
Automorphic Signatures in Bilinear Groups

Georg Fuchsbauer

École normale supérieure, LIENS - CNRS - INRIA, Paris, France
http://www.di.ens.fr/∼fuchsbau

Abstract. We introduce the notion of automorphic signatures in bilinear groups, which satisfy
the following properties: the verification keys lie in the message space, messages and signatures
consist of group elements only, and verification is done by evaluating a set of pairing-product equa-
tions. These signatures make a perfect counterpart to the powerful proof system by Groth and Sahai
(Eurocrypt 2008). We provide practical instantiations of automorphic signatures under appropri-
ate assumptions and use them to construct an efficient round-optimal blind signature. Combining
them with Groth-Sahai proofs, we give practical instantiations of several cryptographic primitives,
such as fully-secure group signatures, non-interactive anonymous credentials and anonymous proxy
signatures.

1 Introduction

One of the main goals of modern cryptography is anonymity. A classical primitive ensuring user anonymity is
group signatures [Cv91]: they allow members that were enrolled by a group manager to sign on behalf of a
group while not revealing their identity. Another example is anonymous credentials [Cha85], by which a user can
prove that she holds a certain credential, and at the same time remain anonymous. Blind signatures [Cha83] were
introduced for electronic cash to prevent linking of a coin to its spender; and there are numerous other primitives
ensuring user privacy.

Security of such primitives is addressed by defining a security model, which is typically first proved to be
satisfiable in theory under general assumptions. Let us consider the example of dynamic group signatures by
Bellare et al. [BSZ05]. To show feasibility of their model, they give the following generic construction: Assume
the existence of a signature scheme, an encryption scheme and general zero-knowledge proofs. The group manager
publishes a signature verification key and uses the corresponding signing key to issue certificates on the group
members’ personal verification keys. The latter produce a group signature on a message by first signing it with
their personal signing key, and then encrypting the user’s certificate, her verification key, and the signature on the
message. The group signature consists of these ciphertexts completed by a zero-knowledge (ZK) proof that the
certificate and the signature in the plaintext are valid. The fact that a signature is a ciphertext and that the ZK proof
leaks no information guarantees user anonymity.

For a long time the most efficient way to instantiate such primitives was to rely on the random-oracle heuris-
tic [BR93]. Due to a series of criticisms starting with [CGH98], more and more practical schemes are being
proposed in the standard model. In particular, groups with a bilinear map (pairing) turned out to be an attractive
tool to achieve efficiency. Many of the practical instantiations use ad hoc constructions, since the generic ones—in
particular zero-knowledge proofs—are by far too inefficient.

The Groth-Sahai proof system. Recently, Groth and Sahai [GS08] proposed efficient zero-knowledge proofs
for a large class of statements over bilinear groups, which already found use in many implementations [CGS07,
Gro07, GL07, BCKL08, CCS09, BCC+09]. They start by constructing witness indistinguishable (WI) proofs
of satisfiability of various types of equations. Given a witness for satisfiability, one makes commitments to its
values and then constructs proofs asserting that the committed values satisfy the equations. As already observed
by [Gro06], the most interesting and widely used type is the following: pairing-product equations (PPE) whose



variables are elements of the bilinear group (cf. Sect. 2.2). A PPE equation consists of products of pairings applied
to the variables and constants from the group. Since the employed commitments to the witnesses are extractable,
the resulting proofs actually constitute proofs of knowledge as well.

To efficiently realize the BSZ-model of group signatures, Groth [Gro07] instantiates encryption and the proofs
of plaintext validity with the Groth-Sahai WI proof system.1 The extractability of the used commitments serves two
purposes: first, it lets the opener extract the user’s verification key and thereby trace the signer (the commitments
are thus used as encryptions that can be decrypted with the extraction key); second, it enables the unforgeability of
group signatures to be directly reducible to the unforgeability of the underlying signatures.

For the Groth-Sahai methodology to be applicable, Groth gives certification and signing schemes such that
certificates, signature verification keys and signatures (i.e., the components that need to be hidden) are group
elements whose validity is verified by evaluating PPEs.

Signatures and the Groth-Sahai Proof System. The first practical schemes which used Groth-Sahai-like proofs
were the group signatures by Boyen and Waters [BW06, BW07], who independently developed their purpose-built
proofs. They require weakly secure2 signatures whose components and messages can be encrypted (committed to)
and proved to be valid. To sign messages from the bilinear group, they modify the weak Boneh-Boyen signatures
[BB04], which consist of one group element, and whose messages are scalars: instead of giving the scalar di-
rectly, they give it as an exponentiation of two different group generators. The security of their construction holds
under the hidden strong Diffie-Hellman assumption (HSDH) a variant of the strong Diffie-Hellman assumption
(SDH) [BB04].

Belenkiy et al. [BCKL08] apply the Boneh-Boyen [BB04] transformation “from weak to strong security” to the
Boyen-Waters signature scheme. This way they obtain fully secure signatures, at the price of introducing a stronger
assumption called “triple Diffie-Hellman” (TDH). Their signatures consist of group elements, yet the messages are
scalars. To construct anonymous credentials, they make commitments to a message and a signature on it and prove
that their content is valid using Groth-Sahai proofs. Since from these commitments only group elements can be
extracted efficiently (and one would have to compute discrete logarithms to recover the scalar message), they are
obliged to define f -extractability, meaning that only a function of the committed value can be extracted. This
entails stronger security notions (“F -unforgeability”) for the signature scheme in order to prove security of their
construction.

In the abovementioned group signatures from [Gro07], this drawback is avoided by designing the key-certi-
fication scheme so that all committed values are group elements. The key certification is thus different from
the signature scheme whose keys are certified. Moreover, the certificate-verification key is an element of the
target group. As opposed to standard group signatures, in hierarchical group signatures [TW05] or anonymous
proxy signatures [FP08], verification keys are not only certified once, but must also serve to certify other keys—
it is therefore required that the message space contain the verification keys. If we want to apply the Groth-Sahai
methodology to “anonymize” such schemes and prove unforgeability by reducing it to the security of the underlying
signatures, everything has to be in the group.

We identify the all-purpose building block to efficiently instantiate more intricate primitives as the following: a
practical signature scheme secure against adaptive chosen-message attacks that can sign its own verification keys;
and which at the same time respects the pairing-product paradigm, that is, keys, messages and signatures consist of
group elements and the signature verification relations are PPEs. We call such a scheme an automorphic signature,
since it is able to sign its own keys and verification preserves the structure of keys and messages, which makes it
perfectly suitable to be combined with Groth-Sahai proofs.

We believe that working with group elements enables a modular approach of combining signatures with Groth-
Sahai proofs, and automorphic signatures are the building block tailored to do so. As demonstrated in Sect. 7, they
yield straightforward efficient implementations of generic constructions, by simply plugging in concrete schemes
for generic ones.

1To achieve anonymity against adversaries with opening oracles as required by the BSZ-model, some extra encryption has to be added;
see the discussion in Sect. 7.1.

2We call a signature scheme weakly secure if an adversary getting signatures on random messages cannot produce a new signed message.

2



Our Contribution

After formally defining automorphic signatures, we give two practical instantiations over bilinear groups (Sect. 4).
We note that a scheme in [Gro06] based on the decision linear assumption [BBS04] satisfies all the properties, but
should rather be regarded as a proof of concept due to its inefficiency (a signature consists of hundreds of thousands
of group elements). We give practical-level efficiency under reasonable assumptions.

Recently, Fuchsbauer, Pointcheval and Vergnaud [FPV09] introduced a variant of HSDH, called double hidden
SDH (DHSDH). We observe that—unlike HSDH—their assumption immediately yields weakly secure signatures
on messages consisting of group elements and verifiable by PPEs. We make their scheme secure against chosen-
message attacks by adding some randomness analogously to the transformation of [BB04]. The security of the
resulting scheme requires an additional assumption, which can be considered quite mild though (cf. Assumption 3):
it is a non-parametrized non-interactive falsifiable assumption in the flavor of CDH, whose validity in the generic
group model [Sho97] is immediate. Our second instantiation improves the efficiency and is secure under another
variant of HSDH, called DAHSDH (“double asymmetrically hidden”; cf. Assumption 2), which we also prove
secure in the generic group model. Its signatures consist of 5 group elements only.

In Sect. 5, we use our automorphic signature scheme to give the first efficient instantiation of round-optimal
blind signatures in the common-reference-string model [Fis06]. Blind signatures allow a user to obtain a signature
on a message such that the signer cannot relate the message/signature pair the user obtains to the execution of the
signing protocol. A scheme is round-optimal, if the signing protocol consists of one message from the user to the
signer and one response by the signer. Besides being round-optimal, our blind signature scheme is efficient (the
message by the user consists of 22 group elements, that of the signer of 5); moreover, the scheme is automorphic
itself, which makes it especially suitable for our applications.

In Sect. 7, we give illustrative applications of automorphic signatures and blind signatures: we build CCA-
secure group signatures and revisit the construction of non-interactive credentials of [BCKL08]; in particular, we
achieve actual message extractability and give a more efficient credential issuing protocol. We then present the first
efficient instantiation of anonymous proxy signatures (APS) without random oracles. While the other primitives
are realizable without automorphic signatures, no other efficient construction of APS is known.

Proxy signatures, which allow the delegation of signing rights, were introduced by [MUO96] and later formal-
ized by [BPW03, SMP08]. Anonymous proxy signatures [FP08] unify group signatures and (multi-level) proxy
signatures by requiring that the proxy signer and intermediate delegators remain anonymous. They enable users
(“original signers”) to delegate others to sign on their behalf; the latter can either sign or re-delegate to other users.
Anonymity ensures that from a proxy signature one cannot tell who signed and who re-delegated; however, they
guarantee that the proxy signer was delegated by the original signer. As for group signatures, an algorithm to
revoke anonymity to deter from misuse is also provided. Due to consecutiveness of delegation, this primitive also
models hierarchical group signatures satisfying a security model generalizing the one of [BSZ05].

In our instantiation, we use automorphic signatures to construct certification chains of which one can prove
knowledge using Groth-Sahai proofs. Witness indistinguishability of these proofs ensures user anonymity. We note
that the delegation protocol of our instantiation is non-interactive. In Sect. 7.4, we define the following additional
functionalities for APS in order to incorporate delegatable anonymous credentials [BCC+09] (see below):

• When re-delegating signing rights, the previous delegators remain anonymous even to the delegatee.
• We give a protocol for blind delegation: a user can be delegated to without revealing her identity.
• Finally we show how to sign messages on behalf of several users simultaneously.

We then give an efficient instantiation of the extended model, which illustrates the benefits of automorphic sig-
natures: combined with the Groth-Sahai proof system, they enable straightforward practical realization of generic
concepts. Note that it is precisely the lack of an efficient automorphic signature that accounts for the necessity of
a strong assumption for the first instantiation of APS in [FP09], as well as for its impracticality.

APS vs. DAC. Delegatable anonymous credentials (DAC) were recently defined by Belenkiy et al. [BCC+09].
Although they are not comparable to our extended model of APS, there are substantial similarities between them:
both provide mechanisms enabling users to prove possession of certain rights while remaining anonymous; and
both consider re-delegation of the received rights.

3



The core protocol of DAC allows a user to obtain a proof of knowledge of a signature on her secret key, without
revealing the identity of neither the signer nor the user. This imposes interactivity of the delegation process, while
(non-blind) delegations for APS are non-interactive, even when previous delegators remain anonymous. (We show
how to achieve delegatee anonymity at the expense of non-interactivity). Further differences are that DAC merely
deal with authentication rather than signatures, and they do not provide tracing mechanisms.

2 Preliminaries

2.1 Primitives

We recall some standard concepts from the literature.

Commitments. A non-interactive commitment scheme is composed of an algorithm SetupCom, outputting a com-
mitment key ck, and an algorithm Com with arguments ck, a message M and randomness ρ. We require that (1) the
scheme is perfectly binding, i.e., for a commitment c there exists only one M s.t.: c = Com(ck,M, ρ) for some ρ;
(2) the scheme is computationally hiding, in particular, there exists SmSetupCom outputting keys that are compu-
tationally indistinguishable from those output by SetupCom, and which generate perfectly hiding commitments.

A commitment scheme is extractable if there exists an algorithm ExSetupCom outputting (ck, ek), where ck is
distributed as the output of SetupCom, and an algorithm ExtrCom that on input the extraction key ek and a commit-
ment extracts the committed value from it.

Digital Signatures. A digital signature scheme consists of the following algorithms: SetupSig outputs public
parameters pp. KeyGenSig outputs a pair (vk, sk) of verification and signing key. Sign(sk,M) outputs a signature
σ, which is verified by VerifySig(vk,M, σ). Signatures are existentially unforgeable under chosen-message attack
(EUF-CMA) [GMR88] if no adversary, given vk and a signing oracle for messages of its choice, can output a pair
(M,σ) s.t. M was never queried and Verify(vk,M, σ) = 1.

Blind Signatures. Blind signatures [Cha83, PS00] extend digital signatures by an interactive protocol Issue↔
Obtain between the signer and a user allowing the latter to obtain a signature on a message hidden from the signer.
Okamoto [Oka06] defines the following security requisites: Blindness: An adversary impersonating the signer
interacting with Obtain twice for messages of its choice cannot relate the resulting signatures to their issuings.
Unforgeability: No adversary interacting q−1 times with Issue can output q different messages and valid signatures
on them.

Bilinear Groups. A (symmetric) bilinear group is a tuple BG = (p,G,GT , e,G) where G and GT are two cyclic
groups of prime order p, G is a generator of G, and e : G×G→ GT is an efficiently computable non-degenerate
bilinear map, i.e., ∀X,Y ∈ G ∀ a, b ∈ Z : e(Xa, Y b) = e(X,Y )ab, and e(G,G) generates GT . We will denote
group elements by capital letters and integers by lower-case letters.

The Decision Linear (DLIN) Assumption, introduced in [BBS04], in a bilinear group (p,G,GT , e,G) states
that given (Gα, Gβ, Grα, Gsβ, Gt) for random α, β, r, s ∈ Zp, it is hard to decide whether t = r+s or t is random.

Throughout the paper, we will assume two fixed generators G,H of G. We call a pair (A,B) ∈ G2 a Diffie-
Hellman pair (w.r.t. (G,H)), if there exists a ∈ Zp such that A = Ga and B = Ha. Using the bilinear map e,
such pairs are efficiently decidable by checking e(A,H) = e(G,B). We let DH denote the set of DH pairs and
implicitly assume them to be w.r.t. G and H .

2.2 Groth-Sahai Proofs for Pairing-Product Equations

We start with presenting perfectly binding extractable commitments, which are computationally hiding under the
decision linear assumption, and then give an overview of Groth-Sahai proofs introduced in [GS08].

Linear Commitments. Let BG = (p,G,GT , e,G) be a bilinear group. Setup(BG) is defined as follows: choose
α, β, r1, r2 ← Zp and output ck = (u1,u2,u3) with

u1 :=
(
Gα, 1, G

)
u2 :=

(
1, Gβ, G

)
u3 :=

(
Gr1α, Gr2β, Gr1+r2

)
4



ExSetup additionally outputs the extraction key ek := (α, β). A commitment to a group element X ∈ G using
randomness ρ = (ρ1, ρ2, ρ3)← Z 3

p is defined as Com
(
ck, X, ρ

)
:=
(∏

uρi
i,1,
∏

uρi
i,2, X ·

∏
uρi
i,3

)
.

Extraction is done by computing Extr((α, β), (c1, c2, c3)) := c3 · c−1/α
1 · c−1/β

2 = X . SmSetup replaces u3,3

in ck with Gr1+r2−1 (which is indistinguishable by DLIN) resulting in perfectly hiding commitments.

Groth-Sahai WI Proofs. We will use Groth-Sahai witness-indistinguishable (WI) proofs of satisfiability of
pairing-product equations. A pairing-product equation (PPE) over variables Y1, . . . ,Yn ∈ G is an equation
of the form

n∏
i=1

e(Ai,Yi)
n∏
i=1

n∏
j=1

e(Yi,Yj)γi,j = tT , (E)

determined by Ai ∈ G, γi,j ∈ Zp and tT ∈ GT , for 1 ≤ i, j ≤ n.
We present the instantiation of the proof system based on the scheme (Setup,Com,ExSetup,Extr, SmSetup)

introduced above. The proof system for a bilinear group BG = (p,G,GT , e,G) is set up by running Setup(BG)
which produces a perfectly-binding linear commitment key ck ∈ G5. Given an assignment Yi ← Xi, for
Xi ∈ G, satisfying E, one first commits to the values Xi by choosing randomness ρi ← Z 3

p and setting cXi :=
Com(ck, Xi, ρi) for all i. Running ProveGS(ck, E, (Xi, ρi)ni=1) generates a proof3 φ ∈ G3×3 which asserts that
the values committed in cXi satisfy E. A proof φ for equation E and commitments (cXi)

n
i=1 under ck is verified

by VerifyGS(ck, E, (cXi)
n
i=1, φ). An honestly computed proof on commitments to values satisfying E is always

accepted by VerifyGS.

Security. Soundness. Given commitments (cXi)
n
i=1 s.t. VerifyGS(ck, E, (cXi)

n
i=1, φ) = 1 for some φ and the

extraction key ek output by ExSetup, algorithm Extr applied to cXi for all i yields a vector (Xi)ni=1 satisfying E.

Witness Indistinguishability (WI). If the commitment key is replaced by ck∗ output by SmSetup (which is
indistinguishable under DLIN), then a commitment c := Com(ck∗, X, ρ) is perfectly hiding, i.e., given c then for
any X there exists randomness ρ s.t. c = Com(ck∗, X, ρ). Moreover, given values ((X1, ρ1), . . . , (Xn, ρn)) and
((X ′1, ρ

′
1), . . . , (X ′n, ρ

′
n)) such that for all i it holds that Com(ck, Xi, ρi) = Com(ck, X ′i, ρ

′
i), and (X1, . . . , Xn)

and (X ′1, . . . , X
′
n) both satisfy E, then ProveGS(ck∗, E, (Xi, ρi)ni=1) and ProveGS(ck∗, E, (X ′i, ρ

′
i)
n
i=1) generate

the same distribution of proofs.

Examples. (1) Proof of Two Commitments Containing the Same Value. Let Eequal(X1, X2) denote the equa-
tion e(G,X1) e(G−1, X2) = 1. Given two commitments cM = Com(ck,M, ρ) and cN = Com(ck, N, σ),
Prove(ck, Eequal, (M,ρ), (N, σ)) proves that cM and cN commit to the same value.

(2) Proof of Commitments to aDH-Pair. DefineEDH(X,Y ) as e(H,X) e(G−1, Y ) = 1. A proof for Equation
EDH yields a 3-element proof showing that the values in two commitments are in DH.

Zero-Knowledge Proofs. Groth and Sahai also define algorithms ZKProveGS and ZKVerifyGS (and further ones
to simulate) to construct non-interactive zero-knowledge (NIZK) proofs for equations E whose right-hand side tT
is of the form e(T1, T2) for public T1, T2 ∈ G (which is the case for all our equations).

Randomizing Groth-Sahai Proofs. As observed by [FP09] and [BCC+09] and formalized by the latter, Groth-
Sahai WI proofs can be randomized. There exists an algorithm RdComGS that on input ck, a commitment c and
fresh randomness ρ outputs a randomization of c under ρ. Moreover, a proof φ for an equationE and commitments
(c1, . . . , cn) can be adapted to the randomizations c′i = RdComGS(ck, ci, ρi) (without knowledge of the original
randomness): running RdProofGS(ck, E, (ci, ρi)ni=1, φ) computes φ′ such that VerifyGS(ck, E, (c′i)

n
i=1, φ

′) = 1.
(Basically, if ci = ComGS(ck, Xi, σi) then c′i = ComGS(ck, Xi, σi + ρi) and φ′ is distributed as proofs output by
ProveGS(ck, E, (Xi, σi + ρi)ni=1); see [FPV09, Sect. 5] for a concise overview.)

3 For general PPEs, the proof is in G3×3. If E is a linear equation (i.e., γi,j = 0 for all i, j), then the proof reduces to 3 group elements.
Note that in this context the word proof can either denominate “proof of satisfiability” (or language-membership)—which thus includes the
commitments—or mean a proof that the content of some given commitments satisfies a given equation. We adopt the latter diction.

5



3 Assumptions

We first restate the assumption from [FPV09] and then introduce two new ones.

Assumption 1 (q-DHSDH). Given (G,H,K,X=Gx) ∈ G4 and q − 1 tuples(
Ai = (K ·Gvi)

1
x+ci , Ci = Gci , Di = Hci , Vi = Gvi , Wi = Hvi

)q−1

i=1
, for ci, vi ← Zp,

it is hard to output a new tuple (A∗, C∗, D∗, V ∗,W ∗) that satisfies

e(A∗, X ·C∗) = e(K ·V ∗, G) e(C∗, H) = e(G,D∗) e(V ∗, H) = e(G,W ∗) (1)

Argument. As pointed out by its inventors, under the Knowledge-of-Exponent Assumption (KEA) [Dam92, BP04],
hardness of q-DHSDH follows from hardness of the following problem:

q-SDH-III: Given
(
G,K,X = Gx, (Ai = (K ·Gvi)

1
x+ci , ci, vi)

q−1
i=1

)
, produce a new tuple (A∗, c∗, v∗) satisfying

e(A∗, X ·Gc∗) = e(K ·Gv∗ , G).

(KEA asserts that given (G,H), from an adversary returning (Gc
∗
, Hc∗) and (Gv

∗
, Hv∗) one can extract c∗ and

v∗.) They then show that hardness of q-SDH-III is implied by hardness of q-SDH [BB04], a well-established
assumption by now. DHSDH is thus comparable to HSDH4 [BW07] which is also KEA-equivalent to a problem
whose hardness is implied by SDH.

We introduce a variant of DHSDH that enables a more efficient instantiation of automorphic signatures. An
instance now contains an additional generator F , and the elementsCi = Gci are doubled byDi = F ci . This makes
it possible to include an additional element Y = Hx in the instance (if it is given together with Hci , we arrive at
an easy problem; cf. Appendix A.1).

Assumption 2 (q-DAHSDH). Given (G,F,H,K,X=Gx, Y =Hx) ∈ G6 and q − 1 tuples(
Ai = (K ·Gvi)

1
x+ci , Ci = Gci , Di = F ci , Vi = Gvi , Wi = Hvi

)q−1

i=1
, for ci, vi ← Zp,

it is hard to output a new tuple (A∗, C∗, D∗, V ∗,W ∗) that satisfies

e(A∗, X ·C∗) = e(K ·V ∗, G) e(C∗, F ) = e(G,D∗) e(V ∗, H) = e(G,W ∗) (2)

Argument. Due to the fact that we give Y = Hx, the KEA-reduction to SDH does not apply here (given G,H,X
we would have to solve CDH to compute Y for the reduction). Instead, we directly prove that the assumption holds
in the generic group model [Sho97] in Appendix A.2.

The next assumption, called HDL (“hidden discrete log”), states that given 3 generators G,H, T , it is hard to
output a non-trivial tuple (Gm, Hm, Gr, Hr) such that T r = Gm.

Assumption 3 (HDL). Given random generators G,H, T ∈ G, it is hard to output a tuple (M,N,R, S) 6=
(1, 1, 1, 1) ∈ G4 such that

e(R, T ) = e(M,G) e(M,H) = e(G,N) e(R,H) = e(G,S) (3)

Argument. Under KEA, Assumption 3 is equivalent to the discrete-logarithm (DL) assumption, thus a fortiori it
holds in the generic group model. Let (G,T ) be a DL instance, i.e., we have to compute t := logG T . Let H
be the group element for KEA. Give the adversary (G,H, T ). From a successful output, by KEA, we can extract
m := logGM = logH N and r := logGR = logH S. From (3), we have rt = m, and r 6= 0 (otherwise all output
elements must be 0), and therefore t = m

r .

4The q-HSDH assumption states that given G,H,Gx and q − 1 triples (G
1

x+ci , Gci , Hci) for random ci ∈ Zp, it is hard to produce a
new triple (G

1
x+c∗ , Gc∗ , Hc∗) with c∗ 6= ci for all i.

6



4 Automorphic Signatures

Definition 1. An automorphic signature over a bilinear group (p,G,GT , e,G) is an EUF-CMA secure signature
whose verification keys are contained in the message space. Moreover, the messages and signatures consist of
elements of G and verification amounts to evaluating pairing-product equations over the verification key, the
message and the signature.

DHSDH immediately yields a weakly secure signature scheme if we consider X as the public key, (V,W ) as
a message in DH and (A,C,D) as the signature.5 We show how to transform this into a CMA-secure signature
scheme by assuming HDL. We introduce some additional randomness that lets us map a query for a message
chosen by the adversary to a given tuple (Ai, Ci, Di, Vi,Wi) from a DHSDH instance. HDL then basically asserts
that the adversary cannot produce a signed new message

(
(A∗, C∗, D∗, R∗, S∗), (M∗, N∗)

)
that maps back to a

tuple from the instance (see the proof of Theorem 2).

Scheme 1 (SigFPV). Given a bilinear group, SetupFPV chooses parameters (G,H,K, T ) ← G4, which define
the message space as DH := {(Gm, Hm) |m ∈ Zp}, KeyGenFPV chooses a secret key x ← Zp and sets vk =
X := Gx. A message (M,N) ∈ DH is signed by SignFPV(x, (M,N)) which chooses c, r ← Zp and outputs(
A := (K ·T r ·M)

1
x+c , C := Gc, D := Hc, R := Gr, S := Hr

)
for random c, r ∈ Zp. VerifyFPV accepts a

signature on a message (M,N) ∈ DH if it satisfies
e(A,X ·C) = e(K ·M,G) e(T,R) e(C,H) = e(G,D) e(R,H) = e(G,S) .

Theorem 1. Under q-DHSDH and HDL, SigFPV is existentially unforgeable against adversaries making at most
q − 1 adaptive chosen-message queries.

(We omit the proof as Theorem 2 is proved almost identically.) The fact that the verification keys are not in the
message space is the only reason the scheme is not automorphic. However, the following hybrid scheme Sig2FPV
with parameters (G,H,L,K, T ) satisfies this condition:

We define a two-level scheme, using two instances of SigFPV. The first signs pairs (Gm, Hm), whereas the
messages for the second are of the form (Gm, Lm) (i.e., it uses a different parameter L instead of H). The
public keys of Sig2FPV are formed as (Gx, Lx)—and are thus messages of the second scheme—and signing a
message (Gm, Lm) is defined as follows: choose v ← Zp and first make a SigFPV-signature on the one-time key
(V := Gv,W := Hv). Now use v to produce a signature on (Gm, Lm) w.r.t. parameters (G,L,K, T ). A Sig2FPV-
signature is the concatenation of the first parameter-H signature, the pair (V,W ) and the parameter-L signature on
the message under key (V,W ).

Security of the construction follows from a simple hybrid argument: forgeries using a new one-time key are
reduced to forgeries for the 1st-level scheme, whereas forgeries recycling a key from a signing query are reduced
security of the 2nd-level scheme. A signature consists of 12 group elements satisfying 7 PPEs.

If we assume DAHSDH instead of DHSDH, we get the following more efficient construction, whose signatures
consist of 5 group elements only.

Scheme 2 (SigA). SetupA. Given (p,G,GT , e,G), choose additional generators F,H,K, T ∈ G.
KeyGenA. Choose sk = x← Zp and set vk = (Gx, Hx).

SignA. A signature on (M,N) ∈ DH, valid under public key (Gx, Hx), is defined as(
A := (K ·T r ·M)

1
x+c , C := Gc, D := F c, R := Gr, S := Hr

)
, for random c, r ← Zp

VerifyA. (A,C,D,R, S) is valid on a message (M,N) ∈ DH under a public key vk = (X,Y ) ∈ DH iff

e(A,X ·C) = e(K ·M,G) e(T,R) e(C,F ) = e(G,D) e(R,H) = e(G,S) (4)

Theorem 2. Assuming q-DAHSDH and HDL, SigA is existentially unforgeable against adversaries making at
most q − 1 adaptive chosen-message queries.

A proof can be found in Appendix B.1.
5Note that this is not the case for the q-HSDH assumption (cf Footnote 4): we cannot regard (Gc, Hc) as the message, since the signer

must know c in order to produce G
1

x+c .

7



Let ck ← SetupGS be the common reference string. The signer holds her secret key x corresponding to public key
(Gx, Hx). The user holds a message (M,N) ∈ DH on which he gets a blind signature.

1. Obtain Choose ρ← Zp and τM , τN , τP , τQ ← Z 3
p , set P := Gρ, Q := Hρ, and send the following:

cM := ComGS(ck,M, τM ) cN := ComGS(ck, N, τN ) φM := ProveGS
(
ck, EDH, (M, τM ), (N, τN )

)
cP := ComGS(ck, P, τP ) cQ := ComGS(ck, Q, τQ) φP := ProveGS

(
ck, EDH, (P, τP ), (Q, τQ)

)
U := T ρ ·M φU := ProveGS

(
ck, EU , (M, τM ), (P, τP )

)
with Equation EU (M,P ) defined as e(U M−1, G) = e(P, T ).

2. Issue If all proofs are valid, choose c, r ← Zp and send:

A := (K ·T r ·U)
1

x+c C := Gc D := F c R′ := Gr S′ := Hr

The user sets R := R′ ·P , S := S′ ·Q, and checks whether (A,C,D,R, S) is valid on (M,N). The blind
signature is a Groth-Sahai proof of knowledge of (A,C,D,R, S) satisfying (4) for ck.

Figure 1: Two-move blind signing protocol.

5 Blind Automorphic Signatures

Fischlin [Fis06] proposes the following generic construction for round-optimal blind signatures: the user sends
a commitment to the message to the issuer, who responds with a signature on the commitment. The user then
constructs the blind signature as follows: she encrypts the commitment and the signature and adds a NIZK proof
that the signature is valid on the commitment and that the committed value is the message.

Using the scheme SigA (Scheme 2), our approach is similar in that the blind signature will be a (Groth-
Sahai) proof of knowledge of a signature. However, the size of the blind signature can be reduced if the user
gets a signature on the message rather than a commitment to it, since this avoids the necessity to prove that the
commitment opens to the message. In our construction, in addition to a commitment to the message, the user sends
a randomization of the message. This is used by the issuer to make a “pre-signature” which is sent it to the user.
The latter turns it into a signature on the actual message by adapting the randomness. The blind signature consists
of commitments ~c to the signature components and a proof π of validity.

By witness indistinguishability of the proof system, two proofs of knowledge of different signatures on the
same message (and under the same public key) are indistinguishable. Blindness follows then from the fact that the
issuer does not get information on the message during the issuing protocol.

The details of the signing protocol are given in Fig. 1. A blind signature (~c, π) on (M,N) under (X,Y )
is verified by running VerifyGS(ck, EVerA ,~c, ~π), with EVerA being Equation (4). Note that the scheme remains
automorphic, since commitments and proofs are composed of group elements and are verified by checking PPEs.

Theorem 3. Under Assumptions 2 and 3 and DLIN, the scheme in Figure 1 is an unforgeable blind-signature
scheme.

See Appendix B.2 for a proof. We analyze the efficiency of our blind-signature scheme. The round complexity
of the scheme is optimal [Fis06]. In the first round the user sends 22 group elements (GE), since all proofs are for
linear equations (cf. Footnote 3), and the signer sends 5 GE. A SigA-signature consists of 5 GE satisfying 2 linear
equations and one general equation. Committing to the signature yields 5·3 GE and the Groth-Sahai proofs consist
of 2·3 + 9 GE. The size of a blind signature is thus 30 GE.

Remark 1 (Signing Committed Values). The core building block for P-signatures [BCKL08] is an interactive
protocol allowing a user that published a commitment to obtain a signature on the committed value. If the user
publishes (cM , cN , φM ) before running the blind-signature protocol we get exactly this.

8



6 Extensions

6.1 Signatures on Bit-Strings

SigA also serves to sign bit strings (fitting thus the standard definition of signatures). Let Hash : {0, 1}∗ → Zp be
a collision-resistant hash function. Define Sig∗A := (SetupA,KeyGenA, Sign∗A,Verify∗A) with

• Sign∗A(sk,m) := SignA
(
sk, (GHash(m), HHash(m))

)
• Verify∗A(vk, (A,C,D,R, S),m) := VerifyA

(
vk, (A,C,D,R, S), (GHash(m), HHash(m))

)
Security against chosen-message attack follows by a straightforward reduction to security of SigA and collision
resistance of Hash.

6.2 Automorphic Signatures on Message Vectors

We give a general transformation of a signature scheme whose message space contains its public-key space to one
signing message vectors of arbitrary length that leaves the structure of verification invariant. The signer produces
a one-time key pair (vk, sk), signs vk with her actual secret key and uses sk to sign every component of the vector.
(Actually, for each component, she signs another transient key, which will sign the component and its index to
prevent shuffling of messages. The vector’s length is signed too, barring thus truncating.) Formally:

Definition 2. Assume an efficiently computable injection Msg from {1, . . . , nmax} to the message space, where
nmax is the maximum length of a message vector. Let Sig = (Setup,KeyGen,Sign,Verify) be a signature
scheme whose message space contains its public-key space. The vector transform of Sig is defined as Sig ′ =
(Setup,KeyGen,Sign′,Verify′) with

Sign′sk(M1, . . . ,Mn) with n ≤ nmax

• (vk0, sk0)← KeyGen; (vk1, sk1)← KeyGen; . . . ; (vkn, skn)← KeyGen;

• σ :=
(
vk0, Signsk(vk0),Signsk0(Msg(n)),

(
vki,Signsk0(vki), Signski

(Msg(i)),Signski
(Mi)

)n
i=1

)
.

Verify′vk
(
(M1, . . . ,Mn), (vk0, σ0, ρ0, (vki, σi, ρi, τi)ni=1)

)
:= Verifyvk(vk0, σ0) ∧ Verifyvk0(Msg(n), ρ0)∧∧n

i=1

(
Verifyvk0(vki, σi) ∧ Verifyvki

(Msg(i), ρi) ∧ Verifyvki
(Mi, τi)

)
.

It is easily seen that if Verify is a conjunction of pairing-product equations then so is Verify′. The signatures
of the transform of SigA on a length-n vector are of size 12 + 17n group elements. This is however for the
most general transform. If message vectors have some predefined structure (e.g., they are signatures as defined
in Sect. 6.3), so that mixing and truncating is unlikely to result in a valid message, then one temporary key per
message that signs all components suffices. The signature size is then 7 + 5nG-elements. The following is proved
in Appendix B.3.

Theorem 4. If Sig is secure against EUF-CMA then so is Sig ′.

6.3 Signatures on Signatures

For applications requiring automorphic signatures on signatures,6 we suggest the scheme SigFPV (Scheme 1) for
the signatures to be signed, since its signatures fit the message space: a signature on a message/signature pair(
(M,N), (A,C,D,R, S)

)
is a signature on the vector (cf. Sect. 6.2) of messages

(
(M,N), (C,D), (R,S)

)
∈

DH 3. (Note that it is not necessary to sign A, as it is fully determined by these elements.)
6A potential application is electronic cash, where a coin is basically a signature from the bank. In order to make double spenders

traceable, one could have a user sign the coin when spending it.

9



7 Applications

We present various applications of automorphic signatures and blind signatures. However, we merely sketch the
application areas, as going into details would be beyond the scope of this paper.

7.1 Fully-Secure Group Signatures

In order to implement the model for group signatures by [BSZ05], Groth [Gro07] uses the following ingredients
to achieve CCA-anonymity: the tag-based encryption scheme7 [MRY04] Enctb by Kiltz [Kil06] and a strong
one-time signature scheme8 Sigot.

A user produces a signature key pair (vk, sk) and is enrolled by the issuer who gives her a certificate cert
on vk. Now to make a group signature on a message M , the user holding (cert, vk, sk) generates a key pair
(vkot, skot) for Sigot, makes a signature sig on vkot under vk and produces a Groth-Sahai WI proof of knowledge π
of (cert, vk, sig) s.t. cert is a valid certificate on vk and sig is a signature on vkot valid under vk. She produces an
Enctb-ciphertext C encrypting sig under tag vkot and adds a Groth-Sahai NIZK proof ζ that the encrypted value
sig is the same as in π. Using skot, she finally makes a signature sigot on (M, vkot, π, C, ζ) and outputs the group
signature σ = (vkot, π, C, ζ, sigot). The opener holds a key enabling her to extract (cert, vk, sig) from π. The key
vk allows to determine the signer and sig acts as a non-frameable proof of correct tracing.

[FPV09] suggest to substitute the certified-signature scheme based on the “q-U Assumption” by one based
on the more natural DHSDH. Their replacement however uses Waters signatures [Wat05] which entail a dramatic
increase of the public-key size. This is avoided by using instead the two-level construction Sig2FPV given before
Scheme 2 (based on DHSDH as well), which actually is a certified-signature scheme: certificates are signatures on
user verification keys (Gx, Hx); messages are of the form (Gm, Lm) and signatures use parameters (G,L,K, T ).
The certificate-verification key is one element of G (in the construction of [Gro07], it consists of two elements of
G and one of GT ).

7.2 P-Signatures and Anonymous Credentials

In order to realize non-interactive anonymous credentials, Belenkiy et al. [BCKL08] introduce a primitive called
P-signature. This primitive extends a signature scheme and a commitment scheme by the following functionalities:
a protocol Issue↔Obtain between a signer and a user allows the latter to obtain a signature on a value the signer
only knows a commitment to; the holder of a message and a signature on it can produce a commitment to the
message and a proof of knowledge of the signature; and two commitments can be proved to be to the same value.

The commitments and proofs are instantiated with the Groth-Sahai methodology; the compatible signature
scheme is the one discussed in Sect. 1. Our scheme SigA, combined with the modified blind-issuing protocol
from Remark 1, suitably replaces their scheme and overcomes the aforementioned shortcomings: it avoids the
TDH assumption, actual message/signature pairs can be extracted from the proofs (rather than a function of them)
and it provides an efficient Issue↔ Obtain-protocol (the one in [BCKL08] resorts to generic secure multiparty
computation).

7.3 Anonymous Delegation of Signing Rights

Anonymous Proxy Signatures. Anonymous proxy signatures (APS) generalize group signatures in the following
sense: everyone can become a group manager by delegating his signing rights to other users who can then sign
in his name while remaining anonymous; moreover, received rights can be re-delegated consecutively. We give a
brief overview of the model defined in [FP08].

7A tag-based encryption scheme is a public-key encryption scheme whose encryption and decryption algorithms take as additional
argument a tag. A scheme is selective-tag weakly CCA-secure if an adversary outputting a tag t∗ and two messages and getting an
encryption of one of them under t∗ cannot decide which one was encrypted—even when provided with an oracle decrypting any ciphertext
for tags t 6= t∗.

8A signature scheme is strongly one-time, if no adversary granted a single weak chosen-message query can output a new signed message
nor a new signature on the queried message. Groth uses the weak Boneh-Boyen signature from [BB04].

10



Algorithm Setup establishes the public parameters. Users generate key pairs using KeyGen and run a protocol
Reg with the issuer and their opener when joining the system. (This is essential to achieve traceability; see below.)
To delegate to Bob, Alice runs Delgt on Bob’s public key, which produces a warrant she gives to Bob. With
this warrant, Bob can either sign or re-delegate to Carol, in which case Carol can again re-delegate or produce an
anonymous proxy signature with PSign on behalf of Alice, which is verifiable by Verify on Alice’s verification key.

Anonymity ensures that from a proxy signature one cannot tell who actually signed (or re-delegated), thus Bob
and Carol remain anonymous. To prevent misuse, Alice’s opener can revoke the anonymity of the intermediate
delegators and the proxy signer. Traceability asserts that every valid signature can be opened to registered users
and non-frameability guarantees that no adversary, even when colluding with the issuer, openers and other users,
can produce a signature that opens to an honest user for a delegation or a signing she did not perform.

A Generic Construction. The generic construction by [FP08] proving feasibility of the model is as follows. As-
sume an EUF-CMA-secure signature scheme. The issuer and the users choose a signing/verification key pair each.
When enrolling, a user Ui obtains a signature certi on her verification key vki from the issuer. A warrant warr1→2

from user U1 to user U2 is a signature on (vk1, vk2) valid under vk1. U2 re-delegates to U3 by sending warr1→2 and
warr2→3, a signature on (vk1, vk2, vk3) under vk2. Additionally, in each delegation step, the delegators’ certificates
are also passed on.

Given a warrant (warr1→2,warr2→3), U3 proxy-signs a message M on behalf of U1 as follows: first produce a
signature sig on (vk1, vk2, vk3,M) using sk3; then define the plain proxy signature as (warr1→2, vk2, cert2,warr2→3,
vk3, cert3, sig). In general we say that a plain proxy signature Σ = (warr1→2, . . . , vkk, certk, sig) on message M
under vk1 is valid if:

− ∀i : certi is valid under the issuer’s verification key;
− ∀i : warri→i+1 is a signature on (vk1, . . . , vki+1) valid under vki; (5)
− sig is a signature on (vk1, . . . , vkk,M) valid under vkk.

Now to transform this into an anonymous proxy signature, the signer encrypts Σ under the public key of U1’s
opener and adds a NIZK proof that the plaintext satisfies the above. Due to her decryption key, the opener can
retrieve the plain signature and thus trace the delegators and the signer. The warrants and sig are non-frameable
proofs of correct tracing.

Concrete Instantiations. Restricting the model to CPA-anonymity, the building blocks can be instantiated as
follows: define encryption to be linear commitments (which can be “decrypted” due to extractability) and use
Groth-Sahai proofs to show that the verification relations are satisfied by the committed values. For this to work
however, the plain proxy signatures must fit the Groth-Sahai framework; meaning that the EUF-CMA signature
scheme’s verification keys, messages and signatures must be group elements satisfying pairing-product equations.

Fuchsbauer and Pointcheval [FP09] follow this overall approach using basically Groth-Sahai proofs in the
subgroup-decision [BGN05] instantiation, which confines their scheme to one general opener (once the bilinear
group is fixed there is only one key pair for encryption). The compatible EUF-CMA-secure signature scheme they
construct has several shortcomings: besides being based on an unusual new assumption (the “XF-assumption”), it
is far from being practical, since a public key contains several commitments to each bit of the corresponding secret
key. Moreover, it imposes a maximum number of re-delegations in one signature that is fixed during setup.

Replacing their scheme by SigA (Sect. 4), which meets the necessary conditions, and using the DLIN instan-
tiation of Groth-Sahai, we circumvent all these shortcomings, getting an efficient scheme based on reasonable
assumptions. Moreover, we satisfy the model of [FP08] since we can assume several openers each publishing their
own commitment key (due to our DLIN-based proofs), we do not impose a limit on the number of re-delegations,
and we show how to achieve CCA-anonymity (see below).

CCA-Anonymous Proxy Signatures. CCA-anonymity (i.e., anonymity against adversaries provided with an
opening oracle) of Groth’s group signatures sketched in Sect. 7.1 is proved as follows: modify the security game
by substituting the opener’s commitment key by one that results in perfectly hiding commitments and WI proofs;
due to the additional encryptions contained in a group signature, opening queries can still be simulated.

We transform our APS scheme into one satisfying CCA-anonymity analogously. Suppose a proxy signer holds
W := (vk1, (warri, certi, vki)ki=2) and skk. To make a signature, she first chooses keys for a one-time signature

11



(vkot, skot) ← KeyGenot, signs vkot (instead of M ) with her personal key skk yielding sig, makes commitments ~c
to the elements of W and sig, and adds a WI proofs φj for each equation Ej in (5)—as in the original scheme.

In addition, for 2 ≤ i ≤ k she computes an Enctb-encryption Ci of warri under tag vkot and makes a NIZK
proof ζi that the plaintext of Ci is the value committed in cwarri . She sets sigot := Signot(skot, (vkot,M,~c, ~φ, ~C, ~ζ))
and finally outputs the signature (vkot,~c, ~φ, ~C, ~ζ, sigot). A signature is valid if sigot is valid under vkot, the proofs
φj are valid for all j, and the proofs ζi and the ciphertexts Ci are valid for all i.

7.4 Extending Anonymous Proxy Signatures

We briefly sketch how to instantiate the extended model of APS discussed at the end of Sect. 1. A formal descrip-
tion can be found in Appendix C.

Blind Delegation. Using the variant of our blind-signature protocol discussed in Remark 1, we can define blind
delegation: given a commitment to a verification key, a user can delegate her signing rights to the holder of that
key without learning her identity.

Delegator Anonymity. Due to the modularity of Groth-Sahai proofs (for each equation its proof only depends on
the commitments to the variables appearing in it), the “anonymization” of a signature need not be delayed until
the proxy signing: warrants can be anonymized by the delegators already and randomized in each delegation step
(which prevents linkability of signatures). However, we need to revise the way warrants are defined, since the
present scheme requires knowledge of the identities of all previous delegators for their construction. We follow
the general approach by [BCC+09], who associate an identifier id to each original delegation. A warrant from the
user at level i in the delegation chain to the next one is then a signature on (Hash(id ‖ i), vki+1) under vki, where
Hash : {0, 1}∗ → G is a collision-resistant hash function.9 The hash value prevents combining different warrants
and reordering the same warrant.

Consider the following situation (we simplify our exposition by omitting the certificates from the issuer):
Oliver (the original delegator), owning vkO, delegated to Alice by giving her a signature warrO→A on her key
vkA. Alice delegates to Bob sending him warrA→B . Bob can now delegate to Carol without revealing Alice’s
identity: He makes commitments cO→A, cA and cA→B to warrO→A, vkA and warrA→B , respectively. Moreover,
he makes a trivial commitment cB = ComGS(ck, vkB, 0) to his own key, and the following proofs: φO→A for
cO→A containing a valid warrant from vkO to the content of cA, and φA→B for cA→B containing a valid warrant
from the content of cA to the content of cB . He sends Carol w̃arr := (vkO, cA, cO→A, φO→A, cB , cA→B , φA→B)
and a warrant warrB→C .

Now, Carol produces a signature on behalf of Oliver onM as follows (re-delegation works analogously): make
a signature sig on M valid under vkC ; randomize the commitments and adapt the proofs in w̃arr, in particular, set
c′B := RdComGS(ck, cB, ρB); make commitments to warrB→C , vkC and sig, and proofs of validity of warrB→C
and sig. Note that for the first proof the randomness of the related commitments—in particular c′B—is required.
Since cB was a trivial commitment, the randomness of c′B is ρB which was chosen by Carol (cf. end of Sect. 2.2)!

Remark 2. (1) Note that delegator-anonymous delegation is compatible with blind delegation: instead of simply
sending warrB→C , Bob runs the interactive blind-issuing protocol with Carol, upon which she obtains warrB→C
and continues as above.

(2) Bob could even hide his own identity to Carol as follows: he sends (hiding) commitments to his own key
and to warrB→C , and in addition a trivial commitment to Carol’s key and proof of validity of warrB→C . Carol
randomizes what Bob sent her, commits to a signature on the message and proves validity. Unfortunately this does
not seem to be compatible with blind delegation.

In Appendix C, we formally describe an instantiation of anonymous proxy signatures with delegator anonymity
and in Appendix D we discuss how to sign on behalf of several delegators.

9Since id and i are publicly known, Hash(id‖ i) ∈ G will be considered as a constant in the Groth-Sahai proofs.

12



8 Conclusions

We introduced the concept of automorphic signatures and gave two instantiations; the first is based on known
assumptions while the second is more efficient and relies on a new assumption, which we prove to hold in the
generic group model. We also gave the first efficient instantiation of Fischlin’s round-optimal blind signatures.

We then illustrated the benefits of automorphic signatures by constructing fully-secure group signatures and
anonymous credentials and by giving the first efficient instantiation of anonymous proxy signatures, which satisfies
additional security requirements that have not been considered so far.

Acknowledgments

The author would like to thank David Pointcheval for many invaluable discussions that led to the present paper, and
Masayuki Abe for a discussion on round-optimal blind signatures. This work was supported by EADS, the French
ANR-07-SESU-008-01 PAMPA Project and the European Commission through the IST Program under Contract
ICT-2007-216646 ECRYPT II.

References
[BB04] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Christian Cachin and Jan Camenisch,

editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 56–73. Springer, May 2004.
[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Matthew Franklin, editor,

CRYPTO 2004, volume 3152 of LNCS, pages 41–55. Springer, August 2004.
[BCC+09] Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Hovav Shacham.

Randomizable proofs and delegatable anonymous credentials. In Shai Halevi, editor, CRYPTO 2009, volume
5677 of LNCS, pages 108–125. Springer, August 2009.

[BCKL08] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya. P-signatures and noninteractive
anonymous credentials. In Ran Canetti, editor, TCC 2008, volume 4948 of LNCS, pages 356–374. Springer,
March 2008.

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ciphertexts. In Joe Kilian, editor,
TCC 2005, volume 3378 of LNCS, pages 325–341. Springer, February 2005.

[BP04] Mihir Bellare and Adriana Palacio. The knowledge-of-exponent assumptions and 3-round zero-knowledge pro-
tocols. In Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 273–289. Springer, August
2004.

[BPW03] Alexandra Boldyreva, Adriana Palacio, and Bogdan Warinschi. Secure proxy signature schemes for delegation
of signing rights. Cryptology ePrint Archive, Report 2003/096, 2003. http://eprint.iacr.org/.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient protocols.
In V. Ashby, editor, ACM CCS 93, pages 62–73. ACM Press, November 1993.

[BSZ05] Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group signatures: The case of dynamic groups. In
Alfred Menezes, editor, CT-RSA 2005, volume 3376 of LNCS, pages 136–153. Springer, February 2005.

[BW06] Xavier Boyen and Brent Waters. Compact group signatures without random oracles. In Serge Vaudenay, editor,
EUROCRYPT 2006, volume 4004 of LNCS, pages 427–444. Springer, May / June 2006.

[BW07] Xavier Boyen and Brent Waters. Full-domain subgroup hiding and constant-size group signatures. In Tatsuaki
Okamoto and Xiaoyun Wang, editors, PKC 2007, volume 4450 of LNCS, pages 1–15. Springer, April 2007.

[CCS09] Jan Camenisch, Nishanth Chandran, and Victor Shoup. A public key encryption scheme secure against key
dependent chosen plaintext and adaptive chosen ciphertext attacks. In Antoine Joux, editor, EUROCRYPT 2009,
volume 5479 of LNCS, pages 351–368. Springer, April 2009.

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited (preliminary version).
In 30th ACM STOC, pages 209–218. ACM Press, May 1998.

[CGS07] Nishanth Chandran, Jens Groth, and Amit Sahai. Ring signatures of sub-linear size without random oracles. In
Lars Arge, Christian Cachin, Tomasz Jurdzinski, and Andrzej Tarlecki, editors, ICALP 2007, volume 4596 of
LNCS, pages 423–434. Springer, July 2007.

[Cha83] David Chaum. Blind signatures for untraceable payments. In David Chaum, Ronald L. Rivest, and Alan T.
Sherman, editors, CRYPTO’82, pages 199–203. Plenum Press, New York, USA, 1983.

[Cha85] David Chaum. Security without identification: Transaction systems to make big brother obsolete. Commun.
ACM, 28(10):1030–1044, 1985.

13



[Cv91] David Chaum and Eugène van Heyst. Group signatures. In Donald W. Davies, editor, EUROCRYPT’91, volume
547 of LNCS, pages 257–265. Springer, April 1991.

[Dam92] Ivan Damgård. Towards practical public key systems secure against chosen ciphertext attacks. In Joan Feigen-
baum, editor, CRYPTO’91, volume 576 of LNCS, pages 445–456. Springer, August 1992.

[Fis06] Marc Fischlin. Round-optimal composable blind signatures in the common reference string model. In Cynthia
Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 60–77. Springer, August 2006.

[FP08] Georg Fuchsbauer and David Pointcheval. Anonymous proxy signatures. In Rafail Ostrovsky, Roberto De
Prisco, and Ivan Visconti, editors, SCN 08, volume 5229 of LNCS, pages 201–217. Springer, September 2008.

[FP09] Georg Fuchsbauer and David Pointcheval. Proofs on encrypted values in bilinear groups and an application to
anonymity of signatures. In Hovav Shacham and Brent Waters, editors, PAIRING 2009, volume 5671 of LNCS,
pages 132–149. Springer, August 2009. Full version available at http://eprint.iacr.org/2008/528.

[FPV09] Georg Fuchsbauer, David Pointcheval, and Damien Vergnaud. Transferable anonymous constant-size fair e-
cash. In CANS 2009: 8th International Conference on Cryptology And Network Security, 2009. (to appear)
Preliminary version available at http://eprint.iacr.org/2009/146.

[GL07] Jens Groth and Steve Lu. A non-interactive shuffle with pairing based verifiability. In Kaoru Kurosawa, editor,
ASIACRYPT 2007, volume 4833 of LNCS, pages 51–67. Springer, December 2007.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure against adaptive
chosen-message attacks. SIAM Journal on Computing, 17(2):281–308, April 1988.

[Gro06] Jens Groth. Simulation-sound NIZK proofs for a practical language and constant size group signatures. In Xuejia
Lai and Kefei Chen, editors, ASIACRYPT 2006, volume 4284 of LNCS, pages 444–459. Springer, December
2006.

[Gro07] Jens Groth. Fully anonymous group signatures without random oracles. In Kaoru Kurosawa, editor, ASI-
ACRYPT 2007, volume 4833 of LNCS, pages 164–180. Springer, December 2007.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In Nigel P. Smart, editor,
EUROCRYPT 2008, volume 4965 of LNCS, pages 415–432. Springer, April 2008.

[Kil06] Eike Kiltz. Chosen-ciphertext security from tag-based encryption. In Shai Halevi and Tal Rabin, editors,
TCC 2006, volume 3876 of LNCS, pages 581–600. Springer, March 2006.

[MRY04] Philip D. MacKenzie, Michael K. Reiter, and Ke Yang. Alternatives to non-malleability: Definitions, construc-
tions, and applications. In Moni Naor, editor, TCC 2004, volume 2951 of LNCS, pages 171–190. Springer,
February 2004.

[MUO96] Masahiro Mambo, Keisuke Usuda, and Eiji Okamoto. Proxy signatures for delegating signing operation. In
ACM CCS 96, pages 48–57. ACM Press, March 1996.

[Oka06] Tatsuaki Okamoto. Efficient blind and partially blind signatures without random oracles. In Shai Halevi and Tal
Rabin, editors, TCC 2006, volume 3876 of LNCS, pages 80–99. Springer, March 2006.

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind signatures. Journal of
Cryptology, 13(3):361–396, 2000.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy, editor, EURO-
CRYPT’97, volume 1233 of LNCS, pages 256–266. Springer, May 1997.

[SMP08] Jacob C. N. Schuldt, Kanta Matsuura, and Kenneth G. Paterson. Proxy signatures secure against proxy key
exposure. In Ronald Cramer, editor, PKC 2008, volume 4939 of LNCS, pages 141–161. Springer, March 2008.

[TW05] Mårten Trolin and Douglas Wikström. Hierarchical group signatures. In Luı́s Caires, Giuseppe F. Italiano, Luı́s
Monteiro, Catuscia Palamidessi, and Moti Yung, editors, ICALP 2005, volume 3580 of LNCS, pages 446–458.
Springer, July 2005.

[Wat05] Brent R. Waters. Efficient identity-based encryption without random oracles. In Ronald Cramer, editor, EURO-
CRYPT 2005, volume 3494 of LNCS, pages 114–127. Springer, May 2005.

A The q-DAHSDH Assumption

A.1 A Note on DAHSDH

To make SigFPV (Scheme 1) an automorphic scheme without the detour via a transient key, one could be tempted
to simply expand the public key by Y = (logGX)H and assume a variant of DHSDH where Y is given as part of
the instance.

However, this assumption is wrong, as it succumbs to the following attack: Given an instance, set A∗ := A−1
1 ,

C∗ := X−2 ·C−1
1 , D∗ := Y −2 ·D−1

1 , V ∗ := V1, W ∗ := W1. Then we have e(A∗, X ·C∗) = e(A−1
1 , C−1

1 ) =
e(K ·V1, G) = e(K ·V ∗, G). The attack comes from the fact that we can use X to build C∗ since given Y , the

14



“shadow” of X , we are able to construct the shadow of C∗.
This is what makes it indispensable to use a different basis for the shadow of C, leading to a generically secure

assumption, as proved below.

A.2 Generic Security of the q-DAHSDH Assumption

We restate the assumption for convenience:

(q-DAHSDH) Given (G,F,H,K,X=Gx, Y =Hx) and q − 1 tuples(
Ai = (K ·Gvi)

1
x+ci , Ci = Gci , Di = F ci , Vi = Gvi , Wi = Hvi

)
,

with ci, vi ∈ Z∗p for i = 1, . . . , q − 1, it is hard to output a new tuple (A∗, C∗, D∗, V ∗,W ∗) that satisfies

e(A∗, X ·C∗) = e(K ·V ∗, G) e(C∗, F ) = e(G,D∗) e(V ∗, H) = e(G,W ∗) . (1)

Theorem 5. The q-DAHSDH assumption holds in generic bilinear groups when q is a polynomial.

Proof. We assume that the reader is familiar with the methodology of proofs in the generic group model and thus
focus on our particular assumption. We work with the “discrete-log” representation of all group elements w.r.t.
basis G. A q-DAHSDH instance is thus represented by the following rational fractions:

1, f, h, k, x, xh, {ai = k+vi
x+ci

, ci, cif, vi, vih}q−1
i=1 (2)

Considering the logarithms of the GT -elements in (1) w.r.t. the basis e(G,G) yields

a∗(x+ c∗) = k + v∗ d∗ = c∗f w∗ = v∗h (3)

In a generic group, all the adversary can do is apply the group operation to the elements of its input. We will show
that the only linear combinations (a∗, c∗, d∗, v∗, w∗) of elements in (2) satisfying (3) are (a∗ = ai, c

∗ = ci, d
∗ =

cif, v
∗ = vi, w

∗ = vih) for some i; which means all the adversary can do is return a quintuple from the instance.
We make the following ansatz for a∗:

a∗ = α+ αff + αhh+ αkk + αxx+ αyxh+
∑
αai

k+vi
x+ci

+
∑
αc,ici +

∑
αd,icif +

∑
αv,ivi +

∑
αw,ivih

Since for any c∗ the adversary forms, it has to produce c∗f as well, we can limit the elements used for c∗ to those
of which their product with f is also given: 1 and ci (for all i). The same argument holds for v∗ and elements for
which we have their products with h. We set thus

c∗ = γ +
∑
γc,ici v∗ = µ+ µxx+

∑
µv,ivi

which implicitly satisfies the last two equations of (3) since d∗ and w∗ can then be defined as

d∗ = γf +
∑
γc,icif w∗ = µh+ µxxh+

∑
µv,ivih

We substitute a∗, c∗, v∗ by their ansätze in the first equation of (3), that is a∗(x + c∗) − v∗ = k. After some
rearranging we get

(αγ − µ) 1 + (αfγ) f + (αhγ) h + (α+ αxγ − µx) x + (αh + αyγ) xh + (4a)∑
(αa,iγ) k+vi

x+ci
+
∑

(αc,iγ + αγc,i) ci +
∑

(αd,iγ + αfγc,i) cif +
∑

(αw,iγ) vih + (4b)

(αf ) xf + (αk) xk + (αx) x2 + (αy) x2h +
∑

(αv,i) vix +
∑

(αw,i) vixh + (4c)∑
(αc,i + αxγc,i) cix +

∑
(αd,i) cixf +

∑
(αhγc,i) cih +

∑
(αkγc,i) cik +

∑
(αyγc,i)xcih + (4d)∑∑

(αc,iγc,j) cicj +
∑∑

(αd,iγc,j) cicjf +
∑∑

(αv,iγc,j) vicj +
∑∑

(αw,iγc,j) vicjh + (4e)

(αkγ)︸ ︷︷ ︸
=:λk

k +
∑

(αv,iγ − µv,i)︸ ︷︷ ︸
=:λv,i

vi +
∑

(αa,i)︸ ︷︷ ︸
=:λxa,i

x(k+vi)
x+ci

+
∑∑

(αa,iγc,j)︸ ︷︷ ︸
=:λca,i,j

cj(k+vi)
x+ci

= k (4f)

15



Comparison of coefficients10 of the two sides of the equation shows that all coefficients in lines (4a)–(4e) must be
0, whereas for the last line we have a different situation: Adding x(k+vi)

x+ci
and ci(k+vi)

x+ci
reduces to k + vi (but this is

the only combination that reduces). We have thus

λxa,i = λca,i,i for all i λca,i,j = 0 for all i 6= j (5)

and moreover

coefficient of k:
∑
λxa,i + λk = 1 coefficient of vi: λxa,i + λv,i = 0 (6)

We now solve the equations “all coefficients in Lines (4a) to (4e) equal 0”, and Equations (5) and (6) for(
α, αf , αh, αk, αx, αy, γ, µ, µx, {αai , αc,i, αd,i, αv,i, αw,i, γc,i, µv,i}

)
:

Line (4c) and the second term in Line (4d) immediately yield: αf = αk = αx = αy = αv,i = αw,i = αd,i = 0
for all i. Now αy = 0 implies αh = 0 by the last term in (4a), and αx = 0 implies αc,i = 0 for all i by the first
term in in (4d). The first equations in (5) and (6) give

αa,i(1− γc,i) = 0 for all i
∑
αa,i + αkγ

(αk=0)
=

∑
αa,i = 1 (7)

which together imply that for some i: γc,i 6= 0. The second term in (4b) requires that for all i: αc,iγ+αγc,i
(αc,i=0)

=
αγc,i = 0, thus α = 0 since some γc,i 6= 0. Combining this with αx = 0 and the the fourth term in (4a), we get
µx = 0. The first term in (4b) and the second equation in (7) implies γ = 0, which yields µ = 0 by the first term
in in (4a). The only variables not shown to be 0 so far are {αa,i, γc,i, µv,i}.

We show that there exists exactly one index i∗ such that αa,i∗ 6= 0: if we had i 6= j s.t. αa,i 6= 0 and αa,j 6= 0
then by the first equation in (7) we would have γc,i = γc,j = 1. This however contradicts the second equation
in (5) which states αa,iγc,j = 0 for all i 6= j. The same equation ensures that γj = 0 for all j 6= i∗. We have

γc,i∗ = 1 by (7) and by the last equation of (6): αa,i +αv,iγ − µv,i
(γ=0)

= αa,i− µv,i = 0, we have αa,i = µv,i for
all i.

We proved thus that there exists a i∗ such that a∗ = k+vi∗
x+ci∗

, c∗ = ci∗ and v∗ = vi∗ , which means the only tuples
(A∗, C∗, D∗, V ∗,W ∗) satisfying (1) and being generically constructable from a DAHSDH instance are the tuples
from that instance.

B Proofs

B.1 Proof of Theorem 2

Consider an adversary that after receiving parameters (G,F,H,K, T ) and public key (X,Y ) is allowed to ask for
q − 1 signatures (Ai, Ci, Di, Ri, Si) on messages (Mi, Ni) ∈ DH of its choice and outputs (M,N) ∈ DH that it
did not query and a valid signature (A,C,D,R, S) on it.

We distinguish two kinds of forgers: An adversary is called of Type I if its output satisfies

∀ 1 ≤ i ≤ q − 1 : e(R·R−1
i , T ) 6= e(Mi ·M−1, G) (8)

Otherwise it is called of Type II. We will use the first type to break q-DAHSDH and the second type to break HDL.

Type I Let
(
G,F,H,K,X, Y, (Ai, Ci, Di, Vi,Wi)

q−1
i=1

)
be a q−DAHSDH challenge. It satisfies thus

e(Ai, X ·Ci) = e(K ·Vi, G) e(Ci, F ) = e(G,Di) e(Vi, H) = e(G,Wi) (9)

Let A be a forger of Type I. Choose t ← Zp and give parameters (G,F,H,K, T := Gt) and the public
key (X,Y ) to A. The i-th query for (Mi, Ni) ∈ DH is answered as

(
Ai, Ci, Di, Ri := (Vi ·M−1

i )
1
t ,

10To do straightforward comparison of coefficients, we actually would have to multiply the equation by
Qq−1

i=1 (x+ ci) first. For the sake
of presentation, we keep the fractions and instead introduce new equations for the cases where a linear combination leads to a fraction that
cancels down.

16



Si = (Wi ·N−1
i )

1
t

)
. It satisfies (4) and is correctly distributed since vi is random in the DAHSDH instance.

If the adverseray produces a valid signature/message pair ((A,C,D,R, S), (M,N)), then

(A,C,D, V := Rt ·M,W := St ·N)

is a solution for the DAHSDH instance, since it satisfies (1) and it is a new tuple: if for some i, we had
V = Vi, then Rt ·M = Rti ·Mi, and thus e(R, T ) e(M,G) = e(Ri, T ) e(Mi, G), which contradicts (8).

Type II Let (G,H, T ) be a HDL instance; let A be a forger of Type II. Pick F,K ← G and x ← Zp, set
X := Gx, Y := Hx and give the adversary parameters (G,F,H,K, T ) and public key (X,Y ). Answer a
signing query on (Mi, Ni) ∈ DH by returning a signature (Ai, Ci, Di, Ri, Si) produced using x. Suppose
A returns ((A,C,D,R, S), (M,N)) satisfying (4) s.t. for some i: e(R ·R−1

i , T ) = e(Mi ·M−1, G). Then
(M∗ := Mi·M−1, N∗ := Ni·N−1, R∗ := R·R−1

i , S∗ := S·S−1
i ) is a HDL solution: (M∗, N∗) and (R∗, S∗)

are DH pairs, and M∗ 6= 1, since (M,N) must be a new message.

B.2 Proof of Theorem 3

The protocol is correct: The signer sends A = (K ·T r ·U)
1

x+c = (K ·T r+ρ ·M)
1

x+c , C = Gc, D = F c, R′ = Gr,
S′ = Hr and the user sets R := R′ ·P = Gr+ρ and S := S′ ·Q = Hr+ρ, which makes it a valid signature on
(M,N).

Blindness: If we are given two messages from the signer and run Obtain twice for these messages (in random
order) with it, and then give the two resulting signature/message pairs, then the signer cannot relate them to their
issuings.

We modify the security game by setting setting ck ← SmSetup (leading to perfectly WI commitments and
proofs). This modification is indistinguishable by DLIN. A signature/message pair

(
(~c, π), (M,N)

)
that the ad-

versary gets in the end now perfectly hides the signature, since the commitments are under ck. Moreover, for every
pair (M ′, N ′) ∈ DH, there exists ρ′ ∈ Zp s.t. U = T ρ

′·M ′. By witness indistinguishability of Groth-Sahai proofs,
every such tuple (M ′, N ′, P ′ := Gρ

′
, Q′ := Hρ′) leads to the same distribution of (cM , cN , cP , cQ, φM , φP , φU ).

The adversary’s view after the first round of the protocol is thus independent of (M,N).

Unforgeability: After running the protocol q − 1 times with an honest signer, no adversary can output q different
messages and valid blind signatures on them.

We reduce unforgeability to the security of the signature scheme SigA (Theorem 2). We run (ck, ek) ←
ExSetup, publish ck, and then run the protocol simulating the signer with adversary A. Whenever A sends
(cM , cN , φM , cP , cQ, φP , U, φU ), we use ek to extract (M,N,P,Q). Soundness of the proofs φM , φP , φU ensures
that there exist m, ρ ∈ Zp s.t. M = Gm, N = Hm, P = Gρ, Q = Hρ and U = T ρ ·M . We query our oracle for a
signature on (M,N). On receiving (A,C,D,R, S), we give the adversary (A,C,D,R′ :=R·P−1, S′ :=S ·Q−1).
This perfectly simulates Issue: let c and r̂ be such that C = Gc and R = Gr̂; then A = (K ·T r̂ ·M)

1
x+c =

(K ·T r̂−ρ ·U)
1

x+c , R′ = Gr̂−ρ and S′ = H r̂−ρ which corresponds to an Issue reply using randomness c and
r := r̂ − ρ.

The adversary wins the game if after q − 1 issuings, it outputs q blind signatures on different messages. We
extract the SigA signature on a message which we did not query to our own oracle. By soundness of GS proofs,
this is a valid signature and can thus be returned as a forgery.

B.3 Proof of Theorem 4

Let q be the maximal number of the adversary’s signing queries, let nm the maximal length of all queried vectors
and the output vector. Let ~M (i) := (M (i)

1 , . . . ,M
(i)
ni ) denote the adversary’s i-th signing query, and let(

~M∗ := (M∗1 , . . . ,M
∗
n∗), σ

∗ := (vk∗0, σ
∗
0, (σ

∗
i , ρ
∗
i , τ
∗
i ))
)

be the adversary’s output. Let vk be a challenge for (KeyGen,Sign,Verify). We distinguish four types of forgers:

17



1. ∀i : vk∗0 6= vk(i)
0 . Set vk to be the challenge verification key and answer signing queries by choosing

(vk0, sk0), querying vk0 to the Sign-oracle and using sk0 to sign the vector entries and indices. If σ∗ is of
Type 1, then (vk∗0, σ

∗
0) is a forgery under vk.

2. ∃i : vk∗0 = vk(i)
0 and: ∃j ∀k : vk∗j 6= vk(i)

k or n∗ 6= ni. Choose i∗ ← {1, . . . , q}. Produce (vk′, sk′) ←
KeyGen(1k) and give the adversary vk′ as challenge. Answer all queries as in the protocol, except for the
i∗-th query: Set vk(i∗)

0 := vk, choose keys (vk(i∗)
j , sk(i∗)

j ) and query signatures on vk(i∗)
j to the Sign-oracle.

Complete the signature. If σ∗ is of Type 2 and we guessed correctly (i∗ = i) then (vk∗j , σ
∗
j ) or (n∗G, ρ∗0) is a

forgery under vk.

3. ∃i : vk∗0 = vk(i)
0 , n∗ = ni, and ∀j ∃kj : vk∗j = vk(i)

kj
and ∃j : M∗j 6= M

(i)
kj

. We choose i∗ ← {1, . . . , q} and

j∗ ← {1, . . . , nm} and set vk(i∗)
j∗ := vk. On guessing correctly (i∗ = i and j∗ = j), (M∗j , τ

∗
j ) is a forgery.

4. ∃i : vk∗0 = vk(i)
0 , n∗ = ni, and ∀j ∃kj : vk∗j = vk(i)

kj
and ∀j : M∗j = M

(i)
kj

. Since ~M∗ is a new message
of equal length, there must be a j s.t. kj 6= j. We set vk as for Type 3. On guessing correctly, (jG, ρ∗j ) is a
forgery under vk.

C An Anonymous Proxy Signature Scheme with Delegator Anonymity

We formally describe an instantiation of anonymous proxy signatures with delegator anonymity as discussed in
Remark 2 (2).

C.1 Building Blocks

To instantiate APS with delegator anonymity, we will use the following building blocks that were introduced in
Sections 2.2 and 4, respectively.

• Linear commitments: ExSetup(·) takes as input a bilinear group and outputs a commitment key ck ∈ G5 and
an extraction key ek ∈ Z 2

p . On inputs a commitment key, a value in G, and randomness from Z 3
p , Com(·, ·, ·)

outputs a commitment in G3; RdCom(·, ·, ·) takes a commitment key, a commitment and fresh randomness,
and outputs a randomized commitment to the same value; Extr(·, ·) outputs the committed value on input ek
and a commitment.

• Groth-Sahai proofs: Prove(·, ·, ·) produces a proof (in G3 for linear equations, or G9 for general equations)
on inputs a commitment key, the description of a PPE and a vector of pairs of committed values / randomness;
on inputs the commitment key, the equation description, a vector of commitments and a proof, Verify(·, ·, ·)
outputs a value in {0, 1}; RdProof(·, ·, ·) takes as inputs a commitment key, an equation description, a
vector of pairs of commitments / fresh randomness and a proof, and outputs a new proof adapted to the
randomizations of the commitments.

• Automorphic signatures: let Sig = (Setupsig,KeyGensig, Signsig,Verifysig) denote Scheme 2 in Sect. 4.
For vk = (X,Y ), m = (M,N) and σ = (A,C,D,R, S), let Esig(vk,m, σ) denote the equations in (4)
and the following two equations: e(X,H) = e(G, Y ) and e(M,H) = e(G,N). (We implicitly assume
fixed parameters (G,F,H,K, T ).) Analogously, let E′sig(vk, (m1,m2), σ) be the verification relations for a
signature on a message consisting of 2 DH-pairs (cf. Sect. 6.1).

C.2 Instantiation

Setupaps(1λ)

• Generate a bilinear group BG for security parameter λ.

• Run Setupsig(BG) to get parameters ppsig.

18



• Run KeyGensig(ppsig) to produce a key pair (ipk, ik). Return the public parameters pp := (ppsig, ipk)
and the issuer’s key ik.

Regaps is a protocol between a new user, the issuer and the user’s opener.

• The user runs (vk, sk) ← KeyGensig(ppsig) and produces a signature (possibly via an external PKI11)
σpki on vk. She sends (vk, σpki) to the issuer and vk to the opener.

• The issuer checks σpki, produces cert ← Signsig(ik, vk), sends cert to the user, and writes (vk, σpki) to
its register.

• The opener runs (ck, ek) ← ExSetup(BG) and sends ck to the user. It sets the opening key as ok :=
(vk, ck, ek).

• The user sets his public key upk = (vk, ck) and his secret key usk = (upk, sk, cert).

Delgtaps(usk, [warr], upk)

• Set k = 0 if this is an original delegation (i.e., there is no optional argument warr), otherwise let k be s.t.
this is the k-th intermediate delegation. Parse usk as

(
(vkk, ckk), skk, certk

)
and upk as (vkk+1, ckk+1).

• If k = 0 then choose an identifier id, compute warr0→1 ← Signsig
(
sk0, (Hash(id‖1), vk1)

)
and return

(ck, id, vk0,warr0→1).

• If k = 1 then do the following:

− Parse warr as (ck, id, vk0,warr0→1).
− Compute warr1→2 ← Signsig

(
sk1, (Hash(id‖2), vk2)

)
.

− Choose ρ(v), ρ(c), ρ
(w)
1 , ρ

(w)
2 ← Z 3

p and compute the following commitments and proofs:

cwarr0→1 ← Com(ck,warr0→1, ρ
(w)
1 ), cvk1 ← Com(ck, vk1, ρ

(v)), ccert1 ← Com(ck, cert1, ρ(c)),
cwarr1→2 ← Com(ck,warr1→2, ρ

(w)
2 ), cvk2 ← Com(ck, vk2, 0), (Footnote12)

φcert1 ← Prove
(
ck, Esig(ipk, ·, ·), ((vk1, ρ

(v)
1 ), (cert1, ρ(c))

)
,

φwarr0→1 ← Prove
(
ck, E′sig

(
vk0, (Hash(id‖1), ·), ·

)
,
(
(vk1, ρ

(v)), (warr0→1, ρ
(w)
1 )

))
,

φwarr1→2 ← Prove
(
ck, E′sig

(
·, (Hash(id‖2), ·), ·

)
,
(
(vk1, ρ

(v)), (vk2, 0), (warr1→2, ρ
(w)
2 )

))
.

− Return warr′ :=
(
ck, id, vk0, (cwarr0→1 , φwarr0→1 , cvk1 , ccert1 , φcert1), cwarr1→2 , φwarr1→2 , cvk2

)
.

• Otherwise, do the following:

− Parse warr as
(
ck, id, vk0, (cwarr(i−1)→i

, φwarr(i−1)→i
, cvki , ccerti , φcerti)

k−1
i=1 ,

cwarr(k−1)→k
, φwarr(k−1)→k

, cvkk

)
.

− Compute warrk→(k+1) ← Signsig
(
skk, (Hash(id‖k + 1), vkk+1)

)
.

− Choose randomness for commitments and randomization: Pick ρ(v)
i , ρ

(c)
i , ρ

(w)
i ← Z 3

p for 1 ≤ i ≤
k and ρ(w)

k+1 ← Z 3
p .

− Randomize the commitments and adapt the proofs in warr:
For 1 ≤ i ≤ k: c′warr(i−1)→i

← RdCom(ck, cwarr(i−1)→i
, ρ

(w)
i ), c′vki

← RdCom(ck, cvki , ρ
(v)
i ),

φ′warr(i−1)→i
← RdProof

(
ck, E′sig

(
·, (Hash(id‖ i), ·), ·

)
,

((cvki−1 , ρ
(v)
i−1), (cvki , ρ

(v)
i ), (cwarr(i−1)→i

, ρ
(w)
i )), φwarr(i−1)→i

)
.

For 1 ≤ i ≤ k − 1: c′certi ← RdCom(ck, ccerti , ρ
(c)
i ),

φ′certi ← RdProof
(
ck, Esig(ipk, ·, ·),

(
(cvki , ρ

(v)
i ), (ccerti , ρ

(c)
i )
)
, φcerti

)
.

11To achieve strong notions of non-frameability, it is necessary to assume an external PKI infrastructure (cf. [BSZ05])
12cvk2 is thus a trivial commitment.

19



− Compute the following commitments and proofs:
ccertk ← Com(ck, certk, ρ

(c)
k ), cwarrk→(k+1)

← Com(ck,warrk→(k+1), ρ
(w)
k+1),

cvkk+1
← Com(ck, vkk+1, 0),

φcertk ← Prove
(
ck, Esig(ipk, ·, ·), ((vkk, ρ

(v)
k ), (certk, ρ

(c)
k )
)
,

φwarrk→(k+1)
← Prove

(
ck, E′sig

(
·, (Hash(id‖k + 1), ·), ·

)
,

((vkk, ρ
(v)
k ), (vkk+1, 0), (warrk→(k+1), ρ

(w)
k+1))

)
.

− Return warr′ =
(
ck, id, vk0, (c′warr(i−1)→i

, φ′warr(i−1)→i
, c′vki

, c′certi , φ
′
certi)

k−1
i=1 ,

(c′warr(k−1)→k
, φ′warr(k−1)→k

, c′vkk
, ccertk , φcertk), cwarrk→(k+1)

, φwarrk→(k+1)
, cvkk+1

)
.

PSignaps(usk,warr,msg) Signing is done similarly to delegation, where the message now plays the rôle of vkk+1.
Since the message is public, there is no need to commit to it; moreover, ck and vk0 are part of the verification
key and need thus not be included in the signature (see (10)).

Verifyaps(upk,msg,Σ)

• Parse upk as (vk0, ck) and parse the signature Σ as(
id, (cwarr(i−1)→i

, φwarr(i−1)→i
, cvki , ccerti , φcerti)

k
i=1, csig, φsig

)
. (10)

• Return 1 if all of the following return 1, otherwise return 0.

− Verify
(
ck, Esig(ipk, ·, ·), (cvki , ccerti), φcerti

)
, for 1 ≤ i ≤ k;

− Verify
(
ck, E′sig(·, (Hash(id‖ i), ·), ·), (cvki−1 , cvki , cwarr(i−1)→i

), φwarr(i−1)→i

)
, for 1 ≤ i ≤ k;

− Verify
(
ck, E′sig(·, (Hash(id‖k + 1),msg), ·), (cvkk

, csig), φsig
)
.

Openaps(ok,msg,Σ) Parse ok as (vk, ck, ek), parse Σ as (10) and check if it is valid. If so then set vki ←
Extr(ek, cvki) and warr(i−1)→i ← Extr(ek, cwarr(i−1)→i

) for 1 ≤ i ≤ k, and sig ← Extr(ek, csig). Return(
(vk1, . . . , vkk), (warr0→1, . . . ,warr(k−1)→k, sig)

)
, where the second component is the proof.

D One More Extension: Multiple Original Delegators

If in anonymous proxy signatures, we allow delegation to take the form of a tree (whose leaves represent original
delegators) rather than a list, we can define proxy signatures on behalf of several originators. For example, consider
three original delegatorsO, P , Q, the first of which delegates toA who re-delegates toB. UserB is also delegated
by P and re-delegates the rights for both O and P to C. Moreover Q delegates to C. Now C can produce a
signature on behalf of O, P and Q.

In general, we define a multi-originator signature (MOS) recursively: A (plain) MOS consists of a signature
on the message, the signer’s verification key and a list of objects del for the signer (which represent the delegations
to her). A del for user U is either a warrant from an originator for U or a warrant from a user U ′, the verification
key of U ′ and a list of del’s for U ′. A (plain) signature on behalf of a set of originators is valid if the signature
on the message is valid, all warrants are valid and it contains a warrant from each of the originators. As for the
single-originator case, a plain signature is anonymized by committing to its components and adding proofs of
validity.

In the above example, a signature by C on behalf of O, P and Q then has the following form (we let ψU1→U2

denote cU1→U2 ‖φU1→U2 , and ψM denote a commitment to sig and a proof of validity):{
ψM , cC ,

{{
ψB→C , cB, {{ψA→B, cA, ψO→A}, ψP→B}

}
, ψQ→C

}}
.

20


