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Abstract. A few of non-linear approximation methods for Boolean func-
tions have been developed but they are not of practical application. How-
ever, if a low order Boolean function can be found that can nearly ap-
proximate a higher order Boolean function of an encryption technique
then the low order Boolean function can be used to exploit the cipher.
Such a technique can become a strong cryptanalytic tool and can sneak
in a cipher. In this article, an efficient method has been devised to find
non-linear low degree approximation of the Boolean function. The algo-
rithm is based on non-linear filter generator followed by solving Galois
field 2 equations. To find best approximations execution time of the pro-
posed algorithm is tremendously low as compared the brute force search.
Suggested method is very efficient and of practical nature.

1 Introduction

Boolean functions have wide applications in Cryptography. A cryptographic
Boolean function must be of high degree along with high non-linearity, resiliency
and algebraic immunity. However, low degree approximating function of a high
degree Boolean function of any cipher may threaten its security. A low order
Boolean function that can well approximate a higher order Boolean function
can be used to mount any cryptanalytic attack against a cipher. Linear ap-
proximations can be obtained efficiently while using algorithms based on fast
Walsh transform. To find non-linear approximations in an efficient way is still
an open area of research. Amongst available are these [1–3]. Most of them reveal
cryptographic relevance of finding low degree approximations and offer some
theoretical results without any practical application. Lower bounds of high or-
der nonlinearities and their relation with algebraic immunity is reported in some
recent researches including [4–6]; however they do not offer any method to find
non-linearity profile of a Boolean function. This article is devoted to determine
the same in a practical way. The proposed method is a two stage scheme, firstly,
find approximations independent of correlation coefficient, secondly, getting the
highest correlation coefficient amongst these approximations. The success of our
algorithm in finding best approximation of the specified lower degree is demon-
strated by its application on cryptographically important Boolean function of
up to ten variables.
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Our solution is a search method that follows the concept by Golic [1] to
represent non-linear approximation as a linear recurring sequence generated by
binary linear filter generators. However, instead of using the decoding procedure
iteratively, we use simultaneous solution of equations. Our objective is to obtain
best approximation. For Boolean functions with smaller number of variables we
have verified using the brute force search that our search method can success-
fully find best approximation. Any method other than brute force search does
not exist which can find exactly the best low order approximation. That is why
we compare our method with the brute force search first to verify that our search
succeeds in finding best low order approximation and another comparison is of
time taken by both.

Rest of the paper is organized as follows: Section 2 is about related work,
in Section 3 proposed algorithm for finding low order approximations with its
performance and efficiency and some applications is discussed. The article is
concluded finally in Section 4.

2 Previous Work

Maurer considered Boolean function of n variables and r degree as code words of

a binary rth -order Reed Muller code (RM) with parameters (2n,
r∑

i=0

(
n
i

)
, 2n−r),

[2]. Thus the problem of finding best low degree approximation or higher order
non-linearity of a Boolean function may be seen as decoding problem of second
order Reed Muller code RM(2,m). While first order non-linearity is algorithmi-
cally related with Walsh transform, very little is known about finding higher
order, even 2nd order, non-linearity. Some work can be found in [7, 8]. But these
give bounds mainly for some peculiar functions in small number of variables.

Another approach for finding low order approximations given by Millan [3] is
based on finding Hamming sphere sampling of order r to find an approximation
of the same order. Each Hamming sphere thus finds a candidate approximation
function to a given Boolean function, for each candidate the correlation coef-
ficient is calculated and the one with maximum magnitude of the correlation
coefficient is then picked as a low order approximation.

Golic [1] applied iterative error-correction algorithms to find non-linear ap-
proximation of a Boolean function, which is represented as a linear recurring
sequence generated by binary linear filter generators. The procedure comprises
of two steps, in first step the code words of the linear code and required par-
ity check equations are developed. Whereas in the second step linear recurring
sequence is obtained which corresponds to the approximation of the given func-
tion by using iterative probabilistic or majority-logic decoding algorithm. His
solution is thus based on appropriate parity-checks that imply that the observed
set of the codeword bits should be closed with respect to all the parity-checks
used. The decision process is then repeated iteratively. At the end of iterations
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the Hamming distance to the best low degree approximation is considerably
reduced.

3 Proposed Algorithm for Low Degree Approximation

Correlation coefficient is a parameter to compare a given high degree Boolean
function to its low degree candidate. The correlation coefficient between any two
Boolean functions f(x) and g(x) of n variables is defined following [9],

c(f, g) = 2−n
∑
X

(−1)f(X(−1)g(X) = Pr{f = g} − Pr{f 6= g}

where X = (x1, x2, ..xn).
Our algorithm for finding low degree approximation involves the simultaneous
solution of linear equations. First step of generating equations is inspired from
the method described in [1]. The low degree approximations of a Boolean func-
tion are computed irrespective of the value of correlation coefficient. Among
these approximations one can find the best possible approximation based on the
value of correlation coefficient.

For an n-variables Boolean function f(X) of degree d, a linear feedback
shift register (LFSR) of length n is considered with a primitive feedback poly-
nomial. If r(< d)-degree approximations of f(X) are required, then total of

K = 2C , C =
r∑

i=0

(
n
i

)
, candidate Boolean functions are there. All of these

K Boolean functions can be expressed as a linear combination of C Boolean
monomials or product Boolean functions. Step wise execution of the proposed
procedure is explained next as Algorithm 1.

Algorithm 1 Search Algorithm for non-linear approximations of Boolean func-
tion
Require: A Boolean function f of n variables and degree d, An LFSR l of length n

with primitive polynomial h, A set S of C (all) product Boolean functions of degree
up to r in Lex order

Ensure: A Boolean function g of degree r, (r < d)
1: select any initial state of LFSR l
2: Clock the LFSR C times, and obtain output bits filtered from each element of set

S.
3: Generate a matrix A, (C × C). Each row of which represents the output bits

generated by one element of set S
4: Generate a vector B, (1× C), of the output bits filtered by f
5: Solve the system of equations AX = BT

6: Obtain function g, using the values of X as coeff of its ANF
7: Calculate the correlation coeffiecient c between f and g

Approximating function of the required correlation coefficient can be ob-
tained by using all possible initial states of LFSR or until no other good lower
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degree approximation exists. To improve further experiment can be repeated
with different feedback polynomial.

3.1 Analysis and Results

For simulation we have developed an automated procedure implemented in
Maple 10 [10] to find all r-degree approximations of a given Boolean function
with one primitive polynomial used as the connection polynomial and all possi-
ble initial states of the LFSR. All simulations are performed on a PC with CPU
at 1.73 GHz and 1 GB RAM. To optimize the implementation a set S′ = S−{1}

of product monomials is used and thus C =
r∑

i=1

(
n
i

)
. Boolean functions which

can be generated as a linear combination of product monomials of set S would
also include all compliments of the functions obtained from the set S′.

Experiments with some small Boolean functions reveal the performance ef-
ficiency of the proposed algorithm over the brute force search. Our algorithm
to find second degree approximation is executed for following (n,m,d,u)-Boolean
functions (5, 1, 3, 12), (6, 1, 4, 24) and (7, 2, 4, 56). Where n is the number of
variables of a Boolean function which possess resiliency of order m , algebraic
degree d and non-linearity u. . Execution time of our proposed method is com-
pared with that of brute force search for finding second degree approximation of
Boolean functions of 4, 5, 6 and 7 variables, as presented in Table 1. Verifying
our results for functions with larger number of variables is not possible because
of the time required for brute force search, as is obvious from the table below.
However, we have applied our method on Boolean functions of higher degree also
which will be shown in coming section.

Table 1. A Comparison of Time to Find 2nd Degree Approximations With One Prim-
itive Polynomial Using Proposed Algorithm and All Possible Second Degree Approxi-
mations Using Brute Borce Search of Boolean functions of 4, 5, 6 and 7 Variables

n = 4 n = 5 n = 6 n = 7

Time to find 2n − 1 0.42 sec 1.43 sec 4.88 sec 17.97 sec
2nd degree approximations

with one primitive polynomial
and all initial states

of the corresponding LFSR
using proposed heuristic

Time to find all possible 2nd 2.09 min 7 min 1.12 hour 17,690 hours
degree approx using
brute force search

First row of Table 1 represents the time of our proposed method when ap-
proximations are obtained with all possible initial states of an LFSR of required
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length. The second row is to give the time for Brute force search. The success
of our method lies in the fact that amongst 2n − 1 approximations obtained by
one primitive polynomial, we obtain one or more approximation with highest
possible correlation coefficient, as confirmed by brute force search. To make out
the performance of proposed method, consider a (5, 1, 3, 12) Boolean function:
f : (x1, x2, x3, x4, x5) −→ (x1 +x2 +x3 +x4 +x5 +x1x3 +x2x4 +x3x5 +x1x4 +
x2x5 + x1x2x4 + x1x3x4 + x2x4x5 + x1x3x5 + x2x3x5) There are a total of (

2C , C =
2∑

i=1

(
5
i

)
) 32768 Boolean functions of 2nd degree which can approxi-

mate our Boolean function of degree 3. Among these, there are 26 2nd degree
approximations that have 0.625 correlation coefficient with the original function
obtained through brute force search. Table 2 lists all the best 2nd degree approx-
imations of the above considered (5, 1, 3, 12)-Boolean function with 3rd column
showing if it were found using proposed method or not. Following 6 primitive

Table 2. List of all 2nd degree approx of the (5, 1, 3, 12)-function with corr. coeffi-
cient 0.625 obtained by brute-force search with the detail that if our proposed method
succeeds in finding it

No. 2nd degree approx. Y/N

1 x3 + x5 + x1x4 + x1x5 + x2x3 + x2x4 + x3x4 + x3x5 + x4x5 Y

2 x3 + x4 + x5 + x1x5 + x2x3 + x3x5 N

3 x2 + x5 + x1x2 + x1x3 + x1x4 + x1x5 + x2x3 + x2x5 + x4x5 Y

4 x2 + x4 + x1x2 + x1x3 + x2x3 + x2x4 + x3x4 + x3x5 + x4x5 N

5 x2 + x3 + x4 + x1x2 + x2x4 + x4x5 N

6 x2 + x3 + x4 + x5 + x1x2 + x1x5 + x2x4 + x2x5 + x3x5 Y

7 x1 + x4 + x1x2 + x1x4 + x1x5 + x2x5 + x3x4 + x3x5 + x4x5 Y

8 x1 + x4 + x5 + x1x2 + x1x4 + x3x4 Y

9 x1 + x3 + x1x2 + x1x3 + x1x5 + x2x3 + x2x4 + x2x5 + x3x4 Y

10 x1 + x3 + x4 + x5 + x1x2 + x1x3 + x1x4 + x2x3 + x3x5 N

11 x1 + x2 + x5 + x2x3 + x2x5 + x4x5 Y

12 x1 + x2 + x4 + x5 + x1x4 + x2x3 + x2x4 + x2x5 + x3x4 N

13 x1 + x2 + x3 + x1x3 + x1x5 + x3x4 N

14 x1 + x2 + x3 + x5 + x1x3 + x2x5 + x3x4 + x3x5 + x4x5 Y

15 x1 + x2 + x3 + x4 + x1x3 + x1x4 + x1x5 + x2x4 + x4x5 Y

16 x1 + x2 + x3 + x4 + x5 + x2x3 + x2x4 + x2x5 + x3x4 + x3x5 + x4x5 Y

17 x1 + x2 + x3 + x4 + x5 + x1x4 + x2x3 + x2x5 + x3x5 N

18 x1 + x2 + x3 + x4 + x5 + x1x3 + x2x4 + x2x5 + x4x5 N

19 x1 + x2 + x3 + x4 + x5 + x1x3 + x1x5 + x2x4 + x3x5 Y

20 x1 + x2 + x3 + x4 + x5 + x1x3 + x1x4 + x2x5 + x3x4 N

21 x1 + x2 + x3 + x4 + x5 + x1x3 + x1x4 + x2x4 + x2x5 + x3x5 N

22 x1 + x2 + x3 + x4 + x5 + x1x3 + x1x4 + x1x5 + x3x4 + x3x5 + x4x5 Y

23 x1 + x2 + x3 + x4 + x5 + x1x2 + x1x4 + x2x4 + x3x5 N

24 x1 + x2 + x3 + x4 + x5 + x1x2 + x1x4 + x1x5 + x2x4 + x2x5 + x4x5 N

25 x1 + x2 + x3 + x4 + x5 + x1x2 + x1x3 + x1x5 + x2x3 + x2x5 + x3x5 Y

26 x1 + x2 + x3 + x4 + x5 + x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 Y
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polynomials are applied here: 1 + x3 + x5, 1 + x2 + x5, 1 + x2 + x3 + x4 + x5,
1 + x + x3 + x4 + x5, 1 + x + x2 + x4 + x5, 1 + x + x2 + x3 + x5. Table 2 shows
that in this case our heuristic succeeds in finding nearly half of the best possible
2nd degree approximations of the given Boolean function.

Table 3 presents results on some Boolean functions of 5 and 6 variables. For all
Boolean functions considered here, the highest correlation coefficient is verified
with brute force search. It is not possible to verify, within the feasible resources,
results for Boolean functions with larger number of variables. Our experiments

Table 3. Simulation Results on Some Boolean Functions of 5 and 6 variables Using 6
Primitive Polynomials of Respective Lengths

Boolean function Correlation The number
coefficient of primitive
of best 2nd polynomials

degree which succeed
approx to find best

approx
(5, 1, 3, 12)

x1 + x2 + x3 + x4 + x5 + x1x3 + x2x4+ 0.625 6
x3x5 + x1x4 + x2x5 + x1x2x4+

x1x3x4 + x2x4x5 + x1x3x5 + x2x3x5

x1x2 + x2x3 + x3x4 + x4x5 + x1x5 + x1x3+ 0.625 6
x2x4 + x3x5 + x1x4 + x2x5 + x1x2x4 + x1x3x4

+x2x4x5 + x1x3x5 + x2x3x5

x1 + x2 + x3 + x4 + x5 + x1x2 + x2x3 + x3x4+ 0.625 6
x4x5 + x1x5 + x1x2x3 + x2x3x4+

x3x4x5 + x1x4x5 + x1x2x5

(6, 1, 4, 24)
x1x2 + x2x3 + x3x4 + x4x5 + x5x6 + x1x6+ 0.75 6
x1x4 + x2x5 + x3x6 + x1x2x4 + x2x3x5+
x3x4x6 + x1x4x5 + x1x3x5 + x2x5x6+
x1x3x6 + x1x3x4 + x2x4x5 + x2x4x6

+x3x5x6 + x1x4x6 + x1x2x5 + x2x3x6+
x1x2x3x4 + x2x3x4x5 + x3x4x5x6+

x1x4x5x6 + x1x2x5x6 + x1x2x3x6 + x1x2x4x5
+x2x3x5x6 + x1x3x4x6

x1x3 + x2x4 + x3x5 + x4x6 + x1x5 + x2x6+ 0.625 4
x1x4 + x2x5 + x3x6 + x1x3x4 + x2x4x5+
x3x5x6 + x1x4x6 + x1x2x5 + x2x3x6+

x1x2x4x5 + x2x3x5x6 + x1x3x4x6

x1x2 + x2x3 + x3x4 + x4x5 + x5x6 + x1x6 0.5 6
+x1x3 + x2x4 + x1x4 + x3x5 + x4x6 + x1x5 + x2x6+

x2x5 + x3x6 + x1x3x4 + x2x4x5+
x1x2x3 + x2x3x4 + x3x4x5 + x4x5x6

+x1x5x6 + x1x2x6 + x3x5x6 + x1x4x6 + x1x2x5+
x2x3x6 + x1x2x3x4 + x2x3x4x5

+x3x4x5x6 + x1x4x5x6x1x2x5x6 + x1x2x3x6
+x1x2x4x5x2x3x5x6 + x1x3x4x6

include rotation symmetric Boolean functions of 5, 6 and 7 variables, which have
many desirable cryptographic characteristics [11], [12]. In Table 3, results on a
few functions are listed.

We have applied our algorithm to obtain 2nd and 3rd degree approximations
of Boolean functions up to 15 variables. For larger n(> 13), time to find approx-
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imations with the proposed algorithm becomes beyond feasibility. For instance,
for n = 17, almost 213 second degree approximations can be determined with
our method with one primitive polynomial in ≈ 23 hours. Although, the time
required to determine 217 − 1 approximations, with one primitive polynomial,
still remains very low than the brute force search which will involve computa-
tions of 2153 Boolean functions. Increase in the time with the increase in number
of variables is presented Figure 1.

Fig. 1. Time taken by proposed algorithm to find 2nd degree approximations of
Boolean functions upto 13 variables

4 Some Applications of the Proposed Method

Experiments with the proposed algorithm are performed within the computa-
tion resources mentioned in Section 3.1. With better available resources these
results can be further improved. In this section some possible applications of the
proposed method are discussed.

Relevance of the proposed method can be found in a number of applica-
tions. First of all it can be efficiently used for the analysis of cryptographically
significant Boolean functions. For different properties of Boolean functions like
non-linearity, high degree, resiliency and algebraic immunity different construc-
tions have been proposed, mentioning a few: [13–23, 12]. We experiment with (7,
2 ,4, 56) and (8, 1, 6, 116) functions including the rotation symmetric Boolean
functions (RSBF) [21, 11], and construction for maximally algebraic immune
Boolean functions given in [23]. Results show that RSBFs have much higher 2nd
order non-linearity than a Boolean function constructed as [23], although their
other properties are comparable. Table 4 presents results of our experiments on
some cryptographically significant Boolean functions.

We also find 2nd degree approximations of some higher degree Boolean func-
tions constructed following [23] and find that even a 10 variable function of 8 de-
gree with maximum possible algebraic immunity has 2nd degree approximation
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Table 4. Application of the proposed algorithm on some cryptographically significant
Boolean functions.

Boolean function 2nd Order non-linearity as obtained from the proposed method
(6,1,4,24) RSBF 8 to 16

(6,1,4,20) with max AI [23] 4
(7,2,5,56) 28 to 36

(7,2,4,40) with max AI [23] 8

with correlation coefficient approximately 0.5. Although most of these functions
satisfy the bounds for algebraic immunity and higher order nonlinearities but
still one is better than the other and this can be decided only if we can practi-
cally find these non-linearities or in other words lower order approximations of
Boolean functions. Table 5 summarizes our results.

Table 5. Results on Boolean functions constructed following [23]

Boolean function Correlation Coefficient of 2nd degree approximation
(6,1,4,20) 0.875
(7,2,4,40) 0.875
(8,1,5,88) 0.625
(8,3,4,80) 0.875
(9,2,5,176) 0.5
(10,1,8,372) 0.429

Use of linear approximations in cryptanalysis has been widely studied. How-
ever a few evidence of actual use of non-linear approximations in cryptanalysis
is reported because of the difficulty in finding good non-linear lower degree ap-
proximations in a practical way. Following the initial linear attacks against DES
[24], some improvements can be found including [25–28]. Later much flexibility
in linear attack is shown by Knudsen and Robshaw [29] where they discussed the
possibility of replacing linear approximations with non-linear approximations.

Algebraic attacks on stream ciphers have gained much attention in recent
years soon after their emergence in [30, 31]. Though later on Algebraic attack
on stream ciphers mostly uses the idea of annihilator [30–32], but earlier it also
emerged from the idea of using low order non-linear approximations in a type
of correlation attack [33]. So this kind of Algebraic attack with low order non-
linear approximations is still possible for ciphers involving any Boolean functions
if these approximations can be found efficiently and in a practical way.

5 Conclusion

A fast and practical search method based on non-linear filter generator and
simultaneous solution of equations is presented to determine low degree non-
linear approximations of a Boolean function. For functions with small number
of variables, the efficiency of our proposed method over the brute force search
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of non-linear approximations is verified experimentally. Performance of the pro-
posed method lies in its success in finding best approximation or higher order
nonlinearity of a given Boolean function. Some applications are also discussed
to highlight the importance of actually finding the approximation in a practical
manner.
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