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Abstract

This paper provides new results about efficient arithmetic on (extended) Jacobi
quartic form elliptic curves y2 = dx4 + 2ax2 + 1. Recent works have shown that
arithmetic on an elliptic curve in Jacobi quartic form can be performed solidly faster
than the corresponding operations in Weierstrass form. These proposals use up to 7
coordinates to represent a single point. However, fast scalar multiplication algorithms
based on windowing techniques, precompute and store several points which require
more space than what it takes with 3 coordinates. Also note that some of these
proposals require d = 1 for full speed. Unfortunately, elliptic curves having 2-times-a-
prime number of points, cannot be written in extended Jacobi quartic form if d = 1.
Even worse the contemporary formulae may fail to output correct coordinates for some
inputs. This paper provides improved speeds using fewer coordinates without causing
the above mentioned problems. For instance, our proposed point doubling algorithm
takes only 2 multiplications, 5 squarings, and no multiplication with curve constants
when d is arbitrary and a = ±1/2.

Keywords: Efficient elliptic curve arithmetic, scalar multiplication, Jacobi model of
elliptic curves.

1 Introduction

Cryptology as a computational science has been a driving force behind the arithmetic of
elliptic curves in the past few decades. The demand for more speed led researchers to
propose new formulae/algorithms/point-representations for several different elliptic curve
models. However, the speed limitation for performing arithmetic on elliptic curves —like
many other computational problems— is still an open question.

The historical roots of the topic dates back to late 18th and early 19th century:
the time of Euler, Abel and Jacobi. An outline of the previous work restricted to the
efficient arithmetic on Jacobi quartic curves is as follows. Chudnovsky and Chudnovsky
[8] introduced the first inversion-free algorithms for performing group operations using a
weighted projective point representation. Billet and Joye [7] used extended Jacobi quartic
form for protection against side-channel attacks with a unified addition speed record for
that time of 10M + 3S + 3D for arbitrary a and d. In this paper, M stands for a
field multiplication; S for a field squaring; D for a multiplication by a curve constant;
I for a field inversion. This notation is borrowed from [4]. Duquesne [11] improved this
operation count by 1M+1S with a variant of Billet/Joye unified point addition algorithm.
Duquesne’s method converts the base point in weighted projective coordinates to a new
point representation with 4 coordinates, performs the scalar multiplication within the new
coordinate system, and outputs the final result in original weighted projective coordinates.
Duquesne’s improvement was followed by additional results in [3], [17], and [19]. However,
the latter proposals tend to use more space —up to 7 coordinates per point— despite their
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speed advantage. Further disadvantages have already been mentioned in the abstract. We
will extend our discussion on these aspects in §2.

In this paper, we carefully optimize the arithmetic of (extended) Jacobi quartic form
targeting more efficient scalar multiplication operations. Our proposal performs faster and
uses less space than [11], [3], [17], and [19].

The paper is organized as follows. A review of extended Jacobi quartic form is given
in §2. Efficient algorithms/formulae/point-representations are introduced in §3, §4, and §5.
Implementation timings are given in §6. We draw our conclusions in §7.

2 Background

This section gives definitions for extended Jacobi quartic curves. Some of the results
involved in this section are analogous to our earlier work [18].

Let K be a field with char(K) 6= 2. An extended Jacobi quartic form elliptic curve over
K is defined by

EJ,d,a : y2 = dx4 + 2ax2 + 1

where a, d ∈ K with ∆ = 256d(a2 − d)2 6= 0. This extended model covers more elliptic
curves than Jacobi model EJ,k2,−(k2+1)/2. In particular, Billet and Joye [7] remark that
any elliptic curve, E/K, can be written as EJ,d,a/K if E(K) has an element of order 2 and
provide the transformations between a Weierstrass elliptic curve y2 = x3 + ax + b of even
order and a weighted projective Jacobi quartic curve. Throughout the paper, we work with
arbitrary a and d. The j-invariant of this curve is given by 64d−1(a2− d)−2(a2 +3d)3 ∈ K.

We first review the most popular addition formulae. Let (x1, y1), (x2, y2) ∈ EJ,d,a(K).
Assuming that (x3, y3) is defined we have (x1, y1) + (x2, y2) = (x3, y3) where

x3 =
x1y2 + y1x2

1 − dx2

1
x2

2

, (1)

y3 =
(y1y2 + 2ax1x2)(1 + dx2

1x
2

2) + 2dx1x2(x
2

1 + x2

2)

(1 − dx2

1
x2

2
)2

. (2)

A special case of (1) appears in one of Euler’s historical works [13]. Formula (1) and (2)
is adapted from [7]. With this selection of the algebraic expressions, the identity element
becomes the point (0, 1). The negative of a point (x, y) is (−x, y). The point (0,−1) is
of order 2. EJ,d,a is non-singular provided that ∆ 6= 0. On the other hand, the point
at infinity (0 : 1 : 0) on the projective closure of EJ,d,a, Y 2Z2 = dX4 + 2aX2Z2 + Z4, is
singular. Resolving the singularity in two consecutive blowups yields two points of order 2.
These points are defined over K if and only if d is a square in K. The following lemma
shows that formulae (1) and (2) are complete if d is not a square in K. The term complete
is used to emphasize that addition formulae are defined for all inputs, cf. [4].

Lemma 2.1. Let d, x1, x2 ∈ K. Assume that d is non-square. Then dx2
1x

2
2 6= 1.

Proof. Suppose that dx2
1x

2
2 = 1. So d, x1, x2 6= 0. But then d = (1/(x1x2))

2.

Lemma 2.1 is similar to Theorem 3.3 of [4]. In the case of EJ,d,a, the statement of the
lemma and its proof are shorter since the curve equation is not involved.

We can prevent dx2
1x

2
2 = 1 even if d is a square in K. Lemma 2.2 states a sufficient

condition. This lemma and its proof are similar to Corollary 1 in [18].

Lemma 2.2. Let a, d, x1, y1, x2, y2 ∈ K such that d(a2− d) 6= 0. Assume that P = (x1, y1)
and Q = (x2, y2) are points of odd order on EJ,d,a. Then 1− dx2

1x
2
2 6= 0.

We provide a proof in Appendix A. By elementary group theory, multiplying a point of
even order with a suitable power of 2 yields a point of odd order.
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More formulae. Jacobi elliptic functions give rise to many addition formulae, cf. [24],
[8], and [7]. The original reference is [20]. The following formulae are equivalent via the
algebraic relations sn(·)2 + cn(·)2 = 1 and k2sn(·)2 + dn(·)2 = 1.

sn(u1 + u2) =
sn(u1)cn(u2)dn(u2) + cn(u1)dn(u1)sn(u2)

1 − k2sn(u1)2sn(u2)2
(3)

=
sn(u1)

2
− sn(u2)

2

sn(u1)cn(u2)dn(u2) − cn(u1)dn(u1)sn(u2)
. (4)

To see the equivalence, either take the arithmetic cross product and write

sn(u1)
2cn(u2)

2dn(u2)
2
− cn(u1)

2dn(u1)
2sn(u2)

2 =

(sn(u1)
2
− sn(u2)

2)(1 − k2sn(u1)
2sn(u2)

2)

—the rest follows when cn(·)2 is replaced with 1 − sn(·)2 and dn(·)2 is replaced with 1 −
k2sn(·)— or simply run the Maple script

> simplify(expand(

JacobiSN(u1 + u2, k) - (

(JacobiSN(u1, k)*JacobiCN(u2, k)*JacobiDN(u2, k) +

JacobiSN(u2, k)*JacobiCN(u1, k)*JacobiDN(u1, k))/

(1 - k^2*JacobiSN(u1, k)^2*JacobiSN(u2, k)^2))));

0

> simplify(expand(

JacobiSN(u1 + u2, k) - (

(JacobiSN(u1, k)^2 - JacobiSN(u2, k)^2)/

(JacobiSN(u1, k)*JacobiCN(u2, k)*JacobiDN(u2, k) -

JacobiSN(u2, k)*JacobiCN(u1, k)*JacobiDN(u1, k)))));

0

As pointed out in [7], (3) is analogous to (1) via the relation (sn(ui), cn(ui)dn(ui)) =
(xi, yi) where (xi, yi) satisfies EJ,k2,−(k2+1)/2. Similarly, the analog of (4) is given by

x3 =
x2

1 − x2
2

x1y2 − y1x2
. (5)

This formula also holds for the extended curve EJ,d,a. This formula fails if (x1, y1) =
(x2, y2). This formula is independent of a and d. There are several other ways to derive (5).
For instance, one may use the strategy applied in [18] for the derivation of dedicated addition
formulae on twisted Edwards curves. Formula (5) is of minimal total degree. Therefore,
the Monagan/Pearce minimal total degree algorithm in [23] can be used to derive this same
formula (or maybe an alternative formula of same total degree if there exists one) departing
from (1) or any other valid formula.

Lemma 2.2 can be rewritten for (5) as follows. The proof is similar to the proof of
Lemma 2.2.

Lemma 2.3. Let a, d, x1, y1, x2, y2 ∈ K such that d(a2− d) 6= 0. Assume that P = (x1, y1)
and Q = (x2, y2) are points of odd order on EJ,d,a. Assume that P 6= Q. Then x1y2−y1x2 6=
0.

The choices for computing y3 are abundant. For instance, each of the following formulae
computes y3 (except for a few exceptional inputs):

y3 =
(x2

1 + x2

2)(y1y2 − 2ax1x2) − 2x1x2(1 + dx2

1x
2

2)

(x1y2 − y1x2)2
, (6)

y3 =
2(x1y1 − x2y2) − (x1y2 − y1x2)(y1y2 + 2ax1x2)

(x1y2 − y1x2)(1 − dx2

1
x2

2
)

, (7)

y3 =
x1y1(2 + 2ax2

2 − y2

2) − x2y2(2 + 2ax2

1 − y2

1)

(x1y2 − y1x2)(1 − dx2

1
x2

2
)

. (8)
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In the printed version of this paper there has been typing errors in (7) and (8). Both
formulae are correctly stated in this version.

Relevant Work. Efficient implementations often use inversion-free point doubling
and point addition formulae. To the best of our knowledge all such proposals for Jacobi
quartic curves reference from weighted projective coordinates which represent the points
as (X : Y : Z)[1,2,1] = (λX : λ2Y : λZ) for all nonzero λ ∈ K on the curve Y 2 = dX4 +
2aX2Z2 + Z4. Unlike the homogeneous projective case, this curve is non-singular provided
that ∆ 6= 0.

Chudnovsky and Chudnovsky [8] proposed two inversion-free point addition and two
inversion-free point doubling formulae using a slightly different quartic equation given by

EJ̃,a′,b′ : y2 = x4 + a′x2 + b′

and using weighted projective coordinates. The formulae in [8, (4.10i) on p.418] are
analogous to (5) and (6) with the minor detail that the identity element is moved to the
point at infinity (1 : 1 : 0) on Y 2 = X4 + a′X2Z2 + b′Z4. The arithmetic of this curve
is similar to that of EJ,d,a due to the symmetry in the right hand side of the weighted
projective equations Y 2 = X4 + a′X2Z2 + b′Z4 and Y 2 = dX4 + 2aX2Z2 + Z4.

Billet and Joye [7] proposed a faster inversion-free unified addition algorithm on the
curve Y 2 = dX4+2aX2Z2+Z4 based on (1) and (2). The term unified is used to emphasize
that point addition formulae remain valid when two summands are identical, see [9, §29.1.2].
Keeping in mind that the points at infinity are defined over K if and only if d is a square in
K, Lemma 2.1 implies that the Billet/Joye unified point addition algorithm is complete if d
is nonsquare. This algorithm needs 10M+ 3S+ 3D for arbitrary a and d. We remark that
no faster way of inversion-free general point addition is known to date in (X : Y : Z)[1,2,1]

coordinates. It remains an open question whether it is possible to speed up the addition in
weighted (X : Y : Z)[1,2,1] coordinates. Nevertheless, the speed of the Billet/Joye algorithm
was improved by Duquesne in [11] with the proposal of (X2 : XZ : Z2 : Y ) coordinates.
Duquesne’s variant addition algorithm needs 9M + 2S + 3D saving 1M + 1S over the
Billet/Joye algorithm by using slightly more space to represent the points. For the case
d = 1, Bernstein and Lange [3] extended this representation to (X : Y : Z : X2 : 2XZ : Z2)
and (X : Y : Z : X2 : 2XZ : Z2 : X2 + Z2) saving an extra M− S (i.e. M-S trade-off) over
Duquesne’s algorithm. A more detailed overview of these algorithms and operation counts
can be found in the original papers or in the Explicit-Formulas Database (EFD) [3] which
also reports 1M+9S+1D doubling algorithm by Bernstein/Lange, 2M+6S+2D doubling
algorithm by Hisil/Carter/Dawson, and 2M + 6S + 1D doubling algorithm by Feng/Wu
in (X : Y : Z)[1,2,1]. Duquesne coordinates (X2 : XZ : Z2 : Y )[2,2,2,2] use less space than
redundant coordinates but need special treatment in the scalar multiplication to obtain
the original coordinates (X : Y : Z)[1,2,1] of the final result. The original representation as
(X : Y : Z)[1,2,1] in [7] uses even less space however this representation has to date been
slower than the redundant coordinates.

Hisil, Carter, and Dawson [17] introduced new point doubling formulae together with
a fast point doubling algorithm costing only 3M + 4S in (X : Y : Z : X2 : Z2) with d = 1.
Roughly at the same time essentially the same formulae were independently derived by
Feng and Wu, see EFD [3]. These formulae were adapted to (X : Y : Z : X2 : 2XZ : Z2)
coordinates with the same operation count in EFD.

Later Hisil, Wong, Carter, and Dawson [19] introduced (for the case d = 1) new unified
addition formulae which use 7M + 3S + 1D in (X : Y : Z : X2 : Z2 : XZ) and 7M + 4S +
1D in (X : Y : Z : X2 : Z2) and newer doubling formulae which need 2M + 5S + 1D in
(X : Y : Z : X2 : Z2) and (X : Y : Z : X2 : Z2 : XZ).

The redundant representations such as

(X : Y : Z : X2 : 2XZ : Z2 : X2 + Z2)[1,2,1,2,2,2,2],
(X : Y : Z : X2 : 2XZ : Z2)[1,2,1,2,2,2],
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(X : Y : Z : X2 : Z2 : X2 + Z2)[1,2,1,2,2,2],
(X : Y : Z : X2 : Z2)[1,2,1,2,2],

(X : Y : Z : X2 : Z2 : XZ)[1,2,1,2,2,2]

help in the development of faster algorithms for performing point operations and their
overall performance only slightly differs from each other. However, they all share one serious
drawback. They need more space for storing the points in comparison to earlier proposals.
Despite the speed advantage of these coordinate systems, the large space requirement makes
the practical use of Jacobi quartic form questionable since windowing techniques in scalar
multiplication algorithms precompute and store several points.

We aim to solve this disadvantage in subsequent sections. Furthermore we propose
faster doubling algorithms.

Even more formulae. All of the affine formulae given in this section involve inversions
in K. In cryptographic applications K is finite and computing inverses in a finite field can
be very costly in comparison to the multiplication and addition operations. In §3 and §4 we
will introduce inversion-free formulae which are simply derived by the adaptation of affine
formulae to a suitable projective point representation. However, formulae given so far do
not necessarily lead to the fastest inversion-free algorithms to perform the basic operations;
point doubling and point addition. Next, we propose new affine point doubling and point
addition formulae which help in improving the previous speeds on (extended) Jacobi quartic
form.

Let (x1, y1) ∈ EJ,d,a(K). Assuming that (x3, y3) is defined we have 2(x1, y1) = (x3, y3)
where

x3 = µx1, (9)

y3 = µ(µ − y1) − 1 (10)

with µ = 2y1/(2 + 2ax2
1 − y2

1). In the derivations of (9) and (10) we were inspired by the
results in [4] and [19]. If d is a non-square in K then these point doubling formulae work
for all inputs i.e. (x3, y3) is defined for all inputs. (If d is a square in K then there exist
two points at infinity of order two. The double of these points is (0, 1). If 2+2ax2

1− y2
1 = 0

then (x1, y1) is a point of order 4 and the output is a point at infinity.)
Further let (x2, y2) ∈ EJ,d,a(K). Assuming that (x3, y3) is defined we have (x1, y1) +

(x2, y2) = (x3, y3) where x3 is defined as in (5) and

y3 =
(x1 − x2)

2

(x1y2 − y1x2)2
(

y1y2 − 2ax1x2 + 1 + dx2

1x
2

2

)

− 1. (11)

In addition, if s ∈ K such that d = s2 then we can also write

y3 =
(1 + sx1x2)

2

(1 − dx2

1
x2

2
)2

(y1y2 + 2ax1x2 + sx2

1 + sx2

2) − sx2

3 (12)

where x3 is given by (1).
Formulae (11) and (12) compute the same result as (2), (6), (7), and (8) whenever their

denominators are nonzero and neither of the summands is a point at infinity. Formula (12)
is defined if (x1, y1) = (x2, y2). Formula (11) fails if (x1, y1) = (x2, y2). Both formulae are
incomplete, i.e. they fail for a few special inputs.

3 Homogeneous projective coordinates

Projective coordinates are used as basic tools in designing inversion-free algorithms to carry
out group arithmetic on elliptic curves. In the case of (extended) Jacobi quartic curves, we
consider homogeneous projective coordinates (X : Y : Z)[1,1,1] for efficiency purposes for the
first time. From now on we omit the informative subscript [1, 1, 1] for these coordinates.
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In homogeneous projective coordinates, Q, each point (x, y) is represented by the triplet
(X : Y : Z) which satisfies the projective equation Y 2Z2 = dX4 + 2aX2Z2 + Z4 and
corresponds to the affine point (X/Z, Y/Z) with Z 6= 0. The identity element is represented
by (0 : 1 : 1). The negative of (X : Y : Z) is (−X : Y : Z). In the following subsection, we
provide efficient point doubling formulae.

3.1 Dedicated point doubling in Q
The fastest-so-far three-coordinate point doubling algorithm in [3, dbl-2007-fw-2] costs
2M + 6S + 1D in (X : Y : Z)[1,2,1]. We also remark that this algorithm assumes d = 1.

In this section we introduce new efficient doubling formulae. Given (X1 : Y1 : Z1) the
point doubling can be performed as 2(X1 : Y1 : Z1) = (X3 : Y3 : Z3) where

X3 = 2X1Y1(2Z2

1 + 2aX2

1 − Y 2

1 ),

Y3 = 2Y 2

1 (Y 2

1 − 2aX2

1 ) − (2Z2

1 + 2aX2

1 − Y 2

1 )2,

Z3 = (2Z2

1 + 2aX2

1 − Y 2

1 )2.

(13)

We obtained these formulae from (9) and (10). With these formulae a point doubling takes
2M + 5S + 1D where 1D is multiplication with a. These formulae do not depend on d.
Therefore keeping d arbitrary has no effect on the cost of (13).

If a = ±1/2 then a point doubling takes 2M + 5S. Note 2a can be rescaled to −1 via
the map (x, y) 7→ (x/

√
−2a, y) provided that

√
−2a ∈ K. This map transforms the curve

y2 = dx4 + 2ax2 + 1 to y2 = (d/(4a2))x4 − x2 + 1. Alternatively, a curve having a = −1/2
can be selected without rescaling. We comment that similar arguments apply to the case
a = 1/2.

For justifications and more on operation counts see DBL-Q-x in Appendix B. The
proposed algorithm(s) are faster than other three-coordinate point doubling algorithms
for Jacobi quartic form.

3.2 Point addition in Q
It would be convenient to give an efficient point addition algorithm for the projective
coordinates. However, the fastest point addition algorithms that we could design were
quite uncompetitive in comparison to the previous proposals in other coordinate systems.
Therefore, we leave this as an open question. As a remedy to this, we will introduce fast
point addition algorithms on a new coordinate system in the next section and show that the
new point addition algorithms can be efficiently combined with the fast doubling algorithms
from §3.1.

4 Extended homogeneous projective coordinates

Jacobi quartic form not only has a rich body of formulae but also allow us to use various
efficient point representations. We have already given a detailed review in §2.

This section introduces a new representation and provides efficient algorithms to perform
group operations on (extended) Jacobi quartic form elliptic curves. Some of the results in
this section are analogous to our earlier work [18].

In the new system a point (x, y) ∈ EJ,d,a(K) is represented by (X : Y : T : Z) where T =
X2/Z and (X : Y : T : Z)[1,1,1,1] = (λX : λY : λT : λZ) = (x : y : x2 : 1) for all nonzero λ ∈
K. From now on we omit the informative subscript [1, 1, 1, 1] for these coordinates. Each
quadruplet (X : Y : T : Z) with Z 6= 0 simultaneously satisfy the homogeneous projective
equations

{

X2 − TZ = 0

Y 2 − dT 2 − 2aX2 − Z2 = 0
(14)
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or simply the homogeneous projective equation

Y 2Z2 = dX4 + 2aX2Z2 + Z4 (15)

where T is omitted in the latter case. A point representation (X : Y : Z) satisfying (15)
can be converted to the new coordinates by computing (XZ : Y Z : X2 : Z2) with Z 6= 0 in
1M + 3S (XZ = ((X + Z)2 −X2−Z2)/2). This coordinate system will be denoted by Qe

in the rest of the paper. The identity element is represented by the quadruplet (0 : 1 : 0 : 1).
The negative of (X : Y : T : Z) is (−X : Y : T : Z).

4.1 Dedicated point doubling in Qe

Given (X1 : Y1 : T1 : Z1) with Z1 6= 0 satisfying (15), point doubling can be performed as
2(X1 : Y1 : T1 : Z1) = (X3 : Y3 : T3 : Z3) where X3, Y3, and Z3 are the same as (13) and

T3 = (2X1Y1)
2. (16)

If a = −1/2 then a point doubling takes only 8S. Again the formulae do not depend
on d. Therefore keeping d arbitrary has no effect on the cost of (16). There are many
M/S trade-offs possible for doubling in Qe when a is arbitrary or when a = −1/2. For
justifications and more on operation counts see DBL-Qe-x in Appendix B.

In §5, we will mix Qe with Q to benefit from faster doubling algorithms proposed in §3.1.
In §5, we will use point doubling from this section to develop a double-and-add algorithm.

4.2 Dedicated point addition in Qe

Given (X1 : Y1 : T1 : Z1) and (X2 : Y2 : T2 : Z2) with Z1 6= 0 and Z2 6= 0 and (X1 : Y1 : T1 : Z1) 6=
(X2 : Y2 : T2 : Z2), a dedicated addition can be performed as (X1 : Y1 : T1 : Z1) + (X2 : Y2 : T2 : Z2)
= (X3 : Y3 : T3 : Z3) where

X3 = (X1Y2 − Y1X2)(T1Z2 − Z1T2),

Y3 = (Y1Y2 − 2aX1X2)(T1Z2 + Z1T2) − 2X1X2(Z1Z2 + dT1T2),

T3 = (T1Z2 − Z1T2)
2,

Z3 = (X1Y2 − Y1X2)
2.

(17)

We derived these formulae using (5) and (6) in §2. Without any assumption on the
curve constants, Y3 can alternatively be written as

Y3 = (T1Z2 + Z1T2 − 2X1X2)(Y1Y2 − 2aX1X2 + Z1Z2 + dT1T2) − Z3. (18)

We obtained this formula from (11). If a = −1/2 then the dedicated addition costs 7M +
3S+2D with the use of (18). For justifications and more on operation counts see ADD-Qe-x
in Appendix B.

4.3 Unified point addition in Qe

Given (X1 : Y1 : T1 : Z1) and (X2 : Y2 : T2 : Z2) with Z1 6= 0 and Z2 6= 0, a unified addition
can be performed as (X1 : Y1 : T1 : Z1) + (X2 : Y2 : T2 : Z2) = (X3 : Y3 : T3 : Z3) where

X3 = (X1Y2 + Y1X2)(Z1Z2 − dT1T2),

Y3 = (Y1Y2 + 2aX1X2)(Z1Z2 + dT1T2) + 2dX1X2(T1Z2 + Z1T2),

T3 = (X1Y2 + Y1X2)
2,

Z3 = (Z1Z2 − dT1T2)
2.

(19)
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These formulae are analogous to (1) and (2) hence complete1 by Lemma 2.1 if d is not
a square in K.

Let s ∈ K such that d = s2. Alternatively, we can write

Y3 = (Z1Z2 + dT1T2 + 2sX1X2)(Y1Y2 + 2aX1X2 + sT1Z2 + sZ1T2) − sT3. (20)

We obtained this formula from (12) and following the derivation notes in [19, §2.1]. In this
case, the addition is still unified. However, the completeness is lost. Nevertheless, logical
checks can be eliminated if the inputs are selected as indicated in Lemma 2.2. As indicated
before these formulae do not strictly require d = 1.

For justifications and more on operation counts see UADD-Qe-x in Appendix B. The new
representation is solidly faster than the representation in [7]. The new representation can
be equally fast as (or even faster than) the representation [11]. The special treatment in
[11] for obtaining the original coordinates is also removed since (X3 : Y3 : T3 : Z3) satisfies
(15). The new representation can be equally fast as the representations in [3], [17], and [19].
However this is achieved by using only 4 coordinates rather than 5, 6, or 7 coordinates.

5 Mixed homogeneous projective coordinates

The construction in this section is the same as [18, §4.3] and is closely linked with [10].
Therefore, we only give a brief outline of the technique. The details can be extracted from
the original papers.

Most of the efficient scalar multiplication implementations are based on a suitable
combination of signed integer recoding (such as NAF, MOF), fast precomputation and
left-to-right sliding fractional-windowing techniques. The resulting algorithm is doubling
intensive. Roughly for each bit of the scalar one doubling is performed. Additions
are accessed less frequently. Excluding the additions used in the precomputation phase,
approximately l/(w + 1) additions are needed where l is the number of bits in the scalar
and w is the window length. w is used to control space consumption and optimize the total
running time.

An abstract view of the scalar multiplication is composed of several repeated-doublings
each followed by a single addition. In our specific case, these operations are performed in
the following way:

(i) If a point doubling is followed by another point doubling, use Q ← 2Q.

(ii) If a point doubling is followed by a point addition, use

1. Qe ← 2Q for the point doubling step; followed by,

2. Q ← Qe +Qe for the point addition step.

Suppose that a repeated-doubling phase is composed of m doublings. In (i), m − 1
successive doublings in Q are performed with the fastest DBL-Q-x algorithm explained in
§3.1 and given in Appendix B. In (ii), the remaining doubling is merged with the single
addition phase to yield a combined double-and-add step; a similar approach to [12]. To
perform the double-and-add operation we first compute the doubling step with the fastest
DBL-QtoQe-x algorithm explained in §4.1 and given in Appendix B. This algorithm is
suitable to computeQe ← 2Q since the inputs are only composed of the coordinates X , Y , Z
and the output is still produced in Qe. We then perform the addition in Qe using ADD-Qe-2

which is explained in §4.2 and given in Appendix B but output only the coordinates of Q.
Note that the last operation of ADD-Qe-2 (i.e. T3 ← T 2

3 ) can be confidently removed to
save 1S since the result is in Q (not Qe).

For instance, if we use DBL-Q-1 for repeated doubling operations and a combination
of DBL-QtoQe-1 and ADD-Qe-2 for double-and-add operations then we need only 2M + 5S

1If d is not a square in K then the point (0: 1 : 0) is not defined over K and should be omitted though
it seems to satisfy the curve equation (15).
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for each doubling and we effectively need ((8S) + (8M + 2S + 2D − 1S)) − (2M + 5S) =
6M + 4S + 2D for each addition step.

We should note that the precomputed points are kept in Qe which is composed of 4
coordinates rather than 3. On the other hand, we do not need 5, 6, or 7 coordinates as is
the case in [3], [17], and [19].

Let P be a point on Y 2Z2 = dX4 + 2aX2Z2 + Z4. Let 〈P 〉 denote the subgroup
generated by P . Lemma 2.2 implies that the new dedicated doubling and unified addition
algorithms work for all points in 〈P 〉 if P is of odd order. Lemma 2.1 implies that the new
dedicated doubling and unified addition algorithms work for all inputs if d is a not a square
in K. Lemma 2.3 implies that new dedicated addition algorithms work for all points in
〈P 〉 − {P} if P is of odd order. Note here that identical summands at an addition step of
a scalar multiplication algorithm based on successive squaring technique, can only appear
at the very first iteration if the scalar is smaller than the order of P .

6 Experimental results

This section provides implementation timings for elliptic curve single-variable-point-single-
variable-scalar multiplication. We have used a single core of Intel Core 2 Duo (E6550)
processor in our experiments.

Finite field operations. Following the implementation notes from [15] and [14], we
have written a hand-crafted finite field layer using x86-64 instruction set and GCC extended
inline assembly. We have designed our field arithmetic layer to serve for fields Fp where p
is of the form 2256 − c such that c has at most 64 bits. In our experiments we have fixed
c = 587.

Elliptic curve operations. We have selected Q-DBL-2 as the doubling algorithm and
a combination of Q-DBL-2 and Qe-ADD-2 as the double-and-add algorithm. This decision is
due to the fact that the cost of additions (in Fp) is not so negligible on x86-64 processors.
This was previously discussed in [15].

Scalar multiplication algorithm. We have implemented Algorithm 3.38 in [16] by
modifying Steps 4.3 and Steps 4.4 as we discussed in §5.

Integer recoding. We have used Avanzi’s w-LtoR integer recoding algorithm [1]
which runs on-the-fly as the main loop of the scalar multiplication is performed. We have
determined w = 5 to be the optimal window length in our implementation. We have
not incorporated fractional windowing techniques [22] to our implementation following the
comments in [14].

Lookup table. To accommodate the 5-LtoR technique 3P, 5P, . . . , 15P are pre-
computed by the sequence of operations 2P, 2P + P, 2P + 3P, . . . , 2P + 13P . A new
precomputation strategy in [21] is of interest for implementation. We have not implemented
this approach yet. In our implementation I/M ≈ 121. Therefore we have not normalized
the precomputed values following the analysis [5]. Also following the same reference, we
have derived and implemented double and add algorithms in Qe with Z = 1. These special
operations save time in the precomputation.

Table 1 summarizes measured average clock cycles for primitive operations for a single-
variable-point-single-variable-scalar multiplication on EJ,d,−1/2 for some fixed d.

Table 1: 256-bit scalar multiplication on Intel Core 2 Duo (E6550)

Operation Cycles

Precomputation 17,000

Main loop 345,000

Normalization 14,000

Total 376,000
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We should warn the reader that we have detected these cycle counts with our local
benchmarking tools. Unfortunately, we have not yet integrated our implementation to the
commonly accepted toolkit SUPERCOP, a benchmarking framework within eBACS, the
benchmarking project of ECRYPT II [6]. Therefore we do not claim verifiability at this
stage.

We should also warn the reader that our implementation is a variable-single-point-
variable-single-scalar multiplication. In the case where the base point is fixed the timings
can be dramatically improved by using Algorithm 3.44 or Algorithm 3.45 in [16]. Indeed
such an approach was used in [14] for Diffie-Hellman key pair generation where the base
point is fixed. Note also that our implementation does not incorporate the Galbraith-Lin-
Scott (GLS) homomorphism [14] which has been recently shown to yield faster results.

In our implementation, a scalar multiplication on EJ,d,−1/2 takes approximately
1162M + 1110S + 102D. In addition, there are approximately 1796 calls to faster field
operations (such as addition, subtraction, division by 2, etc.).

As the comparative part of our work, we have also covered Weierstrass (a = −3)
and twisted Edwards (a = −1) curves in our implementation. For the twisted Edwards
implementation we have followed [18, §4.3]. We have used doubling formulae from [2]. For
the Weierstrass implementation we have collected the most efficient formulae from EFD [3].
In our implementation, a scalar multiplication on the Weierstrass curve y2 = x3 − 3x + b
for some fixed b with w = 5 —optimum— takes approximately 1598M + 1156S + 0D. In
addition, there are approximately 2896 calls to faster field operations (such as addition,
subtraction, division by 2, etc.). In our implementation, a scalar multiplication on the
twisted Edwards curve −x2 + y2 = 1 + dx2y2 for some fixed d with w = 6 —optimum—
takes approximately 1202M + 969S + 0D. In addition, there are approximately 2025 calls
to faster field operations (such as addition, subtraction, division by 2, etc.). We have not
tested the performance of formulae in [19] yet.

Table 2 summarizes measured average clock cycles for a single-variable-point-single-
variable-scalar multiplication on different representations of elliptic curves.

Table 2: 256-bit scalar multiplication on Intel Core 2 Duo (E6550)

Curve Cycles

Weierstrass (a = −3), Jacobian 468,000

Jacobi quartic (a = −1/2), Qe with Q 376,000

Twisted Edwards (a = −1), Ee with E 362,000

In the printed version of this paper there has been a typing error in the case of
Weierstrass curves where the cycle count was reported as 418,000. The error in Table 2 is
corrected in this version.

In this implementation Jacobi quartic curves runs significantly faster than Weierstrass
curves and slightly slower than twisted Edwards curves.

7 Conclusion

We introduced new results for performing arithmetic on (extended) Jacobi quartic curves.
In §2, we proved that earlier formulae (1) and (2) in the literature are complete provided

that d is a not a square in the underlying field K. We explored several affine formulae some
being known to date and some being new.

In §3 and §4, we carefully selected the most suitable affine formulae and then with
suitable point representations converted them to projective form. In this context, for the
first time we used homogeneous projective coordinates on (extended) Jacobi quartic curves
for efficiency purposes and introduced new and faster doubling algorithms. In addition,
we introduced a new point representation namely extended homogeneous projective

10



coordinates, Qe, for Jacobi quartic curves. This coordinate system allows very efficient
point addition operations using fewer coordinates in comparison to recent proposals for
Jacobi quartic curves.

In §6 we reported our experimental results using state-of-art formulae for Jacobi quartic,
twisted Edwards, and Weierstrass curves. In our implementation Jacobi quartic curves are
20%-25% faster than Weierstrass curves.

With our proposal Jacobi quartic curves can provide similar speeds to twisted Edwards
curves in variable-point-and-variable-scalar multiplications. The point doubling on a Jacobi
quartic curve is slightly faster than that of (twisted) Edwards curves. Note that doubling is
the most frequently accessed elliptic curve group operation in variable-point-and-variable-
scalar multiplications. On the other hand, Jacobi quartic curves seem to be slower on
the double-and-add operation (§5) in comparison to twisted Edwards curves. In overall
timings for variable-single-point-variable-single-scalar multiplication Jacobi quartic curves
are competitive with (but slightly slower than) twisted Edwards curves. It should be noted
here that there are elliptic curves of order 2-times-a-prime where our methods are applicable
with the use of extended Jacobi quartic parametrization with a = −1/2. However, such
curves cannot be written (over the same field) in (twisted) Edwards form.
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[22] B. Möller. Improved techniques for fast exponentiation. In ICISC 2002, volume 2587
of LNCS, pages 298–312. Springer, 2003.

[23] M. Monagan and R. Pearce. Rational simplification modulo a polynomial ideal. In
ISSAC’06, pages 239–245. ACM, 2006.

[24] E. T. Whittaker and G. N. Watson. A Course of Modern Analysis. Cambridge
University Press, 1927.

A Lemma 2.2

Proof. Points at infinity (over the extension of K where they exist) are of order 2. Assume
that P and Q are of odd order. Thus, P , Q and P + Q cannot be the points at infinity.
Since the formulae (1) and (2) are complete provided that the points at infinity are not
involved, the denominator 1− dx2

1x
2
2 must be nonzero.

An algebraic approach is as follows. Suppose that 1− dx2
1x

2
2 = 0. Then x1, x2 6= 0 and

we can write x2
1 = 1/(dx2

2).
Suppose that P = ±Q. Then 1−dx2

1x
2
2 = 1−dx4

1 = 1−dx4
2 = 0. It follows that R = 2P

and S = 2Q are points at infinity. Therefore P and Q must be of order 4 which contradicts
the hypothesis. From now on we assume P 6= ±Q.

We now have 1 − dx4
1 6= 0 and 1 − dx4

2 6= 0. Using the relations x2
1 = 1/(dx2

2), y2
2 =

dx4
2 + 2ax2

2 + 1 and formulae (1) and (2) we get

x(R)2 =
(2x1y1)2

(1 − dx4

1
)2

=
4(1/(dx2

2
))(d(1/(dx2

2
)2) + 2a(1/(dx2

2
)) + 1)

(1 − d(1/(dx2

2
))2)2

=
(2x2y2)2

(1 − dx4

2
)2

= x(S)2,
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y(R) =
(1 + dx4

1
)(y2

1
+ 2ax2

1
) + 4dx4

1

(1 − dx4

1
)2

=
(1 + d(1/(dx2

2
))2)((d(1/(dx2

2
)2) + 2a(1/(dx2

2
)) + 1) + 2a(1/(dx2

2
))) + 4d(1/(dx2

2
))2

(1 − d(1/(dx2

2
))2)2

=
(1 + dx4

2
)(y2

2
+ 2ax2

2
) + 4dx4

2

(1 − dx4

2
)2

= y(S).

Hence, R = ±S. But then R∓S = 2P ∓ 2Q = 2(P ∓Q) = (0, 1). It follows that P ∓Q
is a point of order 2 since P 6= ±Q.

Now either P is a point of even order or Q is a point of even order or both P and Q are
points of even order. All conditions contradict the hypothesis. In conclusion 1−dx2

1x
2
2 6= 0.

B Verification scripts

The algorithms in this appendix are designed in a way that X1-X2-X3, Y1-Y2-Y3, T1-T2-T3,
and Z1-Z2-Z3 are allowed to be the same registers. The algorithm uses ti as temporary
registers. a stands for an addition or a subtraction or a multiplication by 2 or a division
by 2.

The following Maple script verifies (1), (2), (5), (6), (7), (8), (9), (10), (11), and (12).

a1:=0: a3:=0: a6:=0: a:=-a2/4: d:=(a2^2-4*a4)/16:
W:=(u,v)->v^2+a1*u*v+a3*v-(u^3+a2*u^2+a4*u+a6):

C:=(x,y)->y^2-(d*x^4+2*a*x^2+1):
CtoW:=(x,y)->(2*(a+(y+1)/x^2),4*(a+(y+1)/x^2)/x):

WtoC:=(u,v)->(2*u/v,2*(u-2*a)*u^2/v^2-1):
simplify([W(CtoW(x1,y1))],[C(x1,y1)]); #Check CtoW.
simplify([C(WtoC(u1,v1))],[W(u1,v1)]); #Check WtoC.

simplify([(x1,y1)-WtoC(CtoW(x1,y1))],[C(x1,y1)]); #Check WtoC(CtoW).
simplify([(u1,v1)-CtoW(WtoC(u1,v1))],[W(u1,v1)]); #Check CtoW(WtoC).

ut,vt:=CtoW(x1,y1): simplify([(-x1,y1)-WtoC(ut,-vt-a1*ut-a3)],[C(x1,y1)]); #Check the negation.

##Addition formulae.
unassign(’x1’,’y1’,’x2’,’y2’): u1,v1:=CtoW(x1,y1): u2,v2:=CtoW(x2,y2):
L:=(v2-v1)/(u2-u1): u3:=L^2+a1*L-a2-u1-u2: v3:=L*(u1-u3)-v1-a1*u3-a3:

simplify([W(u3,v3)],[C(x1,y1),C(x2,y2)]); x3std,y3std:=WtoC(u3,v3):

x3:=(x1*y2+y1*x2)/(1-d*x1^2*x2^2): simplify([x3std-x3],[C(x1,y1),C(x2,y2)]);
x3:=(x1^2-x2^2)/(x1*y2-y1*x2): simplify([x3std-x3],[C(x1,y1),C(x2,y2)]);
y3:=((y1*y2+2*a*x1*x2)*(1+d*x1^2*x2^2)+

2*d*x1*x2*(x1^2+x2^2))/((1-d*x1^2*x2^2)^2): simplify([y3std-y3],[C(x1,y1),C(x2,y2)]);
y3:=((x1^2+x2^2)*(y1*y2-2*a*x1*x2)-

2*x1*x2*(1+d*x1^2*x2^2))/((x1*y2-y1*x2)^2): simplify([y3std-y3],[C(x1,y1),C(x2,y2)]);
y3:=(2*(x1*y1-x2*y2)-(x1*y2-y1*x2)*(y1*y2+

2*a*x1*x2))/((x1*y2-y1*x2)*(1-d*x1^2*x2^2)): simplify([y3std-y3],[C(x1,y1),C(x2,y2)]);
y3:=(x1*y1*(2+2*a*x2^2-y2^2)-x2*y2*(2+2*a*x1^2-

y1^2))/((x1*y2-y1*x2)*(1-d*x1^2*x2^2)): simplify([y3std-y3],[C(x1,y1),C(x2,y2)]);

y3:=(x1-x2)^2/(x1*y2-y1*x2)^2*(y1*y2-
2*a*x1*x2+1+d*x1^2*x2^2)-1: simplify([y3std-y3],[C(x1,y1),C(x2,y2)]);

y3:=(1+s*x1*x2)^2/(1-d*x1^2*x2^2)^2*(y1*y2+
2*a*x1*x2+s*x1^2+s*x2^2)-s*x3^2: simplify([y3std-y3],[C(x1,y1),C(x2,y2),d-s^2]);

##Doubling formulae.
unassign(’x1’,’y1’): u1,v1:=CtoW(x1,y1):

L:=(3*u1^2+2*a2*u1+a4-a1*v1)/(2*v1+a1*u1+a3): u3:=L^2+a1*L-a2-2*u1: v3:=L*(u1-u3)-v1-a1*u3-a3:
simplify([W(u3,v3)],[C(x1,y1)]); x3std,y3std:=WtoC(u3,v3):

x3:=mu*x1: simplify([x3std-x3],[C(x1,y1),mu-2*y1/(2+2*a*x1^2-y1^2)]);
y3:=mu*(mu-y1)-1: simplify([y3std-y3],[C(x1,y1),mu-2*y1/(2+2*a*x1^2-y1^2)]);

Projective doubling formulae. The following Maple script verifies (13) and (16).

x1:=X1/Z1: y1:=Y1/Z1: mu:=2*y1/(2+2*a*x1^2-y1^2): x3:=mu*x1: y3:=mu*(mu-y1)-1:
X3:=2*X1*Y1*(2*Z1^2+2*a*X1^2-Y1^2):

Y3:=2*Y1^2*(Y1^2-2*a*X1^2)-(2*Z1^2+2*a*X1^2-Y1^2)^2:
Z3:=(2*Z1^2+2*a*X1^2-Y1^2)^2:
T3:=(2*X1*Y1)^2:

simplify([x3-X3/Z3,y3-Y3/Z3,X3^2/Z3-T3]); #Check.

13



The following Maple scripts detail the evaluation of (13).

DBL-Q-1, 2M + 5S + 7a, assumes a = −1/2.

x1:=X1/Z1: y1:=Y1/Z1: mu:=2*y1/(2+2*a*x1^2-y1^2): x3:=mu*x1: y3:=mu*(mu-y1)-1:
t1:=X1+Y1: X3:=X1^2: Y3:=Y1^2: Z3:=Z1^2: t1:=t1^2: X3:=X3+Y3: t1:=t1-X3:

Z3:=2*Z3: Y3:=X3*Y3: Y3:=2*Y3: Z3:=Z3-X3: X3:=t1*Z3: Z3:=Z3^2: Y3:=Y3-Z3:
simplify([x3-X3/Z3,y3-Y3/Z3],[a+1/2]); #Check.

DBL-Q-2, 3M + 4S + 4a, assumes a = −1/2.

x1:=X1/Z1: y1:=Y1/Z1: mu:=2*y1/(2+2*a*x1^2-y1^2): x3:=mu*x1: y3:=mu*(mu-y1)-1:
t1:=X1*Y1: X3:=X1^2: Y3:=Y1^2: Z3:=Z1^2: X3:=X3+Y3: X3:=X3/2: Y3:=Y3*X3:

X3:=Z3-X3: Z3:=X3^2: Y3:=Y3-Z3: X3:=t1*X3:
simplify([x3-X3/Z3,y3-Y3/Z3],[a+1/2]); #Check.

DBL-Q-3, 2M + 5S + 1D + 8a, assumes k = −2a.

x1:=X1/Z1: y1:=Y1/Z1: mu:=2*y1/(2+2*a*x1^2-y1^2): x3:=mu*x1: y3:=mu*(mu-y1)-1:
t1:=X1+Y1: X3:=X1^2: Y3:=Y1^2: Z3:=Z1^2: t1:=t1^2: t1:=t1-X3: t1:=t1-Y3: X3:=k*X3:

X3:=Y3+X3: Z3:=2*Z3: Y3:=X3*Y3: Y3:=2*Y3: Z3:=Z3-X3: X3:=t1*Z3: Z3:=Z3^2: Y3:=Y3-Z3:
simplify([x3-X3/Z3,y3-Y3/Z3],[k+2*a]); #Check.

DBL-Q-4, 3M + 4S + 1D + 4a, assumes k = −2a.

x1:=X1/Z1: y1:=Y1/Z1: mu:=2*y1/(2+2*a*x1^2-y1^2): x3:=mu*x1: y3:=mu*(mu-y1)-1:

t1:=X1*Y1: X3:=X1^2: Y3:=Y1^2: Z3:=Z1^2: X3:=k*X3: X3:=X3+Y3: X3:=X3/2: Y3:=Y3*X3:
X3:=Z3-X3: Z3:=X3^2: Y3:=Y3-Z3: X3:=t1*X3:

simplify([x3-X3/Z3,y3-Y3/Z3],[k+2*a]); #Check.

The following Maple scripts detail the evaluation of (13) and (16).

DBL-Qe-1, DBL-QtoQe-1, 8S + 13a, assumes a = −1/2.

x1:=X1/Z1: y1:=Y1/Z1: mu:=2*y1/(2+2*a*x1^2-y1^2): x3:=mu*x1: y3:=mu*(mu-y1)-1:

T3:=X1+Y1: X3:=X1^2: Y3:=Y1^2: Z3:=Z1^2: T3:=T3^2: X3:=X3+Y3: T3:=T3-X3: Z3:=2*Z3:
Z3:=Z3-X3: X3:=T3+Z3: T3:=T3^2: Z3:=Z3^2: X3:=X3^2: X3:=X3-T3: X3:=X3-Z3: Z3:=2*Z3:

Y3:=2*Y3: Y3:=Y3^2: Y3:=Y3+T3: Y3:=Y3-Z3: T3:=2*T3:
simplify([x3-X3/Z3,y3-Y3/Z3,X3^2/Z3-T3],[a+1/2]); #Check.

DBL-Qe-2, DBL-QtoQe-2, 1M + 7S + 9a, assumes a = −1/2.

x1:=X1/Z1: y1:=Y1/Z1: mu:=2*y1/(2+2*a*x1^2-y1^2): x3:=mu*x1: y3:=mu*(mu-y1)-1:

T3:=X1+Y1: X3:=X1^2: Y3:=Y1^2: Z3:=Z1^2: T3:=T3^2: X3:=X3+Y3: T3:=T3-X3: Z3:=2*Z3:
Z3:=Z3-X3: X3:=T3*Z3: Z3:=Z3^2: T3:=T3^2: Y3:=2*Y3: Y3:=Y3^2: Y3:=Y3+T3: Y3:=Y3/2:

Y3:=Y3-Z3:
simplify([x3-X3/Z3,y3-Y3/Z3,X3^2/Z3-T3],[a+1/2]); #Check.

DBL-Qe-3, DBL-QtoQe-3, 2M + 6S + 6a, assumes a = −1/2.

x1:=X1/Z1: y1:=Y1/Z1: mu:=2*y1/(2+2*a*x1^2-y1^2): x3:=mu*x1: y3:=mu*(mu-y1)-1:
T3:=X1*Y1: X3:=X1^2: Y3:=Y1^2: Z3:=Z1^2: X3:=X3+Y3: X3:=X3/2: Z3:=Z3-X3: X3:=T3*Z3:

Z3:=Z3^2: T3:=T3^2: Y3:=Y3^2: Y3:=Y3+T3: Y3:=Y3/2: Y3:=Y3-Z3:
simplify([x3-X3/Z3,y3-Y3/Z3,X3^2/Z3-T3],[a+1/2]); #Check.

DBL-Qe-4, DBL-QtoQe-4, 3M + 5S + 4a, assumes a = −1/2.

x1:=X1/Z1: y1:=Y1/Z1: mu:=2*y1/(2+2*a*x1^2-y1^2): x3:=mu*x1: y3:=mu*(mu-y1)-1:
T3:=X1*Y1: X3:=X1^2: Y3:=Y1^2: Z3:=Z1^2: X3:=X3+Y3: X3:=X3/2: Y3:=Y3*X3: X3:=Z3-X3:
Z3:=X3^2: Y3:=Y3-Z3: X3:=X3*T3: T3:=T3^2:

simplify([x3-X3/Z3,y3-Y3/Z3,X3^2/Z3-T3],[a+1/2]); #Check.

DBL-Qe-5, DBL-QtoQe-5, 8S + 2D + 14a, assumes k = −2a.

x1:=X1/Z1: y1:=Y1/Z1: mu:=2*y1/(2+2*a*x1^2-y1^2): x3:=mu*x1: y3:=mu*(mu-y1)-1:
T3:=X1+Y1: X3:=X1^2: Y3:=Y1^2: Z3:=Z1^2: T3:=T3^2: T3:=T3-X3: t1:=T3-Y3: X3:=k*X3:

X3:=X3+Y3: Z3:=2*Z3: Z3:=Z3-X3: T3:=t1^2: X3:=t1+Z3: X3:=X3^2: Z3:=Z3^2: X3:=X3-T3:
X3:=X3-Z3: Z3:=2*Z3: t1:=k*T3: T3:=2*T3: Y3:=2*Y3: Y3:=Y3^2: Y3:=Y3+t1: Y3:=Y3-Z3:

simplify([x3-X3/Z3,y3-Y3/Z3,X3^2/Z3-T3],[k+2*a]); #Check.

DBL-Qe-6, DBL-QtoQe-6, 1M + 7S + 1D + 12a, assumes k = −2a.
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x1:=X1/Z1: y1:=Y1/Z1: mu:=2*y1/(2+2*a*x1^2-y1^2): x3:=mu*x1: y3:=mu*(mu-y1)-1:
t1:=X1+Y1: X3:=X1^2: Y3:=Y1^2: Z3:=Z1^2: t1:=t1^2: t1:=t1-X3: t1:=t1-Y3: X3:=k*X3: X3:=X3+Y3: Z3:=2*Z3:

Y3:=X3*Y3: Z3:=Z3-X3: T3:=t1^2: X3:=t1+Z3: Z3:=Z3^2: Y3:=2*Y3: Y3:=Y3-Z3: X3:=X3^2: X3:=X3-T3: X3:=X3-Z3:
X3:=X3/2:

simplify([x3-X3/Z3,y3-Y3/Z3,X3^2/Z3-T3],[k+2*a]); #Check.

DBL-Qe-7, DBL-QtoQe-7, 1M + 7S + 2D + 10a, assumes k = −2a.

x1:=X1/Z1: y1:=Y1/Z1: mu:=2*y1/(2+2*a*x1^2-y1^2): x3:=mu*x1: y3:=mu*(mu-y1)-1:
t1:=X1+Y1: X3:=X1^2: Y3:=Y1^2: Z3:=Z1^2: t1:=t1^2: t1:=t1-X3: t1:=t1-Y3: X3:=k*X3: X3:=X3+Y3: Z3:=2*Z3:
Z3:=Z3-X3: X3:=t1*Z3: T3:=t1^2: Z3:=Z3^2: Y3:=2*Y3: Y3:=Y3^2: t1:=k*T3: Y3:=Y3+t1: Y3:=Y3/2: Y3:=Y3-Z3:

simplify([x3-X3/Z3,y3-Y3/Z3,X3^2/Z3-T3],[k+2*a]); #Check.

DBL-Qe-8, DBL-QtoQe-8, 2M + 6S + 1D + 8a, assumes k = −2a.

x1:=X1/Z1: y1:=Y1/Z1: mu:=2*y1/(2+2*a*x1^2-y1^2): x3:=mu*x1: y3:=mu*(mu-y1)-1:
T3:=X1+Y1: X3:=X1^2: Y3:=Y1^2: Z3:=Z1^2: T3:=T3^2: T3:=T3-X3: T3:=T3-Y3: X3:=k*X3: X3:=Y3+X3: Z3:=2*Z3:

Y3:=X3*Y3: Y3:=2*Y3: Z3:=Z3-X3: X3:=T3*Z3: Z3:=Z3^2: Y3:=Y3-Z3: T3:=T3^2:
simplify([x3-X3/Z3,y3-Y3/Z3,X3^2/Z3-T3],[k+2*a]); #Check.

DBL-Qe-9, DBL-QtoQe-9, 2M + 6S + 2D + 6a, assumes k = −2a.

x1:=X1/Z1: y1:=Y1/Z1: mu:=2*y1/(2+2*a*x1^2-y1^2): x3:=mu*x1: y3:=mu*(mu-y1)-1:
t1:=X1*Y1: X3:=X1^2: Y3:=Y1^2: Z3:=Z1^2: X3:=k*X3: X3:=X3+Y3: X3:=X3/2: Z3:=Z3-X3: X3:=t1*Z3: Z3:=Z3^2:

T3:=t1^2: Y3:=Y3^2: t1:=k*T3: Y3:=Y3+t1: Y3:=Y3/2: Y3:=Y3-Z3:
simplify([x3-X3/Z3,y3-Y3/Z3,X3^2/Z3-T3],[k+2*a]); #Check.

DBL-Qe-10, DBL-QtoQe-10, 3M + 5S + 1D + 4a, assumes k = −2a.

x1:=X1/Z1: y1:=Y1/Z1: mu:=2*y1/(2+2*a*x1^2-y1^2): x3:=mu*x1: y3:=mu*(mu-y1)-1:

T3:=X1*Y1: X3:=X1^2:Y3:=Y1^2: Z3:=Z1^2: X3:=k*X3: X3:=X3+Y3: X3:=X3/2: Y3:=Y3*X3: X3:=Z3-X3: Z3:=X3^2:
Y3:=Y3-Z3: X3:=T3*X3: T3:=T3^2:

simplify([x3-X3/Z3,y3-Y3/Z3,X3^2/Z3-T3],[k+2*a]); #Check.

Projective dedicated addition formulae. The following Maple script verifies (17).

x1:=X1/Z1: y1:=Y1/Z1: x2:=X2/Z2: y2:=Y2/Z2: T1:=X1^2/Z1: T2:=X2^2/Z2:

x3:=(x1^2-x2^2)/(x1*y2-y1*x2):
y3:=((x1^2+x2^2)*(y1*y2-2*a*x1*x2)-2*x1*x2*(1+d*x1^2*x2^2))/((x1*y2-y1*x2)^2):

X3:=(X1*Y2-Y1*X2)*(T1*Z2-Z1*T2):

Y3:=(Y1*Y2-2*a*X1*X2)*(T1*Z2+Z1*T2)-2*X1*X2*(Z1*Z2+d*T1*T2):
T3:=(T1*Z2-Z1*T2)^2:

Z3:=(X1*Y2-Y1*X2)^2:
simplify([x3-X3/Z3,y3-Y3/Z3,X3^2/Z3-T3]); #Check.

The following Maple script verifies (17) when Y3 is computed using (18).

x1:=X1/Z1: y1:=Y1/Z1: x2:=X2/Z2: y2:=Y2/Z2: T1:=X1^2/Z1: T2:=X2^2/Z2:
x3:=(x1^2-x2^2)/(x1*y2-y1*x2):
y3:=((x1-x2)^2)/((x1*y2-y1*x2)^2)*(y1*y2-2*a*x1*x2+1+d*x1^2*x2^2)-1:

X3:=(X1*Y2-Y1*X2)*(T1*Z2-Z1*T2):
T3:=(T1*Z2-Z1*T2)^2:

Z3:=(X1*Y2-Y1*X2)^2:
Y3:=(T1*Z2+Z1*T2-2*X1*X2)*(Y1*Y2-2*a*X1*X2+Z1*Z2+d*T1*T2)-Z3:

simplify([x3-X3/Z3,y3-Y3/Z3,X3^2/Z3-T3]); #Check.

The following Maple scripts detail the evaluation of (17) when Y3 is computed using (18).

ADD-Qe-1, 7M + 3S + 2D + 19a, assumes a = −1/2.

x1:=X1/Z1: y1:=Y1/Z1: x2:=X2/Z2: y2:=Y2/Z2: T1:=X1^2/Z1: T2:=X2^2/Z2:

x3:=(x1^2-x2^2)/(x1*y2-y1*x2):
y3:=((x1-x2)^2)/((x1*y2-y1*x2)^2)*(y1*y2-2*a*x1*x2+1+d*x1^2*x2^2)-1:

t1:=T1+Z1: t2:=d*T2: t2:=t2+Z2: t1:=t1*t2: t2:=Z1*T2: T3:=T1*Z2: t1:=t1-T3: t3:=d*t2: t1:=t1-t3:
t3:=T3+t2: T3:=T3-t2: Z3:=X1-Y1: t2:=X2+Y2: Z3:=Z3*t2: t2:=X1*X2: Y3:=Y1*Y2: Z3:=Z3-t2: Z3:=Z3+Y3:
Y3:=Y3+t1: t1:=2*t2: t1:=t3-t1: Y3:=Y3+t2: Y3:=t1*Y3: X3:=Z3+T3: X3:=X3^2: Z3:=Z3^2: Y3:=Y3-Z3:

X3:=X3-Z3: T3:=T3^2: X3:=X3-T3: X3:=X3/2:
simplify([x3-X3/Z3,y3-Y3/Z3,X3^2/Z3-T3],[a+1/2]); #Check.

ADD-Qe-2, 8M + 2S + 2D + 15a, assumes a = −1/2.
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x1:=X1/Z1: y1:=Y1/Z1: x2:=X2/Z2: y2:=Y2/Z2: T1:=X1^2/Z1: T2:=X2^2/Z2:
x3:=(x1^2-x2^2)/(x1*y2-y1*x2):

y3:=((x1-x2)^2)/((x1*y2-y1*x2)^2)*(y1*y2-2*a*x1*x2+1+d*x1^2*x2^2)-1:
t1:=T1+Z1: t2:=d*T2: t2:=t2+Z2: t1:=t1*t2: t2:=Z1*T2: T3:=T1*Z2: t1:=t1-T3: t3:=d*t2: t1:=t1-t3:

t3:=T3+t2: T3:=T3-t2: Z3:=X1-Y1: t2:=X2+Y2: Z3:=Z3*t2: t2:=X1*X2: Y3:=Y1*Y2: Z3:=Z3-t2: Z3:=Z3+Y3:
Y3:=Y3+t1: t1:=2*t2: t1:=t3-t1: Y3:=Y3+t2: Y3:=t1*Y3: X3:=Z3*T3: Z3:=Z3^2: Y3:=Y3-Z3: T3:=T3^2:

simplify([x3-X3/Z3,y3-Y3/Z3,X3^2/Z3-T3],[a+1/2]); #Check.

ADD-Qe-3, 7M + 3S + 3D + 19a, assumes k = −2a.

x1:=X1/Z1: y1:=Y1/Z1: x2:=X2/Z2: y2:=Y2/Z2: T1:=X1^2/Z1: T2:=X2^2/Z2:
x3:=(x1^2-x2^2)/(x1*y2-y1*x2):
y3:=((x1-x2)^2)/((x1*y2-y1*x2)^2)*(y1*y2-2*a*x1*x2+1+d*x1^2*x2^2)-1:

t1:=T1+Z1: t2:=d*T2: t2:=t2+Z2: t1:=t1*t2: t2:=Z1*T2: T3:=T1*Z2: t1:=t1-T3: t3:=d*t2: t1:=t1-t3:
t3:=T3+t2: T3:=T3-t2: Z3:=X1-Y1: t2:=X2+Y2: Z3:=Z3*t2: t2:=X1*X2: Y3:=Y1*Y2: Z3:=Z3-t2: Z3:=Z3+Y3:

Y3:=Y3+t1: t1:=2*t2: t1:=t3-t1: t2:=k*t2: Y3:=Y3+t2: Y3:=t1*Y3: X3:=Z3+T3: X3:=X3^2: Z3:=Z3^2:
Y3:=Y3-Z3: X3:=X3-Z3: T3:=T3^2: X3:=X3-T3: X3:=X3/2:

simplify([x3-X3/Z3,y3-Y3/Z3,X3^2/Z3-T3],[k+2*a]); #Check.

ADD-Qe-4, 8M + 2S + 3D + 15a, assumes k = −2a.

x1:=X1/Z1: y1:=Y1/Z1: x2:=X2/Z2: y2:=Y2/Z2: T1:=X1^2/Z1: T2:=X2^2/Z2:
x3:=(x1^2-x2^2)/(x1*y2-y1*x2):
y3:=((x1-x2)^2)/((x1*y2-y1*x2)^2)*(y1*y2-2*a*x1*x2+1+d*x1^2*x2^2)-1:

t1:=T1+Z1: t2:=d*T2: t2:=t2+Z2: t1:=t1*t2: t2:=Z1*T2: T3:=T1*Z2: t1:=t1-T3: t3:=d*t2: t1:=t1-t3:
t3:=T3+t2: T3:=T3-t2: Z3:=X1-Y1: t2:=X2+Y2: Z3:=Z3*t2: t2:=X1*X2: Y3:=Y1*Y2: Z3:=Z3-t2: Z3:=Z3+Y3:

Y3:=Y3+t1: t1:=2*t2: t1:=t3-t1: t2:=k*t2: Y3:=Y3+t2: Y3:=t1*Y3: X3:=Z3*T3: Z3:=Z3^2: Y3:=Y3-Z3: T3:=T3^2:
simplify([x3-X3/Z3,y3-Y3/Z3,X3^2/Z3-T3],[k+2*a]); #Check.

Projective unified addition formulae. The following Maple script verifies (19). If d
is a non-square in K then these formulae work for all inputs.

x1:=X1/Z1: y1:=Y1/Z1: x2:=X2/Z2: y2:=Y2/Z2: T1:=X1^2/Z1: T2:=X2^2/Z2:

x3:=(x1*y2+y1*x2)/(1-d*x1^2*x2^2):
y3:=((y1*y2+2*a*x1*x2)*(1+d*x1^2*x2^2)+2*d*x1*x2*(x1^2+x2^2))/((1-d*x1^2*x2^2)^2):

X3:=(X1*Y2+Y1*X2)*(Z1*Z2-d*T1*T2):
Y3:=(Y1*Y2+2*a*X1*X2)*(Z1*Z2+d*T1*T2)+2*d*X1*X2*(T1*Z2+Z1*T2):

T3:=(X1*Y2+Y1*X2)^2:
Z3:=(Z1*Z2-d*T1*T2)^2:

simplify([x3-X3/Z3,y3-Y3/Z3,X3^2/Z3-T3]); #Check.

The following Maple scripts detail the evaluation of (19).

UADD-Qe-5, 8M + 3S + 2D + 17a, assumes a = −1/2.

x1:=X1/Z1: y1:=Y1/Z1: x2:=X2/Z2: y2:=Y2/Z2: T1:=X1^2/Z1: T2:=X2^2/Z2:
x3:=(x1*y2+y1*x2)/(1-d*x1^2*x2^2):
y3:=((y1*y2+2*a*x1*x2)*(1+d*x1^2*x2^2)+2*d*x1*x2*(x1^2+x2^2))/((1-d*x1^2*x2^2)^2):

t1:=T1+Z1: t2:=T2+Z2: T3:=T1*T2: Z3:=Z1*Z2: t1:=t1*t2: t1:=t1-T3: t1:=t1-Z3: T3:=d*T3: t2:=Z3+T3:
Z3:=Z3-T3: T3:=X1+Y1: t3:=X2+Y2: X3:=X1*X2: Y3:=Y1*Y2: T3:=T3*t3: T3:=T3-X3: T3:=T3-Y3: t1:=d*t1:

t1:=t1*X3: t1:=2*t1: Y3:=Y3-X3: Y3:=Y3*t2: Y3:=Y3+t1: X3:=Z3+T3: X3:=X3^2: T3:=T3^2: Z3:=Z3^2:
X3:=X3-T3: X3:=X3-Z3: X3:=X3/2:

simplify([x3-X3/Z3,y3-Y3/Z3,X3^2/Z3-T3],[a+1/2]); #Check.

UADD-Qe-6, 9M + 2S + 2D + 13a, assumes a = −1/2.

x1:=X1/Z1: y1:=Y1/Z1: x2:=X2/Z2: y2:=Y2/Z2: T1:=X1^2/Z1: T2:=X2^2/Z2:

x3:=(x1*y2+y1*x2)/(1-d*x1^2*x2^2):
y3:=((y1*y2+2*a*x1*x2)*(1+d*x1^2*x2^2)+2*d*x1*x2*(x1^2+x2^2))/((1-d*x1^2*x2^2)^2):

t1:=T1+Z1: t2:=T2+Z2: T3:=T1*T2: Z3:=Z1*Z2: t1:=t1*t2: t1:=t1-T3: t1:=t1-Z3: T3:=d*T3: t2:=Z3+T3:

Z3:=Z3-T3: T3:=X1+Y1: t3:=X2+Y2: X3:=X1*X2: Y3:=Y1*Y2: T3:=T3*t3: T3:=T3-X3: T3:=T3-Y3: t1:=d*t1:
t1:=t1*X3: t1:=2*t1: Y3:=Y3-X3: Y3:=Y3*t2: Y3:=Y3+t1: X3:=Z3*T3: T3:=T3^2: Z3:=Z3^2:

simplify([x3-X3/Z3,y3-Y3/Z3,X3^2/Z3-T3],[a+1/2]); #Check.

UADD-Qe-7, 8M + 3S + 3D + 17a, assumes k = −2a.

x1:=X1/Z1: y1:=Y1/Z1: x2:=X2/Z2: y2:=Y2/Z2: T1:=X1^2/Z1: T2:=X2^2/Z2:
x3:=(x1*y2+y1*x2)/(1-d*x1^2*x2^2):

y3:=((y1*y2+2*a*x1*x2)*(1+d*x1^2*x2^2)+2*d*x1*x2*(x1^2+x2^2))/((1-d*x1^2*x2^2)^2):
t1:=T1+Z1: t2:=T2+Z2: T3:=T1*T2: Z3:=Z1*Z2: t1:=t1*t2: t1:=t1-T3: t1:=t1-Z3: T3:=d*T3: t2:=Z3+T3:
Z3:=Z3-T3: T3:=X1+Y1: t3:=X2+Y2: X3:=X1*X2: Y3:=Y1*Y2: T3:=T3*t3: T3:=T3-X3: T3:=T3-Y3: t1:=d*t1:

t1:=t1*X3: t1:=2*t1: X3:=k*X3: Y3:=Y3-X3: Y3:=Y3*t2: Y3:=Y3+t1: X3:=Z3+T3: X3:=X3^2: T3:=T3^2:
Z3:=Z3^2: X3:=X3-T3: X3:=X3-Z3: X3:=X3/2:

simplify([x3-X3/Z3,y3-Y3/Z3,X3^2/Z3-T3],[k+2*a]); #Check.
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UADD-Qe-8, 9M + 2S + 3D + 13a, assumes k = −2a.

x1:=X1/Z1: y1:=Y1/Z1: x2:=X2/Z2: y2:=Y2/Z2: T1:=X1^2/Z1: T2:=X2^2/Z2:
x3:=(x1*y2+y1*x2)/(1-d*x1^2*x2^2):

y3:=((y1*y2+2*a*x1*x2)*(1+d*x1^2*x2^2)+2*d*x1*x2*(x1^2+x2^2))/((1-d*x1^2*x2^2)^2):
t1:=T1+Z1: t2:=T2+Z2: T3:=T1*T2: Z3:=Z1*Z2: t1:=t1*t2: t1:=t1-T3: t1:=t1-Z3: T3:=d*T3: t2:=Z3+T3:

Z3:=Z3-T3: T3:=X1+Y1: t3:=X2+Y2: X3:=X1*X2: Y3:=Y1*Y2: T3:=T3*t3: T3:=T3-X3: T3:=T3-Y3: t1:=d*t1:
t1:=t1*X3: t1:=2*t1: X3:=k*X3: Y3:=Y3-X3: Y3:=Y3*t2: Y3:=Y3+t1: X3:=Z3*T3: T3:=T3^2: Z3:=Z3^2:

simplify([x3-X3/Z3,y3-Y3/Z3,X3^2/Z3-T3],[k+2*a]); #Check.

The following Maple script verifies (19) when Y3 is computed using (20).

x1:=X1/Z1: y1:=Y1/Z1: x2:=X2/Z2: y2:=Y2/Z2: T1:=X1^2/Z1: T2:=X2^2/Z2:
x3:=(x1*y2+y1*x2)/(1-d*x1^2*x2^2):

y3:=((1+s*x1*x2)^2)/((1-d*x1^2*x2^2)^2)*(y1*y2+2*a*x1*x2+s*x1^2+s*x2^2)-s*x3^2:
X3:=(X1*Y2+Y1*X2)*(Z1*Z2-d*T1*T2):

T3:=(X1*Y2+Y1*X2)^2:
Z3:=(Z1*Z2-d*T1*T2)^2:
Y3:=(Z1*Z2+d*T1*T2+2*s*X1*X2)*(Y1*Y2+2*a*X1*X2+s*T1*Z2+s*Z1*T2)-s*T3:

simplify([x3-X3/Z3,y3-Y3/Z3,X3^2/Z3-T3],[d-s^2]); #Check.

The following Maple scripts detail the evaluation of (19) when Y3 is computed using (20).

UADD-Qe-1, 7M + 3S + 1D + 18a, assumes k = −2a, assumes d = 1.

x1:=X1/Z1: y1:=Y1/Z1: x2:=X2/Z2: y2:=Y2/Z2: T1:=X1^2/Z1: T2:=X2^2/Z2:
x3:=(x1*y2+y1*x2)/(1-d*x1^2*x2^2):

y3:=((1+s*x1*x2)^2)/((1-d*x1^2*x2^2)^2)*(y1*y2+2*a*x1*x2+s*x1^2+s*x2^2)-s*x3^2:
t1:=T1+Z1: t2:=T2+Z2: T3:=T1*T2: Z3:=Z1*Z2: t1:=t1*t2: t2:=Z3+T3: Z3:=Z3-T3: t1:=t1-t2: T3:=X1+Y1:

t3:=X2+Y2: X3:=X1*X2: Y3:=Y1*Y2: T3:=T3*t3: t3:=T3-X3: t3:=t3-Y3: T3:=t3^2: Y3:=Y3+t1: t1:=2*X3:
t1:=t1+t2: t2:=k*X3: Y3:=Y3-t2: Y3:=Y3*t1: Y3:=Y3-T3: X3:=t3+Z3: X3:=X3^2: Z3:=Z3^2: X3:=X3-Z3:

X3:=X3-T3: X3:=X3/2:
simplify([x3-X3/Z3,y3-Y3/Z3,X3^2/Z3-T3],[k+2*a,s-1,d-1]); #Check.

UADD-Qe-2, 8M + 2S + 1D + 14a, assumes k = −2a, assumes d = 1.

x1:=X1/Z1: y1:=Y1/Z1: x2:=X2/Z2: y2:=Y2/Z2: T1:=X1^2/Z1: T2:=X2^2/Z2:
x3:=(x1*y2+y1*x2)/(1-d*x1^2*x2^2):

y3:=((1+s*x1*x2)^2)/((1-d*x1^2*x2^2)^2)*(y1*y2+2*a*x1*x2+s*x1^2+s*x2^2)-s*x3^2:
t1:=T1+Z1: t2:=T2+Z2: T3:=T1*T2: Z3:=Z1*Z2: t1:=t1*t2: t2:=Z3+T3: Z3:=Z3-T3: t1:=t1-t2: T3:=X1+Y1:

t3:=X2+Y2: X3:=X1*X2: Y3:=Y1*Y2: T3:=T3*t3: t3:=T3-X3: t3:=t3-Y3: T3:=t3^2: Y3:=Y3+t1: t1:=2*X3:
t1:=t1+t2: t2:=k*X3: Y3:=Y3-t2: Y3:=Y3*t1: Y3:=Y3-T3: X3:=t3*Z3: Z3:=Z3^2:

simplify([x3-X3/Z3,y3-Y3/Z3,X3^2/Z3-T3],[k+2*a,s-1,d-1]); #Check.

UADD-Qe-3, 7M + 3S + 5D + 18a, assumes k = −2a, assumes d = s2.

x1:=X1/Z1: y1:=Y1/Z1: x2:=X2/Z2: y2:=Y2/Z2: T1:=X1^2/Z1: T2:=X2^2/Z2:

x3:=(x1*y2+y1*x2)/(1-d*x1^2*x2^2):
y3:=((1+s*x1*x2)^2)/((1-d*x1^2*x2^2)^2)*(y1*y2+2*a*x1*x2+s*x1^2+s*x2^2)-s*x3^2:

t1:=s*T1: t2:=s*T2: T3:=t1*t2: t1:=t1+Z1: t2:=t2+Z2: Z3:=Z1*Z2: t1:=t1*t2: t2:=Z3+T3: Z3:=Z3-T3:
t1:=t1-t2: T3:=X1+Y1: t3:=X2+Y2: X3:=X1*X2: Y3:=Y1*Y2: T3:=T3*t3: T3:=T3-X3: t3:=T3-Y3: Y3:=Y3+t1:
T3:=t3^2: t1:=2*s: t1:=t1*X3: t1:=t1+t2: t2:=k*X3: Y3:=Y3-t2: Y3:=Y3*t1: t1:=s*T3: Y3:=Y3-t1:

X3:=t3+Z3: X3:=X3^2: Z3:=Z3^2: X3:=X3-Z3: X3:=X3-T3: X3:=X3/2:
simplify([x3-X3/Z3,y3-Y3/Z3,X3^2/Z3-T3],[k+2*a,d-s^2]); #Check.

UADD-Qe-4, 8M + 2S + 5D + 14a, assumes k = −2a, assumes d = s2.

x1:=X1/Z1: y1:=Y1/Z1: x2:=X2/Z2: y2:=Y2/Z2: T1:=X1^2/Z1: T2:=X2^2/Z2:
x3:=(x1*y2+y1*x2)/(1-d*x1^2*x2^2):

y3:=((1+s*x1*x2)^2)/((1-d*x1^2*x2^2)^2)*(y1*y2+2*a*x1*x2+s*x1^2+s*x2^2)-s*x3^2:
t1:=s*T1: t2:=s*T2: T3:=t1*t2: t1:=t1+Z1: t2:=t2+Z2: Z3:=Z1*Z2: t1:=t1*t2: t2:=Z3+T3: Z3:=Z3-T3:

t1:=t1-t2: T3:=X1+Y1: t3:=X2+Y2: X3:=X1*X2: Y3:=Y1*Y2: T3:=T3*t3: T3:=T3-X3: t3:=T3-Y3: Y3:=Y3+t1:
T3:=t3^2: t1:=2*s: t1:=t1*X3: t1:=t1+t2: t2:=k*X3: Y3:=Y3-t2: Y3:=Y3*t1: t1:=s*T3: Y3:=Y3-t1:

X3:=t3*Z3: Z3:=Z3^2:
simplify([x3-X3/Z3,y3-Y3/Z3,X3^2/Z3-T3],[k+2*a,d-s^2]); #Check.
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