
New Definitions and Designs for Anonymous Signatures

M IHIR BELLARE∗ SHANSHAN DUAN†

Abstract

There is a fundamental tension in society between authenticity and privacy, and finding balances
between them is an important line of research. In this paper we investigate a tool called anonymous
signatures [12, 21] that is useful in applications like secure auctions. We provide a new formalization
and definition of this primitive that lends the primitive more easily and naturally to applications. We
then provide numerous schemes meeting our definition. This includes schemes without random oracles
and more efficient solutions in the random oracle model. Our schemes are surprisingly cheap in both
bandwidth and computation.

Keywords: Signatures, anonymity, hash functions

1 Introduction

There is a fundamental tension in society between authenticity and privacy, and finding balances between
them is an important line of research. The approach we will investigate in this paper is anonymous signa-
tures.

What is an anonymous signature? At first hearing, such a thingsounds contradictory, if not impossible.
Indeed the natural and desired interpretation of the term isthat the signature not reveal the identity (public
key) of the signer. But signatures can be verified. So, can’t Ialways identify the signer’s public key amongst
a list of candidate ones by seeing under which key the signature verifies correctly?

This leads to a few questions. The first is, how can we meaningfully define and achieve anonymous
signatures in a way that circumvents the above dilemma? The second is, why should we bother anyway,
meaning of what use do we expect anonymous signatures to be? We will address these questions in what
follows.

1.1 Previous work

Anonymous signatures were first introduced by Yang, Wong, Deng and Wang (YWDW) [21]. They got
around the above-mentioned dilemma by requiring anonymityonly when the underlying message is ran-
domly chosen from a large space and is unknown to the verifier.(Which prevents verification.) They
envisaged a two-step usage process. In the signing stage, the signer provides the prospective verifier with
a signature, but not the message. At this point, the signer’sidentity remains unknown. In the later opening
stage, the signer provides the message (and its public key),so that verification is possible. Fischlin [12] pro-
vides some elegant constructions of anonymous signature schemes, meeting the YWDW-definition, without
random oracles. His constructions are based on extractors [17, 18].

We point to two drawbacks of the YWDW formulation of anonymous signatures. The first is that it
does not lend itself well to the applications which appear tohave motivated it. The second is lack of an
unambiguity requirement.

∗ Dept. of Computer Science & Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, California
92093, USA. E-Mail:mihir@cs.ucsd.edu. URL: http://www-cse.ucsd.edu/users/mihir.

† Dept. of Computer Science & Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, California
92093, USA. E-Mail:shduan@cs.ucsd.edu. URL: http://www-cse.ucsd.edu/users/shduan.

1

Class Scheme ASign AVer —�— —�— Assumption

RH RH-BLS 1 exp 1 pr 160 320 CDH

DH DH-Sch 1 exp 2 exp 160 240 DL

DH-GQ 1 exp 2 exp 160 2048 Factoring

SP SP-Sch 1 exp 2 exp 80 160 DL

Figure 1: Summary of anonymous signatures. For each scheme, we show the computational costs of signing and
verification, the size of an anonymous signature�, the size of the de-anonymizer� and the assumption used to prove
security. By “RH” we mean randomized hash. By “DH” we mean deterministic hash. By “SP”, we mean splitting. By
“exp” we mean an exponentiation. By “pr” we mean a pairing.

The problem from the application perspective is that here messages are certainly not random, and may
need to be known in advance to potential verifiers. To illustrate, let us consider secure auctions, which is
a canonical application in this area. Alice wishes to place abid with valuebidA. She wants to be able
to claim the bid as hers in case it wins, but otherwise wishes to remain anonymous. The natural solution
is to provide, at bidding time, her anonymous signature ofbidA. When the results are announced, and if
Alice has won, she can provide the relevant opening information. The difficulty is that, under the YWDW
formulation, anonymity in the first stage is only guaranteedif Alice does not provide the message, which in
this case isbidA. However, the auctioneer needs to know the bid in order to determine the winner.

This problem is to some extent recognized in [21, 12]. To solve it, they suggest that the message to be
signed be obtained by padding the bid with a random string. Only the random string would be withheld in
the first phase. The difficulty is that while this may “work”, it moves us outside the YWDW definitional
framework, which does not cover such usage and does not give us any guarantees about it. (The explanation
for this is somewhat technical. The YWDW definition requiresthe message to be drawn at random from a
message space that is large and fixed beforehand. It is unclear, in this context, how to define this message
space, given that the bid may have many possible values, and bids are simply objects chosen by users, rather
than ones on which there is some probability distribution.)These difficulties may potentially be resolved by
using classes of distributions as per [12], but the alternative definition of anonymous signatures that we will
suggest seems to be simpler and more natural.

One might think that these problems are specific to the auction application, but in fact this application
is representative. The same issues arise with other applications mentioned in [21] such as anonymous
paper review and anonymous key exchange. In summary, the whole “anonymity by message withholding”
approach of YWDW just does not seem to map well to applications.

The second weakness of the YWDW definition is that it fails to require what we callunambiguity.
Namely, given Alice’s signature, Bob may be able to produce apublic key, different from Alice’s, under
which the signature verifies, thereby effectively claimingthe signature as his own. This means that when
Alice’s bid wins the auction, Bob can open it, and claim thathe won the auction! (This does not contradict
unforgeability, because the public key Bob provides is different from Alice’s.) In fact, we can give specific
examples of schemes that meet the YWDW definition but are not unambiguous, meaning are subject to the
above attack. Our definition, in contrast, explicitly demands unambiguity, and all our schemes provide it.

1.2 Our notion

We dub our approach “anonymity by partial signature withholding”. Instead of denying the verifier the
message, we give it the message and deny it part of the signature. Specifically, we ask that any signature
produced by the signing algorithm (on input a messageM) be a pair of objects(�, �). In the signing stage,
the potential verifier is provided with the messageM and the anonymous signature�. It is required that she

2

be unable, from these, to determine the identity (public key) of the signer. In the opening stage, the signer
provides the de-anonymizer� (and its public key). Now, the verifier has the full signatureand is able to
verify.

The application to auctions is immediate and natural. The message is simply Alice’s bidbidA. Alice
computes her signature(�, �) on this message, and provides the auctioneer with her bid and�, the anony-
mous portion of the signature. At this point, her anonymity is guaranteed. Later, if she learns that she has
won the auction, she opens by providing the auctioneer with the de-anonymizer�. Note that the auctioneer
is in possession of the full message (bid) from the very beginning, and so, unlike in the message-withholding
approach, has all the information necessary to determine the winner of the auction.

We formalize three security properties. Unforgeability requires that it be infeasible to forge Alice’s
signatures, even when the adversary can obtain Alice’s anonymous signatures on messages of her choice
and adaptively open any of these she wishes. (This implies standard unforgeability of the full signature.)
The anonymity requirement follows [4] and is strong: the adversary cannot distinguish under which of two
target public keys an anonymous signature has been created,even when it knows the message and both
underlying secret keys. Finally, unambiguity requires that the adversary, given an anonymous signature�
created by Alice, be unable to produce a public keypk1, a messageM1 and a de-anonymizer�1 such that
pk1 is different from Alice’s public key and yet(�, �) is a valid signature ofM1 underpk1, even when
the adversary can obtain Alice’s full signatures under a chosen message attack. Assuming� was Alice’s
anonymous signature on her winning bid, unambiguity prevents Bob from being able to open� under an
alternative public key and thereby himself claim the winning bid. Recall that this property was lacking in
the YWDW definition of anonymous signatures, opening up auctions based on them to such attacks.

In summary, we have brought a new viewpoint to anonymous signatures, defining them based on partial
signature withholding rather than on message withholding.We contend that this change, although simple,
is powerful in two ways. The first, which we have already seen,is that we can now cover applications in
a natural way. The second, which we will see next, is that we are able to produce natural and practical
schemes to meet the definition.

1.3 Schemes and results

Before describing our schemes, let us discuss design criteria, beginning with practical issues and then mov-
ing on to theoretical ones.

With regard to efficiency, we wish to minimize both computation and bandwidth. The motivation for
the first is obvious. Namely, public key cryptography is already considered expensive in many settings, and
we do not wish anonymity to add a further computational burden. Bandwidth deserves more discussion.
For wireless devices such as PDAs, cell phones, RFID chips and sensors, battery life is the main limitation.
But here, communicating even one bit of data uses significantly more power than executing one 32-bit
instruction [2]. Reducing the number of bits to communicatesaves power and is important to increase
battery life. Also, in many settings, communication is not reliable, and so the fewer the number of bits one
has to communicate, the better. For such reasons, we want schemes in which both the anonymous signature
and the de-anonymizer are as short as possible.

How well can we hope to do? Any anonymous signature scheme is,of course, a signature scheme. (The
anonymous signature and the de-anonymizer together constitute a full signature.) So we cannot hope for
computation or bandwidth costs lower than those of standardsignature schemes. The issue is to reduce the
overhead as much as possible. As we now explain, we do very well.

All our constructions start with a base, standard signaturescheme and transform it into an anonymous
one. We measure overhead with respect to the base scheme, with the bandwidth overhead being defined as
the difference between the length of a full signature in the anonymous scheme and a signature in the base
scheme. The computational overhead of our schemes is at mostone hash. The bandwidth overhead ranges
from 320 bits to (surprisingly) zero bits. In particular, our Schnorr [20] based scheme, SP-ScH, has an
80 bit anonymous signature and a 160 bit de-anonymizer and has zero overhead, inboth computation and

3

bandwidth.
The primary theoretical issue is to have a proof of security.We provide proofs for all our schemes. We

first provide a general construction with a proof without random oracles. We then provide numerous, more
efficient, constructions with random oracle model proofs.

Refer to Figure 1 for a summary of the characteristics of our schemes. We now discuss the schemes in
more detail.

We first provide a simple, general transform of any signaturescheme into an anonymous signature
scheme. The transform uses as a tool any commitment scheme. On the theoretical side, this immediately
yields constructions without random oracles. (Because standard signature schemes, as well as commitment
schemes, without random oracles, are well known.) We contrast this with message-withholding anonymous
signatures, where the original work of [21] had no non-random oracle model solutions. The gap was filled
by Fischlin [12] using quite sophisticated techniques. In our case (partial signature withholding anonymous
signatures) the result is more immediate. On the practical side, we can obtain fairly efficient schemes via
a random oracle model instantiation of the commitment scheme, specifically, as a randomized hash. The
anonymous signature is the hash of a 160 bit random string together with the base signature, and the de-
anonymizer is the base signature together with the random string. We call this the RH construction. The
computational overhead is one hash, and the bandwidth overhead is 320 bits. Bandwidth is minimized by
choosing BLS [9] as the base signature scheme, and Figure 1 displays the characteristics of the resulting
RH-BLS scheme.

We then show how to do better for a class of signature schemes that we call high-entropy schemes. These
are schemes where the base signatures are already randomized. In this case, we drop the randomizer intro-
duced above, and set the anonymous signature to merely the hash of the base signature. (The de-anonymizer
is simply the base signature.) We provide a direct analysis to prove security. (It doesn’t follow from the
above-mentioned results). The computational overhead of this DH (deterministic hash) construction is one
hash, while the bandwidth overhead has been reduced to 160 bits. What can we use as base schemes?
Schemes such as Schnorr [20], GQ [14] and Fiat-Shamir [13] have the desired high entropy. More gener-
ally, high entropy is a property of base signature schemes derived from identification protocols via the Fiat
Shamir transform [13], so there are numerous other choices as well, all quite efficient. (Note that the BLS
scheme doesnot have high entropy and so is unsuitable for use as a base schemeunder DH. And, indeed,
DH-BLS is insecure.) Figure 1 summarizes the characteristics of the DH-Sch and DH-GQ schemes.

However, we can do even better. In identification-based signature schemes such as that of Schnorr [20],
the signature is a pair(�, �) where� is the hash of the commitment (the name given to the first message
from the prover) and the message, while� is the response of the prover when the verifier challenge is�. We
observe that such signature schemes lend themselves very directly to anonymization: we simply use� as the
anonymous signature, and� as the de-anonymizer. We call this the splitting construction (SP). The result is
a scheme that has zero overhead, in both computation and bandwidth! Of course, we need to show that this
works. We are able to do this by direct proof based on the general forking lemma of [3]. Observing that the
verifier challenge need be only 80 bits long (there are no birthday attacks on the challenge) we obtain the
SP-Sch scheme whose characteristics are summarized in Figure 1.

Proving unforgeability of our commitment-based anonymoussignature scheme runs into a famous open
problem in cryptography called the selective de-commitment problem [11]. The problem is, can an adversary
who, given a number of commitments can choose to open some of them, obtain information about the
unopened ones? Intuitively not, but nobody has ever been able to prove this, and results in [11] indicate that
it is hard. Luckily, in our particular setting, we are able toresolve the problem and prove security of our
scheme.

As indicated above, we have shown that one can build an anonymous signature scheme from a commit-
ment scheme. It is natural to ask whether the use of a commitment scheme is necessary. We show that it is.
Namely, we show in Section 8 that any anonymous signature scheme can be converted into a commitment
scheme. (At the theoretical level there is nothing interesting here since all of these primitives are equivalent
to one-way functions [15, 16]. However, our transformationis direct and efficient.)

4

1.4 Discussion and related work

One might question the motivation for anonymous signaturesby suggesting that they are not really necessary
for any of the applications we have discussed. For example, for auctions, why not proceed as follows.
Alice generates a new public and private key pair for the auction, signs her bid with the newly generated
private key, and attaches the public key, together with the signature, to the bid. Since the key pair is only
used once, no one can tie Alice to her bid. If she wins the auction, she can reveal the private key used
to sign the message, proving that she is the authentic bidder. Similar solutions can be thought up for the
other applications such as secure paper review. However, this solution is, in fact, implicitly defining an
anonymous signature scheme! Furthermore, this scheme is less efficient than ours. This kind of observation
only strengthens the motivation for defining our version of anonymous signatures because it shows that the
notion captures intuitive solutions and is thus a natural abstraction in this domain.

A natural question is, how do anonymous signatures (regardless of how they are formulated) differ from
group [10, 4] and ring [19, 8] signatures, which also have thegoal of providing anonymity? In group
signatures, there is a group of users all of which have the same public key, and the signature merely conceals
which member of the group is the signer. In a ring signature, each user has its own keys, but computes
a signature as a function of the keys of other members of a group, so that the signature does not reveal
which member of the group is the signer. In both cases, signatures, once obtained, can immediately be
verified. With anonymous signatures, there is no group. Every user has its own key, and computes its
signature independently of keys of any other users. However, the signature cannot be verified without the
de-anonymization information. The notions are indeed quite different, and have different applications. Also,
anonymous signatures, as we have seen, can be implemented much more easily and efficiently than group
or ring signatures, which is an advantage.

2 Preliminaries

NOTATION AND CONVENTIONS. We denote bya1∣∣ ⋅ ⋅ ⋅ ∣∣an the concatenation ofa1, . . . , an. We denote
the empty string by". Unless otherwise indicated, an algorithm may be randomized. If A is a randomized
algorithm theny←$ A(x1, . . .) denotes the operation of runningA with fresh coins on inputsx1, . . . and
letting y denote the output. IfS is a (finite) set thens←$ S denotes the operation of pickings uniformly
at random fromS. If X = x1∣∣x2∣∣ . . . ∣∣xn, thenx1∣∣x2∣∣ . . . ∣∣xn ← X denotes the operation of parsingX
into its constituents. Similarly, ifX = (x1, x2, . . . , xn) is ann-tuple, then(x1, x2, . . . , xn) ← X denotes
the operation of parsingX into its elements.

CODE-BASED GAMES. We will use code-based games [7] in definitions and proofs and we recall some
background here. A game has anInitialize procedure, procedures to respond to adversary oracle queries,
and aFinalize procedure. A gameG is executed with an adversaryA as follows. First,Initialize executes
and its outputs are the inputs toA. Then,A executes, its oracle queries being answered by the corresponding
procedures ofG. WhenA terminates, its output becomes the input to theFinalize procedure. The output
of the latter is called the output of the game, and we letGA denote the event that this game output takes
valuetrue. Variables not explicitly initialized or assigned are assumed to have value⊥, except for booleans
which are assumed initialized tofalse. GamesGi, Gj areidentical until bad if their code differs only in
statements that follow the setting of the boolean flagbadto true. The following is the Fundamental Lemmas
of game-playing:

Lemma 2.1 [7] Let Gi, Gj be identical untilbadgames, andA an adversary. LetBDi (resp.BDj) denote
the event that the execution ofGi (resp.Gj) with A setsbad. Then

Pr
[

GA
i ∧ BDi

]

= Pr
[

GA
j ∧ BDj

]

andPr
[

GA
i

]

− Pr
[

GA
j

]

≤ Pr [BDj] .

5

Initialize

(pk, sk)←$ AKG()

i← 0 ; E ← ∅

Returnpk

Open(j)

If (j ≤ 0 ∨ j > i) Return⊥
E ← E ∪ {Mj}

Return�j

ASign(M)

i← i+ 1 ; Mi ←M

(�i, �i)←$ ASIG(sk,Mi)

Return�i

Finalize(M, (�, �))

Return(M ∕∈ E ∧ AVF(pk,M, (�, �)) = 1)

Initialize

b←$ {0, 1}

(pk0, sk0)←$ AKG()

(pk1, sk1)←$ AKG()

Return((pk0, sk0), (pk1, sk1))

CH(M)

(�, �)←$ ASIG(skb,M)

Return�

Finalize(d)

Return(b = d)

Initialize

Finalize(pk0, pk1,M0,M1, �, �0, �1)

d0 ← AVF(pk0,M0, (�, �0))

d1 ← AVF(pk1,M1, (�, �1))

Return(d0 = 1 ∧ d1 = 1 ∧ pk1 ∕= pk0)

Figure 2: GameAUF-CMA in the left used to define existential unforgeability, gameANON in the center used
to define anonymity and gameUNAMB in the right used to define unambiguity of anonymous signature scheme
AS = (AKG,ASIG,AVF).

When we refer to the running time of an adversaryA we mean the total time for the execution ofG with A
whereG is the game defining the adversary’s advantage. This convention simplifies running time analyses.

DIGITAL SIGNATURES. A digital signature schemeDS consists of three algorithms with the following
functionality. The key generation algorithmSKG returns a pair(pk, sk) of keys consisting of the public key
and matching secret key, respectively. The signing algorithm SIG takes the secret keysk and a message
M to return a signatures. The deterministic verification algorithmSVF takes a public keypk, a candidate
signatures and a messageM to return either1 or 0. We require that all public keys have the same length, as
do all signatures output bySIG. The consistency requirement is that for allM we haveSVF(pk, s,M) = 1
with probability1 in the experiment

(pk, sk)←$ SKG() ; s←$ SIG(sk,M).

The notion of existential unforgeability is captured by thegameEUF-CMA of Figure 8 in Appendix A.

3 Anonymous Signatures

SYNTAX . Syntactically, an anonymous signature schemeAS = (AKG,ASIG,AVF) is simply a digital
signature scheme in which any signature output by the signing algorithm is a pair(�, �). We refer to the
first component of the pair as the anonymous signature and thesecond as the de-anonymizer.

SECURITY. We propose three security properties: existential unforgeability, anonymity and unambigu-
ity. The formal definitions are underlain by the gamesAUF-CMA, ANON and UNAMB shown in
Figure 2. The corresponding adversary advantages are defined by Advauf

AS(A) = Pr
[

AUF-CMAA
AS

]

,
Advanon

AS (A) = 2 ⋅ Pr
[

ANONA
AS

]

− 1 andAdvunamb
AS (A) = Pr

[

UNAMBA
AS

]

respectively.
In gameAUF-CMA, an adversaryF can query the oracleASign to get an anonymous signature on

any message of its choice. It can then, selectively, open whichever of these it pleases, meaning obtain the
de-anonymizer, via itsOpen oracle. To winF must output a messageM and a valid full signature(�, �)
of M such that eitherM was not queried toASign orM was queried toASign but the signature returned

6

Alg AKG()
(pk, sk)←$ SKG()
Return(pk, sk)

Alg ASIG(sk,M)
s←$ SIG(sk,M)
(�, !)←$ CMT(s∣∣pk)
�← (s, !)
Return�

Alg AVF(pk,M, �, �)
(s, !)← �
If (CVF(�, s∣∣pk, !) = 1) then

If (SVF(pk, s,M) = 1)
then Return 1

Return 0

Figure 3: Algorithms defining anonymous signature schemeAS = (AKG,ASIG,AVF) based on signature scheme
DS = (SKG, SIG, SVF) and commitment schemeCℳT = (CMT,CVF).

was not opened.
The formalization of anonymity follows [4]. The adversary not only gets target public keyspk0 andpk1

but also knows the corresponding secret keyssk0 andsk1. Via theCH oracle, it can obtain an anonymous
signature, underskb, of a messageM of its choice, and it wins if it guesses the challenge bitb. (It is allowed
only one query to theCH oracle. Security against multiple queries follows by a hybrid argument.)

Suppose Alice has produced an anonymous signature� of some messageM0 under her public keypk0.
Unambiguity ensures that only Alice can open�, by requiring that an adversary be unable to produce a
public keypk1, messageM1 and de-anonymizer�1 such thatAVF(pk1,M1, (�, �1)) = 1 but pk0 ∕= pk1.
Actually the requirement is stronger, preventing even Alice herself from priori creating� which she can
later open in two ways. This addresses the concern that Alicemay create for herself two identities and, after
sending an anonymous signature, “change” the message or identity from which it “originated”.

4 The CMT Construction

In this section we propose and prove correct a general transform of any signature scheme into an anonymous
one. The idea is simple: the anonymous signature is a commitment to the base signature, and the de-
anonymizer is the decommital key together with the base signature. We consider this a good starting point
because this simple construction will later be the basis fornumerous refinement leading to more efficient
schemes. It is also of direct interest because it shows how toachieve anonymous signatures without random
oracles and because the proof of unforgeability shows a special case in which we can solve the selective
de-commitment problem. We begin by recalling the definitionof a commitment scheme.

COMMITMENT SCHEMES. A commitment schemeCℳT consists of two algorithms. The commitment
algorithmCMT takes the messageM to be committed and returns a pair of(�, !) consisting of a com-
mitment� and decommital key!. The deterministic verification algorithmCVF takes as input candidate
values�,M,! of a commital, message and decommital, respectively, and returns either1 or 0. The con-
sistency requirement is that for allM we haveCVF(�,M,!) = 1 with probability 1 in the experiemnt
(�, !)←$ CMT(M). The definitions of hiding and binding are formalized by the games of Figure 8 in
Appendix A.

OUR CONSTRUCTION. Our Sign-then-Commit (StC) transform associates to base digital signature scheme
DS = (SKG,SIG,SVF) and base commitment schemeCℳT = (CMT,CVF) the anonymous signature
schemeAS = (AKG,ASIG,AVF) whose constituent algorithms are defined in Figure 3.

SECURITY RESULTS. In this section, we give three results about the security ofthe above anonymous sig-
nature scheme. First we consider unforgeability. We prove that if the base signature scheme is existentially
unforgeable under chosen message attack and the base commitment scheme has the hiding property, then the
anonymous signature scheme associated to them is existentially unforgeable under chosen message attack.

Theorem 4.1 Let DS = (SKG,SIG,SVF) be a digital signature scheme andCℳT = (CMT,CVF) a
commitment scheme. LetAS = (AKG,ASIG,AVF) be the anonymous signature scheme constructed from

7

Alg AKG()
(pk, sk)←$ SKG()
Return(pk, sk)

Alg ASIG
H(sk,M)

s←$ SIG(sk,M)
!←$ {0, 1}k

�←$ H(!∣∣s∣∣pk)
�← (!, s)
Return(�, �)

Alg AVF
H(pk,M, (�, �))

(!, s)← �
If (H(!∣∣s∣∣pk) = � ∧ ∣!∣ = k) then

If (SVF(pk, s,M) = 1) then
Return 1

Return 0

Figure 4:Algorithms used to define the RH construction.

Alg AKG()
(pk, sk)←$ SKG()
Return(pk, sk)

Alg ASIG
H(sk,M)

s←$ SIG(sk,M)
�←$ H(s∣∣pk)
�← s
Return(�, �)

Alg AVF
H(pk,M, (�, �))

s← �
If (H(s∣∣pk) = �) then

If (SVF(pk, s,M) = 1) then
Return 1

Return 0

Figure 5:Algorithms used to define the DH construction.

DS andCℳT as in Figure 3. LetF be an adversary against the unforgeability ofAS makingq ≥ 1 queries
to oracleASign. Then there exist adversariesA,B such that

Advauf
AS(F) ≤ 2q ⋅Advuf

DS(A) + q ⋅Advhide
CℳT (B) . (1)

Furthermore, the running times ofA,B are the same as the running time ofF , andA makesq queries to its
Sign oracle.

Due to space limit, the whole proof is deferred to Appendix B.
Next we prove that if the commitment schemeCℳT is hiding then our anonymous signature scheme is

anonymous.

Theorem 4.2 Let DS = (SKG,SIG,SVF) be a digital signature scheme andCℳT = (CMT,CVF) a
commitment scheme. LetAS = (AKG,ASIG,AVF) be the anonymous signature scheme constructed from
DS andCℳT as in Figure 3. LetA be an adversary against the anonymity ofAS that makes one query to
oracleCH. Then there exists adversaryB such that

Advanon
AS (A) ≤ Advhide

CℳT (B) . (2)

Furthermore, the running time ofB is that ofA.

Due to space limit, the whole proof is deferred to Appendix C.
Finally, we show that if the commitment scheme is binding then the anonymous signature scheme is

unambiguous.

Theorem 4.3 Let DS = (SKG,SIG,SVF) be a digital signature scheme andCℳT = (CMT,CVF) a
commitment scheme. LetAS = (APG,AKG,ASIG,AVF) be the anonymous signature scheme constructed
fromDS andCℳT as in Figure 3. LetA be an adversary against the unambiguity ofAS. Then there exists
an adversaryB such thatAdvunamb

AS (A) ≤ Advbind
CℳT (B). Furthermore, the running time ofB is that ofA.

Proof: AdversaryB runsA to get(pk0, pk1,M0,M1, �, �0, �1). It lets (s0, !0) ← �0 and(s1, !1) ← �1.
AdversaryB then outputs�, (s0∣∣pk0, !0), (s1∣∣pk1, !1).

8

5 The RH Construction

The Randomized Hash (RH) construction is the result of instantiating the commitment scheme of the CMT
construction with the RO-model commitment schemeCℳT = (CMT,CVF) defined as follows:

Alg CMT
H(M)

!←$ {0, 1}k

ReturnH(!∣∣M)

Alg CVF
H(�,M,!)

�′ ← H(!∣∣M)

If (∣!∣ ∕= k) then return 0
If (� = �′) then return 1

Figure 4 depicts the algorithms of anonymous signature schemeAS = (AKG,ASIG,AVF) obtained from
the CMT construction of Section 4 applied to a base signatureschemeDS = (SKG,SIG,SVF) and the
commitment scheme we just defined.

We can set the output lengthk of the RO to 160 bits. (80 bits is not enough because binding reduces to
finding collisions and is subject to the birthday attack.) The results of Section 4 imply that theAS scheme
of Figure 4 is secure in the RO model. In this way, we can transform any standard signature scheme into an
anonymous one with the following characteristics. The computational overhead is just one hash, meaning
signing and verifying are effectively just as efficient as before. The bandwidth overhead is 320 bits: the
anonymous signature is 160 bits and the de-anonymizer is 160bits longer than the base signature. This
is pretty good, yet, in what follows, we will provide alternative constructions that reduce the bandwidth
overhead even further.

A word of warning. If the base signature scheme already uses aRO (as for instance do FDH [6] and
BLS [9]) then the ROH of Figure 4 must be different and independent. This can be ensured by domain
seperation as discussed in [5]. This issue arises also belowand showed be addressed in the same way.

6 The DH Construction

Base signature schemes such as Schnorr [20], GQ [14] and Fiat-Shamir [13] are randomized, and their
signatures have quite a bit of entropy. We will now show that in such cases, the randomizer! of Figure 4
can be dropped. This saves 160 bits in bandwidth. But the scheme is no longer an instance of the StC
transform, and a tailored analysis is needed. We now proceedto detail the construction and provide the
analysis.

The DH (Deterministic Hash) construction transforms a basestandard signature schemeDS = (SKG,
SIG,SVF) into an anonymous oneAS = (AKG,ASIG,AVF) using a ROH : {0, 1}∗ → {0, 1}k , as shown
in Figure 5. For the analysis, we make the following definition.

Definition 6.1 [Min-Entropy of Digital Signatures] LetDS = (SKG,SIG,SVF) be a digital signature
scheme. The min-entropyH∞(DS) of DS is defined by the equation

2−H∞(DS) = max
(pk,sk),s,M

Pr [s = s : s←$ SIG(M,sk)]

where the maximum is over all(pk, sk) that might be output bySKG, all stringss, and all messagesM .

For example, the Schnorr (Sch) scheme [20] over a group of orderp has min-entropylg(p). A deterministic
scheme such as FDH [6] or BLS [9], however, has min-entropy 0.The DH-Sch scheme has bandwidth
overhead 160 bits as compared to 320 bits for RH-Sch.

SECURITY. We show that the anonymous signature scheme of Figure 5 is secure in the RO model assuming
a secure, high entropy base signature scheme.

9

Theorem 6.2 LetDS = (SKG,SIG,SVF) be a digital signature scheme. LetAS = (AKG,ASIG,AVF) be
the anonymous signature scheme constructed as in Figure 5. Let F be an adversary in the random oracle
model against the unforgeability ofAS, makingqs queries to oracleASign, qH queries to oracleH andqO
queries to oracleOpen. Then there exists adversaryA such that

Advauf
AS(F) ≤ Advuf

DS(A) +
qs(qs + 4(qH + qo))

21+H∞(DS)
. (3)

Furthermore, the running time ofA is that ofF andA makesqO queries to itsSign oracle.

Theorem 6.3 LetDS = (SKG,SIG,SVF) be a digital signature scheme. LetAS = (AKG,ASIG,AVF) be
the anonymous signature scheme constructed as in Figure 5. Let k be the output length of the ROH in the
scheme. LetA be an adversary in the random oracle model against the anonymity of AS makingqH queries
to oracleH and one query to oracleCH. Then

Advanon
AS (A) ≤ 2qH ⋅ 2

−H∞(DS) . (4)

Theorem 6.4 Let DS = (SKG,SIG,SVF) be a digital signature scheme. LetAS = (AKG,ASIG,AVF)
be the anonymous signature scheme constructed as in Figure 5. Let k be the output length of the ROH in
the scheme. LetA be an adversary in the random oracle model against the unambiguity ofAS makingqH
queries to oracleH. Then we have

Advunamb
AS (A) ≤

q2H
2k+1

. (5)

Due to space limit, the whole proofs of the above three theorems are deferred to Appendix D, Appendix E
and Appendix F.

7 The Splitting Construction

The splitting construction of anonymous signature is basedon the Schnorr protocol [20] and a hash function.
The details of Schnorr protocol are deferred to Appendix G. We call it splitting because in our construction,
the transcript of the Schnorr protocol is separated into twoparts. The message in the first move is viewed as
the anonymous signature while the message in the third move is viewed as a de-anonymizer. The associated
anonymous signature schemeAS = (AKG,ASIG,AVF) is defined in Figure 6. Here, and throughout this
section, we have fixed a groupG of prime orderp and a generatorg of G. Note that this SP-Sch anonymous
signature scheme has zero overhead relative to the base scheme since the full signature is exactly a Schnorr
signature. Since the challenge in the Schnorr protocol needbe only 80 bits long (not 160) we get an anony-
mous signature scheme with an 80-bit anonymous signature and a 160 bit de-anonymizer for a 240-bit full
signature. Our proof will exploit the general forking lemmaof [3], recalled in Appendix H.

SECURITY. First we recall the Discrete Logarithm Assumption that we will use later. LetG∗ = G − {1}
be the set of generators ofG, where1 is the identity element ofG. We letDLogg(ℎ) denote the discrete
logarithm ofℎ ∈ G to base a generatorg ∈ G∗. Let

Advdl
G,g(A) = Pr

[

x←$ ℤp ; x
′←$ A(g, gx) : gx

′

= gx
]

denote the advantage of an adversaryA in attacking the discrete logarithm (dl) problem.

Theorem 7.1 Let AS = (AKG,ASIG,AVF) be the splitting-based anonymous signature scheme con-
structed in Figure 6. Let the range of the ROH in the scheme be{0, 1}k ⊆ ℤp. Let F be an adversary in

10

Alg AKG()
x←$ ℤp ; X ← gx

Return(X,x)

Alg ASIG(sk,M)
y←$ ℤp ; Y ← gy

x← sk
� ← H(X∣∣Y ∣∣M)
�← y + �x mod p
Return(�, �)

Alg AVF(pk,M, (�, �))
If X /∈ G ∨ ∣�∣ ∕= k ∨ � /∈ ℤp then return0
Y ← g� ⋅X−�

If � = H(X∣∣Y ∣∣M) then return 1
Else return 0

Figure 6: Algorithms used to define the splitting-based anonymous signature scheme. HereG is a group of
prime orderp andg is a generator ofG.

the random oracle model against the unforgeability ofAS, makingqs queries to oracleASign, qH queries
to oracleH and having running time at mosttF . Then there exists an algorithmB that attacks the discrete
logarithm problem with advantagefrk such that

Advauf
AS(F) ≤

q2s + 4qsqH + 2qsqo
2p

+
qH
p

+
√

qH ⋅ frk

Furthermore, the running time ofB is 2tF .

Theorem 7.2 Let AS = (AKG,ASIG,AVF) be the splitting-based anonymous signature scheme con-
structed in Figure 6. Let the range of the ROH in the scheme be{0, 1}k ⊆ ℤp. LetA be an adversary in the
random oracle model against the anonymity ofAS makingqH queries to oracleH and one query to oracle
LR. Then

Advanon
AS (A) ≤ 2qH/p . (6)

Theorem 7.3 Let AS = (AKG,ASIG,AVF) be the splitting-based anonymous signature scheme con-
structed in Figure 6. Let the range of the ROH in the scheme be{0, 1}k ⊆ ℤp. Let A be an adversary in
the random oracle model against the unambiguity ofAS makingqH queries to oracleH. Then

Advunamb
AS (A) ≤ q2H/2k+1 .

Due to space limit, the whole proofs of the above theorems aredeferred to Appendix H, Appendix I and
Appendix J respectively.

8 A Reverse Connection

From the primitive definitions, we can see that anonymous signatures (AS) and commitment schemes (CMT)
share something in common. Firstly, AS hide the identity of the signer while CMT hide the committed
message. Secondly, in the AS setting the signature can not beopened under a different public key while in
the CMT setting the committed message can not be opened in a different way. Do these imply that when
we have a scheme of one primitive we can transform it to that ofthe other primitive? We have showed one
direction in our CMT construction in Section 4. To complete the whole picture, we are going to propose a
generic transformation, to convert any anonymous signature scheme into a commitment scheme. However
the similarities between these two primitives don’t imply that it is trivial to find such a transformation,

11

Alg CMT(M)
(pk0, sk0)←$ AKG()
(pk1, sk1)←$ AKG()
If (pk0 = pk1) thenbad← true

n← ∣M ∣
For i = 1 to n

(�i, �i)←$ ASIG(skM [i], i)

� ← (0, �1∣∣ . . . ∣∣�n∣∣pk0∣∣pk1)
! ← �1∣∣ . . . ∣∣�n
If bad= true then� ← (1,M) ; ! ←M
Return(�, !)

Alg CVF(�,M,!)
(b, �′)← �
If (b = 1) then

If (�′ = M ∧ ! = M) then return 1
Else return 0

Else
�1∣∣ . . . ∣∣�n ← !
�1∣∣ . . . ∣∣�n∣∣pk0∣∣pk1 ← �′

If (pk0 = pk1) then return 0
For i = 1 to n di ← AVF(pkM [i], i, (�i, �i))

Returnd1 ∧ . . . ∧ dn

Figure 7:CMT construction from AS.

especially an efficient one. Our transformation, which provides a direct and efficient conversion from AS to
CMT, is depicted in Figure 7.

SECURITY OF OUR CONSTRUCTION. We prove that if the given anonymous signature scheme can achieve
unforgeability, anonymity and unambiguity, then the commitment scheme obtained using our construction
has the property of hiding and binding. For the analysis, we use the following game to capture the situation
that two independently generated public keys are the same. And we use Lemma 8.1 to bound the probability
that such public key collision happens.

procedure Initialize // PKCollAS
(pk0, sk0)←$ AKG()

(pk1, sk1)←$ AKG()

Return(pk0 = pk1)

Lemma 8.1 LetAS = (AKG,ASIG,AVF) be an anonymous signature scheme. Then there is an adversary
F against the unforgeability ofAS such thatPr [PKCollAS] ≤ Advauf

AS(F). The running time ofF is that
of AKG andF makes no oracle queries.

Proof: On inputpk F let pk0 ← pk and(pk1, sk1)←$ AKG. It let M be any message, for exampleM = 0.
It lets (�, �)←$ ASIG(sk,M) and returns(M, (�, �)). If pk1 = pk0, then it wins the gameAUF-CMAAS ,
so we havePr [PKCollAS] ≤ Advauf

AS(F).

Theorem 8.2 LetAS = (AKG,ASIG,AVF) be an anonymous signature scheme andCℳT = (CMT,CVF)
the commitment scheme constructed fromAS as in Figure 7. LetA be an adversary against the hiding prop-
erty ofCℳT , making one query to oracleLR, this always consisting of a pair ofn-bit messages, and having
running time at mosttA. Then there exists adversaryB makingn queries to oracleCH and adversaryF
making no queries such that

Advhide
CℳT (A) ≤ n ⋅Advanon

AS (B) + 2 ⋅Advauf
AS(F) .

Furthermore, the running times ofB andF are the same as that ofA. B makes one query to itsCH oracle
andF makes no queries.

Due to space limit, the whole proof is deferred to Appendix K.

12

Theorem 8.3 LetAS = (AKG,ASIG,AVF) be an anonymous signature scheme andCℳT = (CMT,CVF)
the commitment scheme constructed fromAS as in Figure 7. LetA be an adversary against the binding
property ofCℳT . Then there exists an adversaryB such that

Advbind
CℳT (A) ≤ Advunamb

AS (B) .

Furthermore, the running time ofB is that ofA.

Due to space limit, the whole proof is deferred to Appendix L.

References

[1] M. Abdalla, J. An, M. Bellare, and C. Namprempre. From identification to signatures via the Fiat-Shamir trans-
form: Minimizing assumptions for security and forward-security. EUROCRYPT 2002, LNCS 2332, Springer-
Verlag.

[2] K. BARR AND K. A SANOVIC. Energy aware lossless data compression.MobiSys 2003, ACM Press.

[3] M. B ELLARE AND G. NEVEN. Multi-signatures in the plain public-key model and a general forking lemma.
ACM CCS 2006, ACM Press.

[4] M. B ELLARE, D. MICCIANCIO AND B. WARINSCHI. Foundations of group signatures: formal definitions,
simplified requirements, and a construction based on general assumptions.EUROCRYPT 2003, LNCS 2656,
Springer-Verlag.

[5] M. B ELLARE AND P. ROGAWAY. Random oracles are practical: A paradigm for designing efficient protocols.
ACM CCS 1993, ACM Press.

[6] M. B ELLARE AND P. ROGAWAY. The exact security of digital signatures: How to sign with RSA and Rabin.
EUROCRYPT 1996, LNCS 1070, Springer-Verlag.

[7] M. B ELLARE AND P. ROGAWAY. The Security of Triple Encryption and a Framwork for Code-Based Game-
Playing Proofs.EUROCRYPT 2006, LNCS 4004, Springer-Verlag.

[8] A. BENDER, J. KATZ , AND R. MORSELLI. Ring signatures: stronger definitions, and constructionswithout
random oracles.TCC 2006, LNCS 3876, Springer-Verlag.

[9] D. BONEH, B. LYNN , AND H. SHACHAM . Short signatures from the weil pairing.Journal of Cryptology,
17(4):297-319.

[10] D. CHAUM AND E. HEYST. Group signatures.EUROCRYPT 1991, LNCS 547, Springer-Verlag.

[11] C. DWORK, M. NAOR, O. REINGOLD AND L. STOCKMEYER. Magic functions.Journal of the ACM 2003,
50(6):852-921.

[12] M. FISCHLIN. Anonymous signatures made easy.PKC 2007, LNCS 4450, Springer-Verlag.

[13] A. FIAT AND A. SHAMIR . How to prove yourself: Practical solutions to identification and signature problems.
CRYPTO 1986, LNCS 263, Springer-Verlag.

[14] L. GUILLOU AND J. QUISQUATER. A “paradoxical” identity-based signature scheme resulting from zero-
knowledge.CRYPTO 1988, LNCS 403, Springer-Verlag.

[15] J. HÅSTAD, R. IMPAGLIAZZO , L. LEVIN AND M. L UBY. A Pseudorandom generator from any one-way
function.SIAM Journal on Computing 1999, 28(4):1364–1396.

[16] M. NOAR. Bit Commitment Using Pseudorandomness.Journal of Cryptology 1991, 4:151-158.

[17] N. NISAN AND A. TA-SHMA . Extracting randomness: a survey and new constructions.Journal of Computer
and System Sciences, 58(1):149-173.

[18] N. NISAN AND D. ZUCKERMAN. Randomness is linear in space.Journal of Computer and System Sciences,
52(1):43-52.

[19] R. RIVEST, A. SHAMIR AND Y. TAUMAN . How to leak a secret.ASIACRYPT 2001, LNCS 2248, Springer-
Verlag.

13

Initialize

b←$ {0, 1}

LR(M0,M1)

If (∣M0∣ ∕= ∣M1∣) then return⊥
(�, !)←$ CMT(Mb)

Return�

Finalize(d)

Return(b = d)

Initialize

Finalize(�, (M0, !0), (M1, !1))

d0 ← (CVF(�,M0, !0) = 1)

d1 ← (CVF(�,M1, !1) = 1)

Return(d0 ∧ d1 ∧M0 ∕= M1)

Initialize

(pk, sk)←$ SKG() ; i← 0 ; S ← ∅

Returnpk

Sign(M)

i← i+ 1 ; Mi ←M

S ← S ∪ {Mi} ; si←$ SIG(sk,M)

Return�i

Finalize(M, s)

Return(M /∈ S ∧ SVF(pk, s,M) = 1)

Figure 8: GameHIDE in the left used to define hiding and gameBIND in the center used to define binding of
commitment schemeCℳT = (CMT,CVF). GameEUF-CMA in the right used to define existential unforgeability
of signature schemeDS = (SKG, SIG, SVF).

[20] C. SCHNORR. Efficient signature generation by smart cards.Journal of Cryptology, 4(3):161–174, 1991.

[21] G. YANG, D. WONG, X. DENG, AND H. WANG. Anonymous signature schemes.PKC 2006, LNCS 3958,
Springer-Verlag.

A Security Definitions of Signatures and Commitments

The advantage of an adversaryF in attacking the unforgeability is

Advuf
DS(F) = Pr

[

EUF-CMAF
DS

]

,

where gameEUF-CMA is shown in Figure 8.
The advantage of an adversaryA in attacking the hiding property is

Advhide
CℳT (A) = 2 ⋅ Pr

[

HIDEA
CℳT

]

− 1 .

where gameHIDE is in Figure 8. In the game,A is allowed only one query to itsLR oracle. The advantage
of an adversaryA in attacking the binding property is

Advbind
CℳT (A) = Pr

[

BINDA
CℳT

]

where gameBIND is in Figure 8.

B Proof of Theorem 4.1

Proof: We use gamesG0, G1, G2, G3, G4 of Figure 9, wherel denotes the length of a signature inDS. We
assume wlog thatF always makes exactlyq queries toASign rather than at mostq. Note thatG0 and
G1 are different only in procedureFinalize. ForG0, any execution withF in which the outcome istrue
satisfiesM /∈ S. ForG1, any execution withF in which the outcome istrue satisfiesM ∈ S. So we have

Advauf
AS(F) ≤ Pr

[

GF
0

]

+ Pr
[

GF
1

]

. (7)

GamesG1 andG2 are identical except for the first condition in the procedureFinalize. Any execution of
G2 with F in which the outcome istrue must have not onlyM ∈ S but alsoM = Mg. On the other hand
G1 does not useg anywhere and thus the eventsGF

1 andM = Mg are independent and the probability of
the latter is1/q. Hence, we have

Pr
[

GF
1

]

≤ q ⋅ Pr
[

GF
2

]

. (8)

14

Initialize // G0, G1,G2, G3, G4

(pk, sk)←$ SKG()

S ← ∅ ; E ← ∅ ; i← 0 ; j ← 0

g←$ {1, . . . , q}

Returnpk

Open(j) // G0, G1,G2, G3 , G4

If (j ≤ 0 ∨ j > i) Return⊥
E ← E ∪ {Mj}

If (j = g) thenbad← true; �j ←⊥

Return�j

ASign(M) // G0,G1,G2,G3

i← i+ 1 ; Mi ←M ; S ← S ∪ {Mi}

si←$ SIG(sk,M)

(�i, !i)←$ CMT(si∣∣pk) ; �i ← (si, !i)

Return�i

ASign(M) // G4

i← i+ 1 ; Mi ←M ; S ← S ∪ {Mi}

If (i = g) thensi←$ {0, 1}l

elsesi←$ SIG(sk,Mi)

(�i, !i)←$ CMT(si∣∣pk)

�i ← (si, !i)

Return�i

Finalize(M, (�, �)) // G0

Return(M /∈ S ∧M /∈ E ∧ AVF(pk,M, (�, �)) = 1)

Finalize(M, (�, �)) // G1

Return(M ∈ S ∧M /∈ E ∧ AVF(pk,M, (�, �)) = 1)

Finalize(M, (�, �)) // G2, G3, G4

Return(M = Mg ∧M /∈ E ∧ AVF(pk,M, (�, �)) = 1)

Figure 9:Game sequence used in proof of Theorem 4.1. GameG3, G4 include the boxed code whileG0, G1, G2 do
not.

The difference betweenG3 andG2 is that the former includes the boxed code inOpen. But any execution
of G3 with F in which the outcome istrue must haveM = Mg andM ∕∈ E, so the boxed code would not
have been executed. Recall thatBDi denotes the event that bad is set totrue in gameGi. Then based on
Lemma 2.1, we have

Pr
[

GF
2

]

= Pr
[

GF
2 ∧ BD2

]

= Pr
[

GF
3 ∧ BD3

]

. (9)

Combining (7), (8) and (9), we get

Advauf
AS,F (k) ≤ Pr

[

GF
0

]

+ q ⋅ Pr
[

GF
3 ∧ BD3

]

. (10)

We will build A0, A1, B so that

Pr
[

GF
0

]

≤ Advuf
DS(A0) (11)

Pr
[

GF
3 ∧ BD3

]

− Pr
[

GF
4 ∧ BD4

]

≤ Advhide
CℳT (B) (12)

Pr
[

GF
4 ∧ BD4

]

≤ Advuf
DS(A1) (13)

A0, A1 will make q oracle queries andA0, A1, B will have the same running time asF . Now letA on input
pk pick c←$ {0, 1} and runAc(pk). Then

Advuf
DS(A) =

1

2
Advuf

DS(A0) +
1

2
Advuf

DS(A1) . (14)

Equation (1) follows from (10), (11) (12), (13) and (14). We proceed to describeA0, A1, B.

AdversaryA0 gets inputpk and then does the following initializations:

S ← ∅ ; E ← ∅ ; i← 0 ; j ← 0 ; g←$ {1, . . . , q} . (15)

It then runsF (pk). It answersF ’s queries toASign using the following procedure:

procedure ASign(M)

15

i← i+ 1 ; Mi ←M ; S ← S ∪ {Mi}

si←$ Sign(M)

(�i, !i)←$ CMT(si∣∣pk) ; �i ← (si, !i)

Return�i

A0 answersF ’s queris toOpen exactly asG0 does. Finally,F outputs(M, (�, �)). AdversaryA0 parses
� to (s, !) and then outputs(M,s).

AdversaryB against the hiding property ofCℳT begins by executing the code of theInitialize procedure
of G3, thereby defining for itself the parameterspk, sk, S,E, i, j, g. It then starts runningF on pk. It
answersF ’s queries toASign using the following procedure:

procedure ASign(M)

i← i+ 1 ; Mi ←M ; S ← S ∪ {Mi}

si←$ SIG(sk,M)

If (i = g) thens0←$ {0, 1}l ; �i ← LR(s0∣∣pk, si∣∣pk)

else(�i, !i)←$ CMT(si∣∣pk) ; �i ← (si, !i)

Return�i

It answersF ’s queries toOpen exactly asG3 does. Finally,F outputs(M, (�, �)). AdversaryB outputs
1 if M = Mg ∧M ∕∈ E ∧ AVF(pk,M, (�, �)) = 1, and0 otherwise. Lettingd denote the output ofB, we
have

Pr [d = 1 ∣ b = 1] = Pr
[

GF
3 ∧ BD3

]

Pr [d = 1 ∣ b = 0] = Pr
[

GF
4 ∧ BD4

]

in gameHIDEB2

CℳT . Subtracting, we get

Pr
[

GF
3 ∧ BD3

]

− Pr
[

GF
4 ∧ BD4

]

= Advhide
CℳT (B) .

AdversaryA1 gets inputpk and then does the initializations (15). It then runsF (pk). It answersF ’s queries
toASign using the following procedure:

procedure ASign(M)

i← i+ 1 ; Mi ←M ; S ← S ∪ {Mi}

If (i = g) thensi←$ {0, 1}l

Elsesi←$ Sign(M)

(�i, !i)←$ CMT(si∣∣pk) ; �i ← (si, !i)

Return�i

It answersF ’s queris toOpen exactly asG4 does. Finally,F outputs(M, (�, �)). A1 parses� to (s, !)
and outputs(M,s).

C Proof of Theorem 4.2

Proof: AdversaryB begins with(pki, ski)←$ AKG() for i = 0, 1. It then runsA((pk0, sk0), (pk1, sk1))
and answersA’s queries toCH using the following procedure:

16

Initialize // G0 −G6

(pk, sk)←$ SKG()

E ← ∅ ; U ← ∅ ; i← 0

Returnpk

ASign(M) // G0 ,G1

i← i+ 1 ; Mi ←M

si←$ SIG(sk,Mi) ; �i←$ {0, 1}k

S ← {j : 1 ≤ j < i ∧ sj = si}

If S ∕= ∅ thenj←$ S ; �i ← �j

Else ifH[si∣∣pk] then�i ← H[si∣∣pk]

H[si∣∣pk]← �i

Return�i

ASign(M) // G2 ,G3

i← i+ 1 ; Mi ←M

si←$ SIG(sk,Mi) ; �i←$ {0, 1}k

S ← {j : 1 ≤ j < i ∧ sj = si}

If S ∕= ∅ thenbad← true; j←$ S ; �i ← �j

Else ifH[si∣∣pk] thenbad← true; �i ← H[si∣∣pk]

Return�i

ASign(M) // G4, G5

i← i+ 1 ; Mi ←M ; si←$ SIG(sk,Mi) ; �i←$ {0, 1}k

Return�i

ASign(M) // G6

i← i+ 1 ; Mi ←M ; �i←$ {0, 1}k

Return�i

Finalize(M, (�, �)) // G0 −G6

Return(M /∈ E ∧H[s∣∣pk] = � ∧ SVF(pk, s,M) = 1)

Open(j) // G0, G1 , G2 , G3 , G4 , G5

If (j ≤ 0 ∨ j > i) Return⊥
E ← E ∪ {Mj} ; U ← U ∪ {j}

H[sj ∣∣pk]← �j

Returnsj

Open(j) // G6

If (j ≤ 0 ∨ j > i) Return⊥
sj ←$ SIG(sk,Mj) ; E ← E ∪ {Mj} ; U ← U ∪ {j}

H[sj ∣∣pk]← �j

Returnsj

H(x) // G1, G2, G3

If (H[x]) ReturnH[x]

s∣∣pk← x ; H[x]←$ {0, 1}k

T ← {j : 1 ≤ j ≤ i ∧ s = sj ∧ j /∈ U}

If (T ∕= ∅) thenj←$ T ; H[x]← �j

ReturnH[x]

H(x) // G4 , G5

If (H[x]) ReturnH[x]

s∣∣pk← x ; H[x]←$ {0, 1}k

T ← {j : 1 ≤ j ≤ i ∧ s = sj ∧ j /∈ U}

If (T ∕= ∅) thenbad← true; j←$ T ; H[x]← �j

ReturnH[x]

H(x) // G0, G6

If (H[x]) ReturnH[x]

H[x]←$ {0, 1}k

ReturnH[x]

Figure 10:Game sequence used in proof of Theorem 6.2.

procedure CH(M)

s0←$ SIG(sk0,M) ; s1←$ SIG(sk1,M)

� ← LR(s0∣∣pk0, s1∣∣pk1)

Return�

After A outputs its guessd, adversaryB outputs the samed. We have

Pr
[

HIDEB
CℳT ∣ b = 1

]

= Pr
[

ANONA
AS ∣ b = 1

]

Pr
[

HIDEB
CℳT ∣ b = 0

]

= Pr
[

ANONA
AS ∣ b = 0

]

in gameHIDEB
CℳT , from which (2) follows.

D Proof of Theorem 6.2

Proof: We refer to the games of Figure 10. GameG0 is equivalent toAUF-CMAAS , so

Advauf
AS(F) = Pr

[

GF
0

]

.

17

GameG1 omits the boxed code inASign, meaningH[si∣∣pk] is not assigned�i at this point. Instead the
assignment is delayed, being done byH(x) orOpen as necessary . So

Pr
[

GF
0

]

= Pr
[

GF
1

]

.

ButG1, G2 are equivalent andG2 andG3 are identical until bad, so by Lemma 2.1

Pr
[

GF
1

]

= Pr
[

GF
2

]

= Pr
[

GF
3

]

+ Pr
[

GF
2

]

− Pr
[

GF
3

]

≤ Pr
[

GF
3

]

+ Pr [BD3]

G3 andG4 are equivalent andG4 andG5 are identical until bad, so by Lemma 2.1

Pr
[

GF
3

]

= Pr
[

GF
4

]

= Pr
[

GF
5

]

+ Pr
[

GF
4

]

− Pr
[

GF
5

]

≤ Pr
[

GF
5

]

+ Pr [BD5]

In G5, the signaturesi for i /∈ U is unused beyond for settingbad, so inG6 we don’t compute it. We have

Pr
[

GF
5

]

= Pr
[

GF
6

]

.

Putting the above together we have

Advauf
AS(F) ≤ Pr

[

GF
6

]

+Pr [BD3] + Pr [BD5] . (16)

AdversaryA sets inputpk and perform the initializationE ← ∅ ; U ← ∅ ; i ← 0. It then runsF (pk). It
responds toH andASign queries as doesG6, and toOpen queries via theOpen procedure ofG6 except
that the computationSIG(sk,Mi) is substituted by a callSign(Mi) to A’s sign oracle.A outputs the same
thing asF . We have

Pr
[

GF
6

]

≤ Advuf
DS(A) (17)

Now

Pr [BD3] ≤

qs
∑

i=1

(
i− 1

2H∞(DS)
+

qH + qo

2H∞(DS)
)

=
qs(qs − 1) + 2qs(qH + qo)

21+H∞(DS)
(18)

Finally the maximum size ofT in procedureH of G5 is qs and hence

Pr [BD5] ≤
qsqH

2H∞(DS)
. (19)

Putting together (16), (17), (18) and (19) completes the proof.

E Proof of Theorem 6.3

Proof: We use gamesG0, G1, G2 of Figure 11. So we have

Advanon
AS (A) = 2 ⋅ Pr

[

GA
0

]

− 1 . (20)

18

Initialize // G0, G1,G2

b←$ {0, 1}

(pk0, sk0)←$ SKG()

(pk1, sk1)←$ SKG()

Return((pk0, sk0), (pk1, sk1))

CH(M) // G0

s←$ SIG(skb,M) ; � ← H(s∣∣pkb)

Return�

Finalize(d) // G0, G1, G2

Return(b = d)

CH(M) // G1 ,G2

s←$ SIG(skb,M) ; �←$ {0, 1}k

If (H [s∣∣pkb]) thenbad← true ; � ← H [s∣∣pkb]

H [s∣∣pkb]← �

Return�

H(x) // G0, G1,G2

If (H [x]) ReturnH [x]

H [x]←$ {0, 1}k

ReturnH [x]

Figure 11:Game sequence used in proof of Theorem 6.3.

GamesG0 andG1 are equivalent, andG1 andG2 are identical untilbadso by Lemma 2.1 we have

Pr
[

GA
0

]

= Pr
[

GA
1

]

= Pr
[

GA
1

]

− Pr
[

GA
2

]

+ Pr
[

GA
2

]

≤ Pr [BD2] + Pr
[

GA
2

]

(21)

Combining (20) and (21), we get

Advanon
AS (A) ≤ 2 ⋅ (Pr

[

GA
2

]

+ Pr [BD2])− 1 .

In gameG2, the challenge signatureH[s∣∣pkb] is set to be a random string with lengthk, so we have
Pr

[

GA
2

]

= 1/2 and thus
Advanon

AS (A) ≤ 2 ⋅ Pr [BD2] . (22)

In gameG2, badis settrue when the signature generated inLR is equal to somex whichA queried toH,
so we have

Pr [BD2] ≤ qH ⋅ 2
−H∞(DS) . (23)

Equation (4) follows from (22) and (23).

F Proof of Theorem 6.4

Proof: Let (pk0, pk1,M0,M1, �, �0, �1) denote the output ofA. Let s0 ← �0 ands1 ← �1. If A wins the
gameUNAMBAS , then we haveH(s0∣∣pk0) = H(s1∣∣pk1) = � but pk0 ∕= pk1, meaning that we have a
collision forH. SinceA makesqH queries toH we have (5).

We remark that, as the proof shows, for unambiguity. we need only thatH is collision resistant rather
than a RO.

G Schnorr Identification Protocol

In Figure 12, we give the description of Schnorr Identification protocol, on which our splitting construction
in Figure 6 is based.

19

Algorithm KG

x←$ ℤp

X ← gx

pk ← X
sk ← x
Return(pk, sk)

Prover
Input: sk = x
y←$ ℤp

Y ← gy

�← y + �x mod p

Y
-

�
�

�
-

Verifier
Input: pk = X

If g� = Y X� thenDec← 1 elseDec← 0
ReturnDec

Figure 12: Schnorr Identification Protocol used in Section 7.

H Proof of Theorem 7.1

Before giving the security proof, we first recall the generalforking lemma [3], which will be used later.

Lemma H.1 [General Forking Lemma] Fix an integerq ≥ 1 and a setH of sizeℎ ≥ 2. Let A be a
randomized algorithm that on inputX,ℎ1, . . . , ℎq returns a pair, the first element of which is an integer in
the range0, . . . , q and the second element of which we refer to as aside output. Let IG be a randomized
algorithm that we call the input generator. Theaccepting probability of A, denotedacc, is defined as the
probability thatJ ≥ 1 in the experiment

X ←$ IG ; ℎ1, . . . , ℎq ←$ H ; (J, s)←$ A(X,ℎ1, . . . , ℎq) .

Theforking algorithm FA associated toA is the randomized algorithm that on inputx proceeds as follows:

Algorithm FA(x)
Pick coins� for A at random
ℎ1, . . . , ℎq ←$ H
(I, s)← A(x, ℎ1, . . . , ℎq; �)

If I = 0 then return(0, ", ")
ℎ′I , . . . , ℎ

′
q ←$ H

(I ′, s′)← A(x, ℎ1, . . . , ℎI−1, ℎ
′
I , . . . , ℎ

′
q; �)

If (I = I ′ andℎI ∕= ℎ′I) then return(1, s, s′)
Else return(0, ", ").

Let

frk = Pr
[

b = 1 : X ←$ IG ; (b, s, s′)←$ FA(X)
]

.

Then

frk ≥ acc ⋅

(

acc

q
−

1

ℎ

)

. (24)

Alternatively,

acc ≤
q

ℎ
+

√

q ⋅ frk . (25)

20

Proof: Let q = qs + qH and consider gamesG0 −G7 of Figure 13. We have

Advauf
AS(F) = Pr

[

GF
0

]

= Pr
[

GF
1

]

= Pr
[

GF
2

]

= Pr
[

GF
3

]

+ Pr
[

GF
2

]

− Pr
[

GF
3

]

≤ Pr
[

GF
3

]

+ Pr [BD3] .

And

Pr
[

GF
3

]

= Pr
[

GF
4

]

= Pr
[

GF
5

]

+ Pr
[

GF
4

]

− Pr
[

GF
5

]

≤ Pr
[

GF
5

]

+ Pr [BD5]

≤ Pr
[

GF
6

]

+ Pr [BD6]

Pr [BD3] ≤
i−1
∑

i=1

(
i− 1

p
+

qH + qo
p

)

≤
q2s + 2qs(qH + qo)

2p

Pr [BD5] ≤
qsqH
p

.

So

Advauf
AS(F) ≤ Pr

[

GF
6

]

+
q2s + 4qsqH + 2qsqo

2p
.

LetA be the algorithm that on inputX ∈ G, ℎ1, . . . , ℎqH ∈ {0, 1}
k and coins� = �F ∣∣�1∣∣ . . . ∣∣�qs ∣∣�1∣∣ . . . ∣∣�qs

where�1, . . . , �qs ∈ {0, 1}
k and�1, . . . , �qs ∈ ℤp, runsF on inputX and coins�F . It lets�1, . . . , �qs and

�1, . . . , �qs play the role of the quantities of the same name inInitialize of G7. It answersF ’s queries to
ASign, H, Open in the same way asG7. WhenF outputs(M, (�, �)), algorithmA let

Y ← g� ⋅X−� ; �′ ← H(X∣∣Y ∣∣M) ; I ← Ind(X∣∣Y ∣∣M) .

where the call toH is answered as inG7. If M ∈ E or � ∕= �′ thenA returns(0, q), else it returns
(I, (M,�, �, Y)). Now consider the experiment where� = �F ∣∣�1∣∣ . . . ∣∣�qs ∣∣�1∣∣ . . . ∣∣�qs is chosen at
random and then

x←$ ℤp ; ℎ1, . . . , ℎqH ←$ {0, 1}k ; (I, s)←$ A(gx, ℎ1, . . . , ℎqH ; �).

Let acc be the probability thatI ∕= 0 in this experiment. Notice that ifM /∈ E thenH[X∣∣Y ∣∣M] was
defined by anH-queryX∣∣Y ∣∣M rather than byOpen, so Ind(X∣∣Y ∣∣M) ∈ {1, . . . , qH}. So

acc = Pr
[

GF
7

]

.

21

Let IG be the algorithm that letx←$ ℤp and returnsgx. Let FA be the algorithm of Lemma H.1 and letfrk
be defined as that.

How consider the experiment
x←$ ℤp ; (b, s, s

′)← FA(g
x)

and assumeb = 1. Let (I, s) and (I ′, s′) be the output ofA in the execution ofFA. Sinceb = 1 we
haveI ∕= 0 andI ′ ∕= 0, so we can parse(M,Y, �, �) ← s and(M ′, Y ′, �′, �′) ← s′. The definition of
A implies that Ind(X∣∣Y ∣∣M) = I and Ind(X∣∣Y ′∣∣M ′) = I ′. Now in the first execution ofA it must be
thatH[X∣∣Y ∣∣M] was defined by anH-query ofF rather than byOpen, and the response to the query was
� = ℎI which remains the value ofH[X∣∣Y ∣∣M] thenceforth. Similarly in the second execution ofA it
must be thatH[X∣∣Y ′∣∣M ′] was defined by anH-query ofF rather than byOpen, and the response to the
query was�′ = ℎ′I , which remains the value ofH[X∣∣Y ′∣∣M ′] thenceforth. As a consequenceY ∣∣M and
Y ′∣∣M ′ were determined byx, ℎ1, . . . , ℎI(ℎI−1) (recall I = I ′) and� and henceY ∣∣M = Y ′∣∣M ′. Now
sinceI ∕= 0 andI ′ ∕= 0 we have

Y = g� ⋅X−� = g�
′

⋅X−�
′

= Y ′

and� ∕= �′, so
x = g(�−�

′)a

wherea = (� − �′)−1 mod p. SoFA can easily be extended to an adversaryB that on inputX computes
DLog(X) with probability frk. But by Lemma H.1 and the above

Advauf
AS(F) ≤

q2s + 4qsqH + 2qsqo
2p

+ acc

≤
q2s + 4qsqH + 2qsqo

2p
+

qH
p

+
√

qH ⋅ frk

The theorem follows.

I Proof of Theorem 7.2

Proof: We use gamesG0, G1, G2 of Figure 14. We have

Advanon
AS (A) = 2 ⋅ Pr

[

GA
0

]

− 1 . (26)

Since gamesG0 andG1 are equivalent, we have

Pr
[

GA
0

]

= Pr
[

GA
1

]

. (27)

GamesG1 andG2 are identical untilbad. Then based on Lemma 2.1, we have

Pr
[

GA
1

]

= Pr
[

GA
1

]

− Pr
[

GA
2

]

+ Pr
[

GA
2

]

≤ Pr [BD2] + Pr
[

GA
2

]

(28)

Combining (26), (27) and (28), we get

Advanon
AS (A) ≤ 2 ⋅ (Pr

[

GA
2

]

+ Pr [BD2])− 1 . (29)

22

Note that inG2, the challenge anonymous signatureH[Xb∣∣Y ∣∣M] is set to be a random string with length
k, so we havePr

[

GA
2

]

= 1
2 and thus

Advanon
AS (A) ≤ 2 ⋅ Pr [BD2]. (30)

In addition,badis settrue whenH[Xb∣∣Y ∣∣M] is already defined. SinceY is chosen randomly from group
G of sizep, we have

Pr [BD2] ≤
qH
p

. (31)

Equation (6) follows from (30) and (31).

J Proof of Theorem 7.3

Proof: Let (X0,X1,M0,M1, �, �0, �1) denote the output ofA. If adversaryA wins the gameUNAMBAS ,
then it must be thatX0,X1 ∈ G and∣�∣ = k and�0, �1 ∈ ℤp andH(pk0∣∣Y0∣∣M0) = H(pk1∣∣Y1∣∣M1) = �
whereY0 = g�0X−�0 andY1 = g�1X−�1 . But the probability thatA can find a collision in ROH in qH
queries is at mostq2H/2k+1.

K Proof of Theorem 8.2

Proof: Consider gamesH0,H1 in Figure 15. We have

Advhide
CℳT (A) = 2Pr

[

HA
0

]

− 1 .

H1 andH0 are identical untilbad. By Lemma 2.1, we have

Advhide
CℳT (A) = 2Pr

[

HA
0

]

− 1

= 2Pr
[

HA
1

]

+ 2Pr
[

HA
0

]

− 2Pr
[

HA
1

]

− 1

= (2Pr
[

HA
1

]

− 1) + 2Pr [BD1]

Lemma 8.1 gives usF such that
Pr [BD1] ≤ Advauf

AS(F) .

It remains to designB so that

2(Pr
[

HA
1

]

− 1) ≤ n ⋅Advauf
AS(B) . (32)

Towards this end consider gamesGj , Lj(0 ≤ j ≤ n) of Figure 15. It is easy to see

2Pr
[

HA
1

]

− 1 = Pr
[

LA
n

]

− Pr
[

LA
0

]

. (33)

The boxed code included inGj is the key-swap that swaps the roles of(pk0, sk0), (pk1, sk1) under certain
conditions. However since(pk0, sk0), (pk1, sk1) are independently chosen and only seen byA through the
response to theLR query, swapping them has no effect visible toA, meaning

Pr
[

GA
j

]

= Pr
[

LA
j

]

(1 ≤ j ≤ n) . (34)

We will designB so that

Advanon
AS (B) =

1

n
(Pr

[

GA
n

]

− Pr
[

GA
0

]

) . (35)

23

Putiing together (33), (34) and (35) yields (32)and completes the proof.

AdversaryB gets input(pk0, sk0), (pk1, sk1). It picksg←$ {1, . . . , n} and then starts runningA, respond-
ing toA’s LR query via the following procedure

LR(M0,M1)

If (M0[g] = 1 ∧M1[g] = 0) then
(pk, sk)← (pk0, sk0) ; (pk0, sk0)← (pk1, sk1)

(pk1, sk1)← (pk, sk)

For i = 1, . . . , g − 1 do (�i, �i)←$ ASIG(skM1[i], i)

If (M0[g] = M1[g]) then(�g, �g)←$ ASIG(skM1[g], g)

Else(�g, �g)←$ CH(g)

For i = g + 1, . . . , n do (�i, �i)←$ ASIG(skM0[i], i)

� ← (0, �1∣∣ . . . ∣∣�n∣∣pk0∣∣pk1)

Return�

Lettingd denote the output ofA adversaryB returnsd. Then lettingb denote the challenge bit ofANONAS .
We claim that

Pr [d = 1 ∣ g = j ∧ b = 1] = Pr
[

GA
j

]

(1 ≤ j ≤ n) . (36)

To justify this consider two cases. First, ifM0[j] = M1[j] then the code inB’s simulatedLR oracle is
the same as inGj . Second, ifM0[j] ∕= M1[j], let c = M0[g]. Then(�j, �j) is produced byCH(j) under
pk1⊕c. (we use here that the key swap occurs ifc = 1.) But pk1⊕c = pkM1[j], sincec = M0[j] = 1⊕M1[j],
so again this corresponds toGj . On the other hand,

Pr [d = 1 ∣ g = j ∧ b = 0] = Pr
[

GA
j−1

]

(1 ≤ j ≤ n) . (37)

To justify this consider two cases. First, ifM0[j] = M1[j] then the code inB’s simulatedLR oracle is
equivalent to the one inGj−1 in this same case. Second, ifM0[j] ∕= M1[j], let c = M0[j]. Then(�j, �j) is
produced byCH(j) underpkc. (we use here that the key swap occurs ifc = 1.) But pkc = pkM0[j], since
c = M0[j], so this corresponds toGj−1. Now from (36) and (37) we have

Advanon
AS (B) =

n
∑

j=1

Pr
[

GA
j

]

n
−

Pr
[

GA
j−1

]

n

=
1

n
(Pr

[

GA
n

]

− Pr
[

GA
0

]

)

which yields (35) as desired.

L Proof of Theorem 8.3

Proof: B runsA to obtain its output(�, (M0, !0), (M1, !1)). AssumeCVF(�, (M0, !0)) = CVF(�, (M1, !1))
= 1. B sets(b, �′) ← �. If b = 1 then by definition ofCVF it must be that�′ = M0 = !0 = M1 = !1,
meaningM0 = M1, soA does not win andB returns⊥. If b = 0 thenB parses�′ as�1∣∣ . . . ∣∣�n∣∣pk0∣∣pk1
where∣�i∣ = l, the latter being the length of a signature inAS. Since keys also have a fixed length (as
assumption we made in our signature syntax), the parsing process uniquely definesn from �′. But then
CVF(�, (M0, !0)) = CVF(�, (M1, !1)) = 1 implies thatn = ∣M0∣ = ∣M1∣ andpk0 ∕= pk1. Now if A wins
then it must be thatM0 ∕= M1, so letj be such thatM0[j] ∕= M1[j]. B further lets�c,1∣∣ . . . ∣∣�c,n ← !c for
c = 0, 1. B returns(pk0, pk1, j, j, �j , �0,j , �1,j).

24

Initialize // G0 −G6

x←$ ℤp ; X ← gx ; E ← ∅ ; U ← ∅ ; i← 0

ReturnX

ASign(M) // G0 ,G1

i← i+ 1 ; Mi ←M

�i←$ ℤp ; �i←$ {0, 1}k ; Yi ← g�iX−�i

S ← {j : 1 ≤ j < i ∧ Yj ∣∣Mj = Yi∣∣Mi}

If S ∕= ∅ thenj←$ S ; �i ← �j ; �i ← �j

Else ifH[X∣∣Yi∣∣Mi] then
�i ← H[X∣∣Yi∣∣Mi] ; �i ← DLogg(Yi) + x�i mod p

H[X∣∣Yi∣∣Mi]← �i

Return�i

ASign(M) // G2 ,G3

i← i+ 1 ; Mi ←M

�i←$ ℤp ; �i←$ {0, 1}k ; Yi ← g�iX−�i

S ← {j : 1 ≤ j < i ∧ Yj ∣∣Mj = Yi∣∣Mi}

If S ∕= ∅ thenbad← true; j←$ S ; �i ← �j ; �i ← �j

Else ifH[X∣∣Yi∣∣Mi] thenbad← true

�i ← H[X∣∣Yi∣∣Mi] ; �i ← DLogg(Yi) + x�i mod p

H[X∣∣Yi∣∣Mi]← �i

Return�i

ASign(M) // G4, G5

i← i+ 1 ; Mi ←M

�i←$ ℤp ; �i←$ {0, 1}k ; Yi ← g�iX−�i

Return�i

ASign(M) // G6

i← i+ 1 ; Mi ←M ; �i←$ {0, 1}k

Return�i

ASign(M) // G7

i← i+ 1 ; Mi ←M

Return�i

Finalize(M, (�, �)) // G0 −G6

Y ← g�X−� ; �′ ← H(X∣∣Y ∣∣M)

Return(M /∈ E ∧H[X∣∣Y ∣∣M] = �)

Finalize(M, (�, �)) // G7

Y ← g�X−� ; �′ ← H(X∣∣Y ∣∣M) ; I ← Ind(X∣∣Y ∣∣M)

Return(M /∈ E ∧ � = �′)

Initialize // G7

x←$ ℤp ; X ← gx ; E ← ∅ ; c← 0 ; i← 0

ℎ1, . . . , ℎqH , �1, . . . , �qs ←$ {0, 1}k

�1, . . . , �qs ←$ ℤp

ReturnX

Open(j) // G0, G1 , G2 , G3 , G4 , G5

If (j ≤ 0 ∨ j > i) then return⊥
E ← E ∪ {Mj} ; U ← U ∪ {j}

H[X∣∣Yj∣∣Mj]← �j

Return�j

Open(j) // G6

If (j ≤ 0 ∨ j > i) then return⊥
�j ←$ ℤp ; Yj ← g�jX−�j

E ← E ∪ {Mj}

H[X∣∣Yj∣∣Mj]← �j

Return�j

Open(j) // G7

If (j ≤ 0 ∨ j > i) then return⊥
Yj ← g�jX−�j ; E ← E ∪ {Mj}

H[X∣∣Yj∣∣Mj]← �j

Return�j

H(x) // G1, G2, G3

If (H[x]) then returnH[x]

X∣∣Y ∣∣M ← x ; H[x]←$ {0, 1}k

T ← {j : 1 ≤ j ≤ i ∧ Yj ∣∣Mj = Y ∣∣M ∧ j /∈ U}

If (T ∕= ∅) thenj←$ T ; H[x]← �j

ReturnH[x]

H(x) // G4 , G5

If (H[x]) then returnH[x]

X∣∣Y ∣∣M ← x ; H[x]←$ {0, 1}k

T ← {j : 1 ≤ j ≤ i ∧ Yj ∣∣Mj = Y ∣∣M ∧ j /∈ U}

If (T ∕= ∅) thenbad← true; j←$ T ; H[x]← �j

ReturnH[x]

H(x) // G0, G6

If (H[x]) then returnH[x]

H[x]←$ {0, 1}k

ReturnH[x]

H(x) // G7

If (H[x]) then returnH[x]

c← c+ 1 ; H[x]← ℎc ; Ind(x)← c

ReturnH[x]

Figure 13:Game sequence used in proof of Theorem 6.2.

25

Initialize // G0, G1,G2

b←$ {0, 1}

x0←$ ℤp ; x1←$ ℤp ; X0 ← gx0 ; X1 ← gx1

Return((x0, X0), (x1, X1))

CH(M) // G1 ,G2

�←$ {0, 1}k

y←$ ℤp ; Y ← gy

If (H [Xb∣∣Y ∣∣M]) thenbad← true ;

� ← H [Xb∣∣Y ∣∣M]

H [Xb∣∣Y ∣∣M]← �

Return�

CH(M) // G0

y←$ ℤp ; Y ← gy ; � ← H(Xb∣∣Y ∣∣M)

�← y + �xb mod p

Return�

H(x) // G0, G1,G2

If (H [x]) ReturnH [x]

H [x]←$ {0, 1}k

ReturnH [x]

Finalize(d) // G0, G1, G2

Return(b = d)

Figure 14:Game sequence used in proof of Theorem 7.2.

Initialize // H0, H1

b←$ {0, 1}

(pk0, sk0)←$ AKG()

(pk1, sk1)←$ AKG()

LR(M0,M1) // H0 , H1

For i = 1 to n

(�i, �i)← ASIG(skMb[i], i)

� ← (0, �1∣∣ . . . ∣∣�n∣∣pk0∣∣pk1)

If pk0 = pk1 thenbad← true; � ← (1,Mb)

Return�

Finalize(d) // H0,H1

Returnd = b

Initialize // Gj , Lj(0 ≤ j ≤ n)

(pk0, sk0)←$ AKG()

(pk1, sk1)←$ AKG()

LR(M0,M1) // Gj ,Lj(0 ≤ j ≤ n)

If (M0[j] = 1 ∧M1[j] = 0) then

(pk, sk)← (pk0, sk0)

(pk0, sk0)← (pk1, sk1)

(pk1, sk1)← (pk, sk)

For i = 1, . . . , j do (�i, �i)←$ ASIG(skM1[i], i)

For i = j + 1, . . . , n do (�i, �i)←$ ASIG(skM0[i], i)

� ← (0, �1∣∣ . . . ∣∣�n∣∣pk0∣∣pk1)

Return�

Finalize(d) // Gj , Lj(0 ≤ j ≤ n)

Returnd = 1

Figure 15:Game sequence used in proof of Theorem 8.2.

26

