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Abstract

We address the problem of designing optimal schemes for the generation of secure crypto-
graphic keys from continuous noisy data. We argue that, contrary to the discrete case, a
universal fuzzy extractor does not exist. This implies that in the continuous case, key ex-
traction schemes have to be designed for particular probability distributions. We extend the
known definitions of the correctness and security properties of fuzzy extractors. Our defini-
tions apply to continuous as well as discrete variables.
We propose a generic construction for fuzzy extractors from noisy continuous sources, using
independent partitions. The extra freedom in the choice of discretisation, which does not
exist in the discrete case, is advantageously used to give the extracted key a uniform dis-
tribution. We analyze the privacy properties of the scheme and the error probabilities in a
one-dimensional toy model with simplified noise.
Finally, we study the security implications of incomplete knowledge of the source’s probability
distribution P. We derive a bound on the min-entropy of the extracted key under the worst
case assumption, where the attacker knows P exactly.

1 Introduction

1.1 Fuzzy Extractors

Extraction of secure cryptographic keys from noisy measurements is a problem that received a
lot of attention in recent years [9, 5, 2, 4, 8]. The main motivations originate from the area
of biometrics and Physical Unclonable Functions (PUFs) [6]. Within the field of biometrics key
extraction plays a role in protecting the privacy of stored biometric templates and in the formation
of new applications such as file access based on biometric data. PUFs on the other hand are used
for anti-counterfeiting (e.g. making devices such as RFID tags unclonable) and secure storage of
cryptographic keys [7].
Most of the research up to now has focused on the extraction of secure keys from discrete noisy
sources [2]. The basic primitive that resulted from this work is the fuzzy extractor. A fuzzy
extractor is a general primitive that allows one to extract a secure cryptographic key from a noisy
source. It consists basically of two phases. In a first phase the source is challenged; a secure bit
string (the key) as well as helper data are extracted by means of a probabilistic procedure. The
helper string has to be considered as publicly available data and hence can be observed by an
attacker. In the second phase, the key has to be reconstructed from a fresh measurement of the
noisy source. This measurement will in general differ slightly from the first one. The reconstruction
procedure takes as input the fresh measurement and the helper data to reconstruct the original
key.
Many sources, however, produce continuous rather than discrete data. Fingerprint templates for
instance are represented by sequences of points in a continuous domain such as Rn. Speckle
patterns originating from optical PUFs and capacitance measurements of coating PUFs [7] are
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typically continuous data. In order to use these responses for cryptographic purposes, some dis-
cretisation step has to be performed. The choice of this discretisation procedure is relevant since
it determines the quality of the input of all the discrete procedures that follow. A bad choice can
lead to large entropy loss. An important consideration here is the noise reduction. A carefully
chosen discretisation allows for extraction of most of the entropy available in the measurement
while reducing the noise to a point where an efficient error correcting code can be deployed.
There is only a small amount of literature [4, 1] addressing the extraction of secure keys from
noisy continuous sources; only particular quantization schemes have been considered.
The notion of a discrete fuzzy extractor can not be immediately generalized to this situation.
This is primarily because several entropy notions (min-entropy and Renyi entropy) used in the
definition of the discrete fuzzy extractor are not well defined for the continuous case.

1.2 Contributions and organisation of this paper

In Section 2 we extend the known definitions of the correctness and security properties of fuzzy
extractors. Our definitions apply to continuous as well as discrete variables. We argue that
the universality property of fuzzy extractors for discrete distributions does not directly apply to
continuous distributions, since concepts such as min-entropy are undefined if the discretisation is
left unspecified.
Then, in Section 3.1, we present a geometric approach to the problem of key extraction from noisy
continuous sources. The extraction scheme is based on an independent pair (A,B) of partitions
of the measurement space. The extra freedom in the choice of discretisation, which does not exist
in the discrete case, is advantageously used to give the extracted key a uniform distribution. In
Section 3.2 the privacy aspects of the scheme are addressed. In section 3.3 various types of errors
are introduced. In Section 3.4 we introduce a one-dimensional toy model with simplified noise, for
which we analyze the error probabilities.
In practice, the designer of a key extraction scheme does not exactly know the true probability
distribution ρ of the source. He only has an estimate ρ̃ based on a finite set of experimental data.
The mismatch between the empirical distribution ρ̃ and the real distribution ρ affects the security
of the extracted key. In Section 4 we compute a lower bound on the min-entropy of the extracted
key, taking this mismatch into account. This is done under the worst case assumption, i.e. we
assume that the attacker has perfect knowledge of ρ. Finally, to illustrate our approach we analyze
the case of a source with normal distribution.

2 Preliminaries

Throughout this paper, except when otherwise stated, log is taken to base 2. When an algorithm
or a function f is randomized, we use the semicolon when we wish to make the randomization
explicit: i.e. we denote by f(x; r), the outcome of computing f on input x with randomness r.
Pair (M, d) will represent a discrete metric space and (X , d) an uncountable (“continuous”) metric
space 1.
Let P and Q be probability measures on M. The total variation between P and Q is defined as2

∆(P,Q) = 1
2

∑
x∈M |P(x)−Q(x)|. The min-entropy of P is given by H∞(P) = − log maxx∈M P(x).

For a random variable X with distribution P (denoted by X ∼ P), we often write H∞(X) instead
of H∞(P). For a joint distribution (X,Y ) ∼ P the marginal distribution of Y is denoted as
P(2)(y) =

∑
x P(x, y). The conditional min-entropy of X given Y is defined as

H∞(X|Y ) = − log max
x,y

P[X = x|Y = y] = − log max
x,y

P(x, y)
P(2)(y)

.

1We abuse notation by setting the same notation d for the metric in both M and X . The precise meaning will
however be clear from the context.

2For X ∼ P, X′ ∼ Q we often write ∆(X,X′) or ∆(PX , PX′ ) instead of ∆(P,Q).
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Definition 2.1. ([2]) For (X,Y ) ∼ P, the average min-entropy of X given Y is defined as

H̃∞(X|Y ) = − log EP(2)

(
2−H∞(X|Y=y)

)
= − log

(∑
y

max
x

P(x, y)

)
. (1)

We recall and extend the definition of a fuzzy extractor as introduced by Dodis et al. in [2]
(Definitions 2.2, 2.3 below).

Definition 2.2. A fuzzy extractor of length ` on a discrete metric space (M, d) is a pair of
(randomized) procedures generate (Gen) and reproduce (Rep) with

Gen :M→ {0, 1}` × {0, 1}∗ : x 7→ (k,w),

Rep :M×{0, 1}∗ → {0, 1}` : (x′, w) 7→ k̂,

We write (kx, wx) = Gen(x) for values of the Gen function at point x ∈ M. If X is a random
variable with values in M, then (K,W ), given by (K,W ) = Gen(X), are random variables with
values in {0, 1}` and {0, 1}∗ respectively, with the joint distribution induced by Gen from P.

Naturally, fuzzy extractors must be resilient with respect to small measurement errors and should
produce sufficiently random keys. The following conditions are the reformulation of the corre-
sponding conditions of the definition in [2].

Definition 2.3 ([2]). Let (Gen,Rep) be a fuzzy extractor of length ` on a metric space (M, d).
Let (kx, wx) = Gen(x). We say that (Gen,Rep) is

(C1) t-correct for t > 0, if for all x, x′ ∈M with d(x, x′) < t one has Rep(x′, wx) = kx.

(S1) (m, δ)-secure for some m > 0 and δ ∈ [0, 1), if for any probability distribution P on M with
min-entropy at least m, the random variables (K,W ) = Gen(X), with X ∼ P, satisfy

∆
(

(K,W ), (U,W )
)
≤ δ,

where U is a uniformly distributed random variable on {0, 1}`.

By definition, the entropy loss of an (m, δ)-secure fuzzy extractor of length ` is m− `.

Fuzzy extractors aim at correcting for noise corrupting the data. However, in the definition above
the distribution of the noise is not taken into account. One can argue that the correctness property
of the fuzzy extractor should be stated in terms of the noise distribution.
To illustrate this argument further, we give a number of conditions that a “good” fuzzy extractor
could satisfy. We modify our notations slightly, for better understanding. The noisy measurement
X ′ of X will be modeled by means of of a family {Px}x∈M of probability measures Px, which
define the distribution of X ′ given X = x.

Definition 2.4 (Correctness). Suppose that X is a random variable with values inM distributed
according to a probability law P; X ′ is a noisy measurement of X for the noise P = {Px}x∈M,
i.e., X ′ ∼ Px, if X = x. We say that a fuzzy extractor (Gen,Rep) is

(C2) on average ε-stochastically resilient for noise {Px}, if∫
Px(Rep(X ′, wx) = kx) P(dx) ≥ 1− ε.

(C3) worst case ε-stochastically resilient for noise {Px}, if for any x ∈ X one has

Px(Rep(X ′, wx) = kx) ≥ 1− ε.
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Conditions (C2) and (C3) are meant to generalize (C1), by taking into account the effect of the
measurement noise. For the same value of the parameter ε, (C3) implies (C2). Condition (C1)
can be reformulated in probabilistic terms as well: a fuzzy extractor (Gen,Rep) is t-resilient for
some t > 0, if and only if (Gen,Rep) is worst case 0-stochastically resilient for any noise {Px} such
that

Px(d(x,X ′) < t) = 1.

Definition 2.5 (Security). Suppose X is a random variable with values in X distributed accord-
ing to a probability law P. Fuzzy extractor (Gen,Rep) is called

(S2) on average m̃-secure if
H̃∞(K|W ) ≥ m̃;

(S3) worst-case m̃-secure if for all w ∈ {0, 1}∗ such that P(2)(W = w) > 0,

H∞(K|W = w) ≥ m̃.

For the same value of parameter m̃, (S3) is stronger than (S2). We argue that (S3) is too strict: it
takes the worst case helper data, while for predictability by an adversary, the average case suffices.
Averaging over all possible helper data as in (S2) suffices because the helper data is not under
attack by the adversary. The advantage the adversary has depends on how much control he has
in creating the worst case. The attacker has no influence on the key generating procedure Gen so
the best he can do is hope that the helper data is the worst possible (i.e. the helper data reveals
a lot of information about the key). However, the worst case occurs with negligible probability.
A proof of this fact is given in Appendix A. We prove that if (S2) holds, then the probability of
w ∈ W occurring such that H∞(K|W = w) ≤ ξ � m̃ is bounded from above by 2−(m̃−ξ). Since
this bad class of helper data occurs with negligible probability, describing the security of a fuzzy
extractor in terms of property (S2) is valid.
Moreover, one can also compare the security conditions (S1) and (S2). Namely, suppose (Gen,Rep)
is (m, δ)-secure in the sense of (S1). Then for (K,W ) = Gen(X), one has

∆
(

(K,W ) , (U,W )
)

=
∑
w

P(W = w)

[
1
2

∑
k

∣∣∣P(K = k|W = w)− 1
2`

∣∣∣] =
∑
w

P(W = w)∆w ≤ δ,

where
∆w =

1
2

∑
k

∣∣∣P(K = k|W = w)− 1
2`

∣∣∣.
Therefore, for any w

max
k

P(K = k|W = w) ≤ 1
2`

+ ∆w,

and hence

H̃∞(K|W ) = − log

(∑
w

P(W = w) max
k

P(K = k|W = w)

)

≥ − log
( 1

2`
+
∑
w

P(W = w)∆w

)
≥ − log

( 1
2`

+ δ
)
.

Together, with an obvious bound H̃∞(K|W ) ≤ `, this provides a relation between m̃ and δ

m̃ = `− log
(

1 + 2`δ
)
.

Since the above estimates are rather sharp, one has to realize than for large `, seemingly small
values δ, can result in low entropy values. Therefore, we argue that the condition (S2) is more
suitable for ensuring the security of the derived keys.
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A practical fuzzy extractor must have at least one of the correctness properties and one of the secu-
rity properties. Fuzzy extractors satisfying properties (C1) and (S1) are precisely those introduced
in [2].
It is expected that the helper data might reveal some amount of information about the original
measurement and/or the bit string derived from the measurement. In the discrete case, this can
be quantified in terms of the universal loss L (see [4]),

L ≥ H∞(K)−H∞(K|W ).

The universality reffers to the fact that the inequality should be valid for all or at least a large
class of probability distributions on the measurement space.
The fuzzy extractor allows one to extract an ε-secure bit string of length m− 2 log(1/ε) from all
discrete noisy sources that have min-entropy at least m. This is called the universality property
for fuzzy extractors for discrete distributions.
For continuous distributions, a quantization scheme Q is applied to transform the continuous
domain to a discrete domain. A fuzzy extractor for discrete domains is then applied. During
reconstruction, the discretized version is reconstructed instead of the original x in the continuous
domain. Quantization Q(X) is treated as the “discrete original” [4]. The entropy loss in this
phase of the construction is given by H∞(Q(X))−H∞(Q(X)|W ). The second term is called the
left-over entropy [4]. In the continuous case, we aim at maximizing left-over entropy because it
is the “source entropy” for the strong extractor phase. A strong extractor can now be applied to
Q(X) to extract a secure bit string. The total entropy loss of the fuzzy extraction scheme using
this construction is

[H∞(Q(X))−H∞(Q(X)|W )] + [H∞(Q(X)|W )− `] = H∞(Q(X))− `,

where ` is the length of extracted string.
It is interesting to find out how much information the helper data reveals about the extracted
string. Unlike in the discrete case, for any quantization scheme on X and any fixed positive L,
one can find a probability distribution on X such that H∞(K) is smaller than L, hence making the
above estimate useless. This distribution can be made to have a large value of appropriately defined
entropy. Since for the continuous case the quantization scheme is part of the fuzzy extractor, one
therefore concludes that there are no ‘universally’ good fuzzy extractors for continuous spaces.
Hence, contrary to the discrete case, one must construct good quantization schemes for a fixed
distribution, since schemes with reasonable properties do not exist for any sufficiently large class
of distributions, e.g., the class of distributions with reasonably large entropy.
The scheme presented in the next section is derived for a fixed distribution and has the prop-
erty that H∞(Q(X)) = H∞(Q(X)|W ), i.e. the entropy loss due to the helper data is zero.
Furthermore, the output after quantization is uniform, so we do not require a strong extractor.
Consequently, we have

H∞(K|W ) = H∞(Q(X)|W ) = H∞(Q(X)),

i.e. the helper data does not reveal any information about the key.

3 Fuzzy extractors for continuous distributions

3.1 Construction based on independent partitions

There are many ways to partition a measurable space X . In fact, there is one-to-one correspondence
between measurable function and partitions: For example, any measurable function h : X → Σ,
where Σ is a finite set, gives rise to a finite partition into level sets:

A = {Aσ|σ ∈ Σ},
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where Aσ = {x ∈ X : h(x) = σ} = h−1(σ). Similarly, any partition A = {Aσ|σ ∈ Σ} gives rise
to a function h : X → Σ, given by h(x) = σ if x ∈ Aσ. Moreover, by considering functions from
X ×R, we can associate partitions to randomized functions h on X . To simplify notation we only
consider deterministic functions and corresponding partitioning schemes.
Consider a surjective function Q (the ‘quantizer’) on X . Q : X → [n]. Here [n] denotes the set
{1, . . . , n}; i = Q(x) will be referred to a the key extracted from x. As mentioned above, Q induces
a natural partitioning A of X , which consists of n subsets {A1, . . . , An},

Ai = {x ∈ X : Q(x) = i},

satisfying Ai ∩ Ak = ∅ for i 6= k and ∪ni=1Ai = X . To explicitly state the relationship between
the quantizer Q and the partitioning A, we write QA : X → [n], QA(x) = i if and only if x ∈ Ai.
If P is a probability distribution on X , QA induces a discrete probability distribution PA on [n],
PA = (P(A1), . . . ,P(An)).
Now we are going to incorporate a noise correction mechanism, because the measurement can be
corrupted by noise. This is done by means of another partition B of size m of X as follows. First
of all, for two partitions A = {Ai}ni=1 and B = {Bj}mj=1 of X , the refinement of A and B is a
partition consisting of the sets {Ai ∩ Bj : i ∈ [n], j ∈ [m]}. The corresponding quantizer, Q(A,B)

is given as Q(A,B)(x) = (i, j) if and only if x ∈ Ai ∩Bj . In this case, we say that i is the extracted
key and j is the helper data. On input of a noisy observation x′ = x + e and helper data j, the
key is recovered as follows:

ı̂ = argmin
k

dist(x′, Ak ∩Bj) = argmin
k

min
x̂∈Ak∩Bj

d(x′, x̂),

where dist(U, V ) = minu∈U,v∈V d(u, v). To ensure that the key is recovered correctly, we demand
that a sufficient gap should exist between each pair of sets Ai ∩ Bj , Ak ∩ Bj , with i, k ∈ [n] and
i 6= k.

Figure 1: For each fixed j, large gaps exist between each pair of subsets in {Ai ∩Bj}. This allows
for efficient error correction.

It is easy to see that in the case of additive noise, i.e., x′ = x + e, where the noise e is such that
2e ≤ dmin = mini,j,k: i 6=k dist(Ai∩Bj , Ak∩Bj), then the noise cannot cause a reconstruction error,
and we will always have ı̂ = i.
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It is desirable that the helper data j reveals the least information possible about the extracted key i.
To accomplish this, we demand that A and B are independent, i.e. P (Ai∩Bj) = P (Ai)P (Bj)∀i, j.
This implies that the helper data reveals no information about the extracted key. So H∞(I|J) =
H∞(I).
To optimize our construction, we require that the probability distribution induced on [n]× [m] by
the quantizer Q(A,B) is uniform3, i.e.

P (Ai) =
1
n
, P (Bj) =

1
m

for all i ∈ [n], j ∈ [m]. Equivalently, H∞(PA) = log n and H∞(PB) = logm. In line with the
notation in [2], we give a formal construction of a continuous space fuzzy extractor as follows:

Construction 3.1. Let (X , d) be a continuous metric space. Let X be a random variable on X .
Let A and B be independent partitions of X of sizes n and m respectively, such that Q(A,B) induces
a uniform distribution on [n]× [m]. We define the generation procedure Gen: X → [n]× [m] and
the reproduction procedure Rep: X × [m]→ [n] as follows:

• Generation: Gen(A,B)(x) = Q(A,B)(x) = (i, j). Here i is the key and j is the helper data.

• Reproduction: ı̂ = Rep(A,B)(x′, j) = argmink inf x̂∈Ak∩Bj d(x′, x̂).

By construction this scheme yields perfect security in the sense of (C1): ∆
(
(I, J), (U, J)

)
= 0,

where (I, J) = Gen(X), X ∼ P, and U is uniform on [n]. Moreover, the scheme has zero entropy
loss incurred from publishing the helper data, H∞(I|J) = H∞(I) = log n.

3.2 Privacy

In the case X represent the biometric data, the privacy of the original measurement has to be
preserved. Therefore it is interesting to investigate how much information is gained on the mea-
surement X from the value of helper data J . It was shown in [5, 2] that in the discrete case, the
helper data always leaks information on the measurement X. A natural measure for determining
the amount of leakage is the mutual information between the measurement and the helper data.
In the case of our construction 3.1, the amount of information an adversary learns about X is
given by

I(X; J) = H(J)−H(J |X) = H(J) = logm.

Here we have used H(J |X) = 0, which holds because because given x ∈ X , an adversary can
easily compute Q(A,B)(x) = (i, j). In order to reveal as little information as possible about X, m
has to be chosen as small as possible. However, the choice of m (together with n) has an impact
on the amount of noise the scheme can tolerate.

3.3 Error analysis

A properly designed fuzzy extractor scheme extracts a long key in a robust fashion. Yet, errors
are inevitable. Therefore, error analysis of our proposed scheme is essential. Let X ′ be a noisy
version of X. A reconstruction error occurs when Rep(X ′, J) 6= I. We examine three ways of
evaluating the probability of such an erroneous re-extraction. First of all, for a fixed x, X ′ is
a random variable with distribution X ′ ∼ Px = P (·|X = x). Hence, we might be interested in
evaluating the x-dependent error probability:

p(x) = Px[Rep(X ′, jx) 6= ix].

3Demanding the partitions to be uniform implies that they are independent. However in our construction,
independence of the partitions is a more important property, because it ensures that the helper data leaks no
information about the extracted key. We treat uniformity as an additional requirement to achieve optimality.
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Secondly, we can evaluate the average error probability p̄. Let X ∼ P, then

p̄ =
∫
x∈X

p(x) P(dx).

Finally, one might be interested in the maximal error probability:

pmax = sup
x∈X

p(x).

3.4 Toy example: Uniform distribution on [0, 1) with simplified noise

In this section we consider the simplest example. The continuous space X is the unit circle
[0, 1). The random variable X is uniformly distributed4. The noisy measurement X ′ is written as
X ′ = X + Z mod 1. The noise Z is assumed to be uniformly distributed on the interval [−δ, δ].
This example is by no means realistic, but it is susceptible to complete analysis and the geometric
idea – introduction of gaps to obtain robustness – is transparent.

Figure 2: Partitioning the unit circle. Note that for each fixed j, large gaps exist between each
pair Ai ∩Bj, Ak ∩Bj with k 6= i.

Construction 3.2. Let X be the unit interval [0, 1]. We construct the partitions A and B as
follows.

Ai =
[
i− 1
n

,
i

n

)
, i ∈ [n],

Ai ∩Bj =
[
i− 1
n

+
j − 1
mn

,
i− 1
n

+
j

mn

)
, j ∈ [m].

Ai is an interval of length 1/n, and Bj is a union of n intervals of length 1/mn. To complete the
partition scheme we have to specify the distance function d. We let d be the usual distance on the
circle. The distance between two sets Ai ∩Bj for any fixed j is

dist(Ai ∩Bj , Ai′ ∩Bj) ≥
1
n
− 1
nm

=: dmn ∀i, i′, i 6= i′,

4Any one-dimensional continuous density function can be mapped to a uniform distribution on the unit circle.
Let ρX(x) be the density function of X. Let y =

R x
−∞ ρX(t)dt, then Y ∈ [0, 1] and Y ∼ U [0, 1], where U [0, 1] is the

uniform distribution on the unit interval. Identifying the end points 0 and 1 we get the unit circle.
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with equality if and only if |i − i′| = 1 mod n, i.e., when Ai and Ai′ are neighboring intervals.
Hence, we say that the gap size is dmn. Recall that the key reconstruction is based on the distance
from x′ ∈ X to the nearest Ai ∩Bj ,

ı̂(X ′, j) = argmin
i

d(Ai ∩Bj , X ′).

Hence, for J = j the set of x′ such that ı̂ assumes value k is an interval

Tk,j := {x′ : Rep(A,B)(x
′, j) = k} =

(
inf(Ak ∩Bj)−

dmn
2
, sup(Ak ∩Bj) +

dmn
2

)
=

(
k − 1
n

+
j − 1
mn

− m− 1
2mn

,
k − 1
n

+
j

mn
+
m− 1
2mn

)
.

The length of this interval is 1/n. Trivially, all key values are equiprobable not only for noise-free
measurements (achieved by design), but for noisy measurements as well.
We will now evaluate the error probabilities. To stress the dependence on the parameters m,n,
and on the noise Z ∼ U([−δ, δ]), we denote by pm,n(δ, x), pmax

m,n(δ) and p̄m,n(δ), the x-dependent,
maximal and average probabilities, respectively.

Theorem 3.3. Let X be a random variable with uniform distribution on the unit circle. Let the
noise Z be uniformly distributed on [−δ, δ]. Let A, B be the partitioning according to Construc-
tion 3.2. Let (i, j) = Q(A,B)(x), and q = x− [ i−1

n + j−1
mn + 1

2mn ], i.e. |q| is the distance between x
and the middle point of the interval Ai ∩Bj.

(i) The x-dependent error probability is given by

pm,n(δ, x) =


0, if δ ∈

[
0, 1

2n − |q|
]

1
2

(
1− 1

2δn

)
+ |q|

2δ , δ ∈
(

1
2n − |q|,

1
2n + |q|

)
1− 1

2δn , if δ ∈
[

1
2n + |q|, 1

2

]
.

(2)

(ii) The maximal error probability pmax
m,n(δ) = max

x
pm,n(δ, x) is attained at the endpoints of

Ai ∩ Bj, and is given by

pmax
m,n(δ) =


0, δ ∈ [0, m−1

2mn ),
1
2 −

m−1
4δmn , δ ∈ [m−1

2mn ,
m+1
2mn ],

1− 1
2δn , δ ∈ (m+1

2mn ,
1
2 ].

(3)

(iii) The average error-probability is given by

p̄m,n(δ) =


0, δ ∈ [0, m−1

2mn ),
mn
2δ

(
δ − m−1

2mn

)2
, δ ∈ [m−1

2mn ,
m+1
2mn ],

1− 1
2δn , δ ∈ (m+1

2mn ,
1
2 ].

(4)

The proof is straightforward, but laborious (see Appendix B). The result is useful for the opti-
mization of design parameters.
In terms of Definitions 2.3, 2.4, and 2.5, Construction 3.2 for noise Z ∼ U([−δ, δ]) produces a fuzzy
extractor which is (C1)

m−1
2mn -correct; (C2) on average p̄m,n(δ)-stochastically resilient; (C3) worst

case pmax
m,n(δ)-stochastically resilient, with p̄m,n(δ) and pmax

m,n(δ) as given in Theorem 3.3. With
respect to security conditions, the fuzzy extractor is (S2) on average log n-secure; (S3) worst case
log n-secure. Recall that the security condition (S1)cannot be applied in the continuous case.
Example 3.4. Suppose n = 2, i.e., we want to extract 1 bit. If m = 1, i.e., no helper data is used,
then

pmax
1,2 (δ) =

1
2

for all δ ∈ (0, 1/2].

On the other hand, if δ < 1/8, then the partition scheme with m = 2 gives no error at all.
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More generally, the following proposition aids the optimal selection of parameter m. Let bxc
denote the integer part of x for x ≥ 0.

Proposition 3.5. For n ≥ 2 and δ ∈ [0, 1/2], let γ = 2δn. Then

(a) If γ < 1, then there exists an optimal m such that pmax
m,n(δ) = 0.

(b) If γ = 1, then for every ε > 0, there exists an m such that pmax
m,n(δ) < ε.

(c) If γ ∈ (1, 1.5], then there exists an optimal m such that

pmax
m,n(δ) =

1
2

(
1− 1

γb 1
γ−1c

)
.

(d) If γ > 1.5, then independently of m, pmax
m,n(δ) = 1− 1

γ .

A proof is given in Appendix C.

Remark 3.6. If γ = 2δn > 3/2, then we can say that the noise level is too large for the desired
number of key values n, and the introduction of helper data does not improve the performance.
Moreover, for any δ we can find a partition scheme which allows errorless extraction of up to
n = b(2δ)−1c. Moreover, if we are prepared to tolerate some moderate error levels, we can extract
up to n = b1.5(2δ)−1c, which is roughly an increase of 50% for small δ’s.

4 Imperfect knowledge of the source

Up to this point, we have investigated the problem of extracting a secret key from a continuous
source distributed according to P. In general, we can not assume that P is known precisely. This
is due to the fact that in practice one often has to learn the distribution P empirically. Hence, one
obtains only an estimate P̃ of the true distribution P. From a security point of view we have to
assume that an attacker has put more effort in learning the distribution and therefore has a more
accurate knowledge of P than the designer. This implies of course that the schemes that we have
described before do not a priori guarantee complete security of the extracted key in this situation.
We give a security derivation assuming the worst case scenario: the attacker knows P exactly. We
prove a bound on the min-entropy of the extracted key, taking into account the mismatch between
the empirical P̃ and the true P.
The designer of the extraction scheme (A,B) bases his design on ρ̃. Therefore, the induced proba-
bilities on elements of the partition are P̃ij := P̃(Ai ∩Bj) = 1/(nm), i.e. uniform by construction.
However, according to the true distribution, Q(A,B) induces an an unknown probability distribu-
tion {Pij}i∈[n],j∈[m], which is different from uniform. If the empirical estimate P̃ is good, then it
will be close to uniform.
In slight abuse of notation we write (I, J) ∼ P and (Ĩ , J̃) ∼ P̃ = U[n]×[m]. By construction we
have that H∞(Ĩ|J̃) = log n. We now give a lower bound on the average min-entropy H̃∞(I|J),
which tells us how secure the key is in the case of imperfect knowledge of the true distribution.

Lemma 4.1. Suppose P̃ is a probability distribution on X , and Q(A,B) : X → [n] × [m] is the
key extraction scheme according to Construction 3.1 with respect to P̃. Suppose X is a random
variable on X , X ∼ P, and put (I, J) = Q(A,B)(X). Then

H̃∞(I|J) ≥ log n− log
(
1 + nm∆

)
,

where
∆ =

1
2

∑
i∈[n]

∑
j∈[m]

∣∣∣P(Ai ∩Bj)− P̃(Ai ∩Bj)
∣∣∣ =

1
2

∑
i∈[n]

∑
j∈[m]

∣∣∣P(Ai ∩Bj)−
1
mn

∣∣∣.
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Proof. Using

max
i,j

P(Ai ∩Bj) ≤
1
mn

+ ∆,

and Definition 2.1, we have

H̃∞(I|J) = − log
∑
j∈[m]

max
i∈[n]

P(Ai ∩Bj) ≥ − log
(
m max

i∈[n],j∈[m]
P(Ai ∩Bj)

)

≥ − log
(
m

[
1
mn

+ ∆
])

= log n− log(1 + nm∆).

For a good practical fuzzy extractor, m∆ should be of order O( 1
n ) implying that H̃∞(I|J) is of

order O(log n).
If we assume that both P and P̃ are absolutely continuous probability distributions on X with
respect to some reference measure λ, and if ρ, ρ̃ are the corresponding densities, i.e.,

dP
dλ

= ρ,
dP̃
dλ

= ρ̃,

then the quantity ∆ in the above lemma satisfies the following inequalities

∆ ≤ 1
2

∫
X

∣∣ρ(x)− ρ̃(x)
∣∣λ(dx), ∆ ≤

√
1
2

∫
X
ρ(x) log

ρ(x)
ρ̃(x)

λ(dx).

Figure 3: Effect of partitioning scheme designed using known density ρ̃(x) instead of unknown
density ρ(x). Partitions A and B are sizes n and m = 2 respectively.

We conclude this section with a simple example, namely P being the Gaussian distribution
N(µ, σ2), and P̃ being the maximal likelihood estimate of P based on sample of size N . More
specifically, P̃ is a Gaussian distribution with parameters (µ̂, σ̂2), where

µ̂ =
1
N

N∑
i=1

Xi, σ̂2 =
1
N

N∑
i=1

(Xi − µ̂)2.

It is well known that µ̂→ µ, σ̂2 → σ2 as N →∞, and the error is of order N−
1
2 . We begin with

the following simple lemma, which gives an estimate of parameter ∆ in Lemma 4.1 in case of two
Guassian distributions in terms of the parameters of these distributions.

Lemma 4.2. Let P, P̃ be normal distributions with parameters (µ, σ2), (µ̃, σ̃2) respectively. Then
for any key extraction scheme Q(A,B) : X → [n] × [m] given by Construction 3.1 with respect to
the empirical distribution P̃, one has

∆ ≤ 1
min(σ, σ̃)

√
(σ − σ̃)2 + (µ− µ̃)2,
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The proof is given in appendix E. Hence, applying this lemma, for sufficiently large N , one can
conclude that ∆ will be sufficiently small as well: ∆ = O(N−

1
2 ). In fact, the estimate above can

be used to derive bounds on N sufficient to ensure accurate estimate of P, and hence small ∆.
Moreover, statistics [3] provides even stronger results: Since µ̂, σ̂ are random variables, it can
happen with low probability that these estimates lead to large ∆. Nevertheless, if an independent
sample of size N has been used to estimate the unknown parameters of distribution P, then for
some constants c1, c2, c3, c4 > 0 one has

P
(

∆ > c1
(logN)c2√

N

)
≤ c3e−c4(logN)2 ,

hence any deviation from the order N−
1
2 is quite improbable.

5 Summary

We have extended the known definitions of the correctness and security properties of fuzzy ex-
tractors. Our definitions apply to continuous as well as discrete variables. We have introduced
a generic construction for fuzzy extractors for noisy continuous sources using independent parti-
tions. The extra freedom in the choice of discretisation, which does not exist in the discrete case,
is advantageously used to give the extracted key a uniform distribution. We have analyzed the
privacy properties of the scheme and the error probabilities in a one-dimensional toy model with
simplified noise.
We have studied the security implications of incomplete knowledge of the source’s probability
distribution P. We have derived a bound on the min-entropy of the extracted key under the worst
case assumption, where the attacker knows P exactly. We have worked this out for the case of a
normal-distributed variable.
Finally, we conclude by observing that the proposed approach is easily extended to produce
schemes which allow for extraction of multiple keys from the same source X as well with the
same security, robustness and privacy properties. This is relevant for biometric applications.
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[7] P. Tuyls, G.J. Schrijen, B. Škorić, J. van Geloven, R. Verhaegh, and R. Wolters. Read-proof
hardware from protective coatings. In L. Goubin and M. Matsui, editors, Cryptographic Hard-
ware and Embedded Systems — CHES 2006, volume 4249 of LNCS, pages 369–383. Springer-
Verlag, 2006.
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A Motivation for using security property S2

Let m̃, ξ ≥ 0. Let (K,W ) ∼ P. We prove that if H̃∞(K|W ) ≥ m̃, then the probability is negligible
of w ∈ W occurring such that H∞(K|W = w) ≤ ξ � m̃. Let Ωξ be the set of ‘bad’ helper data
values, Ωξ = {w ∈ W : maxk P(1|2)(k,w) ≥ 2−ξ}.

P[w ∈ Ωξ] =
∑
w∈Ωξ

P(2)(w) ≤
∑
w∈Ωξ

P(2)(w) · 2ξ max
k

P(1|2)(k,w) (5)

≤
∑
w∈W

P(2)(w) · 2ξ max
k

P(1|2)(k,w) = 2ξ
∑
w∈W

max
k

P(k,w) = 2ξ−H̃∞(K|W ) (6)

≤ 2−(m̃−ξ). (7)

In (5) we used the defining property of w in Ωξ. In (6) we made use of the fact that
∑
w∈Ωξ

(· · · ) ≤∑
w∈W(· · · ). Finally the inequality in (6) follows from the given property H̃∞(K|W ) ≥ m̃.

B Proof of Theorem 3.3

Let δ ≤ 1/2. Let Y = X + Z be the noisy measurement, with Z ∼ U [−δ, δ]. For x ∈ Ai ∩Bj , the
error probability is Pr[Y /∈ Ti,j ]. From the uniformity of X and the independence of Z from X it
follows that the error probabilities are independent of i, j. Without loss of generality we consider
(i, j) = (1, 1). Let q = x− 1/(nm). Let a+ denote max(a, 0).
(i) x-dependent error probability:

pmn(δ, x) = PZ(x+ Z /∈ T1,1)

= PZ(Z ∈ [−δ,−x− 1
2
dmn)) + PZ(Z ∈ (−x+

1
2
dmn +

1
nm

, δ])

=
1
2δ

(δ − x− 1
2
dmn)+ +

1
2δ

(δ + x− 1
2
dmn −

1
nm

)+

=
1
2δ

(δ − q − 1
2n

)+ +
1
2δ

(δ + q − 1
2n

)+. (8)

Separate evaluation of this expression for different ranges of q and δ yields (2).
(ii) Maximal error probability: We note that pmn(δ, x) is an increasing function of |q| and that
q ∈ (− 1

2nm ,
1

2nm ). Hence the maximum is obtained at q = ± 1
2nm . Substitution into (8) gives

pmax
mn (δ) =

1
2δ

(
δ − m− 1

2mn

)+

+
1
2δ

(
δ − m+ 1

2mn

)+

.

Separate evaluation for different ranges of δ gives (3).
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(iii) Average error probability. We are now going to compute the average error probability
p̄m,n(δ) = PX,Z(X + Z 6∈ D1,1) where X ∼ U [0, 1

2mn ] and Z ∼ U [−δ, δ]. One possible ap-
proach is to integrate with respect to x the expression for pm,n(δ, x) obtained in (2). However, it
is easier to follow a different approach. We observe that

p̄m,n(δ) = PX,Z(X + Z 6∈ D1,1)

= PX,Z

(
Z +

{
X − 1

2mn

}
≤ − 1

2n

)
+ PX,Z

(
Z +

{
X − 1

2mn

}
≥ 1

2n

)
= F(X− 1

2mn )+Z

(
− 1

2n

)
+
(

1− F(X− 1
2mn )+Z

(
1

2n

))
,

where F(X− 1
2mn )+Z(t) is the distribution function of a random variable (X − 1

2mn ) +Z. Note that
X − 1

2mn ∼ U(− 1
2mn ,

1
2mn ), and hence the distribution of X − 1

2mn + Z is also symmetric, and
therefore

p̄m,n(δ) = 2F(X− 1
2mn )+Z

(
− 1

2n

)
.

First of all, as was noted above, p̄m,n(δ) = 0 for

− 1
2n
≤ −δ − 1

2mn
⇐⇒ δ ≤ m− 1

2mn
.

Suppose now δ > m−1
2mn . If m ≥ 2, then δ ≥ 1

2mn . We now can use the result of Lemma D.1 with
a = δ, b = 1

2mn and t = − 1
2n , and conclude that for m ≥ 2

p̄m,n(δ) =


0, δ ∈ [0, m−1

2mn ),
mn
2δ

(
δ − m−1

2mn

)2
, δ ∈ [m−1

2mn ,
m+1
2mn ],

1− 1
2δn , δ ∈ (m+1

2mn ,
1
2 ].

(9)

C Proof of Proposition 3.5

Proof of Proposition 3.5. If γ < 1, then since limm→∞ (m− 1)/m = 1, for sufficiently large m we
have

m− 1
m

> γ.

But then δ < (m − 1)/(2mn), and, by (3), the partition scheme with parameters (m,n) allows
errorless extraction of n key values. Suppose γ > 1, but γ < 3/2. Then the set

Mγ :=
{
m ≥ 2 :

m+ 1
m

> γ

}
is not empty: Mγ contains at least one element m = 2. Since γ > 1, Mγ is bounded. For all
m ∈Mγ , δ < (m+ 1)/(2mn), and hence

pmax
m,n =

1
2
− (m− 1)

4δmn
=

1
2
− m− 1

2mγ
=

1
2
− 1

2γ

(
1− 1

m

)
.

The optimal choice for m is clearly the maximal element in Mγ :

m∗ = supMγ =
⌊

1
γ − 1

⌋
,
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where b·c is the integer part, and hence

pmax
m∗,n =

1
2

1− 1

γ
⌊

1
γ−1

⌋
 .

If γ = 2δn = 1, then the set Mγ coincides with IN and hence is not bounded. Thus we are able to
choose arbitrarily large m’s. Therefore,

inf
m
pmax
m,n(δ) = 0,

but the infimum is not achieved. Hence, by choosing m appropriately we can only make pmax
m,n less

than any fixed positive number. Finally, if γ > 1.5, then for any m ∈ IN, one has δ > m+1
2mn , and

by (4), we can only achieve pmaxm,n = 1− 1/γ.

D Distribution of the sum of two independent uniform ran-
dom variables

Lemma D.1. Suppose x1, x2, are independent random variables, and x1 ∼ U [−a, a], x2 ∼
U [−b, b]. Assume that a ≥ b. Then x1 +x2 takes values in [−a− b, a+ b], and the density is given
by

px1+x2(t) =



0, t < −a− b
1

4ab (a+ b+ t), t ∈ [−a− b,−a+ b]
1
2a , t ∈ (−a+ b, a− b)
1

4ab (a+ b− t), t ∈ [a− b, a+ b]
0, t > a+ b

. (10)

Moreover, the distribution function Fx1+x2(t) =
∫ t
−∞ px1+x2(τ)dτ is given by

Fx1+x2(t) =



0, t < −a− b
(a+b+t)2

8ab , t ∈ [−a− b,−a+ b]
t+a
2a , t ∈ (−a+ b, a− b)

1− (a+b−t)2
8ab , t ∈ [a− b, a+ b]

1, t > a+ b

. (11)

Proof. The densities of x1, x2 are given by

px1(z) =

{
1
2a , |z| ≤ a
0, |z| > a

, px2(z) =

{
1
2b , |z| ≤ b
0, |z| > b

.

The distribution of x1 + x2 has the density

px1+x2(t) =
∫ ∞
−∞

px1(t− z)px2(z)dz =
1
2b

∫ b

−b
px1(t− z)dz

=
1
2b

∫ b

−b

1
2a

I [−a ≤ t− z ≤ a] dz

=
1

4ab

∫ b

−b
I [t− a ≤ z ≤ t+ a] dz

=
1

4ab

∣∣[−b, b] ∩ [t− a, t+ a]
∣∣.
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Note that we assumed a ≥ b.
Case 1. If t ∈ [−a + b, a − b], then t − a ≤ −b and b ≤ t + a. Hence [−b, b] ⊂ [t − a, t + a].
Therefore px1+x2(t) = (2a)−1.
Case 2. If t ∈ [−a− b,−a+ b], then t+ a ∈ [−b, b], t− a < −b, and hence [−b, b]∩ [t− a, t+ a] =
[−b, t+ a]. Hence px1+x2(t) = (4ab)−1(a+ b+ t).
Case 3. If t ∈ [a−b, a+b], then t−a ∈ (−b, b), t+a > b, and hence [−b, b]∩ [t−a, t+a] = [t−a, b].
Hence px1+x2(t) = (4ab)−1(a+ b− t).
Finally, integrating density (10) we obtain expression for the distribution function (11).

E Proof of Lemma 4.2

Proof. For two normal distributions P = N (µ, σ2) and P̃ = N (µ̃, σ̃2), by the Pinsker and the
log-sum inequalities we have

∆ =
1
2

∑
i∈[n]

∑
j∈[m]

∣∣∣P(Ai ∩Bj)− P̃(Ai ∩Bj)
∣∣∣

≤ min

{√
1
2

∫ +∞

−∞
ρ(x) log

ρ(x)
ρ̃(x)

dx,

√
1
2

∫ +∞

−∞
ρ(x) log

ρ(x)
ρ̃(x)

dx

}
,

where the Kullback-Leibler divergences are given by∫ +∞

−∞
ρ(x) log

ρ(x)
ρ̃(x)

dx =
1
2

(
log

σ̃2

σ2
+
σ2

σ̃2
+
[ µ̃− µ

σ̃

]2
− 1
)
,∫ +∞

−∞
ρ̃(x) log

ρ̃(x)
ρ(x)

dx =
1
2

(
log

σ2

σ̃2
+
σ̃2

σ2
+
[ µ̃− µ

σ

]2
− 1
)
.

Since min{a, b} ≤
√

1
2 (a2 + b2), one concludes that

∆ ≤
√

1
4

(
(σ2 − σ̃2)2

1
σ2σ̃2

+ (µ− µ̃)2
[ 1
σ2

+
1
σ̃2

])
=

1
2σσ̃

√
(σ2 − σ̃2)2 + (µ− µ̃)2(σ2 + σ̃2) ≤ σ + σ̃

2σσ̃

√
(σ − σ̃)2 + (µ− µ̃)2

≤ 1
min(σ, σ̃)

√
(σ − σ̃)2 + (µ− µ̃)2.
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