
A Random Oracle into Elliptic Curves

Jean-Sébastien Coron1 and Thomas Icart1,2

1Université du Luxembourg
2Sagem Sécurité

Abstract. We provide the first construction of a hash function into an elliptic curve that is indiffer-
entiable from a random oracle. Our construction is quite efficient; it is based on Icart’s algorithm for
hashing into elliptic curves in deterministic polynomial time.

1 Introduction

Some elliptic-curve cryptosystems require to hash into an elliptic curve, for instance the Boneh-
Franklin identity based encryption scheme [2], in which the public-key for identity id ∈ {0, 1}∗ is a
point Qid = H1(id) on the curve. Hashing into elliptic curves is also required for some passwords
based authentication protocols, for instance the SPEKE (Simple Password Exponential Key Ex-
change) [5] and the PAK (Password Authenticated Key exchange) [3]. In those three cryptosystems,
security is proven when the hash function is seen as a random oracle into the curve. However, it
remains to determine which hashing algorithm should be used, and whether it is reasonable to see
it as a random oracle.

In [2], Boneh and Franklin use a particular super-singular elliptic curve E for which, in addition
to the pairing operation, there exists a one-to-one mapping f from the base field Fp to E. This
enables to hash using f(h(m)) where h is a classical hash function from {0, 1}∗ to Fp. The authors
show that their IBE scheme is also secure when h is seen as a random oracle into Fp. However, when
no pairing operation is required (as in [3] and [5]), it is more efficient to use ordinary elliptic-curves,
since super-singular curves require much larger security parameters (due to the MOV attack [8]).

A deterministic hash algorithm for any elliptic curve was recently published by Icart [4]. The
algorithm is very efficient, faster than a scalar multiplication into the curve. Given any elliptic-curve
E defined over Fp, Icart actually defines a function f that is a rational function from Fp into the
curve. Then given any hash function h into Fp, one can use H(m) = f(h(m)) as a hash function
into E. As shown in [4], H is one-way if h is one-way.

Therefore, one possibility could be to use H(m) = f(h(m)) in cryptosystems such as [3] and [5],
and then assume that H behaves as a random oracle. However, one can easily see that this is not
a reasonable assumption; namely Icart’s function f does not generate all the elliptic curve points;
only a fraction roughly 5/8 of them are covered; consequently even if we see the underlying function
h as a random oracle, the resulting hash function H does not behave as a random oracle. Therefore
in this paper we would like to construct a hash function H into elliptic curves that behaves as a
random oracle when h is seen as a random oracle, and H should work for any elliptic-curve, not
only super-singular ones.

In this paper, we provide the first hash function construction satisfying this property. We use
the indifferentiability framework of Maurer et al. [7] to show that any cryptosystem using our
construction remains secure when the underlying hash function is seen as a random oracle. For
this we introduce the notion of admissible encoding. Roughly speaking, an admissible encoding is a

function that can be efficiently inverted with (almost) uniformly distributed inputs from uniformly
distributed outputs. We show that if f : A→ B is an admissible encoding, then H(m) = f(h(m))
is indifferentiable from a random oracle into B when h : {0, 1}∗ → A is seen as a random oracle.

However, we cannot apply this result to Icart’s function directly, since Icart’s function is not

an admissible encoding; this is because as mentioned previously the output of Icart’s function only
covers a fraction of the elliptic curve points. Therefore, we introduce a weaker notion which we call
weak encoding. Informally, a weak encoding f : A→ B must be efficiently invertible with (almost)
uniformly distributed inputs from uniformly distributed outputs, but the inverting algorithm is only
required to work with non-negligible probability (over b ∈ B and its own random coins), instead
of probability ≃ 1 as for admissible encodings. In this paper we show that 1) Icart’s function
satisfies this notion of weak encoding, and 2) we can construct an admissible encoding from a weak
encoding when working in a group. This enables to use Icart’s function to build a hash function
that is indifferentiable from a random oracle into the elliptic curve.

More precisely, given an elliptic-curve E defined over Fp with N points and generator G, our
construction is as follows:

H(m) := f(h1(m)) + h2(m).G

where h1 : {0, 1}∗ → Fp and h2 : {0, 1}∗ → ZN are two hash functions, and f is Icart’s function (or
more generally any weak encoding into E). Intuitively, the term h2(m).G in H(m) plays the role of
a one-time pad, to ensure that H(m) can behave as a random oracle even though f(h1(m)) does
not reach all points in E. Note that we could not use H(m) = h2(m).G only since in this case the
discrete logarithm of H(m) would be known, which would make most protocols insecure. Our main
result in this paper is that H(m) is indifferentiable from a random oracle when h1 and h2 are seen
as random oracles. Therefore H(m) can be used in any cryptosystem provably secure with random
oracle into elliptic curves, and the cryptosystem remains secure in the random oracle model for h1

and h2.

1.1 Related Work

An elliptic curve over a field Fpn where p > 3 is defined by a Weierstrass equation:

Y 2 = X3 + aX + b

where a and b are elements of Fpn . Throughout this paper, we note Ea,b the curve associated to
these parameters. It is well known that the set of points forms a group; we denote by Ea,b(Fpn) this
group and by N its order. We denote q = pn.

Super-singular Curves. A curve Ea,b is called super-singular when N = q + 1. When q 6= 1
mod 3, the map x 7→ x3 is a bijection, therefore the curves

Y 2 = X3 + b

are super-singular. One can then define the encoding

f : u 7→ ((u2 − b)1/3, u)

and the hash function H(m) := f(h(m)), where h is a classical hash function into Fpn .

In the Boneh-Franklin scheme [2], one actually works in a subgroup G of prime order r of
Ea,b(Fpn); we let ℓ such that q + 1 = ℓ · r. In order to hash into G, one can therefore use the
encoding:

fG(u) := ℓ.f(u)

and the hash function into G:

HG(u) := fG(h(m)) (1)

In [2], Boneh and Franklin introduce the following notion of admissible encoding:

Definition 1 (Boneh-Franklin admissible encoding). A function f : A→ B is an admissible
encoding if it satisfies the following properties:

1. Computable: f is computable in deterministic polynomial time;

2. ℓ-to-1: for any b ∈ B, |f−1(b)| = ℓ;

3. Samplable: there exists a probabilistic polynomial time algorithm that for any b ∈ B returns a
random element in f−1(b).

The authors of [2] show that if f : A → G is an admissible encoding, then the Boneh-Franklin
scheme is secure with H(m) = f(h(m)), in the random oracle model for h : {0, 1}∗ 7→ A. Since the
function fG is easily seen to be an admissible encoding, this shows that Boneh-Franklin is provably
secure in the random oracle model with hash function HG as defined in (1).

In this paper, we introduce a new notion of admissible encoding that is more general than the
notion in [2]. This enables to use Icart’s function that can work for any elliptic curve, instead of
only super-singular ones. Moreover, the resulting hash function is indifferentiable from a random
oracle; therefore, it can be used in any cryptosystem, not only in Boneh-Franklin.

1.2 Icart’s Function

We consider the field Fpn where p > 3 and pn = 2 mod 3. Let E be an elliptic curve over Fpn with
equation:

Y 2 = X3 + aX + b

where a, b ∈ Fpn . In [4], Icart defines the function fa,b : Fpn 7→ E, with fa,b(u) = (x, y) where:

x =

(

v2 − b−
u6

27

)1/3

+
u2

3
y = ux + v

v =
3a− u4

6u

for u 6= 0, and fa,b(0) = O, the neutral element of the elliptic curve. It is easy to check that fa,b(u)
is indeed a point of E for any u ∈ Fpn . We recall the following properties for fa,b:

Lemma 1 (Icart). The function fa,b is computable in deterministic polynomial time. For any
point P ∈ Im(fa,b), we have that f−1

a,b (P) is computable in polynomial time and |f−1
a,b (P)| ≤ 4. We

have pn/4 < |Im(fa,b)| < pn.

We note that Icart’s function can also be defined in a field of characteristic 2 (see [4]).

2 Definitions

We recall the notion of indifferentiability introduced by Maurer et al. in [7]. We define an ideal

primitive as an algorithmic entity which receives inputs from one of the parties and delivers its
output immediately to the querying party. A random oracle [1] into a finite set S is an ideal
primitive which provides a random output in S for each new query; identical input queries are
given the same answer.

The notion of indifferentiability [7] enables to show that an ideal primitive HE (for example, a
random oracle into an elliptic-curve E) can be replaced by a construction C that is based on some
other ideal primitive H (for example, a random oracle into Fp), and any cryptosystem secure with
HE remains secure with C and H.

Definition 2 ([7]). A Turing machine C with oracle access to an ideal primitive H is said to be
(tD, tS , q, ε)-indifferentiable from an ideal primitive HE if there exists a simulator S with oracle
access to HE and running in time at most tS, such that for any distinguisher D running in time
at most tD and making at most q queries, it holds that:

∣

∣

∣
Pr

[

DCH,H = 1
]

− Pr
[

DHE ,SHE = 1
]
∣

∣

∣
< ε

CH is simply said to be indifferentiable from HE if ε is a negligible function of the security parameter
n, for polynomially bounded q, tD and tS.

It is shown in [7] that the indifferentiability notion is the “right” notion for substituting one ideal
primitive with a construction based on another ideal primitive. That is, if CH is indifferentiable
from an ideal primitive HE, then CH can replace HE in any cryptosystem, and the resulting
cryptosystem is at least as secure in the H model as in the HE model; see [7] or [6] for a proof.

We also recall the definition of statistically indistinguishable distributions.

Definition 3. Given two random variables X and Y over a set S, we say that the distribution of
X and Y are ε-statistically indistinguishable if:

∑

s∈S

∣

∣Pr[X = s]− Pr[Y = s]
∣

∣ < ǫ.

We say that two distributions are statistically indistinguishable if ε is a negligible function of the
security parameter.

3 A Random Oracle into Elliptic Curves

3.1 Previous Construction

Given an elliptic curve E : y2 = x3 + ax + b defined over Fpn , let fa,b be Icart’s function recalled in
Section 1.2. Given a hash function h : {0, 1}∗ 7→ Fpn , the following hash function H : {0, 1}∗ 7→ E
is defined in [4]:

H(m) = fa,b(h(m))

It is shown in [4] that H is one-way if h is one-way. However, it is easy to see that H(m) does
not behave like a random oracle when the underlying function h is seen as a random oracle; this is
because fab does not reach all points of E.1

1 moreover one can see that fab(u) is not uniformly distributed in Imfa,b when u is uniformly distributed in Fpn .

3.2 Admissible Encoding

Our goal in this paper is to construct a hash function into an elliptic-curve, that behaves as a
random oracle when the underlying hash function is seen as a random oracle. First, we introduce
our new notion of admissible encoding.

Definition 4 (Admissible Encoding). A function F : S 7→ R is said to be a ε-admissible en-
coding if:

1. F is computable in deterministic polynomial time;

2. there exists a probabilistic polynomial time algorithm IF such that given r ∈ R as input, IF
outputs s such that either F (s) = r or s = ⊥, and the distribution of s is ε-statistically indis-
tinguishable from the uniform distribution in S when r is uniformly distributed in R.

Note that an admissible encoding F must be “almost surjective”; namely since by definition the
distribution of IF (r) is statistically close to uniform in S for uniformly distributed r ∈ R, we can
have IF (r) = ⊥ only with negligible probability. Note also that the distribution of F (s) must be
statistically close to uniform in R when s is uniformly distributed in S. Finally we note that our
definition of admissible encoding is more general than the definition in [2] recalled in Section 1.1.

3.3 Indifferentiability

The following theorem shows that if F : S 7→ R is an admissible encoding, then:

H(m) := F (h(m))

is indifferentiable from a random oracle into R when h : {0, 1}∗ → S is seen as a random oracle;
see Section 4 for the proof.

Theorem 1. Let F : S 7→ R be a ε-admissible encoding. The construction H(m) = F (h(m)) is
(tD, tS , q, ε′)-indifferentiable from a random oracle, in the random oracle model for h : {0, 1}∗ 7→ S,
with ε′ = 2qε.

3.4 Weak Encoding

One can easily see however that Icart’s function f is not an admissible encoding into the elliptic-
curve E, since Imf covers only a fraction of the elliptic-curve points. Therefore, we introduce a
weaker notion which we call a weak encoding.

Definition 5 (Weak Encoding). A function f : S 7→ R is said to be a (α, ε)-weak encoding if:

1. f is computable in deterministic polynomial time.

2. there exists a probabilistic polynomial time algorithm If , which given as input r uniformly
distributed in R, outputs s ∈ S ∪ ⊥ such that f(s) = r or s = ⊥, and:

(a) Pr[s 6= ⊥] ≥ α

(b) the distribution of s conditioned on s 6= ⊥ is ε-statistically indistinguishable from the uniform
distribution in S.

Probabilities are taken over r ∈ R and the random coins of If . If α(k) > 1/p(k) for some polynomial
p(k) and large enough k, and ε(k) < 1/p′(k) for any polynomial p′(k) and large enough k, we say
that f is a weak encoding.

The difference with an admissible encoding is that for a weak encoding, algorithm If is only
required to invert r for at least a polynomial fraction of the inputs (with still a statistically close to
uniform distribution of outputs). Therefore the function f : S 7→ R need not be almost surjective,
nor is it required that f(u) is statistically close to uniform in R when u is uniform in S.

The following lemma shows that Icart’s function is a weak encoding (see Section 5 for the proof).

Lemma 2 (Icart’s Encoding). Icart’s function fab is an (α, ε)-weak encoding from Fpn to Ea,b,
where α = pn/(4N) and ε = 0, where N is the order of Ea,b.

3.5 From Weak Encoding to Admissible Encoding

Finally, we show how to turn a weak encoding into an admissible encoding when the output set is
a group (see Section 6 for the proof).

Lemma 3 (Weak → Admissible Encoding). Let G be a cyclic group of order N and let G be
a generator of G. Let f : A → G be an (α, ε)-weak encoding. Then the function F : A × ZN → G

with:

F (a, x) := f(a) + x.G

is a ε′-admissible encoding into G, where ǫ′ = (1 − α)T + ε for any T , polynomial in k. For
T = −k/ log2(1− α), one can take ε′ = 2−k + ε. Then if f is a weak encoding, F is an admissible
encoding.

We note that it is easy to generalize the construction to a group with a finite set of generators.

3.6 Our Construction

To summarize, given an elliptic-curve defined over Fp with N points and a generator G, our con-
struction is as follows:

H(m) = f(h1(m)) + h2(m).G

where h1 : {0, 1}∗ → Fp and h2 : {0, 1}∗ → ZN are two hash functions, and f is any weak encoding
into E, such as Icart’s function.

Theorem 2. Let E : y2 = x3 +ax+b be an elliptic curve over Fpn and let fa,b : Fpn 7→ E be Icart’s
function. Let G be a generator of E of order N . The construction

H(m) = fa,b(h1(m)) + h2(m).G

is 2 · qD · (1 − α)T -indifferentiable from a random oracle, when hash functions h1 : {0, 1}∗ → Fp

and h2 : {0, 1}∗ → ZN are seen as random oracles. Letting T = −k/ log2(1 − α), we have that
the construction is 2 · qD · 2

−k-indifferentiable from a random oracle, where qD is the number of
distinguisher’s queries.

4 Proof of Theorem 1

We must show that given a function F : S 7→ R that is a ε-admissible encoding, the construction
H(m) = F (h(m)) is indifferentiable from a random oracle, in the random oracle model for h :
{0, 1}∗ 7→ S. We first describe our simulator.

4.1 Our Simulator

The simulator must simulate random oracle h to the distinguisher D. The simulator has access to
random oracle H. Our simulator maintains a list L of previously answered queries. Our simulator
is based on algorithm IF from admissible encoding F ; formally:

Simulator S:
Input: m ∈ {0, 1}∗

Output: s ∈ S

1. If (m, s) ∈ L, then return s
2. Query H(m) = r
3. Let s← IF (r)
4. Append (m, s) to L.
5. Return s

4.2 Indifferentiability

We show that the systems (Ch, h) and (H,SH) are indistinguishable. We consider a distinguisher
making at most q queries. Without loss of generality, we can assume that the distinguisher makes all
queries to h(m) (or SH) for which there was a query to Ch(m) (or H(m)), and conversely; this gives
a total of at most 2q queries. We can then describe the full interaction between the distinguisher
and the system as a sequence of triples:

View = (mi,Hi, hi)1≤i≤2q

In system (Ch, h), we have that the hi’s are uniformly and independently distributed in S, and
Hi = F (hi) for all i. In system (H,SH), we have that Hi = F (hi) except if hi = ⊥, by definition of
algorithm IF from admissible encoding F . Moreover, the definition of admissible encoding F implies
that the distribution of hi is ε-indistinguishable from the uniform distribution in S. Therefore, we
obtain that the statistical distance between View in system (Ch, h) and View in system (H,SH) is
at most 2qε. This terminates the proof of Theorem 1.

5 Proof of Lemma 2

We actually prove a more general result than Lemma 2.

Lemma 4. Let f : S → R be a polynomially computable function such that Imf is at least a
polynomial fraction of R. If there exists a polynomial-time algorithm Inv that for any r outputs
f−1(r) in polynomial-time, then f is a weak encoding.

Note that under the hypothesis of Lemma 4 the size of f−1(r) must be polynomially bounded for
all r. From Lemma 1 we have that the hypotheses of Lemma 4 are satisfied for Icart’s encoding
function fa,b; this proves Lemma 2.

5.1 Proof of Lemma 4

We must describe a polynomial-time algorithm IF that given r ∈ R outputs s such that f(s) = r or
s = ⊥. We let B be an upper-bound on the size of f−1(r) for all r; from the hypotheses we can take
B polynomial in the security parameter. Moreover we let β = |Imf |/|R|; we have β(k) > 1/poly(k)
for some poly(k).

Algorithm IF :
Input: r ∈ R
Outputs s ∈ S such that f(s) = r or s = ⊥

1. Compute the set X = f−1(r) using algorithm Inv

2. Let δr = |X|/B
3. With probability 1− δr return ⊥
4. Return a random element s in X.

First, we compute the probability that algorithm IF returns s 6= ⊥ when input r is uniformly
distributed in r:

Pr[s 6= ⊥] =
∑

r∈R

1

|R|
· δr =

∑

r∈R

1

|R|
·
|f−1(r)|

B
=
|S|

|R| ·B

Since we have:

β =
|Imf |

|R|
≤
|S|

|R|

we obtain:

Pr[s 6= ⊥] ≥
β

B
>

1

poly′(k)

Now we consider the distribution of s conditioned on s 6= ⊥, for uniformly distributed r ∈ R.
We consider a given u ∈ S; if s = u , then we must have s 6= ⊥ and r = f(u); therefore:

Pr[s = u] = Pr[s = u ∧ s 6= ⊥ ∧ r = f(u)]

which gives:

Pr[s = u] = Pr[s = u|s 6= ⊥ ∧ r = f(u)] · Pr[s 6= ⊥|r = f(u)] · Pr[r = f(u)]

From the definition of algorithm IF , we have:

Pr[s = u|s 6= ⊥ ∧ r = f(u)] =
1

|Xu|

where Xu = f−1(f(u)), and:

Pr[s 6= ⊥|r = f(u)] = δf(u) =
|Xu|

B

This gives:

Pr[s = u] =
1

|Xu|
·
|Xu|

B
·

1

|R|
=

1

B · |R|

and eventually:

Pr[s = u|s 6= ⊥] =
Pr[s = u]

Pr[s 6= ⊥]
=

1

B · |R|
·
|R| · B

|S|
=

1

|S|

which shows that the distribution of s conditioned on s 6= ⊥ is uniform in S; this terminates the
proof of Lemma 4.

6 Proof of Lemma 3

We consider the following inverting algorithm IF :

Algorithm IF :

Input: P ∈ G

Output: (a, z) ∈ A× ZN such that P = F (a, z) = f(a) + z.G, or ⊥

1. For i = 1 to T :

(a) Randomly chooses z ∈ ZN and computes Z = z.G

(b) Let X = P − Z ∈ G

(c) Compute a = If (X)

(d) If a 6= ⊥, return (a, z)

2. Return ⊥.

It is easy to see that for (a, z) 6= ⊥, we have P = F (a, z) = f(a) + z.G as required. We must
show that for a uniformly distributed input P , the distribution of (a, z) is statistically close to
uniform in A× ZN .

We first consider the distribution of (a, z) for a fixed input P . Since f is a (α, ε)-weak encoding
and for every i the group element X = P −z.G is uniformly and independently distributed in G, at
step i we have a = ⊥ with probability at most 1− α, and eventually algorithm IF outputs a = ⊥
with probability at most (1 − α)T . Moreover, conditioned on a 6= ⊥, the distribution of a in (a, z)
is ε-statistically indistinguishable from the uniform distribution in A.

Let (aP , zP) be the random variable obtained for a fixed P , conditioned on (aP , zP) 6= ⊥. We
have that the distribution corresponding to P ′ = P + v.G for any v ∈ ZN is given by (aP , zP + v).
Therefore, for input P ′ uniformly distributed in G, the value of z in (a, z) = (aP , zP +v) is uniformly
distributed in ZN and independently from a. Then for uniformly distributed P ′ and conditioned on
(a, z) 6= ⊥, the distribution of (a, z) is ε-statistically indistinguishable from the uniform distribution
in A× ZN . Finally, since (a, z) = ⊥ with probability at most (1− α)T , the distribution of (a, z) is
ε′-statistically indistinguishable from the uniform distribution, with:

ε′ = ε + (1− α)T

which terminates the proof of Lemma 3.

7 Extension to Prime Order Subgroup

We have seen in Section 3 how to construct a hash function H(m) into an elliptic curve E that
is indifferentiable from a random oracle into E. However, in many applications only a prime order
subgroup of E is used. Therefore, we show how to construct a random oracle into a subgroup.

We start by showing that the composition of two admissible encodings remains an admissible
encoding.

Lemma 5. Let F : R 7→ S be a ε1-admissible encoding and G : S 7→ T be a ε2-admissible encoding.
Then G ◦ F is a (ε1 + ε2)-admissible encoding from R to T .

Proof. Firstly, G ◦F computable in polynomial time. Secondly, given t uniformly distributed in T ,
the random variable s = IG(t) is ε2-statistically indistinguishable from the uniform distribution
in S. Then r = IF (s) is (ε1 + ε2)-statistically indistinguishable from the uniform distribution in
R. ⊓⊔

Now we show that multiplication by a cofactor is an admissible encoding. More precisely, let E
be an Abelian group of order N , and let G be a prime-order subgroup of order q with N = r · q,
where r is called the co-factor. Let Gr be the subgroup of order r.

Lemma 6. Assume that there exists a randomized polynomial time algorithm Gen(Gr) that gen-
erates uniformly distributed elements in Gr. Then the map Mr : E 7→ G with Mr(G) = r.G is a
ε-admissible encoding, with ε = 0.

Proof. Firstly, Mr is a deterministic map computable in polynomial time. Secondly, we describe an
algorithm IM that computes a random preimage of P ∈ G under Mr. Algorithm IM first computes
a random element Gr ∈ Gr thanks to Gen(Gr). Then it computes P ′ = (1/r) · P + Gr. Clearly, we
have r · P ′ = P . Moreover, P ′ has the uniform distribution in E when P is uniformly distributed
in G. ⊓⊔

We note that when cofactor r is small, or when a base of generators of Gr is known, we can
easily construct such algorithm Gen(Gr); however, when the factorization of r is unknown, it is
unclear how to find such algorithm.

Let E be an elliptic-curve with N points and cyclic generator GE , and with a prime order
subgroup G of order q and with G = r.GE as a generator. Combining Lemma 5 and Lemma 6 we
have that:

F ′(u, x) = Mr (f(u) + x.GE) = r.f(u) + (r · x).GE

is an admissible encoding from Fp × ZN to G. However we see that F ′(u, x) only depends on x
mod q (instead of x mod N). Therefore our final construction is F : Fp × Zq → G with:

F (u, y) = r.f(u) + y.G

where G is a generator of subgroup G; it is easy to see that this map is also an admissible encoding.
The corresponding hash function H : {0, 1}∗ 7→ G is then:

H(m) := r.f(h1(m)) + h2(m).G

where h1 : {0, 1}∗ 7→ Fp and h2 : {0, 1}∗ 7→ Zq are two hash functions, and H is indifferentiable
from a random oracle into G, in the random oracle model for h1 and h2.

8 Extension to Random Oracles into Strings

The constructions in the previous sections were based on hash functions into Fpn or ZN that were
seen as random oracles. However in practice a hash function outputs a fixed length string, not an
element of Fpn or ZN . Therefore in this section show how to construct a hash function into Fpn or
ZN that is indifferentiable from a random oracle into Fpn or ZN , given a hash function seen as a
random oracle into {0, 1}ℓ. Actually it suffices to construct an admissible encoding from {0, 1}ℓ to
ZN for any N ; namely for Fpn there is a simple bijection with Zpn .

Lemma 7 (From {0, 1}ℓ to ZN). Let ZN be an integer modular ring and let k be a security
parameter. Let ℓ = k + ⌈log2 N⌉+ 1. The function ModN : [0, 2ℓ − 1] 7→ ZN with:

ModN (b) = b mod N

is a 2−k-admissible encoding.

Proof. See Appendix A.

Our construction is then modified as follows. We consider an elliptic curve Ea,b(Fp) of prime
order N and generator G, with p a 2k-bit prime. We define the hash function H : {0, 1}∗ 7→ Ea,b(Fp)
with:

H(m) := fa,b

(

h1(m) mod p
)

+
(

h2(m) mod N
)

.G

where h1 and h2 are two hash functions from {0, 1}∗ to {0, 1}3k . From Lemma 5 and 7 we obtain
the following result.

Lemma 8. The previous hash function H is 2 · qD · 2
−k-indifferentiable from a random oracle, in

the random oracle model for h1 and h2.

Remark 1. We only need a single hash function h : {0, 1}∗ → {0, 1}3k instead of h1 and h2 since
we can obtain h1 and h2 by prepending a bit as input of h.

Remark 2. Instead of using two strings of 3k-bit each, we can use a single string of 5k-bit only.
Namely one can show that the construction:

H ′(m) := fa,b

(

h(m) mod p) +
(

h(m) mod N
)

.G

is 2 · qD · 2
−k-indifferentiable from a random oracle, in the random oracle model for h : {0, 1}∗ 7→

{0, 1}5k .

9 Conclusion

We have described the first construction of a hash function into elliptic curves that is indifferentiable
from a random oracle, based on Icart’s function. Our construction is efficient and can be used in
password-based authentication protocols over elliptic curves.

References

1. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In
ACM Conference on Computer and Communications Security, pages 62–73, 1993.

2. Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing. In Joe Kilian, editor,
CRYPTO, volume 2139 of Lecture Notes in Computer Science, pages 213–229. Springer, 2001.

3. Victor Boyko, Philip D. MacKenzie, and Sarvar Patel. Provably secure password-authenticated key exchange using
diffie-hellman. In EUROCRYPT, pages 156–171, 2000.

4. Thomas Icart. How to hash into an elliptic-curve. In CRYPTO 2009 (to appear). Publicly available on
http://eprint.iacr.org/.

5. David P. Jablon. Strong password-only authenticated key exchange. SIGCOMM Comput. Commun. Rev., 26(5):5–
26, 1996.

6. C. Malinaud J.S. Coron, Y. Dodis and P. Puniya. Merkle-damg̊ard revisited: How to construct a hash function.
In CRYPTO, 2005.

7. Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, impossibility results on reductions,
and applications to the random oracle methodology. In Moni Naor, editor, TCC, volume 2951 of Lecture Notes in
Computer Science, pages 21–39. Springer, 2004.

8. Alfred Menezes, Tatsuaki Okamoto, and Scott A. Vanstone. Reducing elliptic curve logarithms to logarithms in
a finite field. IEEE Transactions on Information Theory, 39(5):1639–1646, 1993.

A Proof of Lemma 7

Let µ =
⌊

2ℓ

N

⌋

, which gives:

2ℓ −N < µN ≤ 2ℓ.

The algorithm IMod is as follows. Given as input n ∈ ZN , it randomly selects an integer r in
[0, µ− 1] and returns b = n + rN .

Clearly, the element b satisfies b mod N = n. Moreover when n is uniformly distributed in ZN ,
then b is uniformly distributed in [0, µN − 1]. We must show that the distribution of b is statistically
indistinguishable from the uniform distribution in

[

0, 2ℓ − 1
]

. We have:

2ℓ−1
∑

i=0

∣

∣

∣

∣

Pr[b = i]−
1

2ℓ

∣

∣

∣

∣

=

µN−1
∑

i=0

∣

∣

∣

∣

1

µN
−

1

2ℓ

∣

∣

∣

∣

+
2ℓ−1
∑

i=µN

∣

∣

∣

∣

0−
1

2ℓ

∣

∣

∣

∣

=
µN(2ℓ − µN)

µN2ℓ
+

2ℓ − µN

2ℓ

= 2 · (1−
µN

2ℓ
) < 2 · (1−

2ℓ −N

2ℓ
)

<
N

2ℓ−1
<

1

2k

which shows that the distribution of b is 2−k-indistinguishable from the uniform distribution in
[0, 2ℓ − 1]. This terminates the proof of Lemma 7.

