps 10 and 17.

First we introduce some notations, to describe the state during the middle
section: in Table 2 each xi corresponds to a 32 or 64-bit word, depending on the
version used. We write S the set of all indices where α ∨ β is nonzero, that is,

S = {i, 0 ≤ i < 32, αi ∨ βi = 1} for ESSENCE-256,
S = {i, 0 ≤ i < 64, αi ∨ βi = 1} for ESSENCE-512.

We write s = |α ∨ β| = |S| the cardinality of S. For example, if α = 80000000
and β = 00000004, then α31 = β2 = 1, and so S = {2, 31} and s = 2. We also
write ` for the word bitlength (32 or 64, depending on the version of ESSENCE).

Table 2. Message part in steps 10-17.

10 x0 x1 x2 x3 x4 x5 x6 ⊕ α x7 ⊕ β
11 x1 x2 x3 x4 x5 x6 ⊕ α x7 ⊕ β x8

12 x2 x3 x4 x5 x6 ⊕ α x7 ⊕ β x8 x9

13 x3 x4 x5 x6 ⊕ α x7 ⊕ β x8 x9 x10

14 x4 x5 x6 ⊕ α x7 ⊕ β x8 x9 x10 x11

15 x5 x6 ⊕ α x7 ⊕ β x8 x9 x10 x11 x12

16 x6 ⊕ α x7 ⊕ β x8 x9 x10 x11 x12 x13

17 x7 ⊕ β x8 x9 x10 x11 x12 x13 x14

To search for values conforming to the middle section, we first look at an
arbitrary slice i, and we count the number of possible tuples (x1,i, . . . , x13,i)
that fulfill the path between steps 10 and 17. Writing γ = L(β), and considering
the example (αi, βi, γi) = (1, 0, 0), this corresponds to all tuples that satisfy the
subsequent equations:

F (x1,i, x2,i, x3,i, x4,i, x5,i, x6,i, x7,i) = F (x1,i, x2,i, x3,i, x4,i, x5,i, x6,i ⊕ 1, x7,i)
F (x2,i, x3,i, x4,i, x5,i, x6,i, x7,i, x8,i) = F (x2,i, x3,i, x4,i, x5,i, x6,i ⊕ 1, x7,i, x8,i)
F (x3,i, x4,i, x5,i, x6,i, x7,i, x8,i, x9,i) = F (x3,i, x4,i, x5,i, x6,i ⊕ 1, x7,i, x8,i, x9,i)
F (x4,i, x5,i, x6,i, x7,i, x8,i, x9,i, x10,i, ) = F (x4,i, x5,i, x6,i ⊕ 1, x7,i, x8,i, x9,i, x10,i, )
F (x5,i, x6,i, x7,i, x8,i, x9,i, x10,i, x11,i) = F (x5,i, x6,i ⊕ 1, x6,i, x8,i, x9,i, x10,i, x11,i)
F (x6,i, x7,i, x8,i, x9,i, x10,i, x11,i, x10,i) = F (x6,i ⊕ 1, x7,i, x8,i, x9,i, x10,i, x11,i, x12,i)

For slices such that γi = 1, we have to produce a difference in F in order to erase
γi. Table 3 reports the number of solutions for the xi’s depending on (αi, βi, γi).



The case (1, 0, 1) is never going to be used, because it leads to an impossibility
of following the differential.

Table 3. Number of solutions for the (x0, . . . , x13) depending on the input differences.

γi
(αi, βi)

(0, 1) (1, 0) (1, 1)

0 24 56 58
1 32 64 82

Then, for each slice i ∈ S we fix one of these tuples and try to compute the
missing bits. The number of possibilities to choose the tuples for i ∈ S is

Nα = 56|α∧¬β∧¬γ| × 58|α∧β∧¬γ| × 24|¬α∧β∧¬γ| × 82|α∧β∧γ| × 32|¬α∧β∧γ| .

Note that to follow the characteristic, the equations below (directly derived from
the ESSENCE mechanism) must hold:

L(
s bits fixed︷︸︸︷

x7 ) = x0 ⊕
s bits fixed︷ ︸︸ ︷

x8 ⊕ L(β)⊕ F (x1, x2, x3, x4, x5, x6 ⊕ α, x7 ⊕ β) (1)

L(
s bits fixed︷︸︸︷

x8 ) =

s bits fixed︷ ︸︸ ︷
x1 ⊕ x9 ⊕ F (x2, x3, x4, x5, x6 ⊕ α, x7 ⊕ β, x8) (2)

L(
s bits fixed︷︸︸︷

x9 ) =

s bits fixed︷ ︸︸ ︷
x2 ⊕ x10 ⊕ F (x3, x4, x5, x6 ⊕ α, x7 ⊕ β, x8, x9) (3)

L(
s bits fixed︷︸︸︷

x10 ) =

s bits fixed︷ ︸︸ ︷
x3 ⊕ x11 ⊕ F (x4, x5, x6 ⊕ α, x7 ⊕ β, x8, x9, x10) (4)

L(
s bits fixed︷︸︸︷

x11 ) =

s bits fixed︷ ︸︸ ︷
x4 ⊕ x12 ⊕ F (x5, x6 ⊕ α, x7 ⊕ β, x8, x9, x10, x11) (5)

L(
s bits fixed︷︸︸︷

x12 ) =

s bits fixed︷ ︸︸ ︷
x5 ⊕ x13 ⊕ F (x6 ⊕ α, x7 ⊕ β, x8, x9, x10, x11, x12) (6)

L(
s bits fixed︷︸︸︷

x13 ) = x14 ⊕
s bits fixed︷ ︸︸ ︷

x6 ⊕ F (x7 ⊕ β, x8, x9, x10, x11, x12, x13) (7)

The bits fixed in x1, . . . , x13 are those in the slices i ∈ S. Each of Eq. (2)-(6)
corresponds to a system of ` equations between bits, wherein 2s variables are
fixed and 2(`−s) are free. We shall assume that for a random choice of the 2s fixed
variables, each system admits a solution with probability approximately 2`−2s.
Therefore, for a given choice of (x1,i, . . . , x13,i), i ∈ S, we have a probability of
25(`−2s) of a valid solution in Eq. (2)-(6). A solution will give us values conforming
to the differential. To solve the systems of all seven equations, one then proceed
as follows:



1. Fix the s bits in each x1, . . . , x13 to one of the Nα admissible values;
2. Solve the systems of Eq. (2) to (6) for the bits at the s positions, by de-

termining the (` − s) values left of x8, x9, x10, x11, x12. This step succeeds
with probability 25(`−2s), as previously explained. Finding one solution thus
requires approximately 25(2s−`) trials.
Once a solution is found, all the values entering L and all the bits in slices
in S are fixed. Furthermore, all the bits in x8, x9, x10, x11, x12 are fixed, and
for all slices i /∈ S we know the values of

x1,i ⊕ x9,i ⊕ F (x2,i, x3,i, x4,i, x5,i, x6,i, x7,i, x8,i)i
x2,i ⊕ x10,i ⊕ F (x3,i, x4,i, x5,i, x6,i, x7,i, x8,i, x9,i)i
x3,i ⊕ x11,i ⊕ F (x4,i, x5,i, x6,i, x7,i, x8,i, x9,i, x10,i)i
x4,i ⊕ x12,i ⊕ F (x5,i, x6,i, x7,i, x8,i, x9,i, x10,i, x11,i)i
x5,i ⊕ x13,i ⊕ F (x6,i, x7,i, x8,i, x9,i, x10,i, x11,i, x12,i)i

3. Now we can choose freely the (` − s) bits left on x5, x6, x7, and for each
valuation we determine the remaining bits of x13 (from Eq. (6)), of x14

(from Eq. (7)), and of x4, x3, x2, x1 (from Eq. (5) to (1)). Thus, each valid
solution to Eq. (1)-(7) gives 23(`−s) additional results by exploiting the extra
degrees of freedom.

We obtain in total about Nα ·25(`−2s) ·23(`−s) ·2−1 possible pairs that satisfy the
path from step 10 to 17. The factor 2−1 comes from the fact that we counted
each possible pair twice.

The subsequent sections discuss the complexity of performing the search of
the rest of the path, and give concrete complexity estimates for each instance of
ESSENCE.

3.3 Finding Accurate Probabilities

Relying only on the Hamming weight to approximate the probability of the
differential gives unacceptably inaccurate approximations. Indeed, for a given
word slice, probabilities to be absorbed at each step are not independent, and
neglecting this leads to estimates far from actual values. For example, a single
bit difference is absorbed during seven steps with probability 2−8.41, which is
significantly lower than the heuristical estimate 2−7. However, for the differen-
tials considered, the dependency between word slices seems negligible. We thus
give complexities with respect to empirical estimates, computed independently
for each word slice. That is, we compute the probability of the differential as
32 (or 64) independent characteristics, i.e., one for each slice. We could then
estimate the real probability of our path for any given difference α. We found
that having α = 1, β = 0 and L(β) = 1 leads to an impossibility (the differential
will never be satisfied for that α). This is why we need the condition

L(β) ∧ α ∧ ¬β = 0 .



When considering the middle section, we also computed the real probability
of verifying the sliced path once this part of the differential is satisfied. The
complexities given in the next section were computed with respect to those
empirical estimates, not with the heuristical values based only on the Hamming
weight.

Reusing the notations α, β, γ from §§3.2, we give below the probabilities for
a given slice i to follow the complete path on 32 steps (the impossible cases—of
probability zero—are not included), depending on (αi, βi, γi) ∈ {0, 1}3 :

• (0, 1, 0) : 2−9.5

• (0, 1, 1) : 2−9

• (1, 0, 0) : 2−24.4

• (1, 1, 0) : 2−23

• (1, 1, 1) : 2−26

The probability that a random input follows the path is then the product of
those probabilities, with each raised to a power that equals the number of slices
corresponding to this case. For the α’s used in our attacks, we obtain probabilities
2−236 and 2−461, respectively for ESSENCE-256 and ESSENCE-512.

Taking into account our technique in §§3.2 for solving the middle at a reduced
cost, we obtain the probabilities

• (0, 1, 0) : 2−1

• (0, 1, 1) : 2−1

• (1, 0, 0) : 2−17.2

• (1, 1, 0) : 2−15.9

• (1, 1, 1) : 2−19.4

Given those numbers, we find that the probability that a value conforming to
the middle section follows the rest of the differential is 2−91 for ESSENCE-256
and 2−168.2 for ESSENCE-512.

There are at least two ways to compute the total number of message pairs
that is going to satisfy the whole path. As we will get nearly the same result
with both of them, we can verify that our estimations are correct. First, some
additional notations are required: we let ρ0, . . . , ρ`−1 denote the probabilities for
each slice in 0, . . . , `− 1 of conforming to the differential, i.e., each ρi will lie in
{2−9.5, 29, 224.4, 223, 226}; and we let τ0, . . . , τ`−1 be the conditional probabilities
for each slice to follow the differential, assuming that the differential of the
middle section is satisfied. Now, the two equivalent ways to express the number
of conforming messages are:

1. The probability of the whole path is
∏`−1
i=0 ρi, hence the number of pairs of

conforming messages is

28` ·
`−1∏
i=0

ρi ,

where 8` is the digest bit length.



2. The probability of the path once the middle section is satisfied is
∏`−1
i=0 τi;

calling N the number of pairs conforming to the middle section, the number
of conforming message pairs is then

N ·
`−1∏
i=0

τi .

We verified that these two ways of computing the total number yield almost
identical values, which gives evidence of the accuracy of our estimates.

3.4 Collisions for ESSENCE-256

For ESSENCE-256, we could perform an exhaustive search over all differences
and found as optimal value α = 80102040, for which |α| = 4, |β| = 18, and
|α∨β| = s = 19. Heuristic estimates suggest that we need about 215×4+18 = 278

messages that conform to the middle section to find at least one conforming
to the differential on the right side. However, the real complexity is (cf. §§3.3)
approximately 291.

Solving the right side. For that α, we have in total

246 × 561 × 329 × 823 ≈ 297.7

possibilities to set the bits in S. We have a probability 25(32−2×19) = 2−30 of
finding a solution to the five systems defined by Eq. (2) to (6). Following our
assumption in §§3.2, we get about 267.7 solutions. For each solution, we obtain
239 additional solutions by varying bits in slices i not in S, yielding in total up
to 2106.7 solutions.

For each message pair found, we must check that it satisfies the rest of the
differential. As found in §§3.3, we need about 291 values conforming to the middle
section to find one value following the rest of the differential. Below we detail
the cost of finding those messages.

For each solution of Eq. (2)-(6) we obtain 239 additional pairs essentially “for
free”, thus we only need to find 291−39 = 252 solutions to the system. Since each
solution costs about 230 trials, we have to test about 252 × 230 = 282 distinct
choices of s fixed tuples. We thus have a complexity 282 for finding 291 pairs,
and a complexity 291 for checking that they follow the differential. To recap,
the total cost of the attack is less than that of computing 291 compressions of
ESSENCE-256, since a majority of the 291 trials need compute at most two steps
of ESSENCE, and the others at most 23 steps.

Solving the left side. Once a conforming pair of message blocks is found,
we just need to try approximately 264 distinct random chaining values to find
a collision (for comparison, the heuristical estimate is 214×4 = 256). Without
increasing the total complexity, we can find 291−64 = 227 collisions, whereas this



requires 2155 trials with the generic attack. Note that our attack can be carried
out with negligible memory (the 291 messages that satisfy the middle section
don’t have to be stored: we test repeatedly each candidate message, and discard
it if it does not conform to the full differential).

3.5 Collisions for ESSENCE-512

For ESSENCE-512, the best difference found is α = 8408400000480082, giving
|α| = 8, |β| = 35, and |α ∨ β| = s = 39. As discussed in §§3.3, we need about
2168.2 solutions of the middle section to find one solution for the right side of the
differential (against 2155 with heuristical estimates).

Solving the right side. For our α we have

2414 × 564 × 583 × 3217 × 821× ≈ 2196.4

possibilities for the tuples at the indices i ∈ S and a probability of about 2−70

to find a solution for all the systems of Eq. (2)-(6). Thus, we expect about
2126.4 solutions. Using the free bits, we get for each solution 23×(64−39) = 279

additional solutions. In total, there are thus about 2205.4 solutions, which will
be good enough for finding one conformig to the full differential (trying 2168.2 is
sufficient).

To compute the 2168.2 pairs we have to find 2168.2−79 = 289.2 solutions to the
linear system derived from Eq. (2)-(6). Each solution requires about 270 trials,
thus we have to test about 2159.2 tuples. We obtain a total cost equivalent to
less than 2168.2 evaluations of the compression function.

Solving the left side. Now, we have a pair of messages that verify the differen-
tial path. The probability for a random chaining value of verifying the differential
path is approximately 2−128. Hence, once we have the valid pair of messages, we
can find a collision within about 2128 trials. Still for a total complexity of 2168.2,
we can compute up to 2168.2−128 = 240.2 collisions, whereas this should require
240.2 × 2256 ≈ 2296.2 trials ideally.

4 Attacking HMAC-ESSENCE

HMAC [1] is a widely used construction for building message authentication
codes out of hash functions. Proposed in 1996 by Bellare, Canetti, and Krawczyk,
HMAC has been standardized by NIST in 2002 [8] and requirements for SHA-3
include compatibility with HMAC.

The results in §3 can directly be turned into a distinguisher for ESSENCE-
256 and ESSENCE-512 when used in keyed mode, be it with an unknown prefix
message, or within HMAC. We just make the standard assumption that we can
query an oracle (non-adaptively) with messages, and that this returns the digests



produced by the keyed ESSENCE with this message as input, for a randomly
preselected key.

A distinguisher then works as follows:

1. Find a pair of blocks (x, y) that conforms to the message part differential.
2. Repeat until a collision is found:
3. Pick a unique prefix m.
4. Query for oracle with m‖x and m‖y.

Ideally 2256 trials are expected before a collision for ESSENCE-256, but here we’ll
make only 264 trials in average, after a precomputation of complexity 290.98. For
ESSENCE-512, we have a complexity 2168.24 instead of 2512 ideally.

We can also mount an existential forgery attack by making one additional
adaptive query:

1. Run the distinguisher above to obtain blocks m,x, y such that m‖x and m‖y
collide by HMAC-ESSENCE.

2. Pick an arbitrary block m′.
3. Query the oracle for the MAC of m‖x‖m′, obtain a value z.
4. Return z as forgery of m‖y‖m′.

The complexity of this attack is essentially the same as that of the simple dis-
tinguisher.

5 Conclusion

We presented collision attacks on ESSENCE-256 and ESSENCE-512 of respec-
tive complexities 291 and 2168.2. More precisely, these values are upper bounds
on the cost of running our attacks, in terms of compression-equivalent units.
Implementations of our attacks can use negligible memory, and in particular
avoid expensive memory accesses. These attacks also apply to the versions of
ESSENCE with 224- and 384-bit digests.

We showed a direct application of those collision attacks to the HMAC con-
struction instantiated with ESSENCE, giving a distinguisher and an existential
forgery attack with same complexity as the collision attacks.

Although far from practical, our attacks reveal significant weaknesses in the
version of ESSENCE submitted to NIST. However, they do not highlight any
flaw inherent to the ESSENCE design, but rather exploit the low number of
rounds.
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