
Tweakable Enciphering Schemes From Stream Ciphers With IV

Palash Sarkar

Applied Statistics Unit
Indian Statistical Institute
203, B.T. Road, Kolkata

India 700108.
email: palash@isical.ac.in

Abstract. We present the first construction of a tweakable enciphering scheme from a stream cipher
supporting an initialization vector. This construction can take advantage of the recent advances in
hardware efficient stream ciphers to yield disk encryption systems with a very small hardware footprint.
Such systems will be attractive for resource constrained devices.
Keywords: stream cipher with IV, tweakable encryption, disk encryption.

1 Introduction

A length preserving permutation is a bijective function from binary strings to binary strings such
that the lengths of the input and the output strings are equal. A length preserving encryption
function is a family {EK}K∈K of length preserving permuations which is indexed by a secret key
K. Both EK and its inverse E−1

K has to be efficiently computable for every value of K. The security
requirement is that for a uniform random K, the pair of functions EK ,E−1

K is computationally
indistinguishable from Γ,Γ−1, where Γ is a uniform random length preserving permutation of the
set of all binary strings, i.e., for each possible i, Γ is a uniform random permutation of {0, 1}i.

The above extends the notion of strong pseudorandom permutation (SPRP) that was introduced
by Luby and Rackoff [10] to handle variable length strings. This extension was introduced by Halevi
and Rogaway [7]. They also incorporated the idea of tweak from [9] into the above definition.
A tweak is an additional input to EK and the idea of the tweak is to provide for flexibility in
applications. A tweakable length preserving encryption function satisfying the above notion of
security is called a tweakable enciphering scheme (TES). An important practical application of a
TES is that of disk encryption. In this application, the disk is encrypted sector-wise and the sector
address corresponds to the tweak. Till date all known constructions of TES have used a block cipher
in a particular mode of operation. There are several such constructions [7, 8, 11, 18, 4, 12, 16, 14, 17].
Our Contributions. We present the first construction of a TES using a stream cipher with
an initialization vector (IV). This has important consequences to the practical problem of disk
encryption. In this application, the implementation is typically in hardware and the module resides
just above the disk controller in the overall architecture.

Stream ciphers are nowadays designed for two widely different environments – for extremely
fast software implementation and for very small hardware foot print. In the recently concluded
estream [1] selection these are called Profile 1 and Profile 2 respectively. There are some hardware
efficient stream ciphers in Profile 2. Our construction makes it possible to use such stream ciphers to
build a TES for disk encryption system. Overall this would lead to a hardware which is significantly
smaller than any hardware implementing a block cipher.

The construction makes three calls to the stream cipher with three IVs. For the first two calls,
n bits of the generated keystream are used, where n is the length of the IV supported by the
stream cipher. The third call to the stream cipher generates the main keystream which is used

to encrypt most of the message (whole of the message except for the first 2n bits). Typically, a
stream cipher with IV requires an initialization phase which can take much more time compared to
the key generation phase. Consequently, it is useful to keep the number of initializations as small
as possible. The three calls to the stream cipher that the TES construction makes require three
initializations. This does not impact the performance too much.

Apart from the stream cipher, the TES construction uses an almost XOR universal (AXU)
hash function. The role of this hash function is similar to that played in the block cipher based
construction [17]. The differences are in the way the hashing keys are derived and the manner
in which the tweak and the length are handled. When working with a block cipher, it is easy to
apply the block cipher encryption to a string and consider the output to be a hash key. Doing the
same with an IV based stream cipher can be time consuming, since it will involve a stream cipher
initialization. This necessitated some changes to the actual hash function design compared to [17].

An AXU hash function can be instantiated by usual polynomial hashing or the more efficient
hashing introduced by Bernstein [3] based on earlier work by Rabin and Winograd [13] which is
called BRW hashing. BRW hashing requires about half the number of multiplications compared
to usual polynomial hashing. Another design of AXU hash function [15] uses a tower field rep-
resentation of GF (2n) and does not require any multiplication at all. The trade-off, however, is
that the size of the hashing key is as long as the message. Later we show how to tackle this in
the context of disk encryption. Combining a hardware efficient stream cipher with the AXU hash
function from [15] gives rise to an efficient TES with a very small hardware footprint. This will be
attractive for implementing disk encryption on resource constrained systems such as portable and
handheld devices.

1.1 Previous and Related Works

2 Construction

We follow the notation used in [16, 17]. Firstr(Z) denotes the most significant r bits of the n-bit
binary string Z and padi(Z) denotes the string obtained from Z by appending i zero bits; for
0 ≤ ℓ ≤ 2n − 1, binn(ℓ) denotes the n-bit binary representation of ℓ.

Let IF = GF (2n) be the finite field of 2n elements. The addition operation over IF will be
denoted by ⊕. Elements of IF can also be considered to be n-bit strings. Let h : K × IFm → IF be
a function such that for X,X′ ∈ IFm, X 6= X′ and for any γ ∈ IF, Prτ [hτ (X) ⊕ hτ (X′) = γ] ≤ ǫ,

where hτ (X)
∆
= h(τ,X) and the probability is over uniform random choice of τ . Such an h is called

an ǫ-almost XOR universal (AXU) hash function. Note that ǫ could depend on m (correspondingly,
we write ǫm). Usual polynomial hashing requires m multiplications and has ǫm = m/2n. If the
BRW [3] polynomials are used to instantiate h then max(1, ⌊m/2⌋) multiplications are required
(assuming that the terms τ2, τ4, . . . are pre-computed and available) and ǫm = m/2n−1. Another
possibility for instantiating h is from [15] which has ǫm = 1/2n for all m and does not require any
multiplications; but, the length of the key τ is as long as the message. Later we discuss how to
tackle this issue in the context of TES.

We also require h to satisfy an ǫ-uniformity property: for any X ∈ IFm and γ ∈ IF, Prτ [hτ (X) =
γ] ≤ ǫ. For an ǫ-AXU function, this property is satisfied if h is linear which is the case for the above
mentioned instantiations.

A hash function with double block output [17]. Let hτ : ∪i≥1IF
i → IF be an AXU function,

such that for X,X′ ∈ IFm with X 6= X′, Prτ [hτ (X) = hτ (X′)] ≤ ǫm. Define Υτ : ∪i≥3IF
i → IF2 as

2

follows

Υτ (X1,X2,X3, . . . ,Xm) = (X1 ⊕ Z,X2 ⊕ Z) (1)

where Z = hτ (X3, . . . ,Xm).
It is not difficult to show that for X 6= X′, Prτ [Υτ (X) = Υτ (X

′)] ≤ ǫm−2. If (A1, A2) =
Υτ (X1,X2,X3, . . . ,Xm), then (X1,X2) = Υτ (A1, A2,X3, . . . ,Xm), a property which is required for
decryption.

Stream cipher with IV. Let SCK : {0, 1}n → {0, 1}L be a stream cipher with IV, i.e., for every
choice of K, SCK maps an IV of length n bits to a string of length L bits. The length L is assumed
to be long enough for practical sized messages to be encrypted. Actual encryption of a plaintext P
of ℓ bits with an IV V is done by XORing the first ℓ bits of SCK(V) to the message. By a slight
abuse of notation, we will write this as P ⊕ SCK(V). The key K is from a suitable key space and
there is no restriction on this key space. The security proof will assume {SCK} to be a family of
pseudo-random functions, so that the output SCK(V) can be assumed to be indistinguishable from
a uniform random string of length ℓ. This is the design goal of practical stream ciphers with IV.
See [2] for more discussion on this point.

Parsing. Let the length of the plaintext or the ciphertext be ℓ bits. Write ℓ = (m− 1)n+ r, where
1 ≤ r ≤ n. There are a total of m blocks X1, . . . ,Xm, with X1, . . . ,Xm−1 being full blocks and the
length of the last block is r which is a possible partial block. We require ℓ > 2n so that m ≥ 3.

SCTES. The details of the encryption and the decryption algorithms for the tweakable enciphering
scheme are shown in Table 1. The required sub-routine is shown in Table 2. We denote the new
construction by SCTES.

There are three invocations to SCK . Two of these are within the Feistel structure. For each of
these two invocations, the input IV to SCK is an n-bit string. Formally, the output is an L-bit string.
But, only the first n bits are used and hence only these bits are generated. The third invocation
of SCK is for the encryption of the bulk of the message. Again the input IV is an n-bit string and
formally the output is and L-bit string of which only the first (m−2)n bits are generated and used.
The key for all the three invocations is the same key K.

There are 4 invocations of the AXU hash function h. Two of these are in the Feistel structure
and the other two are as part of the two invocations of Υ . The key for the first two is τ ′ while
the key for the other two is τ . The reason for using independent keys is that otherwise certain
probability calculations do not go through.

Informally, Υ ensures that with high probability the inputs to the Feistel structure are distinct.
The Feistel structure itself realizes an SPRP and the input and the output of the Feistel structure
are XORed to form the input to the third invocation of SCK . Assuming the Feistel structure to
be an SPRP ensures that with high probability the inputs to this third invocation of SCK are all
distinct and so the outputs can be assumed to be independent and uniform random strings. Actual
encryption (or decryption) is done by XORing with these strings which ensures that the adversary
is unable to distinguish the plaintext (or ciphertext) from true random strings. This is the intuition
behind the construction and is made precise in the security proof below.

Note that the invertibility of the Feistel structure does not depend on the nature of SCK . This
property has also been used in [17] to construct a TES which does not require the decryption
function of a block cipher. In fact, the construction in [17] can be considered to be a motivation
for the current construction. A lot of the details, however, are different necessitating a separate
security proof.

3

Table 1. Encryption and decryption algorithms. The stream cipher key is K and the hash key is (τ, τ ′). Let K =
(K, τ, τ ′).

P
2

P
3

P
m

C
2

C
1

C
3

C
m

P
1

A21A

1B B2

M2

1M
Feistel
Layer

Hash ...

...

M

Hash

SC
K

Algorithm EncryptT
K

(P1, . . . , Pm)
1. Mm = padn−r(Pm);
2. (A1, A2) = Υτ (P1, . . . , Pm−1, Mm, T, binn(ℓ));
3. (B1, B2) = FeistelK,τ ′(A1, A2);
4. M1 = A1 ⊕ B1; M2 = A2 ⊕ B2; M = M1 ⊕ M2;
5. (C3, . . . , Cm−1, Cm)

= (P3, . . . , Pm−1, Pm) ⊕ SCK(M);
6. Um = padn−r(Cm);
7. (C1, C2) = Υτ (B1, B2, C3, . . . , Cm−1, Um, T, binn(ℓ));
return (C1, . . . , Cm).

Algorithm DecryptT
K

(P1, . . . , Pm)
1. Um = padn−r(Cm);
2. (B1, B2) = Υτ (C1, . . . , Cm−1, Um, T, binn(ℓ));
3. (A1, A2) = Feistel−1

K,τ ′(B1, B2);

4. M1 = A1 ⊕ B1; M2 = A2 ⊕ B2; M = M1 ⊕ M2;
5. (P3, . . . , Pm−1, Pm)

= (C3, . . . , Cm−1, Cm) ⊕ SCK(M);
6. Mm = padn−r(Pm);
7. (P1, P2) = Υτ (A1, A2, P3, . . . , Pm−1, Mm, T, binn(ℓ));
return (P1, . . . , Pm).

Table 2. A four-round Feistel construction. (A similar construction was used in [17].)

A1

H1

G1

F2 G2

H2

B1

A2

B2

F1

SCK

SCK

h

h

FeistelK,τ ′(A1, A2)
1. H1 = hτ ′(A1);
2. F1 = H1 ⊕ A2;
3. F2 = A1 ⊕ SCK(F1);
4. B2 = F1 ⊕ SCK(F2);
5. H2 = hτ ′(B2);
6. B1 = H2 ⊕ F2;
return (B1, B2).

Feistel−1
K,τ ′(B1, B2)

1. H2 = hτ ′(B2);
2. F2 = B1 ⊕ H2;
3. F1 = B2 ⊕ SCK(F2);
4. A1 = F2 ⊕ SCK(F1);
5. H1 = hτ ′(A1);
6. A2 = H1 ⊕ F1;
return (A1, A2).

4

Fixed length inputs. If the length of plaintexts and ciphertexts are fixed, then there is no need
to provide binn(ℓ) as input to the hash function. This will improve the efficiency of the construction
(by a small amount) without affecting the security.

2.1 Efficiency

The key for SCTES consists of the key for the stream cipher and the keys τ, τ ′ for the hash functions.
For polynomial based hashing or hashing using the BRW polynomials, both τ and τ ′ are n-bit blocks.

Let [Hm] denote the time for hashing m blocks using h; [ISC] the time for initializing the stream
cipher SC; and [SCi] the time for generating i bits using SC after it has been initialized. The time
complexity of SCTES for encrypting an m-block message is 2([Hm]+[H1])+3[ISC]+[SCℓ−2n]. The
derivation of this cost is explained below.

For some stream ciphers, the initialization time [ISC] can be quite high. This is the reason for
separately accounting for this. The first two initializations are incurred due to the application of
the two SCK calls in the Feistel structure. The third one is to generate the key stream for the actual
encryption of the ℓ − 2n bits of the message which correspond to the blocks P3, . . . , Pm. The time
for this generation is accounted for by the term [SCℓ−2n]. The call Υτ (P1, . . . , Pm−1,Mm, T, binn(ℓ))
in turn invokes hτ (P3, . . . , Pm−1,Mm, T, binn(ℓ)). So, the two calls to Υ requires time 2[Hm]. The
two calls to h within the Feistel structure take [H1] time each. Thus, the total time for hashing is
2([Hm]+[H1]).

If polynomial hashing is used, then the time for hashing is 2(m+1) multiplications over GF (2n),
whereas for BRW-based hashing, the time for hashing is approximately m + 2 multiplications over
GF (2n).

There is a restriction that the message length must be greater than 2n bits. But, there is no
upper bound on the length and varying length messages can be handled. For disk encryption and
other practical applications, the restriction of more than 2n bits on the message length is not a
concern.

2.2 Disk Encryption

A disk is encrypted sector-wise and the sector address is the tweak. The length of each sector is
fixed (typical value is 512 bytes, which correspond to 32 128-bit blocks). In this case, the input
binn(ℓ) to Υ need not be provided. For polynomial or BRW-based hashing, this reduces the number
of multiplications by two.

It has been mentioned in [7] that the hardware for disk encryption resides just above the disk
controller. For such a hardware implementation, it might be worthwhile to use the hashing scheme
from [15]. This scheme does not require any multiplications and being parallelizable is quite efficient
to implement in hardware using registers and XOR gates. The downside is that this scheme requires
a key which is as long as the message. For disk encryption, this means that the key τ ′ used by h in
Υ is also required to be 512 bytes, whereas the key τ ′ used by h in the Feistel structure is 16 bytes
(if n = 128). Note, however, that the same 512 byte key will be used for all the sectors and it is
not the case that each sector requires a different key.

The maintenance of a 512-byte key can be a problem. A way out is to generate this key using
the stream cipher itself. Let κ be an n-bit string and then generate τ as τ = SCK(κ). This τ is
used for the actual hashing. In this case, κ is now the secret key from which the actual hashing key
is derived. The time for generating τ from κ is [ISC]+[SC212]. In practice, τ will be generated once
during a read/write session and hence, the time for generating τ will amortized over the number of

5

sectors which are processed in one session. Effectively, the effect of the time for generating τ from
κ on the overall time will be negligible. Also, the effect of this strategy on the security bound is
negligible.

3 Security

The basic encryption primitive that is used in the construction of SCTES is a stream cipher with
IV. This is defined to be a family of functions {SCK}K∈K, where SCK : {0, 1}n → {0, 1}L. The
proper formal model for this primitive is a PRF [2]. This means that a computationally bounded
adversary is unable to distinguish the output of SCK for a uniform random K from the output of
a uniform random function ρ : {0, 1}n → {0, 1}L.

The security analysis of SCTES that we perform in the paper is information theoretic with SCK

being replaced by a uniform random function ρ. Hence, without loss of generality, the adversary
A can be considered to be a deterministic algorithm. Passing from information theoretic security
to computational security for SCTES is based on the computational security of SCK . This task is
quite standard and follows along lines similar to that taken in moving from information theoretic
to computational security for other constructions. See [7, 5] for details.

The security model for a tweakable enciphering scheme (which can handle inputs of length
greater than 2n bits) is described below. An adversary A interacts with the encryption and the
decryption oracles of the tweakable enciphering scheme and finally outputs either 0 or 1. Oracles are
written as superscripts. The encryption oracle Π takes as input (T, P), where T is an n-bit string
and P is a string of length greater than 2n and returns C which is of length equal to that of P .
Similarly, the decryption oracle Π−1 takes as input (T,C) and returns P . The notation AΠ,Π−1

⇒ 1
denotes the event that the adversary A, interacts with the oracles Π and Π−1, and finally outputs
the bit 1.

We consider an adversary’s advantage in distinguishing a tweakable enciphering scheme from an
oracle which simply returns random bit strings. This advantage is defined in the following manner.

Adv±rnd
Π

(A) = Pr
[

AΠ,Π−1
⇒ 1

]

− Pr
[

A$(.,.),$(.,.) ⇒ 1
]

where $(., P) returns random bits of length |P |. See [7, 6] for other definitions of advantages and
the relation to the above definition of advantage.

The query complexity σn of an adversary is defined to be the total number of n-bit blocks it
provides in all its encryption and decryption queries. This includes the plaintext and ciphertext
blocks as well as the n-bit tweak. By Adv(q, σn) (with suitable sub and super-scripts) we denote the
maximum advantage of any adversary which makes a total of q queries and has query complexity
σn.

Theorem 1. Fix n and σn to be positive integers. Suppose that an adversary uses a total of σn

blocks in all its queries, where each block is an n-bit string.

1. If ǫm ≤ cm/2n for some constant c, then

Adv±rnd
SCTES

(σn) ≤
13q2 + 2cqσn

2n−1
. (2)

2. If ǫm = 1/2n for all m, then

Adv±rnd
SCTES

(σn) ≤
15q2

2n−1
. (3)

6

For the usual polynomial based instantiation of h, the constant c in the above statement is 1 while
for BRW based hashing the constant c is 2. In both cases, we get a qσn/2n type bound which
is significantly better than what has been previously obtained for other tweakable enciphering
schemes. If we use an AXU function for which ǫm = 1/2n (as given in [15]), then the bound
improves to a constant multiple of q2/2n. A few words will be in order to place these bounds in the
proper perspective.

Informally, the reason why we obtain such improved bounds is that we work with a stream
cipher where we can assume the “long” output to be indistinguishable from a uniform random
string. For block cipher based constructions, for any invocation we can only assume that we obtain
a uniform random string of length n bits. Thus, for long strings, the bound invariably is of the
type σ2

n/2n. This may seem to suggest that using a stream cipher gives a better bound. But, the
correct view is that the improvement in the bound on information theoretic security will probably
be compensated by the greater computational advantage of an adversary in attacking the PRF-
property of the stream cipher with IV. So, on the whole, we would say that the computational
bounds for both block and stream cipher based construction will be similar.

The other point is the difference in the bound when ǫm is 1/2n versus when it is bounded above
by cm/2n. In this case, the bound with ǫm = 1/2n is actually better. But, the downside is that for
such hash functions the key is equal to the length of the message. In the context of disk encryption,
the way to tackle such long key length has been discussed in Section 2.2. This method requires
one invocation of the stream cipher with IV and has a miniscule effect on the security which is
accounted for in the constant 15 given in the theorem statement.

3.1 Proof of Theorem 1

We need to consider collisions among internal variables and so we define the internal variables.

Internal variables. There are two invocations of ρ in the Feistel structure and one invocation of
ρ for encryption (or decryption) from the third block onwards. Denote the inputs and outputs of
the Feistel calls by F1, F2 and G1, G2 respectively and denote the input and output of the other call
by F3 and G3. The quantities F1, F2, F3 and G1, G2, G3 can be expressed in terms of the plaintext
and ciphertext blocks.

F1 = hτ ′(A1) ⊕ A2; F2 = B1 ⊕ hτ ′(B2);
G1 = A1 ⊕ F2 = A1 ⊕ B1 ⊕ hτ ′(B2); G2 = B2 ⊕ F1 = B2 ⊕ A2 ⊕ hτ ′(A1);

where Mm = padn−r(Pm), Um = padn−r(Cm) and

A1 = P1 ⊕ hτ (P3, . . . , Pm−1,Mm, T, binn(ℓ)); A2 = P2 ⊕ hτ (P3, . . . , Pm−1,Mm, T, binn(ℓ));
B1 = C1 ⊕ hτ (C3, . . . , Cm−1, Um, T, binn(ℓ)); B2 = C2 ⊕ hτ (C3, . . . , Cm−1, Um, T, binn(ℓ)).

F3 = M = A1 ⊕ A2 ⊕ B1 ⊕ B2 = P1 ⊕ P2 ⊕ C1 ⊕ C2;

G3 =

{

(P3, . . . , Pm−1, Pm||0n−r) ⊕ (C3, . . . , Cm−1,Dm) if ty = enc;
(P3, . . . , Pm−1, Vm) ⊕ (C3, . . . , Cm−1, Cm||0n−r) if ty = dec.

7

Notation. The adversary makes a total of q queries of possibly different lengths. We use the
superscript (s) to denote quantities corresponding to the s-th query. For example, the length is ℓ(s);

the number of blocks is m(s); the tweak is T (s); the plaintext blocks are P
(s)
1 , . . . , P

(s)

m(s) and the

ciphertext blocks are C
(s)
1 , . . . , C

(s)

m(s) . Similarly, we denote the internal variables. A query can be

either an encryption or a decryption query. The variable ty(s) denotes the type of the query, i.e.,
if the query is an encryption query, then ty(s) = enc, and if the query is a decryption query, then
ty(s) = dec.

The oracles Π and Π−1 are built using the uniform random function ρ. Suppose all queries
made by the adversary A are answered in the manner shown in Table 3. For both encrypt and

Table 3. Response to queries from an adversary.

ty(s) = enc

1. choose C
(s)
1 , C

(s)
2 to be independent and uniform random n-bit strings;

2. choose G
(s)
3 to be an independent and uniform random ((m(s) − 2)n)-bit string;

3. set C
(s)
3 , . . . , C

(s)

m(s)
−1

, D
(s)

m(s) to be (P3, . . . , Pm−1, Pm||0n−r(s)

) ⊕ G
(s)
3 ;

4. set C
(s)

m(s) = Firstr(s)(D
(s)

m(s));

5. return C
(s)
1 , . . . , C

(s)

m(s)
−1

, C
(s)

m(s) to the adversary.

ty(s) = dec

1. choose P
(s)
1 , P

(s)
2 to be independent and uniform random n-bit strings;

2. choose G
(s)
3 to be independent and uniform random ((m(s) − 2)n)-bit string;

3. set P3, . . . , P
(s)

m(s)
−1

, V
(s)

m(s) to be (C
(s)
3 , . . . , Cm−1, Cm||0n−r(s)

) ⊕ G
(s)
3 ;

4. set P
(s)

m(s) = Firstr(s)(V
(s)

m(s));

5. return P
(s)
1 , . . . , P

(s)

m(s)
−1

, P
(s)

m(s) to the adversary.

decrypt queries, the adversary obtains independent and uniform random strings. Then clearly A
cannot distinguish between Π,Π−1 and $(·, ·), $(·, ·). But, answering queries in this manner may
not always be consistent with the fact that ρ is a uniform random permutation.

Let E be the event that the random variables F
(1)
3 , . . . , F

(q)
3 take distinct values and further

that these values are distinct from the values taken by the variables F
(1)
1 , F

(2)
2 , . . . , F

(q)
1 , F

(q)
2 . Con-

ditioned on the event E, the uniform random function ρ is applied to the “new” and distinct values

F
(1)
3 , . . . , F

(q)
3 . Consequently, the outputs G

(1)
3 , . . . , G

(q)
3 are independent and uniformly distributed.

(The output of the sth invocation of ρ is an L-bit string and we assume that for any s, G
(s)
3 is

the first (m(s) − 2)n bits of this string.) As a result, using the definition of G3, if ty(s) = enc, then

C
(s)
3 , . . . , C

(s)

m(s)−1
, C

(s)

m(s) is independent of the other random variables and is distributed uniformly

over {0, 1}ℓ(s)−2n; if ty(s) = dec, then P
(s)
3 , . . . , P

(s)

m(s)−1
, P

(s)

m(s) is independent of the other random

variables and is distributed uniformly over {0, 1}ℓ(s)−2n.

Let D be the set of random variables {F
(1)
1 , F

(1)
2 , F

(1)
3 , . . . , F

(q)
1 , F

(q)
2 , F

(q)
3 } and R be the set of

random variables {G
(1)
1 , G

(2)
2 , . . . , G

(q)
1 , G

(q)
2 }. Let Coll(D) be the event that two random variables

in D take the same value and similarly define Coll(R). Note that Coll(D) implies E. Let Coll be the
event Coll(D) ∨ Coll(R). For any adversary A, we clearly have

Pr[AΠ,Π−1
⇒ 1|Coll] = Pr[A$,$ ⇒ 1].

8

In other words, if Coll does not occur, then in the real game, i.e. during the interaction with Π,Π−1,
the adversary gets independent and uniform random strings as responses which is the same as it
would get while interacting with oracles that return independent and uniform random strings.

Pr[AΠ,Π−1
⇒ 1] = Pr[(AΠ,Π−1

⇒ 1) ∧ (Coll ∨ Coll)]

= Pr[(AΠ,Π−1
⇒ 1)|Coll] Pr[Coll] + Pr[(AΠ,Π−1

⇒ 1)|Coll] Pr[Coll]

≤ Pr[Coll] + Pr[AΠ,Π−1
⇒ 1|Coll]

= Pr[Coll] + Pr[A$,$ ⇒ 1].

This gives AdvΠ(A) = Pr[AΠ,Π−1
⇒ 1]−Pr[A$,$ ⇒ 1] ≤ Pr[Coll]. We next obtain an upper bound

for Pr[Coll] which would then complete the proof.

Collision analysis. Below we prove some results on the probability of certain kinds of collisions.

Claim. Let τ ′ be chosen uniformly at random from IF. For 1 ≤ s, t ≤ q, Prτ [F
(s)
1 = F

(s)
2] = 1/2n−1.

Proof of claim. A
(s)
1 = P

(s)
1 ⊕rest(s) and B

(t)
2 = C

(t)
2 ⊕rest

(t)
1 , where rest(s) and rest

(t)
1 are independent

of both P
(s)
1 and C

(t)
2 . So, A1 = B2 holds if and only if P

(s)
1 ⊕ C

(t)
2 = rest(s) ⊕ rest

(t)
1 . If the t-th

query is an encrypt query, then C
(t)
2 is an independent and uniform random string and if the s-th

query is a decrypt query then P
(s)
1 is an independent and uniform random string. So, irrespective

of whether s equals t or not, one of P
(s)
1 and C

(t)
2 is a uniform random string which is independent

of the other as also independent of rest(s) ⊕ rest
(t)
1 . This shows Pr[A

(s)
1 = B

(t)
2] ≤ 1/2n.

Pr[F
(s)
1 = F

(t)
2] = Pr

τ ′

[hτ ′(A
(s)
1) ⊕ A

(s)
2 = hτ ′(B

(t)
2) ⊕ B

(t)
1]

= Pr
τ ′

[(

hτ ′(A
(s)
1) ⊕ A

(s)
2 = hτ ′(B

(t)
2) ⊕ B

(t)
1

)

∧ ((A
(s)
1 = B

(t)
2) ∨ (A

(s)
1 6= B

(t)
2))

]

= Pr
τ ′

[(

hτ ′(A
(s)
1) ⊕ A

(s)
2 = hτ ′(B

(t)
2) ⊕ B

(t)
1

)

|(A
(s)
1 = B

(t)
2)

]

Pr
β1

[A
(s)
1 = B

(t)
2]

+ Pr
τ ′

[(

hτ ′(A
(s)
1) ⊕ A

(s)
2 = hτ ′(B

(t)
2) ⊕ B

(t)
1

)

|(A
(s)
1 6= B

(t)
2)

]

Pr[A
(s)
1 6= B

(t)
2]

≤ Pr[A
(s)
1 = B

(t)
2] + Pr

τ ′

[(

hτ ′(A
(s)
1) ⊕ A

(s)
2 = hτ ′(B

(t)
2) ⊕ B

(t)
1

)

|(A
(s)
1 6= B

(t)
2))

]

≤
2

2n
.

The last inequality follows from the XOR-universal property of h. ⊓⊔

Claim. Suppose that τ and τ ′ are chosen independently and uniformly at random from IF; 1 ≤ s <
t ≤ q and suppose without loss of generality that ℓ(s) ≤ ℓ(t).

1. If (P
(s)
1 , . . . , P

(s)
m−1,M

(s)
m , T (s), binn(ℓ(s))) 6= (P

(t)
1 , . . . , P

(t)
m−1,M

(t)
m , T (t), binn(ℓ(t))), then

Prτ,τ ′ [F
(s)
1 = F

(t)
1] ≤ ǫm(t) + 1/2n.

2. If (C
(s)
1 , . . . , C

(s)
m−1, U

(s)
m , T (s), binn(ℓ(s))) 6= (C

(t)
1 , . . . , C

(t)
m−1, U

(t)
m , T (t), binn(ℓ(t))), then

Prτ,τ ′ [F
(s)
2 = F

(t)
2] ≤ ǫm(t) + 1/2n.

Proof of claim. We prove (1), the proof of (2) being similar. Note that F
(s)
1 = hτ ′(A

(s)
1) ⊕ A

(s)
2 and

F
(t)
1 = hτ ′(A

(t)
1) ⊕ A

(t)
2 .

9

If at least one of ty(s) or ty(t) is equal to dec, then one of P
(s)
2 and P

(t)
2 is a uniform random string

which is independent of all other random variables. So, in this case, it follows from the definition

of F1 that the probability that F
(s)
1 equals F

(t)
1 is 1/2n.

Now suppose that both ty(s) and ty(t) are equal to enc.

Case (P
(s)
3 , . . . , P

(s)
m−1,M

(s)
m , T (s), binn(ℓ(s))) = (P

(t)
3 , . . . , P

(t)
m−1,M

(t)
m , T (t), binn(ℓ(t))). Then neces-

sarily (P
(s)
1 , P

(s)
2) 6= (P

(t)
1 , P

(t)
2) (as otherwise the two queries would be same). If P

(s)
1 = P

(t)
1 (and

so, P
(s)
2 6= P

(t)
2), then A

(s)
1 = A

(t)
1 ; P

(s)
2 6= P

(t)
2 implies A

(s)
2 6= A

(t)
2 whereby we have F

(s)
1 6= F

(t)
1 .

If P
(s)
2 = P

(t)
2 (and so, P

(s)
1 6= P

(t)
1), then A

(s)
2 = A

(t)
2 ; P

(s)
1 6= P

(t)
1 implies A

(s)
1 6= A

(t)
1 whereby

F
(s)
1 = F

(t)
1 implies hτ (A

(s)
1) = hτ (A

(t)
1). Since A

(s)
1 6= A

(t)
1 , by the XOR-universality of h, the last

condition holds with probability 1/2n.

Case (P
(s)
3 , . . . , P

(s)
m−1,M

(s)
m , T (s), binn(ℓ(s))) 6= (P

(t)
3 , . . . , P

(t)
m−1,M

(t)
m , T (t), binn(ℓ(t))). By the XOR-

universality of h, Prτ [A
(s)
1 = A

(t)
1] ≤ ǫm. Also, note that A

(s)
1 , A

(s)
2 , A

(t)
1 and A

(t)
2 are independent of

τ ′.

Pr
τ,τ ′

[F
(s)
1 = F

(t)
1] = Pr

τ,τ ′

[hτ ′(A
(s)
1) ⊕ A

(s)
2 = hτ ′(A

(t)
1) ⊕ A

(t)
2]

≤ Pr
τ

[A
(s)
1 = A

(t)
1] + Pr

τ ′

[hτ ′(A
(s)
1) ⊕ A

(s)
2 = hτ ′(A

(t)
1) ⊕ A

(t)
2 |(A

(s)
1 6= A

(t)
1)]

≤ ǫm +
1

2n
.

The last relation holds due to the XOR-universality of h. ⊓⊔

Claim. Let 1 ≤ s, t ≤ q.

1. Prτ ′ [F
(s)
3 = F

(t)
1] = Prτ ′ [F

(s)
3 = F

(t)
2] = 1

2n .

2. If s 6= t, then Pr[F
(s)
3 = F

(t)
3] = 1

2n .

Proof of claim.

(1). We prove the result for Prτ ′ [F
(s)
3 = F

(t)
1], the other case being similar. If s 6= t, then P

(s)
1 is

independent of F
(t)
1 and since F

(s)
3 = P

(s)
1 ⊕ P

(s)
2 ⊕ C

(s)
1 ⊕ C

(s)
2 , Pr[F

(s)
3 = F

(t)
1] = 1/2n without

involving τ ′. So suppose that s = t. Then F
(s)
3 ⊕ F

(t)
1 = A

(s)
1 ⊕ B

(s)
1 ⊕ B

(s)
2 ⊕ hτ ′(A

(s)
1). The result

now follows from the uniformity property of h.

(2). Since s 6= t, P
(s)
1 , P

(s)
2 , C

(s)
1 , C

(s)
2 and P

(t)
1 , P

(t)
2 , C

(t)
1 , C

(t)
2 are independent and uniformly dis-

tributed and so F
(s)
3 = P

(s)
1 ⊕P

(s)
2 ⊕C

(s)
1 ⊕C

(s)
2 and F

(t)
3 = P

(t)
1 ⊕P

(t)
2 ⊕C

(t)
1 ⊕C

(t)
2 are independent

and uniformly distributed. ⊓⊔

Claim. Let 1 ≤ s, t ≤ q.

1. Pr[G
(s)
1 = G

(t)
2] = 1

2n .

2. If s 6= t, then Pr[G
(s)
1 = G

(t)
1] = Pr[G

(s)
2 = G

(t)
2] = 1

2n .

10

Proof of claim. Recall that G1 = A1 ⊕ B1 ⊕ hτ ′(B2) and G2 = A2 ⊕ B2 ⊕ hτ ′(A1). So, we can
write G1 = P1 ⊕C1 ⊕ rest and G2 = P2 ⊕C2 ⊕ rest1 where P1, C1, P2, C2 is independent of rest and
rest1. For any query, one of P1 and C1 is a uniform random string which is independent of all other
strings and similarly for P2 and C2. Consequently, for any query P1⊕C1 and P2 ⊕C2 are uniformly
distributed and independent of each other as well as rest and rest1. Using this, it is easy to obtain
the stated probabilities. ⊓⊔

Claim. 1. Pr[Coll(R)] ≤ q2/2n−2.
2. (a) If ǫm ≤ cm/2n for some constant c, then Pr[Coll(D)] ≤ 11q2/2n + 2cqσ/2n−1.

(b) If ǫm = 1/2n for all m, then Pr[Coll(D)] ≤ 13q2/2n.

Proof of claim. There are a total of 2q random variables in R and the probability that any two of
these take the same value is 1/2n. This gives the bound on the probability of Coll(R).

D contains 3q random variables. Apart from the q(q − 1) pairs of random variables of the form

(F
(s)
1 , F

(t)
1) and (F

(s)
2 , F

(t)
2), the probability that any other pair of random variables take the same

value is 1/2n. The probability that a pair of the form (F
(s)
j , F

(t)
j), j = 1, 2 take the same value is

ǫm(t) + 1/2n. If ǫm = 1/2n for all m, then the result easily holds.
Suppose that ǫm ≤ cm/2n. Let m(1) ≥ m(2) ≥ · · · ≥ m(q). Then the probability that any pair

of the form (F
(s)
j , F

(t)
j), j = 1, 2 take the same value is at most

q2

2n
+

2c

2n
×

q−1
∑

s=0

(q − s)ms+1 ≤
q2

2n
+

2qc

2n
×

q−1
∑

s=0

ms+1

≤
q2

2n
+

cqσ

2n−1
.

Now the statement of Theorem 1 follows. ⊓⊔

References

1. eSTREAM, the ECRYPT Stream Cipher Project. http://www.ecrypt.eu.org/stream/.
2. Côme Berbain and Henri Gilbert. On the security of IV dependent stream ciphers. In Alex Biryukov, editor,

FSE, volume 4593 of Lecture Notes in Computer Science, pages 254–273. Springer, 2007.
3. Daniel J. Bernstein. Polynomial evaluation and message authentication, 2007. http://cr.yp.to/papers.html#

pema.
4. Debrup Chakraborty and Palash Sarkar. HCH: A new tweakable enciphering scheme using the hash-encrypt-hash

approach. In Rana Barua and Tanja Lange, editors, INDOCRYPT, volume 4329 of Lecture Notes in Computer

Science, pages 287–302. Springer, 2006. full version available at http://eprint.iacr.org/2007/028.
5. Debrup Chakraborty and Palash Sarkar. A general construction of tweakable block ciphers and different modes

of operations. IEEE Transactions on Information Theory, 54(5):1991–2006, 2008.
6. Shai Halevi. Invertible universal hashing and the TET encryption mode. In Alfred Menezes, editor, CRYPTO,

volume 4622 of Lecture Notes in Computer Science, pages 412–429. Springer, 2007.
7. Shai Halevi and Phillip Rogaway. A tweakable enciphering mode. In Dan Boneh, editor, CRYPTO, volume 2729

of Lecture Notes in Computer Science, pages 482–499. Springer, 2003.
8. Shai Halevi and Phillip Rogaway. A parallelizable enciphering mode. In Tatsuaki Okamoto, editor, CT-RSA,

volume 2964 of Lecture Notes in Computer Science, pages 292–304. Springer, 2004.
9. Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block ciphers. In Moti Yung, editor, CRYPTO,

volume 2442 of Lecture Notes in Computer Science, pages 31–46. Springer, 2002.
10. Michael Luby and Charles Rackoff. How to construct pseudorandom permutations from pseudorandom functions.

SIAM J. Comput., 17(2):373–386, 1988.
11. David A. McGrew and Scott R. Fluhrer. The extended codebook (XCB) mode of operation. Cryptology ePrint

Archive, Report 2004/278, 2004. http://eprint.iacr.org/.

11

12. Kazuhiko Minematsu and Toshiyasu Matsushima. Tweakable enciphering schemes from hash-sum-expansion.
In K. Srinathan, C. Pandu Rangan, and Moti Yung, editors, INDOCRYPT, volume 4859 of Lecture Notes in

Computer Science, pages 252–267. Springer, 2007.
13. Michael O. Rabin and Shmuel Winograd. Fast evaluation of polynomials by rational preparation. Communications

on Pure and Applied Mathematics, 25:433–458, 1972.
14. Palash Sarkar. A general mixing strategy for the ECB-Mix-ECB mode of operation. Inf. Process. Lett.,

109(2):121–123, 2008.
15. Palash Sarkar. A new universal hash function and other cryptographic algorithms suitable for resource constrained

devices. Cryptology ePrint Archive, Report 2008/216, 2008. http://eprint.iacr.org/.
16. Palash Sarkar. Efficient tweakable enciphering schemes from (block-wise) universal hash functions. IEEE Trans-

actions on Information Theory, 2009. To appear.
17. Palash Sarkar. Tweakable enciphering schemes using only the encryption function of a block cipher. Cryptology

ePrint Archive, Report 2009/216, 2009. http://eprint.iacr.org/.
18. Peng Wang, Dengguo Feng, and Wenling Wu. HCTR: A variable-input-length enciphering mode. In Dengguo

Feng, Dongdai Lin, and Moti Yung, editors, CISC, volume 3822 of Lecture Notes in Computer Science, pages
175–188. Springer, 2005.

12

