
An Indifferentiable Hash Function into Elliptic Curves

Jean-Sébastien Coron1 and Thomas Icart1,2

1Université du Luxembourg
2Sagem Sécurité

Abstract. We provide the first construction of a hash function into an elliptic curve that is indif-
ferentiable from a random oracle. Our construction can be based on any efficient encoding into an
elliptic-curve, for example Icart’s function or the Shallue-Woestijne-Ulas (SWU) algorithm.

Keywords: elliptic curve, hash algorithm, indifferentiability.

1 Introduction

Hashing into Elliptic-Curves. Many elliptic-curve cryptosystems require to hash into an elliptic
curve. For example in the Boneh-Franklin IBE scheme [6], the public-key for identity id ∈ {0, 1}∗
is a point Qid = H1(id) on the curve. This is also the case in many other pairing-based cryptosys-
tems including IBE and HIBE schemes [1,17,18], signature and identity-based signature schemes
[5,7,8,13,29] and identity-based signcryption schemes [10,21].

Hashing into elliptic curves is also required for some passwords based authentication protocols,
for instance the SPEKE (Simple Password Exponential Key Exchange) [20] and the PAK (Password
Authenticated Key exchange) [11]. This is also the case for discrete-log based signature schemes
such as [14]; when instantiated over an elliptic-curve, a hash function into the curve is required. In
all those previous cryptosystems, security is proven when the hash function is seen as a random
oracle into the curve. However, it remains to determine which hashing algorithm should be used,
and whether it is reasonable to see it as a random oracle.

In [6], Boneh and Franklin use a particular super-singular elliptic curve E for which, in addition
to the pairing operation, there exists a one-to-one mapping f from the base field Fp to E. This
enables to hash using H1(m) = f(h(m)) where h is a classical hash function from {0, 1}∗ to Fp.
The authors show that their IBE scheme remains secure when h is seen as a random oracle into
Fp (instead of H1 being seen as a random oracle into E). However, when no pairing operation is
required (as in [11,14,20]), it is more efficient to use ordinary elliptic-curves, since super-singular
curves require much larger security parameters (due to the MOV attack [23]).

For hashing into an ordinary elliptic curve, the classical approach is inherently probabilistic:
one can first compute an integer hash value x = h(m) and then determine whether x is the abscissa
of a point on the elliptic curve:

y2 = x3 + ax + b mod p;

otherwise one can try x + 1 and so on. Using this approach the number of operations required to
hash a message m depends on m, which can lead to a timing attack (see [9]). To prevent from this
attack, one should determine whether x+i is the abscissa of a point, for all i between 0 ≤ i < k, and
use for example the smallest such i; here k is a security parameter that gives an error probability
of roughly 2−k.

The first algorithm to generate elliptic-curve points in deterministic polynomial time was pub-
lished in ANTS 2006 by Shallue and Woestijne [26]. The algorithm has running time O(log4 p)

for any p, and O(log3 p) when p = 3 mod 4. The rational maps in [26] were later simplified and
generalized to hyper-elliptic curves by Ulas in [28]; we refer to this algorithm as the Shallue-
Woestijne-Ulas (SWU) algorithm. Letting f : Fp → E be the function defined by SWU, one can
then hash in deterministic polynomial time using H(m) = f(h(m)) where h is any hash function
into Fp.

Another deterministic hash algorithm for ordinary elliptic curves was recently published by
Icart in [19]. The algorithm works for p = 2 mod 3 only, with complexity O(log3 p). Given any
elliptic-curve E defined over Fp, Icart defines a function f that is a rational function from Fp into
the curve. As previously given any hash function h into Fp, one can use H(m) = f(h(m)) to hash
into E. As shown in [19], H is one-way if h is one-way.

The Random Oracle Methodology. Many cryptosystems based on elliptic curves have been
proven secure in the random oracle model [1,5,6,7,10,8,11,13,17,18,20,21,29]. In the random oracle
model (ROM), the hash function is replaced by a publicly accessible random function (the random
oracle) [3]. In this model the adversary cannot compute the hash function by himself but instead
he must query the random oracle. Obviously, a proof in the random oracle model is not fully
satisfactory, because such a proof does not imply that the scheme will remain secure when the
random oracle is replaced by a concrete hash function. Numerous papers have shown artificial
schemes that are provably secure in the ROM but completely insecure when the RO is instantiated
with any function family (see [12]). Despite these separation results, a proof in the ROM is believed
to indicate that there are no structural flaws in the design of the system, and that no flaw will
suddenly appear when a “well designed” hash function is used instead.

For a cryptosystem that requires a hash function H into an ordinary elliptic curve (such as
[11,20]), one possibility could be to use H(m) = f(h(m)) where f is either Icart or SWU’s function
and h is a hash function into Fp. However we know that neither Icart nor SWU’s function generate
all the points of E; for example Icart’s function covers only ≃ 5/8 of the points. Therefore the
current proofs in the random oracle model for H do not guarantee the security of the resulting
scheme when H(m) = f(h(m)) is used instead (even if h is assumed to be ideal). In other words,
even if a proof in the random oracle for H can indicate that there are no structural flaws in the
design of the cryptosystem, using H(m) = f(h(m)) could introduce a flaw that would make the
resulting cryptosystem completely insecure.1

Our Goal. In this paper our goal is to construct a hash function H into elliptic curves with
the property that any cryptosystem proven secure assuming H is a random oracle should remain
secure if our construction is plugged instead (still assuming that the underlying h is a random
oracle). For this we use the indifferentiability framework of Maurer et al. [22]. As shown in [15],
when a construction H is indifferentiable from a random oracle, such construction can then replace
a random oracle in any cryptosystem, and the resulting scheme remains secure in the random
oracle model for h. Our goal in this paper is to construct a hash function into elliptic curve that
is indifferentiable from a random oracle; moreover such H should work for any elliptic curve, not
only super-singular ones.

Our Results. We provide the first hash function into elliptic curves satisfying these properties. We
first consider general constructions of the form H(m) = F (h(m)) and we determine the required
properties for F . We introduce the notion of admissible encoding: roughly speaking, an admissible

1 It is actually easy to construct a cryptosystem provably secure in the random oracle model for H but insecure
when H(m) = f(h(m)) is used instead, even assuming h is ideal.

encoding F must be efficiently invertible, and the distribution of F (s) must be statistically close
to uniform for uniformly distributed s. We show that if F is an admissible encoding, then H(m) =
F (h(m)) is indifferentiable from a random oracle.

However, we cannot apply this result to Icart or SWU’s function directly, since those functions
are not admissible encodings; namely as mentioned previously their output only covers a fraction of
the elliptic curve points. Therefore we introduce a weaker notion called weak encoding. Informally,
a weak encoding f : S → R must be efficiently invertible (as for an admissible encoding), but the
distribution of f(s) for random s is only required to satisfy a much weaker property. In this paper
we show that 1) both SWU and Icart’s function satisfy this notion of weak encoding, and 2) we
can turn a weak encoding into an admissible encoding when working in a group (e.g., the group
of points of an elliptic-curve). This enables to use SWU or Icart’s function to build an admissible
encoding, and then an indifferentiable hash function.

More precisely, given an elliptic-curve E defined over Fp with N points and a generator G, our
construction is as follows:

H(m) := f(h1(m)) + h2(m).G

where h1 : {0, 1}∗ → Fp and h2 : {0, 1}∗ → ZN are two hash functions, and f is SWU or Icart’s
function (or more generally any weak encoding into E). Our main result in this paper is that H(m)
is indifferentiable from a random oracle when h1 and h2 are seen as random oracles. Therefore H(m)
can be used in any cryptosystem provably secure with random oracle into elliptic curves, and the
resulting cryptosystem remains secure in the random oracle model for h1 and h2. Intuitively, the
term h2(m).G plays the role of a one-time pad; this ensures that H(m) can behave as a random
oracle even though f(h1(m)) does not reach all the points in E. Note that one could not use
H(m) = h2(m).G only since in this case the discrete logarithm of H(m) would be known, which
would make most protocols insecure.2

Finally, we show how to extend the previous construction to hashing into the subgroup of an
elliptic-curve, to hash-functions into strings (instead of Zp), to primes of the form p = 2ℓ − ω for
small ω, and to fields of characteristic 2. We also describe a slightly more efficient variant of the
SWU algorithm when p = 3 mod 4.

1.1 Related Work

An elliptic curve over a field Fpn where p > 3 is defined by a Weierstrass equation:

Y 2 = X3 + aX + b

where a and b are elements of Fpn . Throughout this paper, we note Ea,b the curve associated to
these parameters. It is well known that the set of points forms a group; we denote by Ea,b(Fpn) this
group and by N its order. We denote q = pn.

Super-singular Curves. A curve Ea,b over Fp is called super-singular when N = p + 1. When
p = 2 mod 3, the map x 7→ x3 is a bijection, therefore the curves Y 2 = X3 + b are super-singular.
One can then define the encoding

f : u 7→
(

(u2 − b)1/3, u
)

and the hash function H(m) := f(h(m)), where h is a classical hash function into Fpn .

2 One can see that F (s) = s.G is not an admissible encoding, since inverting F would require to solve a discrete log.

In the Boneh-Franklin scheme [6], one actually works in a subgroup G of prime order q of
Ea,b(Fp); we let ℓ be the co-factor such that p + 1 = ℓ · q. One requires that q does not divide ℓ
(i.e. that q2 does not divide p + 1). In order to hash into G, one can therefore use the encoding
fG(u) := ℓ.f(u) and the hash function into G:

HG(u) := fG(h(m)) (1)

In [6], Boneh and Franklin introduce the following notion of admissible encoding:

Definition 1 (Boneh-Franklin admissible encoding [6]). A function f : S → R is an admis-
sible encoding if it satisfies the following properties:

1. Computable: f is computable in deterministic polynomial time;
2. ℓ-to-1: for any r ∈ R, |f−1(r)| = ℓ;
3. Samplable: there exists a probabilistic polynomial time algorithm that for any r ∈ R returns a

random element in f−1(r).

The authors of [6] show that if f : S → G is an admissible encoding, then the Boneh-Franklin
scheme is secure with H(m) = f(h(m)), in the random oracle model for h : {0, 1}∗ 7→ S. Since the
function fG is easily seen to be an admissible encoding under the previous definition, this shows
that with HG Boneh-Franklin is provably secure in the random oracle model for h.

In this paper, we introduce a new notion of admissible encoding that is more general than the
previous notion. This enables to use Icart or SWU’s function that work for any elliptic curve, instead
of only super-singular ones. Moreover, we show that the resulting hash function is indifferentiable
from a random oracle; therefore, it can be used in any cryptosystem, not only in Boneh-Franklin.

1.2 The Shallue-Woestijne-Ulas Algorithm

The first algorithm to generate elliptic-curve points in deterministic polynomial time was published
in ANTS 2006 by Shallue and Woestijne [26]. The rational maps were later simplified and generalized
to hyper-elliptic curves by Ulas in [28]; we recall those latter rational maps in the following theorem.

Theorem 1 (Ulas [28]). Let Fq be a field and let g(x) := x3 + ax + b, where ab 6= 0. Let:

X1(t, u) = u X2(t, u) = −b
a

(

1 + 1
t4g(u)2 + t2g(u)

)

X3(t, u) = t2g(u)X2(t, u) U(t, u) = t3g(u)2g(X2(t, u))

Then
U(t, u)2 = g(X1(t, u)) · g(X2(t, u)) · g(X3(t, u)) (2)

From equation (2) at least one of g(X1(t, u)), g(X2(t, u)) and g(X3(t, u)) must be a quadratic
residue. Therefore, either X1(t, u), X2(t, u) or X3(t, u) is the abscissa of a point on the curve
y2 = g(x). Computing the corresponding y requires to compute a square root; when q = 3 mod 4,
this is simply an exponentiation. However for q = 1 mod 4, no deterministic algorithm is known for
computing square roots. The Tonelli-Shanks algorithm [24] requires to use a non-quadratic residue,
and it is unknown how to generate such non-quadratic residue deterministically. One of the main
contribution of [26] is to show a deterministic variant of the Tonelli-Shanks algorithm when an
equality of the form a0a1a2 = b2 holds, as with (2).

In Section 5.5, we provide a simplified version of the Ulas maps when q = 3 mod 4. This
enables to slightly improve the efficiency of the SWU algorithm. In Appendix I we also recall the
Shallue-Woestijne algorithm in characteristic 2.

1.3 Icart’s Function

We consider the field Fpn where p > 3 and pn = 2 mod 3. Let E be an elliptic curve over Fpn with
equation:

Y 2 = X3 + aX + b

where a, b ∈ Fpn . In [19], Icart defines the function fa,b : Fpn 7→ E, with fa,b(u) = (x, y) where:

x =

(

v2 − b− u6

27

)1/3

+
u2

3
y = ux + v

v =
3a− u4

6u

for u 6= 0, and fa,b(0) = O, the neutral element of the elliptic curve. It is easy to check that fa,b(u)
is indeed a point of E for any u ∈ Fpn . We recall the following properties of fa,b:

Lemma 1 (Icart). The function fa,b is computable in deterministic polynomial time. For any
point P ∈ Im(fa,b), the set f−1

a,b (P) is computable in polynomial time and |f−1
a,b (P)| ≤ 4. Moreover

pn/4 < |Im(fa,b)| < pn.

We note that Icart’s function can also be defined in a field of characteristic 2 (see Appendix F).
Given a hash function h : {0, 1}∗ 7→ Fpn , the following hash function H : {0, 1}∗ 7→ E is defined in
[19]:

H(m) = fa,b(h(m))

It is shown in [19] that H is one-way if h is one-way. However, it is easy to see that H(m) does
not behave like a random oracle when the underlying function h is seen as a random oracle; this
is because fab does not reach all the points of E; moreover fa,b(u) is not uniformly distributed in
Imfa,b when u is uniformly distributed in Fpn .

2 Definitions

We recall the notion of indifferentiability introduced by Maurer et al. in [22] (see also [15]). We
define an ideal primitive as an algorithmic entity which receives inputs from one of the parties and
delivers its output immediately to the querying party. A random oracle [3] into a finite set S is an
ideal primitive which provides a random output in S for each new query; identical input queries
are given the same answer.

The notion of indifferentiability enables to show that an ideal primitive H (for example, a
random oracle into an elliptic-curve E) can be replaced by a construction C that is based on some
other ideal primitive h (for example, a random oracle into Fp), and any cryptosystem secure with
H remains secure with C and H; see Figure 1 for an illustration of the definition.

Definition 2 (Indifferentiability [22]). A Turing machine C with oracle access to an ideal
primitive h is said to be (tD, tS , q, ε)-indifferentiable from an ideal primitive H if there exists a
simulator S with oracle access to H and running in time at most tS, such that for any distinguisher
D running in time at most tD and making at most q queries, it holds that:

∣

∣

∣
Pr

[

DCh,h = 1
]

− Pr
[

DH,SH

= 1
]
∣

∣

∣
< ε

Ch is said to be indifferentiable from H if ε is a negligible function of the security parameter k, for
polynomially bounded q, tD and tS.

F ◦ h h H S

D 0/1

Fig. 1. The indifferentiability notion, illustrated with construction Ch = F ◦ h for some function F , and random
oracles h and H .

It is shown in [22] that the indifferentiability notion is the “right” notion for substituting one
ideal primitive by a construction based on another ideal primitive. That is, if Ch is indifferen-
tiable from an ideal primitive H, then Ch can replace H in any cryptosystem, and the resulting
cryptosystem is at least as secure in the h model as in the H model; see [22] or [15] for a proof.

We also recall the definition of statistically indistinguishable distributions.

Definition 3. Let X and Y be two random variables over a set S. The distribution of X and Y
are ε-statistically indistinguishable if:

∑

s∈S

∣

∣Pr[X = s]− Pr[Y = s]
∣

∣ ≤ ǫ.

The two distributions are statistically indistinguishable if ε is a negligible function of the security
parameter.

We introduce the definition of α-bounded distribution.

Definition 4. Let X be a random variable over a finite set R. The distribution of X is α-bounded
if the inequality Pr[X = r] ≤ α/|R| holds for any r ∈ R.

3 Admissible Encoding and Indifferentiability

Our goal is to construct a hash function into elliptic curves that is indifferentiable from a random
oracle. First, we introduce our new notion of admissible encoding.

Definition 5 (Admissible Encoding). A function F : S 7→ R is an ε-admissible encoding if it
satisfies the following properties:

1. Computable: F is computable in deterministic polynomial time;
2. Regular: for s uniformly distributed in S, the distribution of F (s) is ε-statistically indistinguish-

able from the uniform distribution in R.
3. Samplable: there is an efficient randomized algorithm I such that for any r ∈ R, I(r) induces

a distribution that is ε-statistically indistinguishable from the uniform distribution in F−1(r).

F is an admissible encoding if ε is a negligible function of the security parameter.

Our new definition can be seen as a generalization of the definition from [6] recalled in Section
1.1. Namely criteria 2 of our definition gives:

∑

r∈R

∣

∣

∣

∣

Pr
s

[f(s) = r]− 1

|R|

∣

∣

∣

∣

=
∑

r∈R

∣

∣

∣

∣

|f−1(r)|
|S| − 1

|R|

∣

∣

∣

∣

≤ ε (3)

whereas criteria 2 from Definition 1 requires |f−1(r)| = |S|/|R| for all r ∈ R; this is equivalent to
ε = 0 in (3).

The following theorem shows that if F : S 7→ R is an admissible encoding, then the hash
function H : {0, 1}∗ → R with:

H(m) := F (h(m))

is indifferentiable from a random oracle into R when h : {0, 1}∗ → S is seen as a random oracle.
This shows that the construction H(m) = F (h(m)) can replace a random oracle into R, and the
resulting scheme remains secure in the random oracle model for h.

Theorem 2. Let F : S 7→ R be an ε-admissible encoding. The construction H(m) = F (h(m)) is
(tD, tS , q, ε′)-indifferentiable from a random oracle, in the random oracle model for h : {0, 1}∗ 7→ S,
with ε′ = 4qε and tS = 2q · tI , where tI is the maximum running time of F ’s sampling algorithm.

3.1 Proof of Theorem 2

Let F : S 7→ R be an ε-admissible encoding with sampling algorithm I. We first prove the following
Lemma (see Appendix A).

Lemma 2. For r uniformly distributed in R, the distribution of I(r) is 2ε-statistically indistin-
guishable from the uniform distribution in S.

Lemma 2 shows that the sampling algorithm I(r) of an admissible encoding from S to R gives
a distribution that is statistically indistinguishable from uniform in S. From this property we can
obtain a slightly more general definition of admissible encoding, which we call admissible encoding
v2.

Definition 6 (Admissible Encoding v2). A function F : S 7→ R is said to be an ε-admissible
encoding v2 if it satisfies the following properties:

1. Computable: F is computable in deterministic polynomial time;
2. Invertible: there exists a probabilistic polynomial time algorithm IF such that IF (r) ∈ F−1(r)∪
{⊥} for all r ∈ R, and the distribution of IF (r) is ε-statistically indistinguishable from the
uniform distribution in S when r is uniformly distributed in R.

F is an admissible encoding v2 if ε is a negligible function of the security parameter.

From Lemma 2 we have that an ε-admissible encoding is a 2ε-admissible encoding v2. However
we keep Definition 5 because as a generalization of the original Boneh-Franklin definition it seems
easier to understand. We now prove the following lemma; combined with the previous observation
this proves Theorem 2.

Lemma 3. Let F : S 7→ R be an ε-admissible encoding v2. The construction H(m) = F (h(m)) is
(tD, tS , q, ε′)-indifferentiable from a random oracle, in the random oracle model for h : {0, 1}∗ 7→ S,
with ε′ = 2qε and tS = 2q · tI , where tI is the maximum running time of F ’s sampling algorithm.

Proof. We first describe our simulator; then we prove the indistinguishability property. As illus-
trated in Figure 1, the simulator must simulate random oracle h to the distinguisher D, and the
simulator has oracle access to random oracle H. It maintains a list L of previously answered queries.
Our simulator is based on sampling algorithm I from F , as an admissible encoding v2.

Simulator S:
Input: m ∈ {0, 1}∗
Output: s ∈ S

1. If (m, s) ∈ L, then return s

2. Query H(m) = r

3. Let s← I(r)
4. Append (m, s) to L and return s.

We must show that the systems (Ch, h) and (H,SH) are indistinguishable. We consider a distin-
guisher making at most q queries. Without loss of generality, we can assume that the distinguisher
makes all queries to h(m) (or SH) for which there was a query to Ch(m) (or H(m)), and con-
versely; this gives a total of at most 2q queries. We can then describe the full interaction between
the distinguisher and the system as a sequence of triples:

View = (mi,Hi, hi)1≤i≤2q

In system (Ch, h), we have that the hi’s are uniformly and independently distributed in S, and
Hi = F (hi) for all i.

In system (H,SH), by definition of algorithm I we have that Hi = F (hi) except if hi = ⊥. By
definition of an ε-admissible encoding v2, since the distribution of Hi = H(mi) is uniform in R,
the distribution of hi = I(Hi) is ε-indistinguishable from the uniform distribution in S. Therefore,
the statistical distance between View in system (Ch, h) and View in system (H,SH) is at most 2qε.
This terminates the proof of Lemma 3. ⊓⊔

4 Weak Encoding

It is easy to see that Icart’s function fab is not an admissible encoding into the elliptic-curve E,
since as mentioned previously Imfab covers only a fraction of the elliptic-curve points. Therefore,
we introduce a weaker notion: weak encoding.

Definition 7 (Weak Encoding). A function f : S 7→ R is said to be an α-weak encoding if it
satisfies the following properties:

1. Computable: f is computable in deterministic polynomial time.

2. α-bounded: for s uniformly distributed in S, the distribution of f(s) is α-bounded in R.

3. Samplable: there is an efficient randomized algorithm I that I(r) induces the uniform distribu-
tion in f−1(r) for any r ∈ R. Additionally I(r) returns Nr = |f−1(r)| for all r ∈ R.

f is a weak encoding if α is a polynomial function of the security parameter.

The difference with an admissible encoding is that in criteria 2, the distribution of f(s) is
only required to be α-bounded (see Def. 4), instead of being ε-indistinguishable from the uniform
distribution. More precisely criteria 2 for a weak encoding requires:

∀r ∈ R, Pr
s

[f(s) = r] =
|f−1(r)|
|S| ≤ α

|R| (4)

instead of inequality (3). Note that inequality (3) with negligible ε does not necessarily imply
inequality (4) with polynomial α; this means that under the previous definitions an admissible
encoding is not necessarily a weak encoding. In the next section, we provide a slightly more general
definition of weak encoding (called weak encoding v2), for which the implication holds.

From inequality (4) we have that any invertible function with bounded pre-image and bounded
|R|/|S| is a weak encoding; in particular, this is the case for Icart’s function fab.

Lemma 4. Let f : S → R be a polynomially computable function. Let B = max{|f−1(r)|, r ∈ R}.
Assume that there exists a polynomial-time algorithm Inv that for any r ∈ R outputs the set f−1(r).
Then f is an α-weak encoding, with α = B · |R|/|S|. In particular, Icart’s function fab is an α-weak
encoding from Fpn to Ea,b with α = 4N/pn, where N is the order of Ea,b.

Proof. We have Prs[f(s) = r] = |f−1(r)|/|S| ≤ B/|S| = α/|R| by taking α := B · |R|/|S|; therefore,
the distribution of f(s) for uniform s ∈ S is α-bounded in R. Given Inv(r) = f−1(r), the algorithm
I(r) simply generates a random element in the set f−1(r), and lets Nr = |f−1(r)|. The result for
Icart’s function follows from Lemma 1. ⊓⊔

4.1 From Weak Encoding to Admissible Encoding

We show that when the output set is a group (e.g., the group of points of an elliptic curve), we can
turn a weak encoding into an admissible encoding.

Theorem 3 (Weak → Admissible Encoding). Let G be a cyclic group of order N and let G be
a generator of G. Let f : S → G be an α-weak encoding. Then the function F : S × ZN → G with
F (s, x) := f(s) + x.G is an ε-admissible encoding into G, with ε = (1− 1/α)t for any t polynomial
in the security parameter k, and ε = 2−k for t = α · k.

Using the construction F (s, x) = f(s) + x.G we obtain in Section 5 a hash function into an elliptic
curve that is indifferentiable from a random oracle. We note that it is easy to generalize the previous
construction to a group with a finite set of generators.

4.2 Proof of Theorem 3

We must show that F is an admissible encoding. We first consider criteria 2. We have:

F−1(P) =
{

(s, x) ∈ S × ZN | f(s) + x.G = P
}

=
{

(s, logG(P − f(s))) | s ∈ S
}

(5)

where logG denotes the discrete logarithm in base G. This gives |F−1(P)| = |S| for all P ∈ G. This
implies that F (s, x) is uniformly distributed in G for uniformly distributed (s, x) ∈ S × ZN .

To prove that criteria 3 is satisfied for F , we must construct a sampling algorithm IF (P)
such that for any P ∈ G the distribution of IF (P) is ε-statistically indistinguishable from the
uniform distribution in F−1(P). Given P ∈ G, one could first generate a random x ∈ ZN , compute
Q = P − x.G and then use f ’s sampling algorithm If to return s = If (P − x.G), which would
give f(s)+ x.G = P as required. However, we don’t necessarily have P −x.G ∈ Imf , which implies
that such s may not exist; moreover, one can see that the distribution of s would not necessarily
be uniform in S, because the pre-image sets of f do not necessarily have the same cardinality. In
the following we first construct from If a different sampling algorithm I ′f such that when given
as input a uniformly distributed Q, it returns either ⊥ or a uniformly distributed s ∈ S. Then we
simply call I ′f sufficiently many times with Q = P − x.G for random x ∈ ZN so that ⊥ appears
with negligible probability only.

We consider an α-weak encoding f : S 7→ R with sampling algorithm If . As shown below, the
new sampling algorithm I ′f is constructed from If by artificially aborting with some well chosen
probability (dependent on the input); this is to ensure that all the pre-images of f appear with the
same probability.

Algorithm I ′f (r):
Input: r ∈ R
Output: s ∈ S such that f(s) = r or s = ⊥

1. Let Nr = |f−1(r)| returned by If (r), and let δr = |R| ·Nr/ (α · |S|).
2. With probability 1− δr return ⊥.

3. Return If (r).

Note that since f is an α-weak encoding, we have using (4):

δr =
Nr · |R|
α · |S| = |f−1(r)| · |R|

α · |S| ≤
α · |S|
|R| ·

|R|
α · |S|

which gives δr ≤ 1 as required. The following lemma shows that I ′f has the required properties (see
Appendix B for the proof).

Lemma 5. The algorithm I ′f has the following properties:

1. Prr[I ′f (r) 6= ⊥] = 1/α

2. For uniformly distributed r ∈ R, the distribution of I ′f (r) conditioned on I ′f(r) 6= ⊥ is uniform
in S.

Actually, we show that the existence of such algorithm I ′f enables to get a slightly more general
definition of a weak encoding that we call a weak encoding v2. We note that under this new
definition, an admissible encoding v2 is also a weak encoding v2.

Definition 8 (Weak Encoding v2). A function f : S 7→ R is said to be an (α, ε)-weak encoding
v2 if it satisfies the following properties:

1. Computable: f is computable in deterministic polynomial time.

2. Partially invertible: there exists a probabilistic polynomial time algorithm I ′f such that I ′f(r) ∈
f−1(r) ∪ {⊥} for all r ∈ R, with the following properties:

(a) Prr[I ′f (r) 6= ⊥] ≥ 1/α

(b) For uniformly distributed r ∈ R, the distribution of I ′f (r) conditioned on I ′f (r) 6= ⊥ is
ε-statistically indistinguishable from uniform in S.

f is a weak encoding if α is a polynomial function of the security parameter and ε is a negligible
function of the security parameter.

From Lemma 5 we have that an α-weak encoding is also an (α, ε)-weak encoding v2 with ε = 0.
However as previously we keep Definition 7 because it seems more natural and easier to understand.
We now prove the following lemma; combined with the previous observation, this proves Theorem
3.

Lemma 6. Let G be a cyclic group of order N and let G be a generator of G. Let f : S → G

be an (α, ε)-weak encoding v2. Then the function F : S × ZN → G with F (s, x) := f(s) + x.G
is an ε′-admissible encoding into G, with ε′ = (1 − 1/α)t + ε for any t polynomial in the security
parameter k, and ε′ = 2−k + ε for t = α · k.

Proof. From (5) we have that |F−1(P)| = |S| for all P ∈ G, which implies that F (s, x) is uniformly
distributed in G for uniformly distributed (s, x) ∈ S × ZN . Our sampling algorithm IF (P) is
constructed as follows, given algorithm I ′f from f :

Algorithm IF :

Input: P ∈ G.
Output: (s, x) ∈ S × ZN such that P = F (s, x) = f(s) + x.G, or ⊥

1. For i = 1 to t:

(a) Randomly choose x ∈ ZN .

(b) Let s← I ′f (P − x.G)
(c) If s 6= ⊥, return (s, x)

2. Return ⊥.

We must show that for any P ∈ G, the distribution of (s, x) is statistically close to uniform
in F−1(P). From the definition of f as an (α, ε)-weak encoding v2 and the uniform distribution
of P − x.G ∈ G, we have that s = ⊥ at step i with probability at most 1 − 1/α. Therefore
algorithm IF eventually outputs s = ⊥ with probability at most (1 − 1/α)t. Moreover from the
definition of f as an (α, ε)-weak encoding v2, conditioned on s 6= ⊥ the distribution of s in (s, x) is ε-
statistically indistinguishable from uniform in S. From equation (5) this implies that the distribution
of (s, x) conditioned on s 6= ⊥ is also ε-statistically indistinguishable from uniform in F−1(P).
Therefore, for any P ∈ G the distribution of IF (P) is ε′-statistically close to uniform in F−1(P),
with ε′ = (1 − 1/α)t + ε. Taking t = α · k, we can take ε′ = 2−k + ε; this terminates the proof of
Lemma 6. ⊓⊔

4.3 Summary

We summarize below the relations between the various definitions introduced in this paper. As
shown below this enables to construct an indifferentiable hash function from Icart’s function; we
describe the concrete construction and various extensions in the next section.

Icart

Weak encoding

Lem. 4
�

w

w

w

w

=====
Lem. 5

⇒ Weak encoding v2

Admissible encoding

Lem. 6
?

====
Lem. 2

⇒ Admissible encoding v2 ====
Lem. 3

⇒ Indifferentiable

5 Our Constructions

Given an elliptic-curve defined E over Fp with N points and a generator G, using Theorem 3 we
can define our hash function H : {0, 1}∗ → E with:

H(m) := f(h1(m)) + h2(m).G

where h1 : {0, 1}∗ → Fp and h2 : {0, 1}∗ → ZN are two hash functions, and f is any weak encoding
into E, such as Icart’s function. The following theorem is the main result of this paper.

Theorem 4. Let p be a k-bit prime and let E : y2 = x3 + ax + b be an elliptic curve over Fp.
Let fa,b : Fp 7→ E be Icart’s function. Let G be a generator of E of order N . The construction
H(m) := fa,b(h1(m)) + h2(m).G is (tD, tS , qD, ε)-indifferentiable from a random oracle when the
hash functions h1 : {0, 1}∗ → Fp and h2 : {0, 1}∗ → ZN are seen as random oracles, with ε =
4 · qD · 2−k.

Proof. From Theorem 3 the function F (u, x) = f(u)+x.G is an ε-admissible encoding from Fp×ZN

into E, with ε = 2−k. From Theorem 2 this implies that H(m) is (tD, tS , qD, ε)-indifferentiable from
a random oracle, with ε = 4 · qD · 2−k. ⊓⊔

This implies that our construction H(m) can be used in any cryptosystem provably secure with
random oracles into elliptic curves, and the resulting cryptosystem remains secure in the random
oracle model for h1 and h2. We note that to prevent timing attacks (as in [9]), our construction H
can easily be implemented in constant time, since both Icart’s function and scalar multiplication
can be implemented in constant time.

5.1 Extension to a Prime Order Subgroup

In many applications only a prime order subgroup of E is used, so we show how to construct a
random oracle into a subgroup. Let E be an elliptic-curve over Fp with N points, and let G be a
subgroup of prime order q and generator G. Let ℓ be the co-factor, i.e. N = ℓ · q. We require that q
does not divide ℓ (i.e. that q2 does not divide N). We use the construction H : {0, 1}∗ 7→ G with:

H(m) := ℓ.fab(h1(m)) + h2(m).G

with h1 : {0, 1}∗ 7→ Fp and h2 : {0, 1}∗ 7→ Zq.

Lemma 7. H is (tD, tS , qD, ε)-indifferentiable from a random oracle, in the random oracle model
for h1 and h2, with ε = 4 · qD · 2−k.

First, we show that multiplication by a cofactor is an ε-admissible encoding, with ε = 0. Then
we show that the composition of an admissible encoding with a weak encoding is a weak encoding
v2. This shows that the function ℓ.fab(u) is a weak encoding v2 into G. Applying Lemma 6 and
Theorem 2, this proves Lemma 7. See Appendix C for the full proof.

5.2 Extension to Random Oracles into Strings

The constructions in the previous sections are based on hash functions into Fpn or ZN . However in
practice a hash function outputs a fixed length string in {0, 1}ℓ. We can modify our construction as
follows. We consider an elliptic curve Ea,b(Fp) of prime order N and generator G, with p a 2k-bit
prime. We define the hash function H : {0, 1}∗ 7→ Ea,b(Fp) with:

H(m) := fa,b

(

h1(m) mod p
)

+
(

h2(m) mod N
)

.G

where h1 and h2 are two hash functions from {0, 1}∗ to {0, 1}3k .

Lemma 8. The previous hash function H is (tD, tS , qD, ε)-indifferentiable from a random oracle,
in the random oracle model for h1 and h2, with ε = 14 · qD · 2−k.

First, we show that reduction modulo p is an admissible encoding from {0, 1}ℓ to Zp if 2ℓ ≫ p;
the same holds modulo N . Secondly, we show that the composition of two admissible encodings
remains an admissible encoding v2. This shows that F (u, v) = f(u mod p)+ (v mod N).G is also
an admissible encoding v2 into E. Applying Lemma 3, this proves Lemma 8. See Appendix D for
the full proof.

Remark 1. Instead of using two strings of 3k-bit each, we can use a single string of 5k-bit only.
Namely one can show that the construction:

H ′(m) := fa,b

(

h(m) mod p) +
(

h(m) mod N
)

.G

with h : {0, 1}∗ 7→ {0, 1}5k , is indifferentiable from a random oracle, in the random oracle model
for h.

5.3 Extension to Primes p = 2ℓ
− ω

We show a slightly more efficient construction for primes p of the form p = 2ℓ − ω for small ω, as
used for example in the FIPS standardized curves [25]. Let Ea,b(Fp) be an elliptic-curve of prime
order N and generator G. Our construction H : {0, 1}∗ 7→ Ea,b(Fp) is as follows:

H(m) := fa,b

(

h1(m) mod p
)

+ h2(m).G

where h1 and h2 are two hash functions from {0, 1}∗ to {0, 1}ℓ. In other words, the output size ℓ
of h1 and h2 is the same as the bitsize of p, as opposed to the previous section in which we took
ℓ = 3k for a 2k-bit prime p.

Lemma 9. H is (tD, tS , qD, ε)-indifferentiable from a random oracle, in the random oracle model
for h1 and h2, with ε = 8 · qD · (2−ℓ/2 + 2−ℓ · ω).

The proof is similar to the proof of Lemma 8, except that since p ≃ 2ℓ, reduction modulo p is
now an admissible encoding v2 from {0, 1}ℓ to Zp; the same holds modulo N since Hasse’s bound
implies that N ≃ 2ℓ as well. See Appendix E for the full proof.

Remark 2. We only need a single hash function h : {0, 1}∗ → {0, 1}ℓ since we can obtain h1 and h2

by prepending a bit as input of h.

5.4 Extension to Elliptic Curves over F2ℓ

Let E be an elliptic-curve defined over F2ℓ with prime order N and generator G. We refer to
Appendix F for a description of Icart’s function in characteristic 2. When working in F2ℓ we can
use a hash function into {0, 1}ℓ directly. More precisely, our construction is H : {0, 1}∗ 7→ Ea,b(F2ℓ)
is defined as follows:

H(m) := fa,b

(

h1(m)) + h2(m).G

Lemma 10. H is (tD, tS , qD, ε)-indifferentiable from a random oracle, in the oracle model for h1

and h2, with ε = 8 · qD · 2−ℓ/2.

The proof of Lemma 10 is exactly the same as the proof of Lemma 9 with ω = 0.

5.5 Using the Shallue-Woestijne-Ulas (SWU) Algorithm

In this section, we describe a slightly simpler variant of the SWU algorithm over Fq recalled in
Section 1.2, for q = 3 mod 4. Note that this condition is usually satisfied in practice, since it
enables to compute square roots efficiently. Our simplified Ulas maps are as follows:

Theorem 5 (Simplified Ulas maps). Let Fq be a field and let g(x) := x3 +ax+b, where ab 6= 0.
Let:

X2(t) =
−b

a

(

1 +
1

t4 − t2

)

, X3(t) = −t2X2(t), U(t) = t3g(X2(t))

Then U(t)2 = −g
(

X2(t)
)

· g
(

X3(t)
)

See Appendix G for the proof. When q = 3 mod 4 we have that −1 is a quadratic non-residue
in Fq, and therefore either g(X2(t)) or g(X3(t)) must be a quadratic residue. This leads to the
following pseudo-code for our simplified SWU algorithm:

Simplified SWU algorithm:
Input: Fq such that q = 3 mod 4, parameters a, b and input t ∈ Fq

Output: (x, y) ∈ Ea,b(Fq)

1. α← −t2

2. X2 ← −b
a

(

1 + 1
α2+α

)

3. X3 ← α ·X2

4. h2 ← (X2)
3 + a ·X2 + b; h3 ← (X3)

3 + a ·X3 + b

5. If h2 is a square, return (X2, h
(q+1)/4
2), otherwise return (X3, h

(q+1)/4
3)

Our simplified SWU algorithm defines a function f ′
a,b : Fq → E which is also a weak encoding

into the curve.

Lemma 11. The function f ′
ab has pre-image size at most 8 and can be inverted on its image in

polynomial time. Then f ′
a,b is an α-weak encoding with α = 8N/q, where N is the elliptic-curve

order.

See Appendix H for the proof. From Lemma 11 one can use SWU’s function f ′
a,b instead of Icart’s

function fa,b in all previous constructions. In Appendix I, we also recall the Shallue-Woestijne
algorithm in characteristic 2, so that Shallue-Woestijne can also be used in the construction of
Section 5.4.

References

1. J. Baek and Y. Zheng. Identity-based threshold decryption. In Bao et al. [2], pages 262–276.
2. F. Bao, R. H. Deng, and J. Zhou, editors. Public Key Cryptography - PKC 2004, 7th International Workshop on

Theory and Practice in Public Key Cryptography, Singapore, March 1-4, 2004, volume 2947 of Lecture Notes in
Computer Science. Springer, 2004.

3. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In ACM
Conference on Computer and Communications Security, pages 62–73, 1993.

4. E. Biham, editor. Advances in Cryptology - EUROCRYPT 2003, International Conference on the Theory and
Applications of Cryptographic Techniques, Warsaw, Poland, May 4-8, 2003, Proceedings, volume 2656 of Lecture
Notes in Computer Science. Springer, 2003.

5. A. Boldyreva. Threshold signatures, multisignatures and blind signatures based on the gap-diffie-hellman-group
signature scheme. In Desmedt [16], pages 31–46.

6. D. Boneh and M. K. Franklin. Identity-based encryption from the weil pairing. In J. Kilian, editor, CRYPTO,
volume 2139 of Lecture Notes in Computer Science, pages 213–229. Springer, 2001.

7. D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably encrypted signatures from bilinear
maps. In Biham [4], pages 416–432.

8. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing. In C. Boyd, editor, ASIACRYPT,
volume 2248 of Lecture Notes in Computer Science, pages 514–532. Springer, 2001.

9. C. Boyd, P. Montague, and K. Q. Nguyen. Elliptic curve based password authenticated key exchange protocols.
In V. Varadharajan and Y. Mu, editors, ACISP, volume 2119 of Lecture Notes in Computer Science, pages
487–501. Springer, 2001.

10. X. Boyen. Multipurpose identity-based signcryption (a swiss army knife for identity-based cryptography). In
D. Boneh, editor, CRYPTO, volume 2729 of Lecture Notes in Computer Science, pages 383–399. Springer, 2003.

11. V. Boyko, P. D. MacKenzie, and S. Patel. Provably secure password-authenticated key exchange using diffie-
hellman. In EUROCRYPT, pages 156–171, 2000.

12. R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited. J. ACM, 51(4):557–594,
2004.

13. J. C. Cha and J. H. Cheon. An identity-based signature from gap diffie-hellman groups. In Desmedt [16], pages
18–30.

14. B. Chevallier-Mames. An efficient cdh-based signature scheme with a tight security reduction. In V. Shoup,
editor, CRYPTO, volume 3621 of Lecture Notes in Computer Science, pages 511–526. Springer, 2005.

15. J. S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-damg̊ard revisited: How to construct a hash function.
In CRYPTO, 2005.

16. Y. Desmedt, editor. Public Key Cryptography - PKC 2003, 6th International Workshop on Theory and Practice
in Public Key Cryptography, Miami, FL, USA, January 6-8, 2003, Proceedings, volume 2567 of Lecture Notes in
Computer Science. Springer, 2002.

17. C. Gentry and A. Silverberg. Hierarchical id-based cryptography. In Zheng [30], pages 548–566.
18. J. Horwitz and B. Lynn. Toward hierarchical identity-based encryption. In L. R. Knudsen, editor, EUROCRYPT,

volume 2332 of Lecture Notes in Computer Science, pages 466–481. Springer, 2002.
19. T. Icart. How to hash into an elliptic-curve. In CRYPTO 2009. Publicly available on http://eprint.iacr.org/.
20. D. P. Jablon. Strong password-only authenticated key exchange. SIGCOMM Comput. Commun. Rev., 26(5):5–26,

1996.
21. B. Libert and J.-J. Quisquater. Efficient signcryption with key privacy from gap diffie-hellman groups. In Bao

et al. [2], pages 187–200.
22. U. M. Maurer, R. Renner, and C. Holenstein. Indifferentiability, impossibility results on reductions, and appli-

cations to the random oracle methodology. In M. Naor, editor, TCC, volume 2951 of Lecture Notes in Computer
Science, pages 21–39. Springer, 2004.

23. A. Menezes, T. Okamoto, and S. A. Vanstone. Reducing elliptic curve logarithms to logarithms in a finite field.
IEEE Transactions on Information Theory, 39(5):1639–1646, 1993.

24. I. Niven, H. S. Zuckerman, and H. L. Montgomery. An Introduction to the Theory of Numbers (5th edition ed.).
Wiley. ISBN 0-471-62546-9.

25. N. I. of Standards and Technology. FIPS PUB 186-3: Digital Signature Standard (DSS). june 2009.
26. A. Shallue and C. van de Woestijne. Construction of rational points on elliptic curves over finite fields. In F. Hess,

S. Pauli, and M. E. Pohst, editors, ANTS, volume 4076 of Lecture Notes in Computer Science, pages 510–524.
Springer, 2006.

27. V. Shoup. A new polynomial factorization algorithm and its implementation. J. Symb. Comput., 20(4):363–397,
1995.

28. M. Ulas. Rational points on certain hyperelliptic curves over finite fields, 2007.
29. F. Zhang and K. Kim. Id-based blind signature and ring signature from pairings. In Zheng [30], pages 533–547.
30. Y. Zheng, editor. Advances in Cryptology - ASIACRYPT 2002, 8th International Conference on the Theory and

Application of Cryptology and Information Security, Queenstown, New Zealand, December 1-5, 2002, Proceedings,
volume 2501 of Lecture Notes in Computer Science. Springer, 2002.

A Proof of Lemma 2

We let ω ∈ Ω be the random used by I. We must show that δ ≤ 2ε, where:

δ :=
∑

s∈S

∣

∣

∣

∣

Pr
ω,r

[I(r) = s]− 1

|S|

∣

∣

∣

∣

Given s ∈ S, we have I(r) = s only if r = f(s). Therefore, Prω,r[I(r) = s] = Prω[I(r) = s]/|R|
with r = f(s). This gives:

δ =
∑

r∈R

∑

s∈F−1(r)

1

|R|

∣

∣

∣

∣

Pr
ω

[I(r) = s]− |R||S|

∣

∣

∣

∣

(6)

Since F is an ε-admissible encoding, by definition we have δ1 ≤ ε, where:

δ1 :=
∑

r∈R

∣

∣

∣

∣

Pr
s

[f(s) = r]− 1

|R|

∣

∣

∣

∣

=
∑

r∈R

∣

∣

∣

∣

∣

∣

∣F−1(r)
∣

∣

|S| − 1

|R|

∣

∣

∣

∣

∣

=
∑

r∈R

∑

s∈F−1(r)

1

|R|

∣

∣

∣

∣

|R|
|S| −

1

|F−1(r)|

∣

∣

∣

∣

(7)

Since for all r ∈ R the distribution of I(r) is ε-statistically indistinguishable from the uniform
distribution in F−1(r), we have for all r ∈ R:

∑

s∈F−1(r)

∣

∣

∣

∣

Pr
ω

[I(r) = s]− 1

|F−1(r)|

∣

∣

∣

∣

< ε

which gives by summation over r ∈ R:

δ2 :=
∑

r∈R

∑

s∈F−1(r)

1

|R|

∣

∣

∣

∣

Pr
ω

[I(r) = s]− 1

|F−1(r)|

∣

∣

∣

∣

< ε (8)

From (6), (7) and (8) we have δ ≤ δ1 + δ2, which gives δ ≤ ε + ε = 2ε.

B Proof of Lemma 5

Given r ∈ R, we have that I ′(r) 6= ⊥ with probability δr, where:

δr =
|R| · |f−1(r)|

α · |S|

This gives:

Pr
r

[I ′(r) 6= ⊥] =
∑

r∈R

1

|R| · δr =
1

α · |S|
∑

r∈R

|f−1(r)| = 1

α

By definition we have that I(r) is uniformly distributed in the set f−1(r); this gives for any r ∈ R
and any s ∈ f−1(r):

Pr[I ′(r) = s] = δr ·
1

|f−1(r)| =
|R|

α · |S|
Since I ′(r) = s only if r = f(s), this gives for any s ∈ S:

Pr
r

[I ′(r) = s] =
1

α · |S|

and finally:

Pr
r

[I ′(r) = s|I ′(r) 6= ⊥] =
Prr[I ′(r) = s]

Prr[I ′(r) 6= ⊥]
=

1

|S|
which shows that the distribution of I ′(r) conditioned on I ′(r) 6= ⊥ is uniform in S. This terminates
the proof of Lemma 5.

C Proof of Lemma 7

We start by showing that multiplication by a co-factor is an admissible encoding.

Lemma 12. The map Mℓ : E 7→ G with Mℓ(P) = ℓ.P is an ε-admissible encoding, with ε = 0.

Proof. The proof is the same as the proof of Lemma 5.1 in [6]. Since |M−1
ℓ (Q)| = ℓ for all Q ∈ G,

the distribution of Mℓ(P) is uniform in G for uniform P ∈ E. Let GE be a generator of E. Given
Q ∈ G, the sampling algorithm generates a random u ∈ Zℓ and returns P = (1/ℓ) ·Q + u · q ·GE .
Here 1/ℓ is computed in Z

∗
q . We have that ℓ.P = Q as required and P is uniformly distributed in

M−1
ℓ (Q). ⊓⊔

Secondly, we show that the composition of an admissible encoding with a weak encoding is a
weak encoding v2.

Lemma 13. Let f : S 7→ R be an α-weak encoding and G : R 7→ T be an ε-admissible encoding.
Then G ◦ f is an (α/(1 − 2εα), 4αε)-weak encoding v2 from S to T .

Proof. We have that G is a 2ε-admissible encoding v2. Therefore given t uniformly distributed in
T , the random variable r = IG(t) is 2ε-statistically indistinguishable from the uniform distribution
in R. Moreover we have that f is an (α, 0)-weak encoding v2. Let I ′f be the corresponding sampling
algorithm. For r uniformly distributed in R we have that Pr[I ′f 6= ⊥] ≥ 1/α and s = I ′f (r) is
uniformly distributed in S conditioned on s 6= ⊥.

We define the sampling algorithm for G◦f as I ′f ◦IG. Therefore, we must study the distribution
of I ′f (r) when r is only 2ε-statistically indistinguishable from the uniform distribution in R, instead
of being uniform. We prove the following simple lemma.

Lemma 14. Let X and Y be two random variables over a set Ω. Let δ be the statistical distance
between X and Y . Let A ⊂ Ω and let px = Pr[X ∈ A] and py = Pr[Y ∈ A]. Then |py − px| ≤ δ;
moreover if px > δ then:

∑

r∈Ω

∣

∣ Pr[X = r|X ∈ A]− Pr[Y = r|Y ∈ A]
∣

∣ ≤ 2δ

px

Proof. Since the statistical distance between X and Y is δ, we have |py − px| ≤ δ; from px > δ this
implies py > 0. We let

δ2 =
∑

r∈Ω

∣

∣ Pr[X = r|X ∈ A]− Pr[Y = r|Y ∈ A]
∣

∣

We have:

δ2 =
∑

r∈A

∣

∣

∣

∣

Pr[X = r]

px
− Pr[Y = r]

py

∣

∣

∣

∣

≤
∑

r∈A

∣

∣

∣

∣

Pr[X = r]

px
− Pr[Y = r]

px

∣

∣

∣

∣

+
∑

r∈A

∣

∣

∣

∣

Pr[Y = r]

px
− Pr[Y = r]

py

∣

∣

∣

∣

≤ δ

px
+ py ·

∣

∣

∣

∣

1

px
− 1

py

∣

∣

∣

∣

=
1

px
· (δ + |py − px|) ≤

2δ

px

⊓⊔

We apply Lemma 14 with X = I ′f (r) for r uniformly distributed in R and Y = I ′f (r) with r = IG(t)
for uniformly distributed t ∈ T . Moreover we take Ω = S ∪ {⊥} and A = S. Since the statistical
distance between X and Y is at most 2ε, we obtain:

Pr[Y 6= ⊥] ≥ Pr[X 6= ⊥]− 2ε ≥ 1

α
− 2ε =

1− 2εα

α

Using the notations of Lemma 14 we have px ≥ 1/α. Moreover by definition the distribution of X
conditioned on X 6= ⊥ is uniform in S. Therefore the statistical distance of Y = I ′f (r) conditioned
on Y 6= ⊥ from the uniform distribution in S is at most 2 · (2ε)/px ≤ 4αε. This terminates the
proof of Lemma 13. ⊓⊔

From Lemma 12 and Lemma 13 we obtain that the function ℓ.fab(u) is an (α, 0)-weak encoding
v2 into G. Applying Lemma 6 and Theorem 2, this proves Lemma 7.

D Proof of Lemma 8

Let p be an integer. First we show that reduction modulo p is an admissible encoding from {0, 1}ℓ
to Zp if 2ℓ ≫ p.

Lemma 15 ({0, 1}ℓ 7→ Zp). Let p be an integer and k be a security parameter. Let ℓ = k+⌈log2 p⌉+
1. The function Modp : [0, 2ℓ − 1] 7→ Zp with Modp(x) = x mod p is a 2−k-admissible encoding
v2.

Proof. Let µ ∈ Z such that 2ℓ − p < µ · p ≤ 2ℓ. We consider the sequence:

{0, 1}ℓ F−→ [0, µ · p[
G−→ Zp

where F (x) = x mod (µ · p) and G(y) = y mod p. We show that both F and G are admissible
encodings, and that the composition of two admissible encodings v2 remains an admissible encoding
v2. For F we actually prove a slightly more general result:

Lemma 16. Let F : S 7→ (S ∪∆2) \∆3 be a polynomially computable function such that F (x) = x
for all x ∈ S \∆1. Assume that set membership for S \∆1 can be decided in polynomial time. Then
F is an ε-admissible encoding v2, with ε = (|∆1|+ |∆2|+ |∆3|)/|S|.

Proof. Given x ∈ S ∪∆2, the sampling algorithm IF (x) returns x for x ∈ S \∆1 and ⊥ otherwise.
Therefore for uniform x ∈ (S ∪∆2) \∆3 the distribution of IF (x) is ε-indistinguishable from the
uniform distribution in S, with ε = (|∆1|+ |∆2|+ |∆3|)/|S|. ⊓⊔

Applying Lemma 16 with S = {0, 1}ℓ, ∆1 = [µ · p, 2ℓ − 1[, ∆2 = ∅ and ∆3 = ∆1, we obtain
that F is an ε-admissible encoding v2, with ε = 2p/2ℓ ≤ 2−k. Moreover, it is easy to see that G is
an admissible encoding according to Definition 1; therefore it is an ε-admissible encoding v2 with
ε = 0. The following Lemma shows that the composition of two admissible encodings v2 remains
an admissible encoding v2. This terminates the proof of Lemma 15. ⊓⊔

Lemma 17. Let F : S 7→ R be an ε1-admissible encoding v2 and G : R 7→ T be an ε2-admissible
encoding v2. Then G ◦ F is an (ε1 + ε2)-admissible encoding v2 from S to T .

Proof. Firstly, G ◦ F is computable in polynomial time. Secondly, given t uniformly distributed in
T , the random variable r = IG(t) is ε2-statistically indistinguishable from the uniform distribution
in R. Then s = IF (r) is (ε1 + ε2)-statistically indistinguishable from the uniform distribution in
S. ⊓⊔

We now proceed with the proof of Lemma 8. With p a 2k-bit prime and ℓ = 3k, from Lemma
15 we obtain that reduction mod p is a 2−k+1-admissible encoding from {0, 1}ℓ to Zp. Similarly,
since N ≤ 2p, we have that reduction modulo N is also a 2−k+2-admissible encoding from {0, 1}ℓ
to ZN . Using Lemma 17, this shows that F : {0, 1}ℓ × {0, 1}ℓ → E with:

F (u, v) = f(u mod p) + (v mod N).G

is an ε-admissible encoding v2 with ε = 2−k + 2−k+1 + 2−k+2 = 7 · 2−k. Applying Lemma 3, this
proves Lemma 8.

E Proof of Lemma 9

We first prove that the function F : {0, 1}ℓ × {0, 1}ℓ 7→ Zp × ZN with:

F (u, v) =
(

u mod p, v mod N
)

is an ε-admissible encoding v2 with ε = ω · 2−ℓ+2 + 2−ℓ/2+2.

We first consider the function G1 : {0, 1}ℓ 7→ Zp with G1(u) = u mod p. Since p = 2ℓ − ω,
applying Lemma 16 with S = {0, 1}ℓ, ∆1 = [p, 2ℓ[, ∆2 = ∅ and ∆3 = ∆1, we obtain that G1 is an
ε1-admissible encoding v2 with ε1 = 2ω · 2−ℓ.

Now we consider the function G2 : {0, 1}ℓ 7→ ZN . From Hasse’s bound, we have:

|N − (p + 1)| < 2
√

p < 2ℓ/2+1

which gives using p = 2ℓ − ω:
∣

∣

∣
N − 2ℓ

∣

∣

∣
< 2ℓ/2+1 + ω

We distinguish two cases. If N < 2ℓ, we apply Lemma 16 as done previously with p. If N ≥ 2ℓ,
we apply Lemma 16 with S = {0, 1}ℓ, ∆1 = ∅, ∆2 = [2ℓ, N [and ∆3 = ∅. In both cases, we obtain
that G2 is an ε2-admissible encoding v2, with ε2 = 2ω · 2−ℓ + 2−ℓ/2+2.

Therefore F is an ε-admissible encoding v2 with ε = ε1 + ε2 = ω · 2−ℓ+2 + 2−ℓ/2+2. Applying
Lemma 3 this proves Lemma 9.

F Icart’s function in Characteristic 2

In characteristic 2 we consider an elliptic-curve defined by the following equation:

Eab : Y 2 + XY = X3 + aX2 + b

where a and b are elements of F2n . When n is odd, we have 2n − 1 6= 0 mod 3, which implies that
the map x 7→ x3 is a bijection over F2n . Let

fa,b : F2n 7→ (F2n)2

u 7→ (x, y)

where

x = (v4 + v3 + b)1/3 + v

y = ux + v2

v = a + u + u2

One can check that for any u ∈ F2n , fa,b(u) is indeed a point of Eab; we refer to [19] for more
details. Icart’s function in characteristic 2 satisfies the same property as in characteristic p > 2:

Lemma 18 (Icart [19]). The function fa,b is computable in deterministic polynomial time. For
any point P ∈ Im(fa,b), the set f−1

a,b (P) is computable in polynomial time and |f−1
a,b (P)| ≤ 4.

G Proof of Theorem 5

We explain how the new maps from Theorem 5 are derived. We start from the original Ulas maps
recalled in Section 1.2. Letting g(x) = x3 + ax + b and:

X1(t, u) = u X2(t, u) = −b
a

(

1 + 1
t4g(u)2 + t2g(u)

)

X3(t, u) = t2g(u)X2(t, u) U(t, u) = t3g(u)2g(X2(t, u))

it is shown in [28] that the following equality holds:

U(t, u)2 = g(X1(t, u)) · g(X2(t, u)) · g(X3(t, u)) (9)

We note that knowing the value of u is not required to compute X2,X3 and U . Indeed, X2,X3

and U only depend on g(u). For this reason, u does not have to be explicitly computed and we
can take g(u) = −1, which is a quadratic non residue since q = 3 mod 4. Even if such u does not
necessarily exist in Fq, it exists in Fq3 and with such a u, the Ulas’ formulas are still correct. We
can then rewrite the Ulas’ maps as maps in one variable t with g(u) = −1; this gives the maps of
Theorem 5.

H Proof of Lemma 11

To compute the pre-images of a point P = (XP , YP), the equations X2(t) = XP and X3(t) = XP

must be solved. Since X2(t) and X3(t) are rational functions over the finite field Fq, efficient algo-
rithms such as the Berlekamp algorithm [27] can be used to compute the roots of the corresponding
polynomial equations. The Berlekamp algorithm has complexity O(d2 log3 q), where d is the degree
of the equation. Since deg X2(t) = 4 and deg X3(t) = 4, we have that each equation has at most
4 solutions; therefore a point has at most 8 pre-images which can be efficiently computed. This
proves Lemma 11.

We note that computing the roots of the equations is not sufficient to compute a pre-image.
Once these roots are computed, it is necessary to check whether the roots correspond effectively
to P . Firstly because these roots could correspond to −P ; namely the SWU algorithm computes
a point from abscissa only. Secondly, a root t0 of X3(t) = XP is not necessarily a pre-image of P
since it could be that g(X2(t0)) is also a quadratic residue; in this case, the SWU algorithm would
return a point P ′ = (X2(t0), Y), different from P . Nevertheless, these two required verifications do
not change the upper-bound on the pre-image size.

I Shallue-Woestijne in Characteristic 2

In this section, we recall the Shallue-Woestijne algorithm in characteristic 2 (see [26]). An elliptic
curve over a field F2n is a set of points (x, y) ∈ (F2n)2 verifying the equation:

Eab : Y 2 + X · Y = X3 + a ·X2 + b

where a, b ∈ F2n . Let g be the rational function

g : x 7→ x−2 ·
(

x3 + a · x2 + b
)

Letting Z = Y/X, the equation for Eab can be rewritten as:

Z2 + Z = g(X) (10)

Theorem 6 (Shallue-Woestijne [26]). Let g(x) = x−2 ·
(

x3 + a · x2 + b
)

where a, b ∈ F2n. Let

X1(t, w) =
t · c

1 + t + t2
X2(t, w) = t ·X1(t, w) + c X3(t, w) =

X1(t, w) ·X2(t, w)

X1(t, w) + X2(t, w)

where c = a + ω + ω2. Then g(X1(t, w)) + g(X2(t, w)) + g(X3(t, w)) ∈ Im h where h is the map
h : z 7→ z2 + z.

From Theorem 6, we have that at least one of the g(Xi(t, w)) must be in Imh, which leads to
a point in Eab. Namely, we have that Imh = {z ∈ F2n | Tr (z) = 0}, where Tr is the trace operator
Tr : F2n 7→ F2 with:

Tr (z) =

n−1
∑

i=0

z2i

From Theorem 6 we have
∑

i Tr (g(Xi)) = 0 and therefore at least one of the Xi must satisfy
Tr (g(Xi)) = 0.

Given such a Xi it remains to compute a solution of the equation Z2 + Z = g(Xi). This is a
linear equation in F2n , so finding Z amounts to solving a linear system. When n is odd, the solutions
can be found more efficiently: the solutions of Z2 + Z = β are given by HTr(β) and HTr(β) + 1,
where HTr is the half trace, defined as:

HTr : z 7→
(n−1)/2

∑

i=0

z22i

We note that in practice a prime extension degree n is generally used, which means that n is usually
odd.

We obtain the following pseudo-code for the Shallue-Woestijne algorithm in characteristic 2,
when the extension degree n is odd. Note that the algorithm takes as input two values t, w ∈ F2n ;
in practice, one can take w = 0.

Shallue-Woestijne algorithm in characteristic 2:
Input: parameters a, b ∈ F2n and input t, w ∈ F2n

Output : (x, y) ∈ Ea,b

1. c← a + w + w2

2. X1 ← t · c/(1 + t + t2)
3. X2 ← t ·X1 + c
4. X3 ← X1 ·X2/(X1 + X2)
5. For i = 1 to 3:

(a) hi ← (X 3
i + a ·X 2

i + b)/X 2
i

(b) If Tr (hi) = 0, return (Xi, HTr(hi) ·Xi)

I.1 Analysis

As for the Ulas maps, two parameters are needed to generate a point. A general way to analyze
the algorithm is to fix one of the parameter and to let the other vary.

Lemma 19 (fixed t). The Shallue-Woestijne algorithm with fixed t such that t2 + t 6= 1 has
pre-image size at most 6. The encoding can be inverted on its image in polynomial time.

Lemma 20 (fixed w). The Shallue-Woestijne algorithm with fixed w such that w2 + w 6= a has
pre-image size at most 6. The encoding can be inverted on its image in polynomial time.

Proof. We first give the expression of the rational function X3(t, w):

X3(t, w) =
c · (t2 + t)

1 + t + t2

Since we have for all i, degt(Xi(t, w)) = 2 and degw(Xi(t, w)) = 2, it is easy to see that each point
has at most 6 preimages in both cases. ⊓⊔

