
Identity Based Group Signatures from Heiarchical Identity-Based
Encryption

N.P. Smart and B. Warinschi

Dept. Computer Science,
University of Bristol,

Merchant Venturers Building,
Woodland Road,
Bristol, BS8 1UB,
United Kingdom.

{nigel,bogdan}@cs.bris.ac.uk

Abstract. A number of previous papers explored the notion of identity-based group signature. We
present a generic construction of identity-based group signatures. Our construction is based on the
Naor transformation of a identity-based signature out of an identity-based encryption, adjusted to
hierarchical identity-based encryption. We identify sufficient conditions on the underlying HIBE so
that the scheme that results from our transformation meets our security definitions. Finally, we suggest
a couple of extensions enabled by our construction, one of which is to hierarchical identity-based group
signatures.

1 Introduction

Identity-based cryptography as envisioned by Shamir [24] aims to ease the key distribution problem associated
to standard PKIs used for asymmetric cryptosystems. The key insight is that parties can use their identities
as their public keys, which in turn makes secure repositories for public keys unnecessary. This idea had been
thoroughly explored in the context of standard encryption [5, 7, 12, 14, 21–23] and signature schemes [2, 10,
17] as well as in that of more complex primitives like traitor tracing [1].

In the context of group signatures, a primitive with multiple practical uses, a large proportion of the
prior work did not consider the appropriate extension of the primitive to the ID-based setting. Specifically,
the schemes proposed in many previous papers under the name of identity-based group signatures still
use a standard public key for the group key. This is clearly a departure from the original motivation for
identity based cryptography, does not properly extend identity-based signature schemes, and suffers from
the standard PKI related difficulties. The reason for the name of the primitive was that the identity of group
members was allowed to be an unstructured identity. Examples of such proposals include [13, 18–20, 26].

In [28] a more correct syntax and security definition is given in which identifier strings are used for both
the users, and the group names themselves. Recall that in a group signature, multiple signers can produce
signatures on behalf of the group without revealing information about the origin of the signature. Only a
designated opener can later link these signatures to their authors using a special secret key, whereas a group
manager is in charge of adding users to the group. In [28] these two functionalities are seperated, in our work
we simplify the model somewhat by requiring the opener and the group manager to be the same.

Our contributions. We provide the following results on identity-based group signatures.
Security and Syntax of the primitives. We provide a simplified identity-based group signature model,
which is a subset of the model in [28]. Since we work in the ID-based setting we consider a trusted authority
that generates system-wide parameters. We model and explore the realistic scenario where the same set of
system parameters is shared by multiple groups of signers. Users can join existent groups, and we allow
for the same user can belong to multiple groups. Our security models are those of full-anonymity and full-
traceability. Full-anonymity captures the idea that the identity of the signers is not revealed by signatures,
and full-traceability says that the group manager can determine who created a given valid signature.

In this paper we model a simple setting where the roles of the group manager and signature openers are
merged (very much like in [3]). Also in our model users do not have public keys (or independent identity
based keys) and therefore no secrets, hence the group manager (opener) can always add users to groups and
produce signatures on their behalf, undetected. Our simplified definition facilitates our direct HIBE based
construction, which itself then can be easily seen to extend to a construction which enables hierarchies of
groups. It is this HIBE based construction and its extension which is the most novel part of our work.

Generic construction based on HIBE. Clearly, one can construct an ID-based group signature schemes
by appending certificates for the group public key to each signature in a standard group signature scheme.
Our models can be used to analyze such constructions. However, the flexibility afforded by our syntax may
lead to more efficient and/or schemes with enhanced functionality. One interesting example is schemes with
group hierarchies alluded to above, and discussed further below.

We provide a generic construction based on hierarchical identity-based encryption (HIBE) [15]. The
transformation that we present adapts the Naor transformation of an identity-based encryption scheme
into an identity-based signature scheme and shares ideas with the Boyen-Waters construction of a standard
group signature scheme out of a HIBE. Next, we sketch our construction and provide further details on the
transformation that we designed.

Recall that in HIBEs users at the lower levels of the hierarchy can compute the decryption keys for
users at the higher levels. The idea behind our construction is to set up a 4-level HIBE: on the first level
we place group identities, on the second level user identities, on the third level the messages to be signed,
and the fourth level is reserved for some sort of randomizers. A new group is created by extracting the key
associated to the identity grpID which is then given to the group manager. To add user userID to group
grpID, the manager extracts the key associated to identity (grpID,userID) which becomes the signing key
of user userID for group grpID. One tempting way to produce a signature on a message m using this key,
is to extract the secret key associated to hierarchical identity (grpID,userID,m). This is essentially the
approach taken by the construction of [8] which encrypts the resulting signature under the public key and
uses (efficient) non-interactive zero-knowledge proofs to ensure that the construction followed the prescribed
recipe. Notice that encrypting the signature is indeed needed, as the signature may leak information about
userID (for example when the extraction algorithm is deterministic.) To hide the identity of the signer we
use a different approach based on properties that we observe in existent HIBE constructions. Specifically,
to produce a signature on message m on behalf of group grpID, a user userID extracts the secret key d
associated to (grpID,userID,m, rID), for a randomly chosen randomizer rID. We observe that for existent
constructions the resulting decryption key hides all information about the hierarchical identity to which it
corresponds (provided that rID is from a big enough space). A remaining problem is that in order to verify
the signature, one needs to first encrypt a message under the identity (grpID,userID,m, rID) and then test
that the decryption with d succeeds. Clearly, this verification procedure leaks information about userID.
Instead, we observe that the encryption process of HIBEs usually compute an encryption key e associated to
the hierarchical identity which is then used in an encryption algorithm. We can therefore let (e, d) play the
role of a signature, provided they indeed do not reveal information about userID. We call this property that
we identify and demand from the underlying HIBE random identity hiding. It is worth noting that all of the
existent HIBE constructions, Boneh-Boyen [5], Waters [27] and Boneh-Boyen-Goh [6] satisfy this property. In
addition to (e, d) a signature also contains an encryption of userID under grpID and a non-interactive proof
that all of the parts fit together. We analyze a construction where this proof is obtained via the Fiat–Shamir
transform, and therefore our construction is under the random oracle model.

Instantiation based on the Boneh-Boyen-Goh HIBE. We use the Boneh-Boyen-Goh HIBE to instan-
tiate our construction. We show that our theoretical construction yields in this case an explicit identity-based
group signature scheme which has a signature of fixed length, irrespective of the size of the group to which
the signature is attached. Furthermore, the signature is relatively short, and computationally very efficient.

Extensions. Finally, we sketch a couple of variants of our basic construction. First, we note that by eliminat-
ing the first level of the HIBE (the level that contains group identities) we obtain a standard group signature
with a standard public key as the verification key. A more interesting extension is that to a hierarchical
identity-based group signatures. For standard group signatures the extension to hierarchical group managers

2

has been investigated by Trolin and Wikström[25]. The analogous extension for the case of identity-based
group signatures is beyond the goals of this paper. We sketch however how to extend our construction as
to meet the intuitive goals of such an extension. The idea is to introduce additional group identity levels.
Group managers can then add users to any of the subgroups of the group he manages, users can sign on
behalf of any of the groups to which they belong, and signatures can be opened by the managers of these
groups, or indeed any other levels in the hierarchy.

On the use of the random oracle. We end the introduction with a note on the usage of the random
oracles in our construction. In our construction we use non-interactive zero-knowledge proofs obtained via
the Fiat–Shamir heuristic from Σ-protocols, and thus our construction is in the random oracle model. An
alternative that would yield schemes secure in the standard model could employ standard model NIZKPOKs
(based on a common random string which can be placed in the system parameters), such as those in [16].
However, whilst such NIZKPOKs run in polynomial time, their performance is not very efficient when
compared to constructions obtained from Σ-protocols via the Fiat–Shamir heuristic. Indeed, we have chosen
to carry out our work in the random oracle model to be able to obtain the efficient implementation based
on BBG, which itself requires the random oracle model to obtain non-selective ID security.

Acknowledgements The authors would like to thank G. Neven for various discussions whilst the work in
this paper was carried out. The authors would like to acknowledge the support of the eCrypt-2 Network of
Excellence. The first author was supported by a Royal Society Wolfson Merit Award.

2 Preliminaries

Sigma protocols. A Σ-protocol (P,V) for an NP-language L is a three-move, public coin interactive
proof. We typically write (r, c, s) for a transcript of the conversation between the prover and the verifier,
where r and s are the messages sent by the prover and c is the message sent by the verifier. We call r the
commitment message, c the challenge message, and s the response. We write CommitSpace for the space to
which r belongs, ChallSpace for the space from where c is drawn. We call a transcript accepting for x if the
verification algorithm employed by the verifier, V((r, c, s), x) returns 1. Notice that we abuse notation and
write V for both the verifier and its verification algorithm.

In this paper we use Σ-protocols that satisfy special-soundness: we require that there exists an extraction
algorithm E which given two accepting transcripts (r, c, s) and (r, c′, s′) for x returns a witness w that x ∈ L.
Furthermore, we require that the protocol be special-zero-knowledge, that is: there exists a simulator S
which on input x and challenge c outputs (r, s) such that (r, c, s) is an accepting transcript for x. If c is
selected at random from ChallSpace then (r, c, s) is distributed as true transcripts. We formalize this notion
in Appendix B.

In addition, we also require that (P,V) have perfect completeness: for any witness w that x ∈ L the
interaction (P(x,w),V(x)) is accepting.

The Fiat–Shamir transform. The Fiat–Shamir transform is a heuristic that transforms a three move
public coin into a signature. The heuristic can be used to create “signatures of knowledge” [11]: constructs
which in addition to being signatures on messages, also prove knowledge of a certain secret. Essentially, given
a Σ protocol (P,V) for some language L and a hash function H one can build a signature of knowledge scheme
as follows. Given an element x ∈ L and a corresponding witness w, one can produce a signature of knowledge
FSH
P((w, x))(m) by running locally the interactive proof that x ∈ L, using c← H(r||x||m) as challenge. Here

r is the first message produced by the prover. A bit more formally, we define FSH
P((w, x),m) as the algorithm:

(r, state)← P(w)(x); c← H(r||x||m), s← P(state, c)(x); output (r, s). To verify that (r, s) is a signature of
knowledge on message m given public information x, one runs V(r,H(r||x||m), s) and accepts if the output
is 11. We do not formalize the properties signatures of knowledge satisfy. Instead, when we use them in
constructions, we reduce the security of the constructions to the properties of the underlying Σ-protocol. In

1 Notice that throught the paper we avoid cluttered notation by assuming that the statement to be verified is an
implicit input to the verifier.

3

particular, in order for the Fiat–Shamir heuristic to work, we further require from the Σ-protocol that it has
high-entropy commitments, and high-entropy challenges. Since the challenge is selected at random from the
challenge space, the second condition is satisfied whenever this space is sufficiently large. We simplify the
first requirement and ask that the commitment space to also be large, and that commitments are randomly
distributed over this space.

3 Hierarchical Identity Based Encryption (HIBE)

In this section we recall the notion of HIBE, and introduce its variant that concerns us. Throughout the
remainder of the paper we assume a set of basic identities IdSp ⊆ {0, 1}∗. We call ID ∈ IdSpl an l-level
hierarchical identity. For clarity we denote elements of IdSp by lower case variables (e.g., id, id′, id1, id2, . . .)
and hierarchical identities by upper-case variables (e.g. ID, ID′, ID1, ID2, . . .).
Hierarchical Identity Based Encryption (HIBE). A HIBE consists of four polynomial time algo-
rithms (Setup,Extract,Encrypt,Decrypt) :

– Setup(1k, L). The setup algorithm, on input a security parameter k and a maximal number of levels L
generates a master public/private key pair (mpk,msk) and a message space descriptionM for an L-level
HIBE.

– Extract(mpk, ID, dID′). The secret key extraction algorithm takes as input an identity ID and the secret
key associated to a parent ID′ of ID and derives a secret key dID for ID. By convention, we let d() (the
key associated to identity ′′()′′) to be msk.

– Encrypt(mpk, ID,m; r). The randomized encryption algorithm, on input the master public key mpk, a
hierarchical identity ID, and message m outputs an encryption enc of the message m for identity ID using
randomness r.

– Decrypt(dID, c). The decryption algorithm takes as input a secret key dID that corresponds to some
hierarchical identity ID, and a ciphertext enc and returns the underlying plaintext (assuming that the
ciphertext was encrypted using some identity ID′ to which ID is a parent).

Notice that the extraction algorithm works with the secret key of any parent of the target identity (and not
only with the master secret key). For correctness we require that ciphertexts created using some identity can
be decrypted using a secret key associated to the identity of any of its parents, i.e.

Decrypt(Extract(mpk, ID2, dID1),Encrypt(mpk, ID3,m; r)) = m

whenever ID1 is a parent of ID2 which in turn is a parent of ID3 and dID1 is a secret key associated to ID1.
In the variant of HIBE that we introduce we would like to allow parties to encrypt messages for identities

which he does not know. We enable this property by making the assumption that the Encrypt(mpk, ID,m; r)
algorithm works in two phases. First the encryptor obtains an encryption key eID out of the identity ID and
the master public key and then the ciphertext is obtained using an underlying encryption algorithm. More
precisely, we assume that Encrypt(mpk, ID,m; r) = Encr(Distill(mpk, ID),m; r) for some algorithm Distill for
distilling keys out of identities, and some underlying encryption algorithm Encr. To define a HIBE, it is
therefore required to give two algorithms Distill,Encr instead of the single Encrypt. We call schemes defined
this way canonical.

In Appendix C we recap on the BBG HIBE of [6], but using the functions Distill,Encr instead of the
single Encrypt. The BBG HIBE will be used as our example throughout since it is very efficient, and thus
results in a highly efficient identity-based group signature scheme.

3.1 Security Notions

Our construction for ID-based group signatures is based on a HIBE which satisfies two security properties. In
addition to the standard notion of indistinguishability against chosen-plaintext/chosen-ciphertext, the scheme
should also hide the identity of a random identity. We first recall the former notion and then formalise the
latter.

4

Definition 1 (Indistinguishability under CPA and CCA). Indistinguishability under chosen-plaintext,
and chosen-ciphertext attacks of a HIBE scheme Π, are security notions defined through the experiments
Expind-id-cpa−b

Π,A (k) and Expind-id-cca−b
Π,A (k) that we describe below. The experiments depend on an adversary A,

and are parametrised by a bit b. In a first phase, the adversary is given as input the master public key mpk of
a freshly generated key pair (mpk,msk) $← Setup(1k, L) as input. In a chosen-plaintext attack (IND-ID-CPA),
the adversary is given access to a key derivation oracle that on input of an identity ID = (id1, . . . , id`),

returns the secret key dID
$← Extract(msk, ID) corresponding to identity ID. In a chosen-ciphertext attack

(IND-ID-CCA), the adversary is additionally given access to a decryption oracle that for a given identity
ID = (id1, . . . , id`) and a given ciphertext enc returns the decryption

m← Decrypt(Extract(msk, ID), c).

At the end of the first phase, the adversary outputs a challenge messages m∗ ∈ {0, 1}∗ and a challenge
identity ID∗ = (id∗1, . . . , id

∗
`∗), where 0 ≤ `∗ ≤ L. Both experiments then generate a challenge ciphertext

c∗
$← Encrypt(mpk, ID∗,m∗b ; r), where b is the parameter bit, m∗0 = 0|m

∗| and m∗1 = m∗, and gives c∗ as input
to the adversary for the second phase.2 In the second phase the adversary has access to the same oracles
and has to output a bit d. The experiment outputs the d. We require that in both experiment the adversary
never queries the key derivation oracle on a parent identity of ID∗, and that in the CCA experiment the pair
(ID∗, c∗) is never sent to the decryption oracle. The advantage of the adversary is defined by:

Advind-id-xxx
Π,A (k) = Pr

[
Expind-id-xxx−1

Π,A (k) = 1
]
− Pr

[
Expind-id-xxx−0

Π,A (k) = 1
]

for xxx ∈ {cpa, cca}.
We say that Π is IND-ID-CCA secure (respectively IND-ID-CPAsecure) if for all p.p.t. adversaries its

advantage Advind-id-cca
Π,A (k) (respectively Advind-id-cpa

Π,A (k)) is negligible.

Random-Identity Hiding. Informally, the notion of random identity hiding requires that the key distilled
from a hierarchical identity ID = (id1, id2, . . . , idl) together with an associated decryption key, does not
reveal any information about ID, as long as at least one of the basic identities idi is chosen at random. The
formalisation of this notion uses patterns. An l-level pattern is simply element of the set (IdSp ∪ {?})l, i.e. a
hierarchical identity where some components are replaced by ?. We call a pattern non-trivial if it contains ?
on at least one position. For a pattern P we write P̂ for the set P̂ = {ID | ID ∈ IdSpl, Pi 6= ?⇒ Pi = IDi} of
hierarchical identities that coincide with the entries in the pattern on all positions that are not ? in P .

The security game that defines random identity hiding is as follows. The adversary selects a non-trivial
patterns P of level l ≤ L. The adversary is then given the pair

(dID, eID) = (Extract(mpk, ID, ()),Distill(mpk, ID))

for either a random identity ID of level l, or an identity ID ∈ P̂ . The task of the adversary is to determine
whether its input has been obtained from the given pattern, or a truly random identity. In his game, the
adversary has access to essentially all the information in the system (i.e. the master secret key msk grants
access to the secret key of any identity), except to the randomness used to obtain ID.

Definition 2 (Random identity hiding). Consider the following experiment for a L-level HIBE scheme
Π = (Setup,Distill,Extr,Encr,Decrypt) and adversary A:

ExpRIdH−b
Π,A (1k)

(mpk,msk) $← Setup(1k.L)
(P,St)← A(mpk,msk)

2 The definition that we use asks the adversary to tell apart encryptions of the message from the encryptions of the
all-0 string of the same length. This notion is equivalent to the one in the literature.

5

b← {0, 1}
If b = 0 then ID∗

$← P̂ ;

else ID∗
$← IdSpl where P is an l-level pattern.

e∗ ← Distill(mpk, ID∗)
d∗ ← Extract(mpk, ID∗, d())
b′ ← A(St, e∗, d∗)
Return b′

We insist that the pattern P output by the adversary has at least one ? in it.
We say that the scheme Π is random identity hiding if for any probabilistic polynomial time adversary

A its advantage:

AdvRIdH
Π,A(1k) = Pr

[
ExpRIdH−1

Π,A (1k) = 1
]
− Pr

[
ExpRIdH−0

Π,A (1k) = 1
]

is negligible.

An important observation related to the generality of our results is that most of the existing HIBE construc-
tions (e.g. BB [5],BBG [6] and Waters [27]) are both canonical and random identity hiding. We prove this
for our running example of the BBG HIBE (the proof is in Appendix D.)

Theorem 1. The Boneh-Boyen-Goh HIBE is random identity hiding.

4 Identity Based Group Signatures

As discussed in the introduction much prior work on ID-Based group signatures has looked at the case where
group members are given by “unstructured” identities, but the verification key used by the group is still a
public key in the classical sense of the word. In this section we present a concept of group signatures in the
ID-based setting, our security models and syntax are a subset of those of Wei et al [28]. We concentrate on the
two security notions full-anonymity (the identity of the signer is hidden) and full-traceability (a signer can
be identified by the group manager). We model a setting where the same set of public parameters (generated
by a trusted centre) is used to setup multiple groups of signers (for different group identities).

Syntax. An ID-based group signature scheme consists of six polynomial time algorithms:

(Setup,GrpSetUp, Join,Sign,Verify,Open),

– Setup(1k). This generates a master public/private key pair (mpk,msk).
– GrpSetUp(grpID,msk). This algorithm on input of a string, which identifies the group; outputs a group

secret key gsk. This secret key is then given to the group manager.
– Join(userID, gsk). This algorithm executed by the group manager outputs a user secret key usk, which is

passed to the group member. We assume that the group manager keeps a list of the member identities
(say be adding them into gsk).

– Sign(m, usk). This algorithm produces a signature σ on the message m from the group for which usk
corresponds.

– Verify(m,σ,mpk, grpID). This outputs true if the signature σ is on the message m and was issued by the
someone in the group grpID, otherwise it should output false.

– Open(gsk, σ,m). This returns the identifier of the user who produced the signature σ on the message m.
Note that in some situations the message m need not be input to the Open algorithm. This algorithm is
run by the group manager.

For correctness we require that if gsk is the group secret key corresponding the group with identifier grpID,
then

1. Verify (m,Sign(m, Join(userID, gsk)),mpk, grpID) = true
2. Open (msk,Sign(m, Join(userID, gsk)),m) = userID.

6

Security models. To define the security of ID-based group signatures we extend the model introduced
by Bellare et. al. [3] to this setting. Specifically, we cast the properties of full-anonymity (signatures do not
reveal information about the signer) and full-traceability (the identity of the signer can be recovered by the
group manager) to the ID-based setting. These security notions are well-established by now, so we will not
repeat the ideas behind their design.

Anonymity is captured by an indistinguishability experiment between an adversary and the group signa-
ture. The adversary has full control over the scheme: can create new groups (and obtain the group manager’s
key), can add users to group (and obtain their signing keys), open signatures at will etc. These capabilities
are modelled by appropriate access to several oracles. At some point the adversary outputs a group identity,
two identities of group members and a message. It receives in return a signature on that messages, created
with the secret key an identity selected at random between the two output by the adversary. The goal of the
adversary is to guess which of the users created the signature. Of course, we impose the minimal requirements
that the adversary does not know the master secret used for setup, and the opening key associated to the
group under attack.

Definition 3 (Full-Anonymity). Let Π = (Setup,GrpSetUp, Join,Sign,Verify, Open) be an identity based
group signature. Consider the experiment Expanon−b

Π,A (1k) that involves an adversary A and is parametrised by
bit b. The experiment uses msk,mpk as global variables. It also maintains two lists grpIDs (used to record
the manager secret keys of the groups) and userIDs (used to record the secret signing keys of users, for
the various groups to which they belong), as global variables. Initially both these lists are empty. During the
experiment, the adversary has access to the following three oracles:

– Oracle GrpSetUp(·) on input a query grpID ∈ IdSp the oracle checks the list grpIDs for an entry
(grpID, gsk). If such an entry is found, then gsk is returned to the adversary. Otherwise, the oracle
executes gsk ← GrpSetUp(msk, grpID), adds (grpID,msk) to the list grpIDs and returns gsk to the
adversary.

– Oracle Join(·) is given as input a pair (grpID,userID). If the list grpIDs does not contain an element
of the form (grpID, gsk) then the oracle executes gsk← GrpSetUp(msk, grpID) and adds (grpID, gsk) to
grpIDs.
Assuming now that grpIDs contains an element of the form (grpID, gsk), if the list userIDs contains
an element of the form ((grpID,userID),usk) then usk is returned to the adversary. Otherwise, the oracle
runs usk ← Join(gsk,userID) to obtain a signing key for user identity returns the user signing key for
that group.

– The Open(·) oracle on input a tuple (grpID, σ,m) that consists of a group identity, a message m and a
signature σ on m (valid for the group grpID), finds a pair (grpID, gsk) in grpIDs and then returns to
the adversary userID← Open(gsk, σ,m).

The experiment proceeds as follows:

Expanon−b
Π,A (1k)

(mpk,msk)← Setup(1k).
(grpID∗,userID0,userID1,m, state)← AGrpSetUp(),Join(),Open()(mpk)
b← {0, 1}
σ∗ ← Sign(m, usk), where ((grpID∗,userIDb),usk) is an entry in userIDs.
d← A

GrpSetUp(),Join(),Open()
2 (σ∗, state).

Return d = b.

The experiment only makes sense if the adversary is not allowed to call the GrpSetUp oracle on grpID∗ and
is not allowed to call the Open oracle on (grpID, σ∗, m∗). We call such an adversary a proper one. We say
that scheme Π is fully-anonymous if for any proper adversary A, its advantage:

Advanon
A,Π(k) = Pr

[
Expanon−1

A,Π (k) = 1
]
− Pr

[
Expanon−0

A,Π (k) = 1
]
,

is negligible.

7

The second security property that we demand from group signatures is full-traceability: a signer, or a
group of signers cannot produce a valid signature which the group manager cannot trace to one of the signers.
This is a notion which itself implies the notion of unforgeability of the resulting signatures. The game that
we consider involves an adversary with similar powers as the one in the previous experiment. The adversary
can setup groups, add users to groups, see signatures of users of his choice, and open arbitrary signatures. In
this experiment however we keep track of the set of corrupt users (users for which the adversary learns the
signing key). The goal of the adversary is to produce a valid signature on a message of his choosing, which
when opened by the group manager is not traced to one of the corrupt users.

Definition 4 (Full-Traceability). The experiment Exptrace
Π,A(k) used to define full traceability of IDGS

scheme Π = (Setup,GrpSetUp,Extract,Sign,Verify,Open) involves an adversary A. The experiment main-
tains three lists: corrgrpIDs keeps track of the corrupt identities in each of the groups of signers, and
grpIDs and userIDs have the same use as in the experiment for anonymity). During the experiment the
adversary may access the following five oracles:

– Oracle GrpSetUp(·) on input a query (grpID, type) ∈ IdSp× {h, c} the oracle checks the list grpIDs for
an entry (grpID, gsk). If such an entry is found, then gsk is returned to the adversary. Otherwise, the
oracle executes gsk ← GrpSetUp(msk, grpID), adds (grpID,msk) to the list grpIDs. If type = c then it
the oracle returns gsk.

– Oracle Join(·) is given as input ((grpID,userID), type) ∈ (IdSp×IdSp)×{h, c}. If the list grpIDs does not
contain an element of the form (grpID, gsk) then the oracle computes gsk via gsk← GrpSetUp(msk, grpID)
and adds (grpID, gsk) to grpIDs.
Assuming that grpIDs contains an element of the form (grpID, gsk), the oracle runs usk← Join(gsk,userID),
and it adds the tuple ((grpID,userID),usk) to userIDs.
If type = c then the oracle adds (grpID,userID) to corrgrpIDs and returns usk.

– Oracle Sign on input a tuple ((grpID,userID),m) the oracle searches userIDs for an entry of the form
((grpID,userID),usk). If such an entry does not exist it returns ⊥. Otherwise, the oracle computes
σ ← Sign(usk,m) and returns σ.

– Oracle Open on input a tuple (grpID, σ,m) searches the grpIDs for an entry (grpID, gsk). If such an
entry does not exist, it returns ⊥. Otherwise it returns the result of Open(gsk, σ,m).

The experiment that defines security is as follows:

Exptrace
Π,A(k)

(mpk,msk)← Setup(1k)
(m,σ, grpID∗)← AGrpSetUp(),Join(),Sign(),Open()(mpk).
Let gsk∗ = Extract(msk, grpID∗)
If Verify(m,σ,mpk, grpID∗) = false or

(grpID∗,Open(gsk∗, σ,m)) ∈ corrgrpIDs
Then Return 0
Else Return 1

The experiment only makes sense if the adversary does not request the group manager key for group grpID∗

(i.e. it does not make a query (grpID∗, c) to the GrpSetUp oracle). We call such an adversary proper. The
scheme Π is a fully traceable if for any proper adversary its advantage, defined by:

Advtrace
Π,A (k) = Pr[Exptrace

Π,A (k) = 1],

is negligible.

5 Generic HIBE-based Construction of an ID-Based Group Signature

In this section we detail a generic construction of a ID-based group signature from a HIBE.

8

Outline: The construction is based on the following idea. We setup a four level HIBE and identify the root
with the trusted authority that generates the parameters of the systems. Then, the first level corresponds to
the various groups of signers. To create a new group of signers with public key grpID, the trusted authority
produces the secret key associated to identity (grpID) in the HIBE and hands that as the group manager’s
key. This key is to be used for both adding members to the group, and as opening signatures to discover
the underlying signer. To add a new group member userID to the group grpID, the group manager uses its
secret key to compute the secret key associated to the hierarchical identity (grpID,userID). The resulting
key d(grpID,userID) is the key that user userID uses to sign messages on behalf of the group grpID. User
userID member of the group grpID, signs a message m as follows: it selects a random basic identity rID in
IdSp, computes a distilled key e associated to identity (grpID,userID,m, rID), and then uses its secret key
to compute the decryption key d associated to e. The pair (e, d) is part of the signature that is output.
The idea here is that since the HIBE is random identity hiding, the key e does not reveal any information
about (grpID,userID,m, rID) which is a random identity (due to the randomisation introduced by rID.) We
also need to ensure that the manager is able to recover the identity of the signer. For this we ask that the
signer encrypts his identity under the identity of the group manager (i.e. under grpID) and then proves in
zero-knowledge that the identity userID that had been encrypted under grpID is the same as the identity
used in (grpID,userID,m, rID) to distill e. Here, we use a non-interactive proof obtained from a Σ protocol
via the Fiat–Shamir transform.

As pointed out in the introduction, one could avoid the random oracle by using a non-interactive simu-
lation sound zero knowledge protocol. However, finding practically efficient instantiations of such proofs for
the language that we need for our construction seems to be difficult. However, we note that using the random
oracle model not only produces a gain in efficiency, the proof also becomes conceptually simpler due to the
stronger properties of the proof of knowledge. Secondly, our specific constructions via the BBG HIBE uses
the random oracle model, thus using the random oracle model in the overall construction does not loose us
anything. We however point out that a proof of the generic construction in the standard model can be given.

The construction: We first define the NP-language that captures the desired relation between distilled
keys and encrypted identities sketched above. For a fixed public key mpk, part of the parameters of a HIBE
scheme (Setup,Distill,Encr, Extr,Decrypt), and a bijection f between the space of basic identities IdSp and
the plaintext space for the HIBE, we define the following NP relation:

R((e, enc, grpID,m), (userID, rID, r) = 1

if and only if

e = Distill((grpID,userID,m, rID),mpk) ∧ enc = Encrypt(grpID, f(userID); r))

Informally, an element (e, enc, grpID,m) of the language LR defined by the relation R in the usual way
satisfies the property that the user identity userID used to obtain the distilled key e equals the identity that
had been encrypted under grpID to produce the ciphertext enc.

Given a canonical HIBE scheme (SetupH,Distill,Extr,Encr,Decrypt), a Σ-protocol (P,V) for the language
LR above, and a hash function H (which we model as a random oracle) we construct an ID-based group
signature scheme GS(HIBE, (P,V),H) = (SetupG,GrpSetUp, Join,Sign,Verify,Open).
The algorithms are summarised in Figure 1. They work as follows.
Setup.The parameter setup algorithm SetupG simply runs the setup algorithm for the underlying HIBE
scheme, and sets up a 4-level HIBE with public key mpk and secret key msk. The secret key of the trusted
authority is set to msk.
Group setup. To setup a new group for identity grpID, the authority hands over to the group manager
the secret key dgrpID associated to the hierarchical identity (grpID). User userID is added to the group
of signers with public identity grpID by giving him the key d(grpID,userID) associated to the hierarchical
identity (grpID,userID). Notice that this key enables the user userID to compute the associated key of any
hierarchical identity to which (grpID,userID) is a parent.

9

SetupG(1k)

(mpk,msk)← SetupH(1k, 4)
Return (mpk,msk)

GrpSetUp(msk, grpID)
e← Distill((grpID));
dgrpID ← Extr(msk, e)
Return (grpID, dgrpID)

Sign(m, (grpID, userID, dID))
rID ← IdSp
e← Distill((grpID, userID,m, rID),mpk)
d← Extr(dID, e)
enc← Encrypt(mpk, grpID, f(userID); r)
π ← FSP((e, enc, grpID,m),

(userID, rID, r))(m)
Return (e, d, enc, π)

Verify(m,σ,mpk, grpID)
Parse σ as (e, d, enc, (r, s)).
If V(r,H(mpk||e||enc||m||r), s) = 0

Then Return 0
Else
m←M
If m = Decrypt(d,Encr(e,m))

Then Return 1
Else Return 0

Open(gsk, σ,m)
Parse σ as (e, d, enc, (r, s))
Output f−1(Decrypt(gsk, c))

Join((grpID, dgrpID), userID)
e← Distill((grpID, userID),mpk)
d← Extr(dgrpID, (grpID, userID))
Return (grpID, userID, d)

Fig. 1. Generic construction of an ID-based group signature scheme from a canonical HIBE

Signing. To produce a signature on message m, user userID uses distills the public key e associated to
(grpID,userID,m, rID) (for a randomly chosen rID) and uses his secret key to compute an associated de-
cryption key d. Next, he encrypts the identity userID under the identity of the group. Finally, it uses the
Fiat–Shamir transform to produce a non-interactive zero knowledge proof Σ that (e, d, enc, grpID,m) belong
to the language LR described above. The signature is then (e, d, enc,Σ).

Verification. A signature (e, d, enc,Σ) for message m and public key grpID is verified by first checking
that Σ proves that (e, enc, grpID,m) ∈ LR, and then checking that d is a valid decryption key for e. The
second part of the verification is done by encrypting a random message under e and decrypting the resulting
ciphertext with d.

Open. To open a signature (e, d, enc,Σ) for message m, the group manager grpID decrypts e using his secret
key, and obtains the encrypted identity which it then outputs.

Instantiation based on BBG HIBE. In Appendix E we present our generic construction applied to
the BBG HIBE in detail. The rest of the main body of the paper is devoted to showing that our generic
construction meets our security definitions.

6 Security of our Construction

In this section we discuss the security of our generic construction. we start with the anonymity property.
The intuition here is that a signature (e, d, enc,Σ) does not leak information about the identity of its creator
since e is obtained from a random identity, the encryption enc hides its underlying plaintext, and Σ is a zero-
knowledge proof. Since our construction uses the Fiat–Shamir heuristic, in addition to the above conditions
we also need to require that the underlying proof system has high-entropy commitment and challenges (or
alternatively, that the commitments and challenges are distributed uniformly over large enough spaces).
These requirements ensure that rewinding strategies work in extracting necessary secrets.

Theorem 2. Let HIBE be a HIBE scheme, (P,V) a proof system for the language LR (defined above),
and H a random oracle. If HIBE is an IND-ID-CCA, (respectively IND-ID-CPA) HIBE scheme which is ran-
dom identity hiding, the proof system (P,V) has high-entropy commitments and challenges, and satisfies
special soundness and special zero-knowledge, then GS(HIBE, (P,V),H) is a fully-anonymous (respectively
fully-anonymous under CPA attacks) identity-based group signature scheme.

10

Proof. We give the details of the proof in Appendix F. Here we only sketch its steps. Recall that at some
point during his execution the adversary produces at a challenge (grpID∗,userID∗0,userID∗1,m) which is a
request for a signature of either one of the two users on behalf of the group grpID∗, on message m. It
receives from the experiment for anonymity a signature of the form (e, d, enc,Σ), where e is a key distilled
from (grpID,userIDb,m, rID) for some random identity rID, d is a decryption key associated to e, enc is an
encryption of userIDb and Σ is a non-interactive proof (obtained via the Fiat–Shamir heuristic) that the
signature is well formed.

The proof of security uses a standard game-hopping technique. We incrementally change the security
game for encryption until it reaches a form in which the adversary cannot win. The transformations that
we do are as follows. First, we replace the zero-knowledge proofs computed using Fiat–Shamir with proofs
computed by the simulator associated to the proof system. The new way of computing the proofs requires
programming of the random oracle. The standard collision problem (when an entry in the table maintained
by the random oracle needs to be programmed in order to produce a valid simulated proof, but programming
cannot be done due to an early query) is avoided by requiring that the commitment messages of the prover
has high entropy.

In the next transformation the key e part of the challenge signature is obtained from a completely random
identity. The idea here is that an adversary would be able to tell that e is not related to either userID0 or
userID1, then this adversary breaks the random-identity hiding property of the underlying HIBE scheme.

In the next step we prohibit the adversary from making a certain kind of open queries. Specifically,
whenever the adversary makes a query for which the encryption part is enc (i.e. the encryption part of the
challenge query) then the experiment aborts. The intuition here is as follows. Suppose that the adversary
indeed makes such a query. For the query to be valid, the adversary needs to append an appropriate zero-
knowledge proof, which by the soundness property he can only do if he has knowledge of an appropriate
witness. However, such a witness contains the plaintext encrypted in enc, which means the adversary manages
to break the security of the underlying HIBE. The proof uses a rewinding technique, which requires that the
challenge space of the underlying proof system to be large.

In the final step, we replace the identity encrypted in enc with a random identity. As a result, the challenge
signature that is returned to the adversary is independent of the challenge bit of the experiment, and thus
in this final game the adversary can only win with probability half. The argument that the adversary does
not see a difference between the resulting experiment and the previous one is based on the intuition that if
this were not true, then the adversary observes the change in the encryption part of the signature, that is it
somehow breaks encryption.

Next we show that our scheme is fully-traceable. The intuition is that the signature produced by a
coalition of signers needs to contain the encryption enc of some identity grpID. At the same time in a
well-formed signature the distilled key e that is part of the signature has to be obtained from a hierarchical
identity of the form grpID,userID,m, rID for the same userID as encrypted in enc. However,the only way
one can compute a key d associated to e is if one knows the secret key associated to some identity on the
path from the root to (grpID,userID,m, rID).

Theorem 3. Let HIBE be a HIBE, (P,V) a proof system for the language LR and H a random oracle. If
HIBE is an IND-ID-CCA secure HIBE, and (P,V) satisfies special soundness and has high-entropy challenges,
then GS(HIBE, (P,V),H) is fully-traceable.

Proof. We show that if there exists an adversary that breaks the full-traceability property of our construction,
then we can construct an adversary that breaks the security of the underlying HIBE scheme. Consider a
signature (e, d, enc, Σ) on message m on behalf of group grpID which cannot be traced to a corrupt user.
The intuition is that if the proof system used to produce Σ is sound, then (e, enc, grpID,m) ∈ LR, which
in particular means that e = Distill(grpID,userID, m, rID) for some userID and rID, and such that userID is
encrypted in enc. Rewinding the adversary that produced this forgery, and using the special soundness of the
proof system in use we can obtain userID, rID. Since the forgery was valid, we know that d is a decryption
key for the hierarchical identity (grpID,userID,m, rID), which immediately results in a security break for
HIBE.

11

LetA be an adversary for Exptrace
GS,A(k). We construct the following adversary B for the game ExpIND-ID-CCA

HIBE,B (k).
Adversary B is given as input the public key mpk of a 4-level HIBE scheme HIBE and has access to a decryp-
tion oracle and an extraction oracle, both keyed with secret key msk (See Definition 1). Adversary B runs a
simulation of the experiment Exptrace

GS,A(k) for A. In particular it maintains the list L of the random oracle
H to which A also has access. Adversary B also maintains the variables corrgrpIDs,grpIDs,userIDs as
in the experiment. To setup a new group grpID (i.e. to answer the queries that adversary A makes to its
GrpSetUp oracle) B uses its access to the extraction oracle to obtain dgrpID ← Extract(msk, grpID). To an-
swer add user userID to group grpID (i.e. to answer the queries that adversary A makes to its Join oracle)
B obtains the associated secret key associated with hierarchical identity (grpID,userID) from its Extract
oracle. Notice that B can easily answer all of the signing queries of A since B possesses all of the secret
signing keys of the users in the system. Finally, to answer an Open query of the form (grpID,m, σ), adver-
sary B parses the signature as (e, d, enc,Σ), checks the validity of the proof and submits (grpID, enc) to
its decryption oracle. It returns the answer to the adversary. At some point adversary A outputs its tenta-
tive forgery: (m, (e, d, enc, (r, c, s)), grpID). Since the simulation that B provides is perfect, this event occurs
with probability Advtrace

GS,A(k). Recall that if the forgery is valid, then (r, c, s) is an accepting transcript for
(e, enc, grpID,m). Also, c = H(r||(e, enc, grpID,m)||m). At this point adversary B rewinds the execution
of A up to the point where it made the query r||(e, enc, grpID,m)||m to the random oracle and provides
as answer c′ ← ChallSpace with c 6= c′. Notice that the simulation of the experiment that B provides is
perfect. It then follows by a standard rewinding argument that adversary A will produce a new valid forgery
(m, (e, d′, enc, (r, c′, s′))) (i.e for the same message, and with the same query to the random oracle) with prob-

ability at least
(

Advtrace
GS,A (k)

qH
− 1

ChallSpace

)
. At this point adversary B has (r, c, s) and (r, c′, s′) which are two

valid transcripts for the statement (e, enc, grpID,m) ∈ LR. It executes (userID, rID, r)← E((r, c, s), (r, c′, s′))
to obtain a witness (userID, rID, r) for the statement. Notice that since the signature is valid, it is the case
that d is a valid decryption key for the hierarchical identity (grpID,userID,m, rID). With this knowledge
one can trivially win the IND-ID-CCA game for challenge identity (grpID,userID,m, rID). From the above
discussion we have that:

AdvIND-ID-CCA
HIBE,B (k) ≥ Advtrace

GS,A(k) ·

(
Advtrace

GS,A

qH
− 1

ChallSpace

)

from which:

Advtrace
GS,A(k) ≤ qH

ChallSpace
+

√
q2H

4 · ChallSpace2 + qH ·AdvIND-ID-CCA
HIBE,B (k)

Since the underlying HIBE is IND-ID-CCA secure it follows that GS is fully-traceable. The proof for the
weaker full-traceability under CPA attacks is essentially the one above where the adversary against GS does
not have an Open oracle, and thus B does not need a decryption oracle.

7 Extensions: Standard and Hierarchical Groups Signatures from HIBE

We conclude with an application of the core idea of our paper to a couple of extensions. Recall that the
structure that we use to setup identity-based group signature is as follows. We use a four-level HIBE scheme
where on the first level we place group identities, on the second level we place user identities, on the third
level messages to be signed, while the fourth level is reserved to a randomiser. The group manager of group
grpID can add user userID to the group by handing over the secret key associated to hierarchical identity
(grpID,userID). A signature by this user on a message m is then a pair of encryption, decryption keys that
correspond to the hierarchical identity (grpID,userID,m, rID) together with extra information to allow for
the recovery of the signer and that ensure the signature is well-formed.
Standard group signatures. The first observation that we make is that by eliminating the first layer,
that of group identities, we obtain a standard group signature in a non PKI setting. More precisely, the
public key of the group is the public key mpk of the underlying HIBE. The group manager who has the

12

corresponding secret key msk adds users by extracting the secret keys associated to their identity. Signatures
can then be formed as before, with the difference that the encryption enc is under mpk, as opposed to group
identity. The resulting scheme shares with standard group signature schemes the idea of having a “standard”
public-key, and with ID-based signature scheme, as defined in this paper (and as previously considered in
the literature) the idea that parties are identified by unstructured identities. The intuition regarding the
security of the resulting scheme follows the same lines as those of the construction we detailed in this paper.
Hierarchical group signatures. The second extension that we propose is to hierarchical group sig-
natures. Here, we would like for groups of signers be organised in a hierarchy so that users at the lower
level can sign on behalf of any of the groups to which they belong. For example, in a university UniId,
one could have subgroups faculty and admin. The faculty could then be divided into research group
research1, research2,..., where as the admin group could be on specialised departments finance,
undergraduate,.... Finally, individual users user1,user2,... belong to one of these lower level sub-
groups. In a hierarchical identity based signature, we would like that managers of groups be permitted to
add users to the group that it manages, or to any of his group’s subgroups. Also, we would like for a user
to be able to produce, anonymously, signatures for any of the groups to which he belongs. Finally, a group
manager should be able to open signatures created by any of the users in the group that it manages, no
matter on behalf of which of subgroups of the group the signature was produced.

Our construction can be easily extended to this more complex setting. Instead of working with a four-
level HIBE, we work with a k + 4 level HIBE, where k is the maximal number of subgroups that a group
can have (for k = 0 we fall on the setting of our main construction). The construction that we suggest
is to place on the first k levels the group identities, in a way that reflects the desired hierarchy. Creating
new groups, and adding group members is then done as before: the group managers extracts a key for the
appropriate hierarchical identity. For example, the manager of the group UniId creates the group faculty
by extracting the key associated to the hierarchical identity (UniId,faculty). The key of a user would be
the key associated to (level1,level2,...,levelk,user). Signatures in this construction generalise ours,
with one exception. The user can choose for which of the groups to which it belongs produces the signature,
and in particular, under which of the subgroup identities it encrypts his own identity. There is flexibility
also who can open a signature: any group manager that is a parent identity to the one under which the
user encrypts his identity can identify the signer. For our example, a faculty members that belongs to the
group research can sign on behalf of that group, on behalf of the whole group faculty, or on behalf of
the university UniId. Furthermore, only the manager of the group for which the signature is produced (or a
parent of the manger) can identify the signer. The security of this construction relies on the same basic idea
as that of our main construction of this paper.

References

1. M. Abdalla, A.W. Dent, J. Malone-Lee, G. Neven, D.H. Phan and N.P. Smart, Identity-based traitor tracing,
In Public Key Cryptography – PKC 2007, Springer-Verlag LNCS 4450, 361–376, 2007.

2. P.S.L.M. Barreto, B. Libert, N. McCullagh and J.-J. Quisquater. Efficient and provably-secure identity-based
signatures and signcryption from bilinear maps. In Advances in Cryptology – AsiaCrypt 2005, Springer-Verlag
LNCS 3788, 515–532, 2005.

3. M. Bellare, D. Micciancio and B. Warinschi. Foundations of group signatures: Formal definitions, simplified
requirements, and a construction based on general assumptions. In Advances in Cryptology – EuroCrypt 2003,
Springer-Verlag LNCS 2656, 614–629, 2003.

4. M.Bellare and G.Neven. Multi-signatures in the plain public-key model and a general forking lemma. In ACM
Conference on Computer and Communications Security – CCS 2006, ACM Press, 390–399, 2006.

5. D. Boneh and X. Boyen. Efficient selective-ID secure identity based encryption without random oracles. In
Advances in Cryptology – EuroCrypt 2004, Springer-Verlag LNCS 3027, 223–238, 2004.

6. D. Boneh, X. Boyen and E.-J. Goh. Hierarchical identity based encryption with constant size ciphertext. In
Advances in Cryptology – EuroCrypt 2005, Springer-Verlag LNCS 3494, 440–456, 2005.

7. D. Boneh and M. Franklin. Identity based encryption from the Weil pairing. In Advances in Cryptology - Crypto
2001, Springer-Verlag LNCS 2139, 213–229, 2001.

13

8. X. Boyen and B. Waters. Compact group signatures. In Advances in Cryptology – EuroCrypt 2006, Springer-
Verlag LNCS 4004, 427–444, 2006.

9. R. Canetti, S. Halevi and J. Katz. Chosen-ciphertext security from identity based encryption. In Advances in
Cryptology – EuroCrypt 2004, Springer-Verlag LNCS 3027, 207–222, 2004.

10. J.C. Cha and J.H. Cheon. An identity-based signature from gap Diffie-Hellman groups. In Public Key Cryptog-
raphy – PKC 2003, Springer-Verlag LNCS 2567, 18–30, 2003.

11. M. Chase and A. Lysyanskaya. On signatures of knowledge. In Advances in Cryptology – Crypto 2006, Springer-
Verlag LNCS 4117, 78–96, 2006.

12. L. Chen, Z. Cheng, J. Malone-Lee and N.P. Smart. Efficient ID-KEM based on the Sakai-Kasahara key construc-
tion. IEE Proceedings - Information Security, 153, 19–26, 2006.

13. X. Chen, F. Zhang and K. Kim. A new ID-based group signature scheme from bilinear pairings. IACR e-Print,
eprint.iacr.org/2003/116.pdf, 2003.

14. C. Cocks. An identity-based encryption scheme based on quadratic residues. In Proceedings of Cryptography and
Coding 2001, Springer-Verlag LNCS 2260, 360–363, 2001.

15. C. Gentry and A. Silverberg. Hierarchical ID-based cryptography. In Advances in Cryptology – Asiacrypt 2002,
Springer-Verlag LNCS 2501, 548–566, 2002.

16. J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups. In Advances in Cryptology –
EuroCrypt 2008, Springer-Verlag LNCS 4965, 415–432, 2008.

17. F. Hess. Efficient identity based signature schemes based on pairings. In Selected Areas in Cryptography – SAC
2002, Springer-Verlag LNCS 2595, 310–324, 2003.

18. S. Han, J. Wang and W. Liu. An efficient identity-based group signature scheme over elliptic curves. In Universal
Multiservice Networks, Springer-Verlag LNCS 3262, 417–429, 2004.

19. S. Park, S. Kim and D. Won. ID-based group signature. Electronics Letters, 33, 1616–1617, 1997.
20. C. Popescu. An efficient ID-based group signature scheme. Studia Univ. Babes-Bolyai Info., 47, 29–36, 2002.
21. R. Sakai, K. Ohgishi and M. Kasahara. Cryptosystems based on pairing. In The 2000 Symposium on Cryptography

and Information Security, Okinawa, Japan, January 2000.
22. R. Sakai, K. Ohgishi and M. Kasahara. Cryptosystems based on pairing over elliptic curve (in Japanese). In The

2001 Symposium on Cryptography and Information Security, Oiso, Japan, January 2001.
23. R. Sakai and M. Kasahara. ID based cryptosystems with pairing on elliptic curve. Cryptology ePrint Archive,

Report 2003/054. 2003.
24. A. Shamir. Identity-based cryptosystems and signature schemes. In Advances in Cryptology - Crypto ’84,

Springer-Verlag LNCS 196, 47–53, 1985.
25. M. Trolin and D. Wikström. Hierarchical group signatures. In Automata, Languages and Programming – ICALP

2005, Springer-Verlag LNCS 3580, 446–458, 2005.
26. Y. Tseng and J. Jan. A novel ID-based group signature. Int. Comp. Symp. on Crypto and Info. Sec., 159–164,

1998.
27. B.R. Waters. Efficient identity-based encryption without random oracles. In Advanced in Cryptology – EuroCrypt

2005, Springer-Verlag LNCS 3494, 114–127, 2005.
28. V.K. Wei, T.H. Yuen and F. Zhang. Group signature where group manager, members and open authority are

identity-based. In Information Security and Privacy – ACIPS 2005, Springer-Verlag LNCS 3574, 468–480, 2005.

A Notation

Throughout the appendices we use the following notational conventions. Our explicit constructions are all
based on an asymmetric pairing t̂ : G× Ĝ −→ GT , between three groups of prime order q. We assume that
G = 〈g〉 and Ĝ = 〈ĝ〉. Elements of G will be denoted by lower case letters a, b, c etc, elements of Ĝ will be
denoted by â, b̂, ĉ etc, elements of GT will be denoted by gothic letters a, b, c etc.

B Special Zero-Knowledge for Σ-protocols

Let (P,V) be a Σ protocol for some NP-relationR. In this paper we work with such protocols that are special
zero-knowledge. That is, we require the existence of a simulator which for any x ∈ LR, given a challenge
c ∈ ChallSpace outputs a (r, s) such that (r, c, s) is an accepting transcript for x. Moreover, we require that

14

the distribution of the simulated transcripts is identical to that of real ones. More precisely we demand that
for any (x,w) ∈ R, for any (R,C, S) the probabilities

Pr [(r, c, s)← (P(x,w),V(x)) : (r, c, s) = (R,C, S)]

and
Pr [c← ChallSpace, (r, s)← S(x, c) : (r, c, s) = (R,C, S)]

are equal.
Using the special zero-knowledge we show that in schemes where the proof system is used in its non-

interactive version given by the Fiat–Shamir transform, the resulting proofs can be replaced with simulated
proofs, if one can program the random oracle. This is true, if the commitments output by the prover have
high entropy. Consider the games in Figure 2. The first game corresponds to the case where an adversary is
given as input non-interactive proofs obtained by the Fiat–Shamir transform (using messages of adversary’s
choice), and the random oracle is not programmed. In the second experiment the adversary is given as input
simulated proofs, where the random oracle is programmed.

ExpFS-1
P,A(k)

(St,m, (x,w))← AH(1k)
(st, r)← P(x,w)
c← H(x||r||m)
s← P(st, c)

b← AH(St, (r, c, s))

ExpFS-0
P,A(k)

(St,m, (x,w))← AH(1k)
c← ChallSpace
(r, s)← S(x, c)
if ((r||x||m), c′) ∈ L and c 6= c′

output fail
add ((r||x||m), c) to L

b← AH(St, (r, c, s)

Oracle H
On input x
Search L for (x, c).
If found, Return c.
Else c ∈ ChallSpace

Add (x, c) to L.
Return c.

Fig. 2. In the experiment on the left, the adversary is given a proof computed using the Fiat–Shamir transform. In
the experiment in the middle, the proof given to the adversary is simulated. Here, the experiment can program the
random oracle H to which the adversary has access in both experiments. The list L is the internal state of the random
oracle to which the second experiment has access.

We claim that for any adversary A, if (P,V) has high entropy commitments, then no adversary can dis-
tinguish between proofs obtained via the Fiat–Shamir transform (using a non-programmable random oracle)
and proof simulated in a programmable random oracle mode. Formally, we argue that if the commitment
space of the proof system is CommitSpace, then

AdvFS-1
P,A(k) ≤ qH

CommitSpace
(1)

Indeed, the only way the adversary can observe a difference between the two experiments is if the second
experiment aborts. This even only occurs if there is a collision in the list L maintained by oracle H. Let qH
be the number of hash queries made during the execution of A. By the assumption that the commitments
of the proof system have high-entropy i.e. for any (x,w) ∈ R, for any R ∈ CommitSpace

Pr [(r, c, s)← (P(x,w),V(x)) : r = R] ≤ 1
CommitSpace

.

By the assumption that the transcripts output by S are identically distributed with those of the original
proof system, we have that

Pr [c← ChallSpace; (r, s)← S(x, c) : r = R] ≤ 1
CommitSpace

for any R. The desired result follows by a simple union bound.

15

C The Boneh-Boyen-Goh HIBE

The structural assumptions that we make on the encryption and extraction algorithms are without loss of
generality in the context of currently know efficient HIBE constructions. In particular, we show that the
algorithms of the Boneh-Boyen-Goh HIBE [6] satisfies our requirements, and describe it below in canonical
form.

We present the scheme for a HIBE of length L, although in our construction we only use a HIBE of
length 4. Again we present the scheme in the setting of asymmetric pairings, which means our notation is
slightly different from that of [6].

Setup: The trusted authority chooses random values ĝ2, û0, . . . , ûL ∈ Ĝ and a value α ∈ Zq. The trusted
authority then computes h1 ← gα, ĥ2 ← ĝα2 , and sets mpk← (g, ĝ2, h1, û0, . . . , ûL) and msk← ĥ2.

Extract: A user’s identity is given by a vector ID = (id1, . . . , idl) with l ≤ L. A random r ← Zq is chosen
and the private key is computed via

dID = (â0, âl+1, . . . , âL, aL+1)←

(
ĥ2

(
û0 ·

l∏
i=1

ûidi
i

)r
, ûrl+1, . . . , û

r
L, g

r

)
.

The private key for the identity ID = (id1, . . . , idl) can be derived from the private key

(â0, âl, . . . , âL, aL+1)

of its parent identity ID = (id1, . . . , idl−1) by selecting r′ ← Zq and computing

dID ←

â0 · âidl

l

(
û0

l∏
i=1

ûidi
i

)r′
, âl+1 · ûr

′

l+1, . . . , âL · ûr
′

L , aL+1 · gr
′

 .

Distill: A user’s identity is given by a vector ID = (id1, . . . , idl) with l ≤ L. The output of this function is
the value

êID =
l∏
i=1

ûidi
i .

Encr: To encrypt a message m ∈ GT to an identity ID = (id1, . . . , idl) encoding in êID, the sender selects
t← Zq and outputs the ciphertext (e1, ê2, e3) where

e1 ← gt, ê2 ← (û0 · êID)t , e3 ← m · t̂(h1, ĝ2)t.

Decrypt: A receiver secret key (â0, âl+1, . . . , âL, aL+1) decrypts a ciphertext (e1, ê2, e3) as follows

m← e3 ·
t̂(aL+1, ê2)
t̂(e1, â0)

= e3 ·
t̂
(
g,
(
û0

∏l
i=1 û

idi
i

))rt
t̂(g, ĥ2) · t̂

(
g,
(
û0

∏l
i=1 û

idi
i

))rt
= m,

assuming his identity is ID = (id1, . . . , idl).

16

D The Boneh-Boyen-Goh HIBE is random identity hiding

Theorem 4. The Boneh-Boyen-Goh HIBE is random identity hiding.

Proof. This is immediate upon noticing that the tuple

(eID, dID) =

(
l∏
i=1

ûidi
i , ĥ2

(
û0 ·

l∏
i=1

ûidi
i

)r
, ûrl+1, . . . , û

r
L, g

r

)

information-theoretically hides the values in the identities contained in ID, assuming at least one identity
in ID is unknown. Since the game for random identity hiding requires the adversary to output a non-trivial
pattern, this latter property holds.

E Instantiation using the BBG HIBE

In this appendix we detail how our generic construction applies to the BBG HIBE. A similar construction
can be given for other HIBE constructions, by following the same basic principles.

The original Boneh-Boyen-Goh HIBE is proved secure in the selective ID setting, this is turned into full
security via replacing the identities with calls to a hash function, which is then modelled as a random oracle.
Hence, to obtain a group signature scheme which is anon-ID-CPA secure we introduce a hash function G
to hash the identities to elements of Zq. We also require a hash function H : {0, 1}∗ → Zq for our proof of
knowledge proof, which we also model as a random oracle.

In addition the following scheme is only secure in the sense of anon-ID-CPA, i.e. Open are not allowed
in the adversary queries. A fully secure version is possible to construct, but we present the simpler version
here for clarity.

In addition we have performed some elementary optimisations on the scheme which results from the
generic construction. These do not affect security, but make use of the properties of the Distill function of
the BBG HIBE. In particular the signature only contains the unknown part of the Distill function, since the
other public part can be reconstructed by the verifier. This not only makes the presentation simpler, it also
simplifies the proof of knowledge.

E.1 The Required Proof of Knowledge:

We present the proof of knowledge and its verification which are required in the Sign and Verify operations.
To aid exposition we set

f̂ = (û0 · ûG(grpID)
1) and g = t̂(h1, ĝ2).

Our proof of knowledge is then given by the underlying Σ protocol for the language

L =
{
ĉ6 = ûx2 · û

y
4 ∧ e1 = gz ∧ ê2 = f̂z ∧ e3 = nx · gz : (x, y, z)

}
,

where all values bar x, y, z are public. The naming of the variables is to aid the reader in seeing how this
proofs fits in with the variables in the ID-based group signature below.

Standard techniques provide the following construction of a non-interactive proof of knowledge, assuming
H is modelled as a random oracle.

17

Prover’s Algorithm: The prover generates k1, k2, k3 ∈ Zq at random and sets

r̂1 ← ûk12 · û
k2
4 , r2 ← gk3 , r̂3 ← f̂k3 , r4 ← nk1 · gk3 .

Then the prover computes

c← H(grpID‖û0‖û1‖û2‖û4‖g‖f̂‖n‖g‖ĉ6‖e1‖ê2‖e3‖r̂1‖r2‖r̂3‖r4).

Finally the prover computes

s1 ← k1 + c · x, s2 ← k2 + c · y and s3 ← k3 + c · z.

The proof of knowledge is then given by (c, s1, s2, s3).

Verifier’s Algorithm: To verify the proof the verifier computes the values

r̂′1 ← ûs12 · û
s2
4 · ĉ

−c
6 , r′2 ← gs3 · e−c1 , r̂′3 ← f̂s3 · ê−c2 , r′4 ← ns1 · gs3 · e−c3 ,

and then checks whether

c = H(grpID‖û0‖û1‖û2‖û4‖g‖f̂‖n‖g‖ĉ6‖e1‖ê2‖e3‖r̂′1‖r′2‖r̂′3‖r′4).

E.2 An ID-based group signature from the BBG HIBE

Setup(1k): The trusted authority chooses random values ĝ2, û0, û1, û2, û3, û4 ∈ Ĝ and a value α ∈ Zq. The
trusted authority then computes h1 ← gα, ĥ2 ← ĝα2 , generates an element n at random from GT , and sets

mpk← (g, ĝ2, h1, û0, û1, û2, û3, û4, n) and msk← ĥ2.

GrpSetUp(grpID,msk): On input of a group identifier string grpID, the trust authority generates a random
value r1 ∈ Zq and sets gsk← (â0, â2, â3, â4, a5), where

â0 ← ĥ2 ·
(
û0 · ûG(grpID)

1

)r1
, â2 ← ûr12 , â3 ← ûr13 , â4 ← ûr14 , a5 ← gr1 .

Extract(userID, gsk): On input of a user identifier string userID the group manager takes its key gsk =
(â0, â2, â3, â4, a5), generates a random value r2 ∈ Zq, and computes the user secret key via usk← (b̂0, b̂3, b̂4, b5)
where

b̂0 ← â0 · âG(userID)
2 ·

(
û0 · ûG(grpID)

1 · ûG(userID)
2

)r2
= ĥ2 ·

(
û0 · ûG(grpID)

1

)r1
· ûr1·G(userID)

2 ·
(
û0 · ûG(grpID)

1 · ûG(userID)
2

)r2
= ĥ2 ·

(
û0 · ûG(grpID)

1 · ûG(userID)
2

)r1+r2
,

b̂3 ← â3 · ûr23 = ûr1+r23 , b̂4 ← â4 · ûr24 = ûr1+r24 , b5 ← a5 · gr2 = gr1+r2 .

18

Sign(m, usk): To sign a message m ∈ Zq using the secret key usk = (b̂0, b̂3, b̂4, b5) the user generates a
random values r3 ∈ Zq, and a random identity r4. The value r3 acts very much like the values r1 and r2 in
the GrpSetUp and the Extract algorithms, whilst the value r4 is used to create a blinding identity, so as to
maintain user anonymity. In addition the signer picks an additional random values k ∈ Zq, so as to encrypt
its identity to the group manager. A signature is given by

σ ← (ĉ0, c5, ĉ6, e1, ê2, e3, Σ)

where

ĉ0 ← b̂0 · b̂m3 · â
G(r4)
4 ·

(
û0 · ûG(grpID)

1 · ûG(userID)
2 · ûm3 · û

G(r4)
4

)r3
= ĥ2 ·

(
û0 · ûG(grpID)

1 · ûG(userID)
2

)r1+r2
· ûm(r1+r2)

3 · ûG(r4)·(r1+r2)
4 ·(

û0 · ûG(grpID)
1 · ûG(userID)

2 · ûm3 · û
G(r4)
4

)r3
= ĥ2 ·

(
û0 · ûG(grpID)

1 · ûG(userID)
2 · ûm3 · û

G(r4)
4

)r1+r2+r3
,

c5 ← b5 · gr3 = gr1+r2+r3 , ĉ6 ← û
G(userID)
2 · ûG(r4)

4 ,

e1 ← gk, ê2 ← (û0 · ûG(grpID)
1)k, e3 ← nG(userID) · t̂(h1, ĝ2)k,

Σ ← POK

(
ĉ6 = ûx2 · û

y
4 ∧ e1 = gz ∧ ê2 =

(
û0 · ûG(grpID)

1

)z
∧

e3 = nx · t̂(h1, ĝ2)z : (G(userID), G(r4), k)

)
.

Note, that the value of t̂(h1, ĝ2) can be precomputed, we shall indeed denote this value by g in what follows.
Thus, signing requires no pairing computations.

Verify(m,σ,mpk, grpID): We verify the signature by essentially encrypting a random message under
the underlying HIBE and then checking whether it decrypts to the correct value. On input of a signature
σ = (ĉ0, c5, ĉ6, e1, ê2, e3, Σ) on a message m, as issued by a member of the group grpID, the verifier generates
the following random values t ∈ Zq,m ∈ GT and computes

d1 ← gt, d̂2 ←
(
û0 · ûG(grpID)

1 · ûm3 · ĉ6
)t
, d3 ← m · t̂(h1, ĝ2)t.

The verifier then checks whether

m = d3 ·
t̂(c5, d̂2)
t̂(d1, ĉ0)

and verifies the POK Σ.

That a valid signature will verify follows from the following set of equations:

t̂(c5, d̂2)
t̂(d1, ĉ0)

=
t̂(gr,

(
û0 · ûG(grpID)

1 · ûm3 · ĉ6
)t

)

t̂
(
gt, ĥ2 ·

(
û0 · ûG(grpID)

1 · ûG(userID)
2 · ûm3 · û

G(r4)
4

)r)
=

t̂(gr,
(
û0 · ûG(grpID)

1 · ûG(userID)
2 · ûm3 · û

G(r4)
4

)t
)

t̂
(
gt, ĥ2 ·

(
û0 · ûG(grpID)

1 · ûG(userID)
2 · ûm3 · û

G(r4)
4

)r)
=

1

t̂(gt, ĥ2)
=

1
t̂(gt, ĝα2)

=
1

t̂(gα, ĝ2)t
=

1
t̂(h1, ĝ2)t

.

where r = r1 + r2 + r3.

19

Open(gsk, σ): On input of a valid signature σ = (ĉ0, c5, ĉ6, e1, ê2, e3, Σ) the group manager computes

t← t̂(e1, â0)
t̂(a5, ê2)

=
t̂(gk, ĥ2 ·

(
û0 · ûG(grpID)

1

)r1
)

t̂(gr1 , (û0 · ûG(grpID)
1)k)

=
t̂(gk, ĥ2) · t̂(gr1 , (û0 · ûG(grpID)

1)k)

t̂(gr1 , (û0 · ûG(grpID)
1)k)

= t̂(gk, ĥ2) = t̂(h1, ĝ2)k.

The Group manager goes through all user identifiers userID issued to the group grpID and checks which one
is satisfies the equation

e3 = nG(userID) · t.

F Proof of Anonymity

To simplify notation we write GS for our construction GS(HIBE, (P,V),H). The proof uses the game hop-
ping technique. We give series of games which involve some adversary A against GS such that the first
game is the same as the one that defines anonymity, the last one is a game which A can only win with
probability 1/2, and the behaviour of the adversary across the game doesn’t changes, unless one of the
assumptions on the primitives used in the construction of GS is insecure. To describe the games, recall how
the challenge signature is computed for the scheme GS in experiment Expanon

GS,A(k). When the adversary out-
puts (grpID∗,userID∗0,userID∗1,m) as his target, the experiment uses the key gsk∗ = dgrpID∗ associated to
grpID∗ and proceeds as follows. It computes the distilled key e ← Distill(mpk, (grpID∗,userID∗b ,m, rID))
for some random basic identity rID, and the associated decryption key d. It then computes enc a ci-
phertext of userIDb under the group identity grpID using some randomness r. It then computes Σ =
FSH
P((userIDb, rID, r), (e, enc, grpID,m)). The signature is (e, d, enc,Σ). We define a sequence of experiments

Expbi for i ∈ {0, 1, 2, 3, 4} which differ in the way in which this challenge signature is computed. Be con-
vention we set experiment Expb0(k) to be Expanon-b

GS,A (k). We also define Advi(k) for Pr
[
Exp1

i (k) = 1
]
−

Pr
[
Exp0

i (k) = 1
]
, s in particular Advanon

GS,A(k) = Adv0(k).

Replacing true proofs with simulated proofs. We first modify experiment Expb0(k) by changing how
the zero knowledge proof in the challenge signature is computed. Specifically, instead of using the prover (and
the Fiat–Shamir transform), we use the simulator S associated to P. Furthermore, in the transformed game
the random oracle is programmed: we maintain the list L of pairs (m,h) that signify that how H(m) = h. Ini-
tially this list is empty. More specifically upon receiving the query (grpID∗,userID∗0,userID∗1,m) the modified
experiment, which we denote by Expb1(k) produces the challenge signature as follows. It calculates e, d and
enc as in experiment Expb0(k). The proof Σ is computed as follows. A challenge c ∈ ChallSpace is selected at
random, the experiment sets x = (e, enc, grpID,m) and computes (r, s) ← S(x, c) to obtain Σ = (r, c, s). If
an element of the form ((r||x||m), h) with h 6= c already occurs in L then the experiment aborts, otherwise
((r||x||m||), c) is added to L. We write Expb1(k) for the resulting experiment. The idea is that if an adversary
behaves differently under experiments Expb0 and Expb1, then the adversary can be used to distinguish between
proofs obtained via the Fiat–Shamir transform and those obtained using the simulator for the proof system
and programming the random oracle. Formally, we construct adversary D which simulates the environment
of A perfectly, but producing the system parameters (mpk,msk) and using these to answer all of adversaries
queries (as in Expanon-b

GS,A (k)), except for the challenge query. When A outputs (grpID∗,userID∗0,userID∗1,m)
adversary D selects a random identity rID and random coins r for the encryption algorithm of the underlying
HIBE. It then flips a bit b and computes e ← Distill(mpk, (grpID∗,userID∗b ,m, rID)), computes the associ-
ated decryption key d using msk, and computes the encryption enc← Encrypt(grpID∗,userID∗b ,R). It then
outputs (e, enc, grpID∗,m), (userIDb, rID, r) to its environment. It obtains in return a proof Σ that indeed
(e, enc, grpID∗,m), (userIDb, rID, r) ∈ R. Then D passes (e, d, enc,Σ) to the adversary and continues the

20

simulation as before. When the adversary A stops and outputs its guess bit d, adversary D outputs 1 if d = b
and 0 otherwise.

Notice that the proof obtained from the environment of D is obtained via the Fiat–Shamir heuristic, if
D is under experiment ExpFS-1(k) and is obtained using the simulator if D is under experiment ExpFS-0(k).
It follows that the environment that D simulates for A is that of Expb0 if the proofs are obtained by the
Fiat–Shamir heuristic and that of Expb0 if the proofs are simulated. Here the bit b is the one selected at
random by D. Formally, we obtain that:

Pr [ExpFS-1
P,D (k) = 1

]
=

1
2
· Pr

[
ExpFS-1

P,D (k) = 1 | b = 1
]

+
1
2
· Pr

[
ExpFS-1

P,D (k) = 1 | b = 0
]

=
1
2
· Pr

[
Exp1

0(k) = 1
]

+
1
2
· Pr

[
Exp0

0(k) = 0
]

=
1
2
· Pr

[
Exp1

0(k) = 1
]

+
1
2
(
1−Exp0

0(k) = 1
)

=
1
2

(1 + Adv0(k))

We also have that

Pr [ExpFS-0
P,D (k) = 1

]
=

1
2
· Pr

[
ExpFS-0

P,D (k) = 1 | b = 1
]

+
1
2
· Pr

[
ExpFS-0

P,D (k) = 1 | b = 0
]

=
1
2
· Pr

[
Exp1

1(k) = 1
]

+
1
2
· Pr

[
Exp0

1(k) = 0
]

=
1
2
· Pr

[
Exp1

1(k) = 1
]

+
1
2
(
1−Exp0

1(k) = 1
)

=
1
2

(1 + Adv1(k))

By subtracting and rearranging terms we have:

Adv0(k) = Adv1(k) + 2 ·AdvFS
P,D(k) (2)

Since we assume that P has high-entropy commitments, the second term on the right hand side of the
above equation is upper bounded by qH

CommitSpace , where CommitSpace is the space of commitments of the
Σ-protocol, and qH is the number of hash oracle queries made during the execution of the experiment Expb0.
We therefore have that:

Adv0(k) = Adv1(k) +
2 · qH

CommitSpace
(3)

Replacing real distilled keys with fake ones. In the next step, we further modify the challenge
signature so that the first part of the signature, i.e. (e, d) is obtained from a completely random identity as
opposed to the identity (grpID∗,userID∗b ,m, rID). More precisely, the signature is computed as follows. The
experiment selects at random an identity ID ← IdSp4 computes e ← Distill(ID), uses msk to obtain the key
d associated to e. Next, it encrypts the identity userID∗b under grpID∗ to produce ciphertext enc. The proof
Σ is computed as before. We write Expb2(k) for the resulting experiment. The idea is that if an adversary
behaves significantly differently between the games Expb1 and Expb2, then we can use that adversary to break
the random recipient hiding property of the underlying HIBE. Indeed, for any adversary A against GS we
construct the following adversary B against the HIBE.

Adversary B receives mpk,msk from the experiment in which it is running and uses msk to set up an
identity based group signature scheme, per our construction. Notice that knowledge of msk allows B to
answer all of the queries that A makes. When A outputs his challenge target (grpID∗,userID∗0,userID∗1,m),

21

adversary B proceeds as follows. It selects a random bit b ∈ {0, 1}, and returns to his environment the
pattern (grpID∗,userID∗b ,m, ?). It receives in return a pair (e, d) such that e is either the key distilled
from (grpID∗,userID∗b ,m, rID) from some random identity, or it is distilled from some completely unrelated
identity ID. It then encrypts the identity userID∗b under grpID∗ to produce enc and computes Σ as before.
This challenge signature is passed to the adversary A. When A returns his answer bit b′ if b = b′ then B
returns 1 as answer, otherwise it returns 0.

Notice that when adversary B is in experiment ExpRIdH−1
HIBE,B (k), the environment that is simulated for A is

that of Expb1 (where b is the bit selected at random by adversary B). Also, when adversary B is in experiment
ExpRIdH−0

HIBE,B (k), then the environment that is simulated for A is that of Expb2 (where b is the bit selected at
random by adversary B). We therefore obtain that:

Pr [ExpRIdH−1
HIBE,B (k) = 1

]
=

1
2
· Pr

[
ExpRIdH−1

HIBE,B (k) = 1 | b = 1
]

+
1
2
· Pr

[
ExpRIdH−1

HIBE,B (k) = 1 | b = 0
]

=
1
2
· Pr

[
Exp1

1(k) = 1
]

+
1
2
· Pr

[
Exp0

1(k) = 0
]

=
1
2
· Pr

[
Exp1

1(k) = 1
]

+
1
2
(
1−Exp0

1(k) = 1
)

=
1
2

(1 + Adv1(k))

We also have that

Pr [ExpRIdH−0
HIBE,B (k) = 1

]
=

1
2
· Pr

[
ExpRIdH−0

HIBE,B (k) = 1 | b = 1
]

+
1
2
· Pr

[
ExpRIdH−0

HIBE,B (k) = 1 | b = 0
]

=
1
2
· Pr

[
Exp1

2(k) = 1
]

+
1
2
· Pr

[
Exp0

1(k) = 0
]

=
1
2
· Pr

[
Exp1

2(k) = 1
]

+
1
2
(
1−Exp0

2(k) = 1
)

=
1
2

(1 + Adv2(k))

By subtracting and rearranging terms we have that:

Adv1(k) = Adv2(k) + 2 ·AdvRIdH
HIBE,B(k) (4)

Preventing queries to the decryption oracle. In the next step, we preclude the adversary to
ask certain open queries. More precisely, let Ask be the event that during the execution of experiment
Expb2(k) the adversary sends a valid opening query of the form (grpID∗,userID∗b , σ

∗), where σ∗ is of the form
(e, d, enc∗, (r, c, s)) with enc∗ the encryption contained in the challenge signature received by A. (Clearly,
the probability of Ask does not depend on b). Intuitively, since the proof system used for producing the
proofs of consistency is sound, if the adversary is able to produce a proof, then the adversary should know
a corresponding witness. However, a witness contains the identity encrypted in enc∗, which means that the
adversary was able to break the ciphertext enc∗ that it received as challenge. Let Expb3 be the same as
experiment Expb2, except that when event Ask occurs, the experiment aborts. If we write Ask for the event

22

complementary to Ask, we have:

Adv2(k) =
= Pr

[
Exp1

2(k) = 1
]
− Pr

[
Exp0

2(k) = 1
]

=
(
Pr[Ask] · Pr

[
Exp1

2(k) = 1 | Ask
]

+ Pr[Ask] · Pr
[
Exp1

2(k) = 1 | Ask
])
−(

Pr[Ask] · Pr
[
Exp0

2(k) = 1 | Ask
]

+ Pr[Ask] · Pr
[
Exp0

2(k) = 1 | Ask
])

= Pr[Ask] ·
(
Pr
[
Exp1

2(k) = 1 | Ask
]
− Pr

[
Exp0

2(k) = 1 | Ask
])

+

Pr[Ask] ·
(
Pr
[
Exp1

2(k) = 1 | Ask
]
− Pr

[
Exp0

2(k) = 1 | Ask
])

Using standard bounds we therefore have:

Adv2(k) ≤ Pr[Ask] + Adv3(k) (5)

We next bound the probability that event Ask occurs.
The idea here is that if Ask occurs, then the proof that is contained by the signature shows knowledge of

the identity userIDb encrypted in enc, and therefore the adversary breaks the security of the HIBE scheme
that underlies our construction.

The above idea sits behind the following adversary C. The adversary is intended for experiment Exp
IND-ID-CCA-b
HIBE,C (k).

Here, we write Exp
IND-ID-CCA-b
HIBE,C (k) for a variant of the experiment in Definition 1. In this variant, the ad-

versary outputs (ID∗,m∗0,m∗1) (i.e. two identities, as opposed to a single one). The experiment returns an
encryption enc← Encrypt(ID∗,m∗b) of m∗b . The rest of the experiment remains the same.

Adversary C receives as input the public key mpk of a 4-level instance of HIBE, has access to an Extract
oracle keyed with the key msk and to a decryption oracle Decrypt, keyed with the same key. Adversary C
uses his capabilities to setup a simulation of the experiment Exp2. Clearly, C can answer the queries that A
makes to his GrpSetUp, Join and Sign using his access to the Extract oracle. Furthermore, it can answer Open
queries using his decryption oracle to decrypt the ciphertext part of signatures. At some point, adversary A
outputs (grpID∗,userID∗0,userID∗1,m) as his challenge. At this point, adversary C flips a bit d, and outputs
(grpID∗,userID∗0,userID∗1) as his own challenge. Adversary C then constructs a signature by producing e←
Distill(ID) and computing the associated d by querying e to the Extract oracle. Next, it computes a proof
Σ = (r, c, s) as in Exp2 (i.e. using the programmable random oracle). It returns (e, d, enc,Σ) to adversary
A. It then continues the simulation as before until event Ask occurs. If the simulation finishes and event Ask
did not occur, then C outputs a randomly selected bit. If event Ask occurs, then adversary makes a query
(grpID∗,m, (e′, d′, enc,Σ′ = (r′, c′, s′))) to its decryption oracle. Notice that if this query is indeed valid,
then it must be the case that A had previously made a query of the form (r′||(e′, enc, grpID,m)||m) to his
random oracle and obtained as answer c′. Adversary C then rewinds the execution of A up to the moment
A makes this particular query, and answers with c′′ ← ChallSpace. The execution then continues until event
Ask occurs again. If Ask does not occur, then C outputs a randomly chosen bit. By a standard argument
(See for example [4]) Ask occurs again for precisely the same query to the random oracle and c′ 6= c′′, with
probability at least

Pr[Ask]
qH

− 1
ChallSpace

.

In this case, adversary C will have to convincing transcripts (r′, c′, s′) and (r′, c′′, s′′) for the statement that
(e′, enc, grpID,m) ∈ LR. Adversary C then computes a witness (userID, rID, r)← E((r′, c′, s′), (r′, c′′, s′′)). If
userID = userIDd then C returns d.

To analyse the success of adversary C, notice that for each experiment where Exp
IND-ID-CCA-d
HIBE,C (k) = 1 we

have three situations. 1) Event Ask does not occur in the execution of A, in which case C outputs bit d with
probability 1

2 · Pr
[
Ask
]
. 2) Event Ask occurs, but the rewinding is not successful in which case C outputs

bit d with probability at least 1
2Pr [Ask]

(
1−

(
Pr[Ask]
qH

− 1
ChallSpace

))
. 3) Finally, event Ask occurs, and the

rewinding is successful in which case C outputs bit d with probability Pr [Ask] ·
(

Pr[Ask]
qH

− 1
ChallSpace

)
.

23

If we let x = Pr [Ask] we have:

AdvIND-ID-CCA
HIBE,C (k) = Pr

[
Exp

IND-ID-CCA-1
HIBE,C (k) = 1

]
+ Pr

[
Exp

IND-ID-CCA-0
HIBE,C (k) = 0

]
− 1

≥ (1− x) + x ·
(

1− x

qH
+

1
ChallSpace

)
+ 2 · x ·

(
x

qH
− 1

ChallSpace

)
− 1

=
x2

qH
− x

ChallSpace

We can then upper bound Pr [Ask] = x by:

Pr [Ask] ≤ qH
2 · ChallSpace

+

√
q2H

4 · ChallSpace2 + qH ·AdvIND-ID-CCA
HIBE,C (k)

From the above and Equation 5 we have that:

Adv2(k) ≤ qH
2 · ChallSpace

+

√
q2H

4 · ChallSpace2 + qH ·AdvIND-ID-CCA
HIBE,C (k) + Adv3(k) (6)

Eliminating the identity of the signer out of the encryption. The final transformation that we
perform is to create the ciphertext that is part of the signature by encrypting the same random identity
that had been used to obtain the distilled key e part of the output signature. The behaviour of the new
experiment Expb4 is identical to that of Expb3, with the following modification. When adversary outputs
challenge (grpID∗,userID∗0,userID∗1,m), the challenge signature is created as in experiment Expb3, except
that enc is computed by enc ← Encrypt(grpID∗, 0|userID∗b |, r) The idea here is that if an adversary would
see a difference between Expb3 and Expb4, that adversary has somehow obtained information about the
identity encrypted in enc. We formalise this idea using an adversary D against the IND-ID-CCA security
of the underlying HIBE. Adversary D receives as input the public key of the HIBE mpk, has access to an
extraction oracle keyed with the associated msk, and to a decryption oracle. Adversary D uses access to msk
to set-up an ID-based group signature scheme for which (mpk,msk) are the master public and secret keys.
Clearly, these keys are sufficient to simulated perfectly the GrpSetUp, Join, and Sign queries that adversary
A makes. To answer the queries that A makes to the Open oracle, adversary D, after verifying the validity of
the zero-knowledge proof, uses its decryption oracle to decrypt the ciphertext contained in the signature and
recover the identity of the signer. The only query to the opening oracle that is treated differently is one of
the form (grpID∗, (e, d, enc∗, Σ) which causes adversary D to fail. It only needs to be checked that adversary
D defined as above is a valid IND-ID-CCA adversary, that is that 1) D does not submit grpID∗ to its Extract
oracle, and that 2) it does not submit the ciphertext enc∗ to its decryption oracle. During its simulation D
only needs to submit grpID∗ to the extraction oracle only when A requests to setup group grpID∗. Since
such a request would render A invalid we conclude that this query does not occur. To see why the second
condition is satisfied by D notice that the only case when D needs to submit enc to its decryption oracle
would be when A makes a valid query of the form (grpID∗, (e, d, enc,Σ)) to his opening oracle. However, in
this case algorithm D fails, just as do both experiments Expb3 and Expb4. We conclude that:

Pr
[
ExpIND-ID-CCA-1

HIBE,D (k)
]

=
1
2
· Pr

[
Exp1

3(k) = 1
]

+
1
2
· Pr

[
Exp0

3(k) = 0
]

=
1
2

(1 + Adv3(k))

24

and that

Pr
[
ExpIND-ID-CCA-0

HIBE,D (k)
]

=
1
2
· Pr

[
Exp1

4(k) = 1
]

+
1
2
· Pr

[
Exp0

3(k) = 0
]

=
1
2

(1 + Adv4(k))

By subtracting and rearranging terms we get:

Adv3(k) = Adv4(k) + 2 ·AdvIND-ID-CCA
HIBE,D (k) (7)

Putting it all together. Clearly, the answer that the adversary A receives in Expb4 is independent of
the bit b, and therefore Adv4(k) ≤ 1

2 . Together with Equations (3),(4), and (6) we have that:

Advanon
GS,A(k) ≤1

2
+

2 · qH
CommitSpace

+ 2 ·AdvRIdH
HIBE,B(k)+√

q2H
4 · ChallSpace2 + qH ·AdvIND-ID-CCA

HIBE,C (k) + 2 ·AdvIND-ID-CCA
HIBE,D (k)

25

