
∗Cache Timing Attacks on Camellia Block Cipher

ZHAO Xin-Jie, WANG Tao, ZHENG Yuan-yuan 

(Department of Computer Engineering, Ordnance Engineering College, Shijiazhuang 050003, China) 

zhaoxinjieem@163.com  

 
Abstract: Camellia, as the final winner of 128-bit block cipher in NESSIE, is the most secure block cipher of the world, none of the 
published paper has claimed to extract full Camellia key through experiment within limited time and data complexity. However, our 
research shows that, due to its frequent S-box lookup operations, Camellia is quite vulnerable to access driven Cache timing attacks. 
Firstly, we provide a general analysis model for symmetric ciphers using S-box based on access driven Cache timing attacks, point out 
that the F function of the Camellia can leak information about the result of encryption key XORed with expand-key, and the left circular 
rotating operation of the key schedule in Camellia has serious designing problem. Next, we present three attacks on Camellia-128 and 
one attack on Camellia-192/256. Experiment results demonstrate: for about 500 random plaintexts, our basic attack on Camellia-128 can 
reduce the key searching space from 2128 107.8 58.4 -1for Camellia with FL/FL to 2 , expand attack I can further reduce it to 2   and 1 for 
camellia without FL/FL-1; besides basic attack, after analyzing just one simple left circular rotating operation of the key schedule, 
expand attack II can recover full 128-bit key for both Camellia with and without FL/FL-1; improving key length and design complexity 
of Camellia can not enhance its security against Cache timing attacks, for about 900 random plaintexts are enough to recover the full 
192/256-bit key for Camellia-192/256 with and without FL/FL-1, besides, our attack is quite easy to be expanded to remote scenarios, 
for about 3000 random plaintexts is enough to recover full 192/256-bit key for Camellia-192/256 in both local and campus networks. 
Finally, we discuss the reason why Camellia is weak in this type of attack, and provide some advices to cipher designers for hardening 
ciphers against cache timing attacks.  
Key words: Camellia-128/192/256; block cipher; access driven; Cache timing attack; side channel attack; F function; S-box lookup 

index; left circular rotating operation; key schedule 

1 Introduction 

1.1 Related Works 

Recently, with the introduction of side channel attacks, ciphers were facing serious threats. Traditionally speaking, the security of 
cipher depends on the mathematical function EK[P] → C, the adversary tries to crack K from (P,C) by linear or differential methods. 
With the development of cipher designing, both the key length and algorithm complexity has been greatly improved, so it’s very 
difficult to predict K through mathematically analysis. However, recent research demonstrates that: during the cipher execution 
procedure, it may leaks some other information, such as execution timing, power consumption, electromagnetic dissipation, faults etc, 
which is what we called side channel information. So, in reality, a cipher is a function EK[P] →(C, L). The additional side channel 
information L has close relations with encrypt/decrypt key K. Through certain methods, combing the P or C, the adversary can derive K 
efficiently. The attacks presented in this paper use timing data.  

Cache Timing Attacks are new classes of side channel attacks. The feasibility of the Cache attacks was first mentioned by 
Kocher[1] [2] and then Kelsey et al.  in 1996. They assumed that the adversary can use timing measurements to learn something about the 
cache accesses of a legitimate party, which turns out to be the case in some practical applications. Page[3] described and simulated a 
theoretical cache attack on DES in 2003. The first actual cache attacks on DES were implemented by Tsunoo et al.[4]. The main focus of 
those papers was on DES. In 2005, Bernstein[5] [6][7] and Osvik, Shamir, and Tromer  showed in independent work that the Advanced 
Encryption Standard (AES) is particularly vulnerable to this type of side-channel attack, generating a lot of attention for the field. 
Subsequent work dealt with verifying the findings[8][9][10][11][12] [13][14][15][16], improving the attack , and devising and analyzing 
countermeasures[17][18][19]. 

However, the cryptanalytic attention was mainly focused on DES and AES, and the countermeasures mainly target the 
implementation of cryptographic designs, none of the mentioned papers above analyzed the Camellia with Cache timing attacks. 
Camellia was thought to be the most secure block cipher of the world, none of the published paper above has claimed to recover full 
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encryption key through experiment within limited time and data complexity. In this paper, we analyzed Cache timing attacks on 
Camellia, our research shows that it’s possible to recover full encryption key of Camellia-128/192/256 within less than 212 samples and 
1-5 seconds analysis, even Camellia in OPENSSL-1.0.0-beta3 with FL/FL-1 function, which is the latest version published by July 2009.  

1.2 Our Contributions 

The contributions of our work can be summarized as follows: 
1) Provide a general analysis model for symmetric ciphers based on Cache timing side channel attack. 
This model can be applied to analyze any symmetric cipher using S-boxes, such as AES, SMS4, Camellia, HC-128, HC-256 etc, 

it’s quite effective, also it can be used to evaluate and test the security of ciphers against Cache timing attacks. 
2) Point out that Camellia F function might leak information about encryption key. 
During the analysis of Camellia F function, we find out: the Camellia F function of encryption procedure can leak secret 

information about Ki⊕KEj, Ki denotes one byte of encryption key K, KEj denotes one byte of the expand-key, and Camellia F function 
in key schedule can leak secret information about Ki or KEj, which means that sometimes we may derive partial bytes of K directly. 

3)  The <<< n left circular rotating operation of the key schedule in Camellia has serious designing problem. 
Once the adversary get partial candidates of the data block before and after executing <<< operation W1, W2, the candidates count 

for W1
i and W2

i
 (one byte) can be further reduced through F function analysis. As both W1

i and W2
i
 have close relations with K, usually, 

W1
i and W2

i are related with different encryption key byte Ki; also, W1
i and W2

j has some other relations between themselves because of 
the <<< n operation. We find out that: combing certain analysis methods, the adversary can eliminate wrong candidates and recover 
correct key very efficiently. Experiments demonstrate that just analyzing one <<< operation can narrow down the key searching space 
from2107.8 to 1. 

4) Propose and realize several Cache timing attacks on Camellia. 
After analyzing on the F function and <<< operation of Camellia implementation, we have successfully designed and implemented 

several Cache timing attacks on Camellia-128/192/256. Experiment results demonstrate that even Camellia with FL/FL-1 is vulnerable 
to Cache timing attacks, all of the attacks can be realized within 210 samples and less than 1 seconds analysis; besides, improving key 
length and design complexity of Camellia can not enhance its security against Cache timing attacks, as to attack on Camellia-128, the 
adversary need to measure, analyze both the encrypt procedure and key schedule to recover full key, however, in the case of 
Camellia-192/256, after the encrypt procedure measurement and analysis, the adversary even needn’t to measure its key schedule, just a 
simple derivation of the Camellia key schedule is enough to deduce full key directly. Our techniques can be easily adapted into remote 
scenarios, for about 3000 random plaintexts is enough to recover full 192/256-bit key for Camellia-192/256 in both local and campus 
networks. Table 1 demonstrates the improvements of the attacks in this paper over several previous attacks.   

Table 1. Overview of attacks against Camellia 

Cipher Attack Type of Attack Rounds FL/FL-1 Data Time Key Recovery
Camellia-128 [20]  Square attack 6 ⅹ 211.7 2112 128-bit 
Camellia-128 [21]  Truncated differential 8 ⅹ 283.6 255.6 128-bit 
Camellia-128 [22]  Impossible differential 7 ⅹ --- --- 128-bit 
Camellia-128 [30] Impossible differential 11 ⅹ 2120 283.4 128-bit 
Camellia-128 Section 4 Cache Timing attack 2 √ 28.97 1s 20.2-bit 
Camellia-128 Section 5 Cache Timing attack 18 ⅹ 28.97 1s 128-bit 
Camellia-128 Section 5 Cache Timing attack 6 √ 28.97 1s 69.6-bit 
Camellia-128 Section 5 Cache Timing attack 6 ⅹ/√ 28.97 1s 128-bit 
Camellia-192/256 [30] Boomerang attack 9 √ 2124 2170 192/256-bit 
Camellia-192/256 [24]  Collision attack 9 ⅹ 213 2175.6 192/256-bit 
Camellia-192/256 [25]  Square attack 10 ⅹ --- 2186 192/256-bit 
Camellia-192/256 [26]  Impossible differential 12 ⅹ 2120 2181 192/256-bit 
Camellia-192/256 [30] Impossible differential 12 ⅹ 2119 2147.3 192/256-bit 
Camellia-192/256 Section 6 Cache Timing attack 6 ⅹ/√ 29.81 1s 192/256-bit 
Camellia-192/256 Section 6 Remote Cache Timing attack 6 ⅹ/√ 211.55 5s 192/256-bit 
Camellia-256 [27]  Square attack 9 √ 260 2202 256-bit 
Camellia-256 [28]  Integral cryptanalysis 9 √ 260.5 2202.5 256-bit 
Camellia-256 [23]  Rectangle attack 10 √ 2127 2241 256-bit 
Camellia-256 [24] Collision attack 10 ⅹ 214 2239.9 256-bit 
Camellia-256 [23] Differential 11 ⅹ 2104 2232 256-bit 
Camellia-256 [29]  High-order differential 11 ⅹ 221 2255 256-bit 
Camellia-256 [29] High-order differential 11 √ 293 2256 256-bit 
Camellia-256 [31] Square attack 11 ⅹ --- 2250 256-bit 
Camellia-256 [23] Linear cryptanalysis 12 ⅹ 2119 2247 256-bit 
Camellia-256 [30] Impossible differential 13 ⅹ 2120 2211.7 256-bit 

5) Discuss why and how these attacks work on Camellia, and provide possible countermeasures. 
The responsibility of this attack should mainly lies in Camellia algorithm itself. Both the F function and key schedule design of 

Camellia have serious weaknesses, which can be used to analyze the key efficiently. So, in order to prevent such kind of attack, we 



7. discuss how cipher designers can make such attacks more difficult in Section 

1.3 Organization 

This paper is organized as follows: Section 2 briefly describes preliminaries of Cache timing attack on Camellia. Section 3 
presents the basic Cache timing attack model and how it can be used into Camellia F function attack. Section 4 gives the basic attack on 
Camellia-128, Section 5 presents several expanded attacks on Camellia-128, and Section 6 displays attacks on Camellia-192/256. 
Section 7 discusses on the reason why Camellia is vulnerable to this type of attack and provides several advices to the cipher designer. 
Section 8 is the conclusion. 

2 Preliminaries 

2.1 Notations 

, S , S , SS1 2 3 4: denote SBOX1_1110, SBOX2_0222, SBOX3_3033, SBOX4_4404 S-box separately in the code of Camellia 
integrated in OPENSSL-1.0.0-beta3. 

:  the left-half data of X XL

:  the right-half data of X XR

⊕:  bitwise exclusive-OR operation 
||:  concatenation of two operations 
<<< n: rotations to the left by n bits 
K: Camilla encryption key 
KE: Camellia expand key 
δ: the element count of a Cache block  

rs : denotes the i-st 32-bit input of the r-st F function call i

2.2 Cache Timing Attack 

Cache timing attacks exploit that loading data into a CPU register is faster when done from Cache than from RAM. By measuring 
cache timings, the adversary can obtain or deduce certain information about the inner state of cipher. In the following, we point out why 
and how Cache becomes a convert channel for side channel attacks. 

Cache workings: 
Modern processors use one or more levels of set-associate memory Cache to solve the bottleneck between CPU and bus 

bandwidth. The cache is divided into S Cache sets, each contains W Cache lines, each line contains δ Cache elements (B bytes), so the 
overall Cache size is S*W*B bytes. 

The mapping of memory addresses into the Cache is limited as follows: 
Feature 1: When CPU reads a word A from the main memory, it first sends the memory address of A to the Cache and main 

memory, after that, Cache control logic unit judges whether A is in the Cache right now, if it is, a “Cache hit” occurs; if not, a “Cache 
miss” occurs, not only A but the memory block A belonging to (B bytes) is copied into one of the Cache lines. 

Feature 2: Each memory block can be cached only a specific Cache set, specifically, the memory block started at address a can be 
cached only in Cache set [a/B] mod/S. 

From Feature 1 we know that the same instruction to access the memory is affected by the historic state of whether the target data 
is in the Cache, if not , a delay by “Cache miss” appears, which might be represented by longer execute clock cycles or more power 
consumptions of the program. As to the clock cycle variation of typical processors, a “Cache hit” approximately needs 3 cycles, while a 
“Cache miss” might spend 12-100 cycles. So Cache hit and missing feature provides the timing leakage source for timing attacks. 

According to Feature 2, when different processes access self private data, as these data can be mapped into the same Cache set, 
thus share the Cache space together, so the spy process can monitor other process’s Cache access patterns by detecting self data access 
timing and power consumption pattern. So Cache resources sharing mechanism provides the convert channel for timing attacks. 

From the analysis above, the adversary can obtain a profile of Cache blocks that have been used by the cipher process. In local 
attack, this profile has very little noise from other system processes, and in remote attacks, this profile has more noises from the 
receiving and sending data packets from the network. By repeating the experiment a number of times or increase the sample size, a 
good approximation of the real Cache access profile can be obtained. 

Note that instead of learning the content of the Cache block, the adversary learns something about the addresses of the Cache set 
accessed by the cipher. In symmetric ciphers using S-box, this address can be transferred into the indices of the S-box entries used for 
encryption, which in return can be used for an attack. 

Attack Classifications and Practicality: 
 According to the attacked unit of cipher implementation, Cache timing attack can be classified into data Cache, instruction Cache 
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two types. Modern symmetric ciphers use many S-boxes to access data Cache, and become the main targets of data Cache timing 
attacks; meanwhile, public-key cryptosystems use many switch or jump cases to access instruction Cache, and thus become the main 
targets for I-Cache timing attacks. 

According to the different timing information gathered from Cache, the attack can be classified into timing driven, access driven, 
trace driven three types.  

As we all know, the attack can be composed of measuring and analyzing two phases. Timing driven Attack measuring phase is 
quite simple, it just measures the whole encrypt/decrypt times, combing certain statistics methods to analyze the key, due to the big 
timing noises by other processes, it needs millions of samples and complex methods to predict the correct key, meanwhile, in the remote 
network environment, even the traffic jitter is more than the encrypt/decrypt time, so it’s quite impossible to implement it into real 
remote scenarios.  

In access driven timing attack, the adversary use a spy process to get the Cache access profile about which Cache set has been 
accessed or un-accessed during one round or one time encryption, it’s much more efficient than timing driven attack. As the measuring 
spy process is disposed in the target cryptographic server, so the measuring accuracy and analysis efficiency is quite high, it has good 
applicability in both local and remote scenarios. 

Trace-driven analysis is of high efficiency, but needs to get the specific Cache hit/miss information during each S-box lookup to 
access the Cache, generally speaking, it is usually realized on electromagnetic leakage and power analysis, also needs to contact with 
the encryption equipment physically. So, the applicability of this attack in both local and remote environment is not quite practical.  

Attack Responsibility: 
Cache hit and miss timing variations provides the source for timing attacks; Cache space sharing and OS scheduling mechanism 

becomes the convert channel for spy process to measure cipher’s Cache access profile, which can be transferred into indices for S-box 
lookup entries; modern ciphers use many S-boxes access Cache to improve the efficiency, the S-box lookup indices has close 
relationship with the key. So Cache, OS, cipher algorithm all should share the responsibility for Cache timing attacks. Generally 
speaking, defending against Cache timing attack should consider from three aspects above, but due to the countermeasure cost and 
cipher applicability, the cipher designer should burden more responsibilities. The reason is that algorithms are designed only once, but 
implemented many times on many platforms. Thus, if we find out the convert channel in the algorithms, fix it at the balance of timing 
and security, thus side channel attacks can be avoided into the design phase, implementation become easier, which seems to be more 
preferable. Section 7 analyzes the convert Cache timing leakage channel and provides several advices for the cipher designers.   

Summary: Due to the applicability of access driven Cache timing attacks, we choose block cipher Camellia as the attack target, so 
it’s also belonged to data Cache attack.  

2.3 Description of the Camellia 
[32]Camellia is a 128-bit block cipher jointly developed by NTT and Mitsubishi Electric Corporation in 2000 . It was chosen as a 

recommended algorithm by the NESSIE (New European Schemes for Signatures, Integrity and Encryption) project in 2003  [33] and was 
certified as the IETF (Internet Engineering Task Force) standard cipher for XML security URIs, SSL/TLS cipher suites and IPsec in 
2005[34][35][36]. In March 2009, Camellia was integrated into the OPENSSL-1.0.0-beta1, which is the most widespread cryptographic 
library of the world. A full description of the Camellia cipher is provided in [32][33], but below is a brief description of the cipher’s 
properties that are utilized in this study.  

Encryption Procedure: 
Camellia is an iterated cipher. Camellia takes a 128-bit plaintext P as input, and has a total of N rounds, where N is 18 for 

Camellia-128, and 24 for Camellia-192/256. Camellia-128(192/256) requires 22(29)-rounds of data processing composed of three main 
parts: an 18(24)-round Feistel structure, two (three) FL function and FL-1 function rounds inserted every 6 rounds, and two input/output 
whitenings. Fig.1 shows the entire encryption process using 128-bit key. In the first and last round, the 128-bit data block is XORed 
with 128-bit round keys. Before the data block is fed to the Feistel network, it is separated into two 64-bit data blocks. The left half goes 
into the F function together with the 64-bit round key and the output of the F function is XORed with the right half block. At the end of 
each round, the right and left half block will be exchanged. In the F function, the input 64-bit data is first XORed with the 64-bit round 
key and then grouped into eight 8-bit data blocks. All of them are separately input to eight S-boxes. 

In Camellia, four types of S-boxes are applied and each one consists of a multiplicative inversion and affine transformations. A 
linear 64-bit permutation follows the nonlinear substitution of S-boxes. The FL and FL-1 functions inserted every 6 rounds are used to 
provide non-regularity between the rounds so that the security of the cipher is increased and these two functions are similarly 
constructed by logical operations including AND, OR, XOR, and rotations. 
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Fig.1 Encryption process of Camellia 

Key Schedule: 
 shows the key schedule of Camellia. Two 128-bit variables K  and KFig.2 L R are defined as follows. For 128-bit keys, the 128-bit key K 

is used as K  and K  is 0. For 192-bit keys, the left 128-bit of the key K is used as KL R L, and concatenation of the right 64-bit of K and the 
complement of the right 64-bit of K is used as K . For 256-bit keys, the left 128-bit of the key K is used as KR L and the right 128-bit of K 
is used as K . Two 128-bit variables K  and K  are generated from K  and K  as shown in Fig 2. Note that KR A B L R B is used only if the length 
of the secret key is 192 or 256 bits. The 64-bit constants ∑i (i = 1, 2, …, 6) are used as ”keys” in the Feistel network. They are defined 
as continuous values from the second hexadecimal place to the seventeenth hexadecimal place of the hexadecimal representation of the 
square root of the i-th prime. The 64-bit sub-keys k , k , and k  are generated from K , K , K , and Kwt u lv L R A B. The sub-keys are generated by 
rotating K , K , K , and K  and taking the left or right-half of them. Details are shown in Table 2 and Table 3. L R A B
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Fig.2 key schedule of Camellia 
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Table 2. Sub-keys for 128-bit keys 

NO Operation subkey value NO Operation subkey value 
1 Prewhitening kw1(KE0, KE1) (KL<<<0)L 14 F (Round10) k10(KE26, KE27) (KL<<<60)R
2 Prewhitening kw2(KE2, KE3) (KL<<<0)R 15 F (Round11) k11(KE28, KE29) (KA<<<60)L
3 F (Round1) k1(KE4, KE5) (KA<<<0)L 16 F (Round12) k12(KE30, KE31) (KA<<<60)R
4 F (Round2) k2(KE6, KE7) (KA<<<0)R 17 FL kl3(KE32, KE33) (KL<<<77)L
5 F (Round3) k3(KE8, KE9) (KL<<<15)L 18 FL−1 kl4(KE34, KE35) (KL<<<77)R
6 F (Round4) k4(KE10, KE11) (KL<<<15)R 19 F (Round13) k13(KE36, KE37) (KL<<<94)L
7 F (Round5) k5(KE12, KE13) (KA<<<15)L 20 F (Round14) k14(KE38, KE39) (KL<<<94)R
8 F (Round6) k6(KE14, KE15) (KA<<<15)R 21 F (Round15) k15(KE40, KE41) (KA<<<94)L
9 FL kl1(KE16, KE17) (KA<<<30)L 22 F (Round16) k16(KE42, KE43) (KA<<<94)R
10 FL−1 kl2(KE18, KE19) (KA<<<30)R 23 F (Round17) k17(KE44, KE45) (KL<<<111)L
11 F (Round7) k7(KE20, KE21) (KL<<<45)L 24 F (Round18) k18(KE46, KE47) (KL<<<111)R
12 F (Round8) k8(KE22, KE23) (KL<<<45)R 25 Postwhitening kw3(KE48, 

KE49) 
(KA<<<111)L

13 F (Round9) k9(KE24, KE25) (KA<<<45)L 26 Postwhitening kw4(KE50, 
KE51) 

(KA<<<111)R

Table 3. Sub-keys for 192/256-bit keys 

NO Operation subkey value NO Operation subkey value 
1 Prewhitening kw1(KE0, KE1) (KL<<<0)L 18 FL−1 kl4(KE34, KE35) (KL<<<60)R
2 Prewhitening kw2(KE2, KE3) (KL<<<0)R 19 F (Round13) k13(KE36, KE37) (KR<<<60)L
3 F (Round1) k1(KE4, KE5) (KB<<<0)L 20 F (Round14) k14(KE38, KE39) (KR<<<60)R
4 F (Round2) k2(KE6, KE7) (KB<<<0)R 21 F (Round15) k15(KE40, KE41) (KB<<<60)L
5 F (Round3) k3(KE8, KE9) (KR<<<15)L 22 F (Round16) k16(KE42, KE43) (KB<<<60)R
6 F (Round4) k4(KE10, KE11) (KR<<<15)R 23 F (Round17) k17(KE44, KE45) (KL<<<77)L
7 F (Round5) k5(KE12, KE13) (KA<<<15)L 24 F (Round18) k18(KE46, KE47) (KL<<<77)R
8 F (Round6) k6(KE14, KE15) (KA<<<15)R 25 FL kw3(KE48, KE49) (KA<<<77)L
9 FL kl1(KE16, KE17) (KR<<<30)L 26 FL−1 kw4(KE50, KE51) (KA<<<77)R
10 FL−1 kl2(KE18, KE19) (KR<<<30)R 27 F (Round19) k19(KE52, KE53) (KR<<<94)L
11 F (Round7) k7(KE20, KE21) (KB<<<30)L 28 F (Round20) k20(KE54, KE55) (KR<<<94)R
12 F (Round8) k8(KE22, KE23) (KB<<<30)R 29 F (Round21) k21(KE56, KE57) (KA<<<94)L
13 F (Round9) k9(KE24, KE25) (KL<<<45)L 30 F (Round22) k22(KE58, KE59) (KA<<<94)R
14 F (Round10) k10(KE26, 

KE27) 
(KL<<<45)R 31 F (Round23) k23(KE60, KE61) (KL<<<111)L

15 F (Round11) k11(KE28, 
KE29) 

(KA<<<45)L 32 F (Round24) k24(KE62, KE63) (KL<<<111)R

16 F (Round12) k12(KE30, 
KE31) 

(KA<<<45)R 33 Postwhitening kw3(KE64, KE65) (KB<<<111)L

17 FL kl3(KE32, KE33) (KL<<<60)L 34 Postwhitening kw4(KE66, KE67) (KB<<<111)R

From Fig.1 and Fig.2 we can clearly see that both Camellia encryption procedure and key schedule uses the F function, every F 
function has 2 times table lookup for each 4 S-boxes to access Cache, so the adversary is possible to deduce some information about K 
from both Camellia encryption procedure and key schedules, this is very important for the coming analysis of this paper.  

3 Attack Model 

3.1 General Attack Model 

Modern block ciphers usually use many large S-boxes to access Cache so as to improve the encrypt/decrypt efficiency. During 
S-box lookup procedure, it always has the following formula: 

α β γ=                                                      (1) 

Then, formula (1) can be transferred to: 

α γ β=                                                      (2) 

α : Part of the plaintext (first round analysis) or ciphertext (last round analysis), even the known inner state. 

β : Parameter related with the key, usually an expression composed of a set of key and expand-key (K,E). 

γ : Parameter related with the S-box lookup indices or results. 

: Denote one or more certain logical operations betweenα and β , such as ⊕ for AES, SMS4, and Camellia.  

 From Section 2.2, we know that the adversary can get γ through the measuring phase of Cache timing attack, asα is usually 

known, then, it’s not difficult to compute β , finally predict the correct key K. It usually adopts the following analysis strategy: 

Strategy 1: Analyze the un-accessed Cache addresses of S-box lookup 

Suppose the adversary get the impossible value of γ ,α sometimes is known, thus he can get the impossible value of β , combing 



β and K, then deduce the impossible value of K and finally recover the key. analyzing the relations between

Strategy 2: Analyze the accessed Cache addresses of S-box lookup 
αFirst the adversary fixes value , but generates different values of plaintext P or ciphertext C, so the Cache access profiles are 

different, as we know that β γis fixed, if the adversary can get the accessed Cache traces, then predict some candidates of , from 

formula (2), he can directly get a possible set of β βcandidates, the correct candidate is always belong to this set, then fixes another 

value for βα , using the same methods above to improve the predict frequency of correct , after several times of analyzing, the one 

with the highest frequency is always the correct value for β β. Combing analyzing the relations between and the key K, correct key K 

can also be predicted. 
As every un-accessed Cache set is related with δ (usually δ=16) impossible S-box lookup indices and results, using analysis 

strategy 1 the adversary can eliminate δ impossible β candidates, it’s quite effective. In the following paper, we adopt the strategy 1 to 

analyze the Camellia F function. 

3.2 Camellia F Function Attack Model 

After analyzing on Camellia algorithm, it’s clear to see that only F function executes 8 times S-box lookup operations, specifically 
speaking , 2 times for every 4 S-boxes during one F function call. Fig 3 displays C code of F function of Camellia in 
OPENSSL-1.0.0-beta3. 

 #define Camellia_Feistel(_s0,_s1,_s2,_s3,_key) do {\ 
1 register u32 _t0,_t1,_t2,_t3;\ 
2 \ 
3 _t0  = _s0 ^ (_key)[0];\ 

[_t0&0xff];\ 4 _t3  = S4

5 _t1  = _s1 ^ (_key)[1];\ 
[(_t0 >> 8)&0xff];\ 6 _t3 ^= S3

 [_t1&0xff];\ 7 _t2  = S1

8 _t3 ^= S [(_t0 >> 16)&0xff];\ 2

[(_t1 >> 8)&0xff];\ 9 _t2 ^= S4

10 _t3 ^= S [(_t0 >> 24)];\ 1

11 _t2 ^= _t3;\ 
12 _t3  = RightRotate(_t3,8);\ 

[(_t1 >> 16)&0xff];\ 13 _t2 ^= S3

14 _s3 ^= _t3;\ 
[(_t1 >> 24)];\ 15 _t2 ^= S2

16 _s2 ^= _t2; \ 
17 _s3 ^= _t2;\ 
} while(0) 

Fig.3 The C code of Camellia F function in openssl-1.0.0-beta3 

According to the specification of Camellia, we suppose that the input _s0,_s1,_s2,_s3 can be expressed as: 

1_ =s α β⊕                                                      (3) 

_ s α 1β : parameter related with K or KE;  : _s0,_s1,_s2,_s3; : part of the plaintext or some known inner state; 

From Code 4,6,7,8,9,10,13,15 line, we can clear to see that the index of S entry can be expressed as: n 

1 2 nγ ϕ α β β= ⊕ ⊕（ , ）                                               (4) 
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ϕ γdenotes a function to return the n-st byte of a 32-bit value; denotes the index of S entry.  n 

γ αthrough Cache timing attack measuring phase, The adversary can gather and n is also known, so the candidates 

for γ α1 2β β⊕ can be predicted. If the encrypt plaintext changed, and is changed, so 1 2β β⊕ can be predicted more efficiently.  

The adversary can finally recover the correct 1 2β β⊕ value, and use it for further analysis. 

4 Basic Camellia-128 Attack 

4.1 Attack Encryption Procedure  

4.1.1 First Round  
First the plaintext P is XORed with the 128-bit encryption key K (also KE , KE , KE , KE0 1 2 3), the output is X. Before X is fed to the 

Feistel network, it is separated into two 64-bit data blocks. The left half XL goes into the F function together with the 64-bit round key 
(KE , KE ) and the output of the F function is XORed with the right half block XR4 5 . At the end of F function, the right and left half 
block will be exchanged. 

P K⊕ 1β and formula (4), we can see that X can be expressed asFig.1 , so obviously, According to  in formula (3) and (4) can be 

expressed as KE , KE  in the first round Camellia F function call. Then, we have 8 equations as follows: 0 1

1 0 0,0 4,0 1 7 1,3 5,3

2 1 0,1 4,1 2 4 1,0 5,0

3 2 0,2 4,2 3 5 1,1 5,1

4 3 0,3 4,3 4 6 1,2 5,2

      
     
     
     

P KE KE P KE KE
P KE KE P KE KE
P KE KE P KE KE
P KE KE P KE KE

γ γ

γ γ

γ γ

γ γ

= ⊕ ⊕ = ⊕ ⊕

= ⊕ ⊕ = ⊕ ⊕

= ⊕ ⊕ = ⊕ ⊕

= ⊕ ⊕ = ⊕ ⊕

                                  (5) 

nγ nγdenotes the index of S entry, its candidates can be gathered from measuring phase, suppose we get the impossible value of n , 

as P is known, so according to formula (5), we can get the impossible value for  and , after analysis of more 

samples, finally recover the correct value for  and . 

0KE KE⊕ 4 5

4

4 5

1KE KE⊕

0KE KE⊕ 1 5KE KE⊕

γIf  and  is known after analyzing, as P is known, we can get every S-box lookup index0KE KE⊕ 1KE KE⊕ , so obviously, 

we can also get every S-box lookup result. From the F function code of Fig 3, we can see that the output s1 1, s2 3 can be expresses as 
the input s1 1 1 1, s  XORed with many S-box lookup results. So, finally, the adversary can know that the output s , s2 3 2 3 can be expressed 
the input s1 1 1 1XORed with a known variable c1, output s, s , s  can be expressed as follows: 2 3 2 3

1 1
2 2 2 4 1,0 5,0 3 5 1,1 5,1 4 6 1,2 5,2

1 7 1,3 5,3 1 0 0,0 4,0 2 1 0,1 4,1

3 2 0,2 4,2 4 3 0,3 4,3

1 1
3 3 2 4

^ [ ] ^ [ ]^ [ ] ^
           [ ] ^ [ ] ^ [ ] ^
           [ ] ^ [ ]      

^ [

s s S P KE KE S P KE KE S P KE KE
S P KE KE S P KE KE S P KE KE
S P KE KE S P KE KE

s s S P

= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕

= 1,0 5,0 3 5 1,1 5,1 4 6 1,2 5,2

1 7 1,3 5,3 1 0 0,0 4,0 2 1 0,1 4,1

3 2 0,2 4,2 4 3 0,3 4,3 1 0 0,0 4,0

] ^ [ ] ^ [ ] ^
           [ ] ^ [ ] ^ [ ] ^
           [ ] ^ [ ]^ RightRotate( [ ] ^

KE KE S P KE KE S P KE KE
S P KE KE S P KE KE S P KE KE
S P KE KE S P KE KE S P KE KE

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

2 1 0,1 4,1 3 2 0,2 4,2 4 3 0,3 4,3          [ ] ^ [ ] ^ [ ],8)S P KE KE S P KE KE S P KE KE⊕ ⊕ ⊕ ⊕ ⊕ ⊕

           (6) 

Summary: in this section, after analyzing on the F function call in the first round Camellia encryption, we can get the correct value 

for 0 4KE KE⊕ , 1 5KE KE⊕ 0KE 1KE1 1  denotes K ,K ,K ,K and compute the output expression of s , s ,  4 bytes, and 2 3 0 1 2 3  denotes 

K 0KE 1KE,K ,K ,K  4 bytes, and it’s clear to see that we can’t recover the  and  directly. 4 5 6 7

4.1.2 Second Round Attack 
1 1 1 14.1.1 we know that, during the first round F function, the output s , s  are the same as the input s , sFrom Section 0 1 0 1, the output 

s1 1 1 1 1 1 1 1 XORed with a known variable c, finally the left and right half block (s, s  can be expressed the input s , s , s  s , s2 3 2 3 0 1, 2 3) will be 
exchanged as the input of the second round F function.(s1 1 1 1 2 2

2, s 3, s 0, s 1, also can be expressed as s 0, s 1, s2 2, s ). Note that the second 2 3
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, KEround F function uses the other 64-bit round key (KE ). 6 7

Also, according to Fig.3 and formula (4), we have 8 equations as follows: 

1 8 2,0 6,0 1 15 3,3 7,3

2 9 2,1 6,1 2 12 3,0 7,0

3 10 2,2 6,2 3 13 3,1 7,1

4 11 2,3 6,3 4 14 3,2 7,2

      
     
     
     

P KE KE P KE KE
P KE KE P KE KE
P KE KE P KE KE
P KE KE P KE KE

γ γ

γ γ

γ γ

γ γ

= ⊕ ⊕ = ⊕ ⊕

= ⊕ ⊕ = ⊕ ⊕

= ⊕ ⊕ = ⊕ ⊕

= ⊕ ⊕ = ⊕ ⊕

                                  (7) 

Using attack model in Section 3.2, we can recover the correct value for and , then compute the output s2 6KE KE⊕ 3KE KE⊕ 2
27 , 

s2 2 2 XORed with a known variable c2.  can be expressed the input s , s3 2 3 

2 2
2 2 2 12 3,0 7,0 3 13 3,1 7,1 4 14 3,2 7,2

1 15 3,3 7,3 1 8 2,0 6,0 2 9 2,1 6,1

3 10 2,2 5,2 4 11 2,3 6,3

2 2
3 3

^ [ ] ^ [ ] ^ [ ]^
           [ ] ^ [ ] ^ [ ]^
           [ ] ^ [ ]      

s s S P KE KE S P KE KE S P KE KE
S P KE KE S P KE KE S P KE KE
S P KE KE S P KE KE

s s

= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕

= 2 12 3,0 7,0 3 13 3,1 7,1 4 14 3,2 7,2

1 15 3,3 7,3 1 8 2,0 6,0 2 9 2,1 6,1

3 10 2,2 5,2 4 11 2,3 6,3 1 8

^ [ ] ^ [ ]^ [ ] ^
           [ ] ^ [ ] ^ [ ]^
           [ ] ^ [ ] ^ RightRotate( [

S P KE KE S P KE KE S P KE KE
S P KE KE S P KE KE S P KE KE
S P KE KE S P KE KE S P K

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ 2,0 6,0

2 9 2,1 6,1 3 10 2,2 5,2 4 11 2,3 6,3

] ^
          [ ] ^ [ ] ^ [ ],8)

E KE
S P KE KE S P KE KE S P KE KE

⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

             (8) 

Summary: in this section, after analyzing on the F function call in the second round Camellia encryption, we can get the correct 

value for 2 6KE KE⊕ , 3 7KE KE⊕ 2KE 3KE2 3  denotes K ,K ,K ,K and compute the output expression of s , s .  4 bytes, and 2 3 8 9 10 11  

denotes K 2KE 3KE,K ,K ,K  4 bytes, and it’s clear to see that we can’t recover the  and 12 13 14 15  directly. In order to recover part or 

full key K, we have to attack the Camellia key schedule. 

4.2 Key Schedule Attack 

Fig.4 is partial code of Camellia-128 key schedule in OPENSSL-1.0.0-beta3. It’s clear to see that key schedule of Camellia-128 calls 
F function 4 Times (code line 4,5,7,8).According to formula (4), we can see that the S-box lookup index is composed of s (s0, s1, or 
s2, s3) XORed with the constant ∑ .  1

Take code line 4 as an example, we can get: 

1 0 1,0 1 7 1,7

2 1 1,1 2 4 1,4

3 2 1,2 3 5 1,5

4 3 1,3 4 6 1,6

       
     
     
     

K K
K K
K K
K K

γ γ

γ γ

γ γ

γ γ

= ⊕Σ = ⊕Σ

= ⊕Σ = ⊕Σ

= ⊕Σ = ⊕Σ

= ⊕Σ = ⊕Σ

                                                (9) 

As the Cache trace profile of Camellia key schedule under the same encryption key are all the same, the adversary can only get 
limited un-accessed Cache sets (one time measurement) during the Camellia key Schedule. During the Camellia-128 key schedule, as 
it calls F function 4 times, so in all, the whole key schedule has 32 times S-box lookups (8 times for each S-box). Obviously, the key 
schedule can accessed 8 different Cache sets for each S-box, which also means that, theoretically speaking, the adversary can measure 
about 8 un-accessed Cache sets for each S-box. As to δ=16, each un-accessed Cache set is related with 16 impossible S-box lookup 
indices, which also means that it’s related with 16 impossible Ki (one byte of K), so generally speaking, from formula(9) we can 
eliminate about 128 impossible values for K (i=0,1,2,3,4,5,6,7).  i 

Also, take code line 8 as an example, the S-box lookup index is composed of s (s2, s3) XORed with the constant ∑4. Note that s2, 
s3 are equal to KE , KE . We can finally get the candidates for KE , KE . 6 7 6 7

int Camellia_Ekeygen(int keyBitLength, const u8 *rawKey, KEY_TABLE_TYPE k) 
 {  

1. register u32 s0,s1,s2,s3; 
2. k[0] = s0 = GETU32(rawKey);  k[1] = s1 = GETU32(rawKey+4);  
3. k[2] = s2 = GETU32(rawKey+8); k[3] = s3 = GETU32(rawKey+12); 
4. Camellia_Feistel(s0,s1,s2,s3,SIGMA+0);  
5. Camellia_Feistel(s2,s3,s0,s1,SIGMA+2); 
6. s0 ^= k[0], s1 ^= k[1], s2 ^= k[2], s3 ^= k[3]; 
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7. Camellia_Feistel(s0,s1,s2,s3,SIGMA+4); 
8. Camellia_Feistel(s2,s3,s0,s1,SIGMA+6); 
9. k[ 4] = s0, k[ 5] = s1, k[ 6] = s2, k[ 7] = s3; 
10. RotLeft128(s0,s1,s2,s3,15); /* KA <<< 15 */ 
11. k[12] = s0, k[13] = s1, k[14] = s2, k[15] = s3; 

} 
Fig.4 Partial code of Camellia-128 key schedule  

Summary: from Section 4.1 we can get the correct value about , , , , and from 

Section 

0 4KE KE⊕ 1 5KE KE⊕ 2 6KE KE⊕ 3KE KE⊕ 7

6

 we can get partial candidates for K (i=0,1,2,3,4,5,6,7) and KE , KE4.2 i 6 7. So, if we combine the attack result together, we input 

every candidate of KE 2KE KE⊕6, KE7 into  and 3 7KE KE⊕ , we can get the possible candidates for KE , KE2 3, which also is 

candidates for K (i=8,9,10,11,12,13,14,15). Theoretically speaking, the candidate number for Ki i is about 128, which also means that we 
can reduce the key searching space from 2128 112 to 2 . 

4.3 Experiment 

We have implemented our Camellia access driven cache timing attack against OPENSSL-1.0.0-beta3 running on AMD 64 
machine, and use RDTSC instruction to measure high-precision receipt timestamp obtained from the CPU's cycle counter in terms of 
clock cycles. To have a initial “clean” testing environment, we started out using OPENSSL library calls as black-box functions, 
pretending we have no access to the key.  displays the relationship between KE ⊕KEFig.5 0 4 key byte searching space and sample size. 
It’s obviously to see that more than 500 samples are enough to recover every key byte of KE ⊕KE . 0 4
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⊕KEFig.5 Average KE key byte searching space and Attack sample size 0 4 

Fig.6 shows the key searching space decreasing after basic attack, it’s obviously to see that after the basic attack, the average key 
searching space of Camellia-128 is reduced from 2128 107.8 to 2 .  
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Fig.6 Key searching spaces of before and after the basic attack 
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 11  

5 Expand Camellia-128 Attack 

5.1 Expand Encryption Procedure Attack 

In order to further reduce the searching space for K, we need to get more information about K and KE. So, this section will display 
how to get more information about K and KE, but note that we still can not get K directly from attacking the encryption procedure. 

From section 4.1 we know that, the input Sr+1
0, Sr+1

1 can be expressed as the input Sr
2, Sr

3 XORed with a known variable cr(a value 
we can deduces from the r-st round encryption procedure attack). As the initial two rounds input Sr

0, Sr
1(r=1,2) is X(X=P⊕K), so if r is 

an odd number, the input Sr+1
0, Sr+1

1 can be expressed as the left half XL XORed with a known variable C1^…^Cr(r is an odd number); 
if r is an even number, the input Sr+1

0, Sr+1
1 can be expressed as the right half XR XORed with a known variable C2^…^Cr. But note that 

Camellia with FL/FL-1 functions inserted every 6 rounds are used to provide non-regularity between the rounds, so it’s very hard for the 
adversary to compute the input Sr

0, Sr
1 (r>6) as X XORed with c. But for Camellia without FL/FL-1 function, the adversary can compute 

the input Sr
0, Sr

1 (r=1, …, 18) as X  XORed with c.

According to formula (4), after analyzing on first 6 rounds F function calls (Camellia with FL/FL-1), what we can get is shown in 
Table 4；after analyzing on whole 18 rounds F function calls(Camellia without FL/FL-1), what we can get is shown in Table 5. 

Table 4. Attack results of first 6 rounds Camellia with FL/FL-1

Round Result Round Result 

1 KE0⊕KE4, KE1⊕KE5 4 KE2⊕KE10, KE3⊕KE11

2 KE2⊕KE6, KE3⊕KE7 5 KE0⊕KE12, KE1⊕KE13

3 KE0⊕KE8, KE1⊕KE9 6 KE2⊕KE14, KE3⊕KE15

Table 5. Attack results of 18 rounds Camellia without FL/FL-1

Round Result Round Result 

1 KE0⊕KE4, KE1⊕KE5 11 KE0⊕KE28, KE1⊕KE29

2 KE2⊕KE6, KE3⊕KE7 12 KE2⊕KE30, KE3⊕KE31

3 KE0⊕KE8, KE1⊕KE9 13 KE0⊕KE36, KE1⊕KE37

4 KE2⊕KE10, KE3⊕KE11 14 KE2⊕KE38, KE3⊕KE39

5 KE0⊕KE12, KE1⊕KE13 15 KE0⊕KE40, KE1⊕KE41

6 KE2⊕KE14, KE3⊕KE15 16 KE2⊕KE42, KE3⊕KE43

7 KE0⊕KE20, KE1⊕KE21 17 KE0⊕KE44, KE1⊕KE45

8 KE2⊕KE22, KE3⊕KE23 18 KE2⊕KE46, KE3⊕KE47

9 KE0⊕KE24, KE1⊕KE25 Postwhitening KE0⊕KE48, KE1⊕KE49

10 KE2⊕KE26, KE3⊕KE27 Postwhitening KE2⊕KE50, KE3⊕KE51

Note that as to Camellia without (FL/FL-1), if ciphertext C is known, also we can get the expression of final round F function 
output (Sr

0, Sr
1, Sr

2, Sr
3), as the output results XORed with(KE48,KE49,KE50,KE51) is just the ciphertext C, so we can get the correct 

value for KE0⊕KE48, KE1⊕KE49, KE2⊕KE50, KE3⊕KE51. 

5.2 Expand Key Schedule Attack I  

From Section 5.1, we can get correct results for the encryption key K XORed with the expand-key KE, but we can not get K 
directly. So in order to further reduce the key searching space for K, we have to analyze the key schedule of Camellia. 

Besides F function, Camellia key schedule used a lot of <<< operations to generate the expand-key. The <<< operations is quite 
vulnerable to Cache timing attack. Take Table 2 and code line 8,9,10 in Fig.4 as an example. As we known, from Table 4 and Table 5 
we can get the correct value for KE0⊕KE4, KE1⊕KE5, KE2⊕KE6, KE3⊕KE7 and KE0⊕KE12, KE1⊕KE13, KE2⊕KE14, KE3⊕KE15. 
As limited candidates for KE0, KE1, KE2, KE3 is known after Camellia basic attack in Section 4, so it’s very easy for us to reduce the 
possible candidates for KE4, KE5, KE6, KE7 and KE12, KE13, KE14, KE15. According to code line 9 in Fig.4, we can get: 

(KE12, KE13, KE14, KE15)=RotLeft128 (KE4, KE5, KE6, KE7, 15)                         (10) 
 Specifically speaking, we have 16 equations: 



12,0 4,1[7] 4,2[0,...6] 12,1 4,2[7] 4,3[0,...6]

12,2 4,3[7] 5,0[0,...6] 12,3 5,0[7] 5,1[0,...6]

13,0 5,1[7] 5,2[0,...6] 13,1 5,2[7] 5,3[0,...6]

13,2 5,3[7] 6,

  

  

  

KE KE KE KE KE KE

KE KE KE KE KE KE

KE KE KE KE KE KE

KE KE KE

= =

= =

= =

= 0[0,...6] 13,3 6,0[7] 6,1[0,...6]

14,0 6,1[7] 6,2[0,...6] 14,1 6,2[7] 6,3[0,...6]

14,2 6,3[7] 7,0[0,...6] 14,3 7,0[7] 7,1[0,...6]

15,0 7,1[7] 7,2[0,...6] 15,1

  

  
  

  

KE KE KE

KE KE KE KE KE KE
KE KE KE KE KE KE

KE KE KE KE KE

=

= =

= =

= = 7,2[7] 7,3[0,...6]

15,2 7,3[7] 4,0[0,...6] 15,3 4,0[7] 4,1[0,...6]  

KE

KE KE KE KE KE KE= =

                              (11) 

and KETake the first equation as an example, from it we can know that the correct value of KE12,0 4,2 have this feature: the right 
7-bit value of KE should equal to left 7-bit value of KE . 12,0 4,2

12,0[1,...7] 4,1[7] 4,2[0,...6]KE KE KE=                                         (12) 

If we input every candidate of KE  and KE12,0 4,2 into formula (12), the candidates do not fulfill the equation above can be eliminated 
from KE  and KE  candidate sets. Take the left part of formula (12) as an example, as every candidate for KE12,0 4,2 12,0 is related to a 
candidate for K , so the elimination of KE  candidates also means that the candidate count for K0 12,0 0 is decreasing, we can reduce the 
candidates count for K0. From formula (11), we know that there are 15 other equations like formula (12), we can reduce the candidates 
count for K Also, Take the right part of formula (12) as an example, every candidate for KE is related to a candidate for K.i . 4,2 2, so the 
elimination of KE  candidates also means that the candidate count for K4,2 2 is decreasing, using the same methods on 15 other equations 
like formula(12), we can further reduce the candidates count for K . So after every <<< function analysis, K  is reduced 2 times. i i

-1Considering Camellia with FL/FL  function, it’s clear to see that besides KE KE KE , KE , KE KE KE , KE4, 5, 6 7 12, 13, 14 15 related to 
<<< function about K , we can also analyze KE KE , KE , KE  KE KE KE , KE related to <<< function about KA L0, 1 2 3, 8, 9, 10 11 , thus we can 
further reduce the candidates count for K .  i.

-1 function, it’s clear to see that besides KE KE KE , KE , KE KE KE , KEConsidering Camellia without FL/FL 4, 5, 6 7 12, 13, 14 15 related to 
<<< function about K , we can use many other <<< operations to eliminate wrong candidates of KA i, specifically, 6 <<< operations about 
K , 6 <<< operations about K , so we can have (6*5)/2+(6*5)/2=30 rounds analysis points, and finally recover the correct K . L A i

-1Summary: after 2 round analysis on <<< operations of Camellia with FL/FL  function, we can further reduce the candidates count 
for K , but it’s still quite hard to get the only correct value for Ki. i; after 30 rounds analysis on <<< operations of Camellia without 
FL/FL-1 function, it’s possible for us to recover encryption key K.  

5.3 Expand Key Schedule Attack II 
-1 can not recover the whole encryption key K for Camellia with FL/FL5.2The key schedule attack in  function, the reason for it is 

that for every byte K , we just eliminate wrong candidates of Ki i for about 4 times (2 rounds analysis), but do we have other ways to 
eliminate candidates of K  for more times?  i

Fig.4Let’s also take code line 8,9,10 in  as an example, As the rotate num n=15, which means that the output value after rotating is 
almost 2 bytes left rotate from the input value. According to formula (10), we can transfer every equation into a set of variables related 
with the eliminating K . i
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K2—K4

K4—K6

K6—K8

K8—K10

K10—K12

K12—K14

K14—K0

K1—K3

K3—K5

K5—K7

K7—K9

K9—K11

K11—K13

K13—K15
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②

①

⑤
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③

④

⑥

⑦
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③

④

⑥

⑦

 

Fig.7 Elimination of K  in formula (10)  i

 denotes the number of candidates for K Suppose NK , from Fig.7 it’s easy to find out: i i
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and NK  are decreasing, N = NK1 After every time of elimination, NK . i (i+2)%16 i (i+2)%16

2 The elimination has a Domino chain effect. 
Fig.7 as an example:  Take left part of 

(1) After elimination 1, NK and NK  are decreasing, NK = NK0 2 0 2. 

(2) After elimination 2, NK and NK  are decreasing, NK = NK  Back to (1), NK is decreasing, but NK =NK = NK2 4 2 4. 0 0 2 4.

(3) After elimination 3, NK and NK  are decreasing, NK = NK  Back to (2), NK  and NK is decreasing, back to (1), NK4 6 4 6. 4 2 0 is 
decreasing. NK =NK = NK =NK . 0 2 4 6

…………………………………… 
and NK  are decreasing, NK = NK . Back to (1)(2)(3)(4)(5)(6)(7), we have NK =NK(8) After elimination 8, NK14 0 14 0 0 2= 

NK =NK = NK =NK = NK =NK .                                                                                          4 6 8 10 12 14

 as an example, after 8 times elimination, we have NK =NK = NK =NK = NK =NK = NK =NKFig.7     Take right part of 1 3 5 7 9 11 13 15.

So, every time of elimination, it can always decrease other NKj. After about 8 times of decreasing, we can reduce the key searching 
space dramatically. Experiment demonstrates that this was enough to reduce the Camellia-128 searching space from 2112 to 1! Even if 
this can not recover full Camellia-128 key, we can also analyze KE KE , KE , KE  KE KE KE0, 1 2 3, 8, 9, 10, KE11 related to <<< function about 
K  to have another 8 times of decreasing like this Section, finally recover the full 128-bit Camellia key. L

Note that only analysis on first 6 rounds is enough to recover the full 128-bit Camellia key, which means that both Camellia with 
and without FL/FL-1 are vulnerable to the attack of this Section. 

5.4 Experiment 
-1 shows the 128-bit key searching space of basic attack and the expand attack I for Camellia with FL/FLFig.8 , it’s clear to see that the 

average key searching space after basic attack is about 2107.8 58.4, after the expand attack I, it is reduced to about 2 .  
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Fig.8 Key searching spaces of basic attack and expand attack I 
-1As to Camellia without FL/FL , the first expand key schedule attack is enough to recover full 128-bit key. And our experiment 

results demonstrate that, after the second expand key schedule attack, the key searching space is down to 1, just attacking one <<< 
operation of the key schedule is enough to reduce the key searching space from 2107.8 to 1. So, the <<< operation of the Camellia-128 
key schedule is rather vulnerable to Cache timing attack!   

6 Camellia-192/256 Attack 

6.1 Key Schedule Attack 

The encryption procedure for Camellia-192/256 is almost the same as Camellia-128, the only thing different is that instead of 
calling 18 times of F function and 2 times FL/FL-1 -1 function, Camellia-192/256 calls 24 times of F function and 3 times FL/FL  
function. The key schedule for Camellia-192/256 is more complicating than Camellia-128. Methods on analysis the key schedule of 
Camellia-128 are not applicable to Camellia-192/256. Does this means Camellia-192/256 is much more secure than Camellia-128? 

The answer is No! In Camellia-128 attack, we need to measure and analyze both encryption procedure and key schedule to recover 
full 128-bit key, in Camellia-192/256 attack, we just need to measure and analyze the encryption procedure , combing a simple analysis 
on its key schedule, it’s quite simple to recover full 192/256-bit key. 

-1 In order to emphasize the strong applicability of our attack on Camellia-192/256, we take Camellia-192/256 with FL/FL  as our 
target, this is the most secure algorithm currently, and we just analyze the first 6 rounds of Camellia encryption and the key schedule 
part. As the first 6 rounds of Camellia encryption and the key schedule part are all the same for algorithm with and without FL/FL-1, so 
the attack is also applicable to Camellia-192/256 without FL/FL-1. 

From the key schedule of Camellia-192/256(Fig.2, Table 3), we can see that: 
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                (13) 8 9 10 11 12 13 14 15<<<15    <<<15    R AKE KE KE KE K KE KE KE KE K（ ， ， ， ）= （ ， ， ， ）=

, we can recover KE ⊕KE , KE1⊕KE , KE ⊕KE , KE ⊕KE and KE ⊕KE , KE ⊕KE , KE ⊕KEFrom Table 4 0 8 9 2 10 3 11 0 12 1 13 2 14, 
KE ⊕KE , which also means we can recover KE ⊕KE , KE ⊕KE , KE  ⊕KE , KE ⊕KE3 15 8 12 9 13 10 14 11 15, then, we can get the value of 
(K <<<15)⊕(K <<<15), so we can get the value of K ⊕KA R A R, which is also the input state of the 5-th F function of Camellia key 
schedule, as ∑  is known, so after the 5-th and 6-th F function call, we can get the correct value K .  B5

K  is also the value of (KE , KE , KE , KE , we can recover KE ⊕KE , KE1⊕KE , KE ⊕KE , KE ⊕KE), as from Table 4B 4 5 6 7 0 4 5 2 6 3 7, so 
obviously, we can get the correct value of KE , KE1, KE , KE , which is also the left 128-bit of the encryption key K, as KE ⊕KE0 2 3 0 8, 
KE1⊕KE , KE ⊕KE , KE ⊕KE is also known to us, so we can deduce the correct value of KE , KE , KE , KE , finally, KR9 2 10 3 11 8 9 10 11  can be 
recovered. 

, we know that the right 64-bit key of Camellia-192 equals to the left 64-bit of K2.3From Section R, and the right 128-bit key of 
Camellia-256 equals to K . As KR R is known, the right 64-bit key value of Camellia-192 and right 128-bit key of Camellia-256 is also 
recovered. Combing previous left 128-bit key value, we can recover full key of Camellia-192/256. 

6.2 Experiment 

Local Attack 
 displays the relationship between KE ⊕KEFig.9 0 4 key byte searching space and sample size for Camellia 128 and 192/256. It’s 

obviously to see that more than 600 samples are enough to recover every key byte of KE ⊕KE0 4 of Camellia-192/256, which is bigger 
than 500 of Camellia-128. 
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⊕KEFig.9 Average KE key byte searching space and Attack sample size for Camellia 128 and 192/256 0 4 

Table 4 or Table 5, we can analyze the encryption key with the method of Section After we get the first 6 rounds attack results in 
6.1, then recover the encryption key. Our experiments demonstrate that for about 800-900 samples are enough to recover the full 
Camellia-192/256 key in local attacks. 

Remote Attack 
In local attack experiments, we started out using OPENSSL library calls as black-box functions, pretending we have no access to 

the key, there is no real interaction between the attacker program and Camellia server program. In order to demonstrate our attack’s 
strong applicability, we have implemented it into the remote environment, such as local and campus network, and it works quite 
efficiently. 

There are three programs in the remote attack experiment: the attacker (AP), the Camellia server (CSP) and the unprivileged spy 
program (SP), SP and CSP are deployed on the same computer, SP just executes simple access self data to access Cache, which is 
possible on the vast development of spy technologies.  

Step 1: AP notifies SP to access self data clearing the data in Cache, initiating the Cache into a known state 
Step 2: AP sends encryption request to CSP and trigger Camellia encryption. After encryption, CSP sends the ciphertext to AP. 
Step3: AP notifies SP to revisit Cache and find out which Cache set CSP has accessed and un-accessed. 
Step4: Using certain analysis model, AP can make some offline analysis on encryption Key.    
During the remote attacks, we find out that, due to the frequent network interaction among AP, CSP, SP, there are many sending 

and receiving packet operations to access data Cache, so there are much more noises than local experiment condition. One sample 
measurement of local attack and remote attack is shown in Fig.10 and Fig.11, the horizontal axis denotes the 512 Cache sets, and the 
vertical axis is the accessed time cycles of each Cache set by SP. It’s clear to see layout of Camellia’s 4 lookup tables (Cache set 
461,477,493,509), measurement in remote attack has rather more noises than local attack, but we can still gather the un-accessed Cache 
sets(less time cycles ones) during Camellia encryption, which is enough for us to recover the Camellia key. Finally, we successfully 
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recover full Camellia 192/256 key for about 3000 samples in both local and campus network environment. 

 

Fig.10 One sample measurement in Local Attack 

 

Fig.11 One sample measurement in remote Attack 

7 Discussions and Countermeasures 

7.1 Discussions 

In summary, the F function of the Camellia can leak information about the result of encryption key XORed with expand-key; the 
left circular rotating operation of the key schedule in Camellia has serious designing problem. 

Every F function used 8 times table lookup operations, 2 times for each S-box. The adversary can get the accessed Cache sets 
during the F function call, these Cache addresses can be transferred into S-box lookup indices, which is also related with a known 
variable (plaintext, inner state or cipher) and the secret key. According to the analysis model of Section 3, it’s not difficult to recover the 
secret key. But the secret key doesn’t equal to the encryption key K, but the results of encryption key XORed with expand-key, so in 
order to recover the value of the encryption key, we have to analyze the key schedule of Camellia.  

Camellia-128 key schedule calls the F function for 4 times, after measuring of the key schedule Cache access profiles, through the 
first call analysis, we can directly get the possible candidates for Ki (i=0,1,…7), through the 4-th call analysis, we can get the possible 
candidates for KE  and KE , as the value of KE ⊕KE  and KE ⊕KE6 7 2 6 3 7 is known to us after attacking the encryption procedure, so we 
can get the possible candidates for Ki (i=7,8,…15), as the key schedule is fixed, we can only get very limited Cache access profile with 
one time measurement, but up to now, we still can’t recover full 128-bit key. In order to further reduce the key searching space, we have 
to analysis other parts of the key schedule, that is <<< n left circular rotating operation. Through former analysis, we can get the 128-bit 
candidates before and after the <<< n operation, due to their linear transformations and relations with the encryption key, all of the key 
candidates don’t fit for the <<< line relations are eliminated, as the <<< operation analysis has the domino chain effect (Section 5.3), 
the encryption key can be recovered very efficiently, just one <<< operation analysis is enough to narrow down the key searching space 
from 2107.8 down to 1. 

Camellia-192/256 calls the F function 6 times, during the first F call, we can’t get any information about Ki (i=0,1,…7), but 
candidates about KE ⊕(KE >>>15), KE ⊕(KE >>>15), KE ⊕(KE >>>15), KE ⊕(KE0 8 1 9 2 10 3 11>>>15), which is nonsense information to 
recover K, so as the 2-th, 3-th, 4-th F call, interesting things happens at the input of the 5-th F call, it was just the value of ((KE8>>>15)
⊕ (KE >>>15), (KE >>>15)⊕ (KE >>>15), (KE >>>15)⊕ (KE >>>15), (KE >>>15)⊕ (KE12 9 13 10 14 11 15>>>15)), as after attacking the 
encryption procedure, we get the correct value of (KE ⊕KE , KE ⊕KE , KE ⊕KE , KE ⊕KE8 12 9 13 10 14 11 15), so we can derive the input of 
the 5-th F call, then, after 5-th and 6-th F calls, we can get the value of (KE , KE , KE , KE ), as KE ⊕KE , KE1⊕KE , KE ⊕KE4 5 6 7 0 4 5 2 6, 
KE ⊕KE is known, so Ki 3 7 (i=0,1,…15) is recovered, combing other analysis, we can recover full 192/256-bit key by directly 
derivations. So, obviously, attacking Camllia-192/256 is even much easier than Camellia-128. 

7.2 Countermeasures 

This section mainly talks about countermeasures against Cache timing attacks from algorithm design. Due to the weakness of F 
function and <<< left circular rotating operation, following are some advices for cipher designers to make such attacks more difficult.  

1 Use multivariable secret keys (at least 3 dimensions) as the input of the S-box lookup. 
Block cipher such as AES and SMS4, its S-box lookup input index is related with only one secret information (K or KEi j), so 

through Cache timing analysis, the adversary can directly recover K or KEi j. However, this doesn’t work in Camellia, as the S-box 
lookup input index of Camellia encryption procedure can leak secret information (K ⊕KEi j, full recovery) about two secret key 
variables K  and KE , the key schedule might leak one secret variable K  or KE  (limited candidates). In order to get the correct Ki j i j i or 
KE , the adversary has to analyze Camellia key schedule (Camellia-192/256), sometimes even need to attack the key schedule j
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(Camellia-128). So, if Camellia using multivariable secret keys (at least 3 dimensions) as the input of the S-box lookup might be an 
efficient countermeasure to Cache timing attacks. 

-12 Insert FL/FL  functions between F function calls more frequently. 
-1In Camellia, the FL and FL  functions inserted every 6 rounds are used to provide non-regularity between the rounds so that the 

security of the cipher is increased and these two functions are similarly constructed by logical operations including AND, OR, XOR, 
and rotations. Indeed, it’s quite effective to improve the security of Camellia against Cache timing attack. In Camellia with FL and FL-1 
functions, the adversary get nothing from the following rounds after FL and FL-1 functions, but just first 6 rounds analysis results of Ki

⊕KE (Table 4j ), unfortunately, this was enough for key Camellia-192/256 recovery directly, and after key schedule Cache timing 
attack, full key of Camellia-128 can be recovered very efficiently.  

Note that all of the further key analysis is based on the successful attack on first 6 rounds Camellia F function analysis, if we insert 
FL/FL-1 functions more frequently between F function call, like 2 rounds instead of current 6 rounds, it would be much harder to apply 
Cache timing attacks.   

3 Use more linear logical operations besides <<< circular rotating operation, such as XOR, mix Columns etc. 
 by simply rotating K , K , K , and KIt’s quite efficient to generate the sub-key KEj L R A B and taking the left or right-half of them, but 

it’s not a secure way against Cache timing attacks. Once the adversary get the partial candidates before and after the rotating operation, 
it’s very easy to recover the correct input and output of the rotating operation(KE ), as they are closely related with the K(Table 4, j Table 
5), so the adversary can recover K quite efficiently. Our experiments demonstrate that just analyzing one <<< operation can narrow 
down the key searching space from2107.8 to 1.  As so far rotating operation is the only direct connection between two Camellia 
sub-keys, if we insert more other logical operations like AND, OR, XOR between the generation of different round sub-keys, it will 
increase the difficulty for Cache timing analysis. 

4 White-Box Cryptography.  
White-box cryptography aims to protect secret keys by embedding them into a software implementation of a block cipher. In such 

a context, it is assumed that the attacker (usually a legitimate user or malicious software) may also control the execution environment，
such as static and dynamic analysis of the implementation, altering of computation, and modification of internal variables. This is in 
contrast with the more traditional security model where the attacker is only given a black-box access (i.e., inputs/outputs) or given a 
grey-box access (use side channel information such as power consumption, and timing information) to the cryptographic algorithm 
under consideration. In White-box Cryptography model, it was mainly composed of the following part: transform the cipher into a 
network of key dependant lookup tables, randomized behavior of all network nodes, extend the cryptographic border.  

[38]Chow et al. introduce this idea and propose a white box implementation of DES in  by interleaving affine transformations and 
using de-linearization techniques. An improvement is explained in [39]. An implementation of AES is also given in [40] by representing 
it with a set of key-dependent look-up tables, also an improvement is explained in [41]. All of the implementation above (DES 
represents Feistel structure, AES represents SPN structure.) can prove that this idea can efficient protect secret keys being analyzed by 
hidden encryption key into the S-box of a block cipher, thus can defend almost all of the current side channel analysis on block ciphers. 
But although the security improves, the white-box implementations make a program much larger and slower. The AES implementation 
of Daemen and Rijmen requires 4352 bytes for lookup tables, thus the expected increase in size is about 177×. The performance 
slowdown is approximately 55× compared to a normal implementation of AES in [40]. None of the published papers have tried to 
implement white-box cryptography on Camellia so far, so it’s hopeful to design a new white-box cryptography on Camellia to secure 
against Cache timing attacks in the nearby future. 

8 Conclusion 

This paper makes some researches on access driven Cache timing attacks on the most secure block cipher Camellia, the results 
demonstrate that Camellia is facing serious threats from Cache timing attacks. First, Camellia has been widespread as the dominate 
block cipher in both Japan and European, so the effect of these attacks are wide and deeply; second, the adversary needn’t to gain the 
encryption platform to physically measure the leaked side channel information, so it has strong applicability under remote environment 
such as local network, campus network, even the internet network; last but not the least, this attack is applicable to all software 
implementation for “Cache-Memory” structure of Computer equipment, thus can threaten the security of server, desktop, embedded 
Operating System. So, we should put strong concerns to this type of attack. 

In this paper, we discover that the fast implementation of frequency S-box lookup operations in F function and left circular rotating 
operation of the key schedule have serious designing problem, it’s very easy to be used by the adversary to implement the attack and 
recover full encryption key. Note that access driven Cache timing attacks on Camellia is decided by the fast implementation of 
frequency S-box lookup operations and the intrinsic mechanism of Cache, so it’s very hard to defend these attacks. Different from 
traditionally countermeasures by modifying cipher hardware and OS implementation environments, we point that the cipher designer 
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should burden more responsibilities due to the countermeasure cost and cipher applicability, provide several advices to the cipher 
designer about how to make such attacks more difficult. But all the countermeasures has to be at the cost of sacrifice the encryption 
speed, so how to make better balance between efficiency and speed are the big challenges for cryptographic systems.  
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