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Abstract

An identity-based encryption (IBE) scheme can greatly reduce the complexity of sending encrypted

messages over the Internet. However, an IBE scheme necessarily requires a private-key generator (PKG),

which can create private keys for clients, and so can passively eavesdrop on all encrypted communica-

tions. Although a distributed PKG has been suggested as a way to mitigate this problem for Boneh and

Franklin’s IBE scheme, the security of this distributed protocol has not been proven and the proposed so-

lution does not work over the asynchronous Internet. Further, a distributed PKG has not been considered

for any other IBE scheme.

In this paper, we design distributed PKG setup and private key extraction protocols in an asyn-

chronous communication model for three important IBE schemes; namely, Boneh and Franklin’s IBE,

Sakai and Kasahara’s IBE, and Boneh and Boyen’s BB1-IBE. We give special attention to the applica-

bility of our protocols to all possible types of bilinear pairings and prove their IND-ID-CCA security in

the random oracle model. Finally, we also perform a comparative analysis of these protocols and present

recommendations for their use.

1 Introduction

In 1984, Shamir [58] introduced the notion of identity-based cryptography (IBC) as an approach to simplify

public-key and certificate management in a public-key infrastructure (PKI) and presented an open problem

to provide an identity-based encryption (IBE) scheme. After seventeen years, Boneh and Franklin [10]

proposed the first practical and secure IBE scheme (BF-IBE) using bilinear maps. After this seminal work,

in the last few years, significant progress has been made in IBC (for details, refer a recent book on IBC [39]

and references therein).

In an IBC system, a client chooses an arbitrary string such as her e-mail address to be her public key.

Consequently, with a standardized public-key string format, an IBC scheme completely eliminates the need

for public-key certificates. As an example, in an IBE scheme, a sender can encrypt a message for a receiver

knowing just the identity of the receiver and importantly, without obtaining and verifying the receiver’s

public-key certificate. Naturally, in such a system, a client herself is not capable of generating a private key

for her identity. There is a trusted party called a private-key generator (PKG) which performs the system

setup, generates a secret called the master key and provides private keys to clients using it. As the PKG

computes a private key for a client, it can decrypt all of her messages passively. This inherent key escrow

property asks for complete trust in the PKG, which is difficult to find in many realistic scenarios.

Need for the Distributed PKG. Importantly, the amount of trust placed in the holder of an IBC master

key is far greater than that placed in the holder of the private key of a certifying authority (CA) in a PKI. In
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a PKI, in order to attack a client, the CA has to actively generate a fake certificate for the client containing a

fake public-key. In this case, it is often possible for the client to detect and prove the malicious behaviour of

the CA. The CA cannot perform any passive attack; specifically, it cannot decrypt a message encrypted for

the client using a client-generated public key and it cannot sign some document for the client, if the verifier

gets a correct certificate from the client. On the other hand, in IBC,

• knowing the master key, the PKG can decrypt or sign the messages for any client, without any active

attack and consequent detection (key escrow),

• the PKG can make clients’ private keys public without any possible detection, and

• in a validity period-based key revocation system [10], bringing down the PKG is sufficient to bring

the system to a complete halt (single point of failure), once the current validity period ends.

Therefore, the PKG in IBC needs to be far more trusted than the CA in a PKI. This has been considered as

a reason for the slow adoption of IBC schemes outside of closed organizational settings.

Boneh and Franklin [10] suggest distributing a PKG in their BF-IBE scheme to solve these problems. In

an (n, t)-distributed PKG, the master key is distributed among n PKG nodes such that a set of nodes of size

t or smaller cannot compute the master key, while a client extracts her private key by obtaining private-key

shares from any t + 1 or more nodes; she can then use the system’s public key to verify the correctness

of her thus-extracted key. Boneh and Franklin [10] propose verifiable secret sharing (VSS) of the master

key among multiple PKGs using Shamir secret sharing with a dealer [57] to design a distributed PKG and

also hint towards a completely distributed approach using the distributed (shared) key generation (DKG)

schemes of Gennaro et al. [31]; however, they do not provide a security proof. Further, none of the IBE

schemes defined after [10] consider the design of a distributed PKG.

On the system side, the DKG schemes [31] suggested in [10] to design a distributed PKG are not advis-

able for use over the Internet. These DKG schemes are defined for the synchronous communication model,

having bounded message delivery delays and processor speeds, and do not provide safety (the protocol does

not fail or produce incorrect results) and liveness (the protocol eventually terminates) over the asynchronous

Internet, having no bounds on message transfer delays or processor speeds.

As a whole, although various proposed practical applications using IBE, such as key distribution in ad-

hoc networks [42], pairing-based onion routing [41] or verifiable random functions from identity-based key

encapsulation [1], require a distributed PKG as a fundamental need, there is no distributed PKG available for

use over the Internet yet. Defining efficient distributed PKGs for various IBE schemes which can correctly

function over the Internet has been an open problem for some time. This practical need for distributed PKGs

for IBC schemes that can function over the Internet forms the motivation of this work.

Contributions. We present asynchronous distributed PKGs for all three important IBE frameworks: namely,

full-domain-hash IBEs, exponent-inversion IBEs and commutative-blinding IBEs [12]. We propose dis-

tributed PKG setups and distributed private-key extraction protocols for Boneh and Franklin’s IBE (BF-

IBE) [10], Sakai and Kasahara’s IBE (SK-IBE) [54], and Boneh and Boyen’s (modified) BB1-IBE [13, 12]

schemes for use over the Internet. The novelty of our protocols lies in achieving the secrecy of a client

private key from the generating PKG nodes without compromising the efficiency. We realize this with an

appropriate use of non-interactive proofs of knowledge, bilinear-pairing-based verifications and DKG proto-

cols with and without the uniform randomness property. In terms of feasibility, we ensure that our protocols

work for all three pairing types defined by Galbraith et. al. [28].

We prove the IND-ID-CCA security of the defined three schemes in the random oracle model. Inter-

estingly, compared to the security proofs for the respective IBE schemes with a single PKG, there are no

additional security reduction factors in our proofs, even though the underlying DKG protocol used in the
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distributed PKGs does not provide a guarantee about the uniform randomness for the generated master se-

crets. To the best of our knowledge, there is no threshold cryptographic protocol available in the literature

where a similar tight security reduction has been proven while using a DKG without the (more expensive)

uniform randomness property.

In the process, we also design practical asynchronous protocols for distributed multiplication and inverse

computation tasks, which have their own applications. Here, asynchrony is obtained using an asynchronous

DKG in the appropriate fashion. Further, we replace proofs of knowledge by comparatively cheaper pairing-

based verification.

Observing that a distributed (shared) key generator (DKG) is the single most important component of

distributed PKG, we implement a recently devised asynchronous DKG protocol [40] and demonstrate its

efficiency and reliability with extensive testing over the PlanetLab platform [52]. Finally, using operation

counts, key sizes, and possible pairing types, we compare the performance of the distributed PKGs we define

and also briefly discuss the proactive security and group modification primitives for them.

In §2, we compare various techniques suggested to solve the key escrow and single point of failure

problems in IBC. We also discuss previous work related to DKG protocols. In §3, we describe a realistic

asynchronous system model over the Internet and justify the choices made, while we define and describe

cryptographic tools in our model in §4. With this background, in §5, we define and prove distributed PKG

protocols for the BF-IBE, SK-IBE and BB1-IBE schemes. We then implement a practical DKG protocol,

and test its performance over the PlanetLab platform in §6. We also compare the IBE schemes based on

their distributed PKGs and touch upon proactive security and group modification protocols for the system.

2 Related Work

We divide the related work into two parts. Distributed (shared) key generation is the most important com-

ponent for distributed private-key generation in identity-based cryptography. We first discuss the existing

work towards distributed key generation. As designing distributed PKGs is our main goal in this work, we

concentrate on protocols in computational (as opposed to unconditional / information-theoretic) settings.

Although somewhat ignored, there have been some efforts to mitigate the single point of failure and the key

escrow issues in IBC systems; in the latter part of this section, we compare these alternatives with distributed

PKG.

Although we are defining protocols for IBE schemes, as we are concentrating on distributed crypto-

graphic protocols and due to space constraints, we do not include a comprehensive account of IBE here.

We refer readers to [12] for a detailed discussion on the various IBE schemes and frameworks defined in

the literature. Pursuant to this survey, we work in the random oracle model for efficiency and practicality

reasons.

Distributed Key Generation. The notion of secret sharing was introduced independently by Shamir [57]

and Blakley [7] in 1979. Since then, it has remained an important topic in security research. Significantly,

Chor et al. [21] introduced verifiability in secret sharing. Feldman [24] developed the first efficient and non-

interactive VSS protocol and Pedersen [50] presented a modification to it. However, these VSS are defined

assuming a synchronous communication model. For an asynchronous communication model, Cachin et

al. (AVSS) [14], Zhou et al. (APSS) [62], and Schultz et al. (MPSS) [56] defined VSS schemes in the

computational setting. Of these, the APSS protocol is impractical for any reasonable system size, as it

has an exponential
(n
t

)

factor in the message complexity (number of messages transferred), while MPSS is

developed for a more mobile setting where set of the system nodes has to change completely between two

consecutive phases. AVSS by Cachin et al. with its seemingly optimal communication complexity (number

of bits transferred) is certainly a suitable choice for a distributed PKG system.
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Pedersen [51] introduced the concept of distributed key generation and developed a DKG, where each

node runs a variation of Feldman’s VSS and distributed shares are added at the end to generate a combined

shared secret without a dealer. Gennaro et al. [31] presented a simplification using just the original Feldman

VSS called the Joint Feldman DKG (JF-DKG). Further, they found that DKGs based on the Feldman VSS

(or using Feldman commitments [24]) do not guarantee uniformly random secret keys and define a new DKG

combining Feldman and Pedersen commitments [51] which increases the latency (number of communication

rounds) by one. However, in [32], they observed that DKGs based on Feldman commitments produce hard

instances of discrete logarithm problems (DLPs), which may be sufficient for the security of some threshold

cryptographic schemes.

To the best of our knowledge, the first DKG scheme in an asynchronous setting was only defined recently

by Kate and Goldberg [40]. This protocol modifies the AVSS protocol to a more realistic hybrid model and

performs leader-based agreement with a leader-changing mechanism to decide which of the nodes’ VSS

will be included in the DKG calculation; that is, whereas in synchronous DKG schemes such as Pedersen’s

above, all of the successful VSSs can be added at the end of the protocol to determine the final master key

shares, in the asynchronous setting, some global consensus must be reached in order to find a sufficiently

large set of VSSs which all honest nodes have completed. We implement this DKG protocol and verify its

efficiency and reliability. Consequently, this DKG system forms the basis of our distributed PKG protocols.

The original asynchronous DKG protocol uses Feldman commitments and consequently does not guarantee

uniform randomness of the key. However, we observe that, in the random oracle model, using non-interactive

zero-knowledge proofs of knowledge based on the Fiat-Shamir methodology [25], if required, it is possible

to achieve uniform randomness in their scheme. In such a scheme, Feldman commitments are initially

replaced by Pedersen commitments; the Feldman commitments are introduced only at the end of the protocol

to obtain the required private key. The zero-knowledge proofs are used to show that the Feldman and

Pedersen commitments both commit to the same values.

All of the above schemes are proved secure only against a static adversary, which can only choose its t
compromisable nodes before a protocol run. They are not considered secure against an adaptive adversary

because their simulation-based security proofs do not go through when the adversary can corrupt nodes

adaptively.[33, §4.4] Feldman claimed [24, §9.3] that his VSS protocol is also secure against adaptive ad-

versaries even though his simulation-based security proof did not work out. Canetti et al. [16] presented a

scheme provably secure against adaptive adversaries with at least two more communication rounds as com-

pared to JF-DKG and with interactive zero-knowledge proofs. Due to the inefficiency of adaptive (provably)

secure DKG protocols, we stick to protocols provably secure only against a static adversary, though they

have remained unattacked by an adaptive adversary for the last 22 years.

Alternatives to a Distributed PKG. Although none of the IBE schemes except BF-IBE considered dis-

tributed PKG setup and key extraction in order to solve the inherent key escrow and single point of failure

issues, there have been a few other efforts in the literature to counter those.

Al-Riyami and Paterson [2] introduce certificateless public key cryptography (CL-PKC) to address the

key escrow problem by combining IBC with public-key cryptography (PKC). Their elegant approach, how-

ever, does not address the single point of failure problem. Although it is possible to solve the problem

by distributing their PKG using a VSS (which employs a trusted dealer to generate and distribute the key

shares), which is inherently cheaper than a DKG-based PKG by a linear factor, it is impossible to stop a

dealer’s active attacks without completely distributed master-key generation. Further, as private-key ex-

tractions are less frequent than encryptions, it is certainly advisable to use more efficient options during

encryption rather than private-key extraction. Finally, with the requirement of online access to the receiver’s

public key, CL-PKC becomes ineffective for systems without continuous network access, where IBC is

considered to be an important tool.
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Lee et al. [44] and Gangishetti et al. [30] propose variants of the distributed PKG involving a more trust-

worthy key generation centre (KGC) and other key privacy authorities (KPAs). As observed by Chunxiang

et al. [22] for [44], these approaches are, in general, vulnerable to passive attack by the KGC. In addition,

the trust guarantees required by a KGC can be unattainable in practice.

Recently, Goyal [35] reduces the required trust in the PKG by restricting its ability to distribute a client’s

private key. This does not solve the problem of single point of failure. Further, the PKG in his system still

can decrypt the clients’ messages passively, which leaves a secure and practical implementation of a generic

distributed PKG wanting.

Threshold versions of signature schemes obtained from some IBE schemes using the Naor transform

have been proposed and proved previously [8, 59]. However, these solutions do not work for the corre-

sponding IBE scheme. This is due to the inherent secret nature of a client’s private keys and corresponding

shares as compared to the inherent public nature of signatures and corresponding signature shares. While

designing IBE schemes with a distributed PKG, we have to make sure that a PKG node cannot derive more

information than the private-key shares it generates for a client and that private key shares are not available

in public as commitments.

3 System Model and Assumptions

In this section, we briefly discuss the assumptions and the system model for our distributed PKG system,

giving special attention to its practicality over the Internet. We follow the system model of [40], which

closely depicts the Internet, and as their DKG forms the basis of our distributed PKGs.

3.1 Communication Model

In the theoretical sense, distributed protocols designed with a synchronous or a partially synchronous

(bounded message delivery delays and processor speeds, but the bounds are unknown and eventual [23])

communication assumption tend to be more efficient in terms of latency and message complexity than their

counterparts designed with an asynchronous communication assumption. However, protocols defined in

the synchronous or partially synchronous communication model invariably use some time bounds in their

definition. An adversary, knowing those bounds, may slow down the protocol by appropriately delaying its

messages, which makes deciding the time bounds correctly a difficult problem to solve. On the other hand,

protocols defined for the asynchronous communication model use only numbers and types of messages and

guarantee to finish quickly with only honest nodes communicating promptly. Therefore, we assume an

asynchronous communication model.

Weak Synchrony (only for liveness). Generating true randomness in a completely distributed (dealerless)

asynchronous setting efficiently, without using a DKG, although not impossible [17], is a difficult task to

perform; the known computational threshold coin-tossing algorithms [15] require a dealer or a synchronous

communications assumption. As observed in [40], asynchronous DKG requires a protocol to solve the

agreement on a set problem [5], which needs distributed randomness or a synchrony assumption [26]. In

the absence of an efficient randomization procedure, [40] uses a weak synchrony assumption by Castro and

Liskov [18] for liveness, but not safety. According to this assumption, a function delay(t), defining the

message transmission delay of a message sent at time t, does not grow faster than t indefinitely. Assuming

that network faults are eventually repaired and DoS attacks eventually stop, this assumption is valid in

practice. We further discuss this assumption in §6.1.
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3.2 Hybrid Adversary Model

Instead of using a standard t-Byzantine adversary in a system with n nodes P1, P2, . . . , Pn, we use a hy-

brid adversary introduced in [3], having another f non-Byzantine crashes, and modified in [40] to include

network link failures.

For the standard t-Byzantine adversary, t nodes compromised or crashed by the adversary remain com-

promised forever. This does not depict the adversary model over the Internet accurately. Along with arbitrary

behaviour by t Byzantine nodes, some nodes can just crash silently without showing malicious behaviour

or just get disconnected from the system due to network failure or partitioning. As the adversary does not

capture these f nodes or their secret parameters, it is not computationally and communicationally optimal to

consider these nodes as Byzantine. It also gives rise to a sub-optimal resilience of n ≥ 3(t+ f) + 1 instead

of the n ≥ 3t + 2f + 1 bound effected by treating crashes and link failures separately from the Byzantine

adversary.

In this hybrid adversary model, crashes and link failures belong to the same set of f nodes, as from

a perspective of any other node of the system a crashed node behaves exactly same as a node whose link

with it is broken. We recover secrets at these f nodes immediately after their trusted rebooting, which

gives us the assumption that all non-Byzantine nodes may crash and recover repeatedly with a maximum f
crashed nodes at any instant. If two nodes cannot communicate, then we treat at least one of two nodes as

being either Byzantine or one of the currently crashed nodes. That is, following the standard asynchronous

communication model literature, we assume that the adversary controls the network, but faithfully delivers

all the messages between two honest uncrashed nodes.

3.3 Cryptographic Background

Bilinear Pairings. IBC extensively utilizes bilinear pairings over elliptic curves. For three cyclic groups

G, Ĝ, and GT (all of which we shall write multiplicatively) of the same prime order p, a bilinear pairing e
is a map e : G × Ĝ → GT with following properties.

• Bilinearity: For g ∈ G, ĝ ∈ Ĝ and a, b ∈ Zp, e(g
a, ĝb) = e(g, ĝ)ab.

• Non-degeneracy: The map does not send all pairs in G × Ĝ to unity in GT .

If there is an efficient algorithm to compute e(g, ĝ) for any g ∈ G and ĝ ∈ Ĝ, the pairing e is called

admissible. We also expect that it is not feasible to invert a pairing and come back to G or Ĝ. All pairings

considered in this paper are admissible and infeasible to invert. We call such groups G and Ĝ pairing-

friendly groups. We refer readers to [6, Chap. IX and X] for a detailed mathematical discussion of bilinear

pairings.

Following [28], we consider three types of pairings: namely, type 1, 2, and 3. In type 1 pairings,

an isomorphism φ : Ĝ → G as well as its inverse φ−1 are efficiently computable. These are also called

symmetric pairings as for such pairings e(g, ĝ) = e(φ(ĝ), φ−1(g)) for any g ∈ G and ĝ ∈ Ĝ, and we usually

just identify G with Ĝ in this case. In type 2 pairings, only the isomorphism φ, but not φ−1, is efficiently

computable. Finally in type 3 pairings, neither of φ nor φ−1 can be efficiently computed. The efficiency of

the pairing computation improves from type 1 to type 2 to type 3 pairings. For a detailed discussion of the

performance aspects of pairings we refer the reader to a survey by Galbraith et al. [28].

Cryptographic Assumptions. As mentioned in §2, for efficiency reasons, we assume the random oracle

framework. Further, our adversary is computationally bounded with a security parameter κ. We assume an

instance of a pairing infrastructure of multiplicative groups G, Ĝ and GT , whose common order p is a κ-bit

prime. For commitments and proofs of knowledge, we use the discrete logarithm (DLog) [47, Chap. 3]

assumption.
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We assume an instance of a pairing infrastructure of multiplicative groups G, Ĝ and GT , whose common

order p is such that the adversary has to perform 2κ operations to break the system. For the security of the

IBE schemes, we use the bilinear Diffie-Hellman (BDH) [36] and bilinear Diffie-Hellman inversion (BDHI)

[48, 9] assumptions. Here, we recall the definitions of generic versions (for asymmetric pairings) of these

two assumptions from [12]. Note that a function ǫ(·) is called negligible if for all c > 0 there exists a κ0

such that ǫ(κ) < 1/κc for all κ > κ0.

BDH Assumption: Given a tuple (g, ĝ, ga, ĝa, gb, ĝc) in a bilinear group G = 〈e,G, Ĝ,GT 〉, the BDH

problem is a problem to compute e(g, ĝ)abc. The BDH assumption then states that it is infeasible to solve a

random instance of the BDH problem, with non-negligible probability, in time polynomial in the size of the

problem instance description.

BDHI Assumption: Given two tuples (g, gx, g(x2), . . . , g(xq)) and (ĝ, ĝx, ĝ(x2), . . . , ĝ(xq)) in a bilinear

group G = 〈e,G, Ĝ,GT 〉, the q-BDHI problem is a problem to compute e(g, ĝ)1/x. The BDHI assumption

for some polynomially bounded q states that it is infeasible to solve a random instance of the q-BDHI

problem, with non-negligible probability, in time polynomial in the size of the problem instance description.

4 Cryptographic Tools

In this section, we describe important cryptographic tools required to design distributed PKGs in the hybrid

model having an asynchronous network of n ≥ 3t + 2f + 1 nodes with a t-limited Byzantine adversary

and f -limited crashes and network failures. Note that these tools are also useful in other asynchronous

computational multiparty settings.

4.1 Homomorphic Commitments over Zp

A verification mechanism for a consistent dealing is fundamental to VSS. It is achieved using distributed

computing techniques in the unconditional setting. In the computational setting, homomorphic commitments

provide an efficient alternative. Let C(α, [r]) ∈ G be a homomorphic commitment to α ∈ Zp, where r is an

optional randomness parameter and G is a (multiplicative) group. For such a homomorphic commitment,

given C1 = C(α1, [r1]) and C2 = C(α2, [r2]), we have C1 · C2 = C(α1 + α2, [r]).
VSS protocols utilize two forms of commitments. Let g and h be two random generators of G. Feld-

man, for his VSS protocol [24], used a commitment scheme of the form C〈g〉(α) = gα with computational

security under the DLog assumption and unconditional share integrity. Pedersen [51] presented another

commitment of the form C〈g,h〉(α, r) = gαhr with unconditional security but computational integrity under

the DLog assumption. In PKC based on computational assumptions, with adversarial access to the public

key, unconditional security of the secret (private key or master key) is impossible. Further, in VSS schemes

based on Pedersen commitments, in order to randomly select the generator h, an additional round of com-

munication is required during bootstrapping. Consequently, in our scheme, we use simple and efficient

Feldman commitments, except during a special case described in the DKG discussion below.

In their VSSs, Feldman and Pedersen use commitments of coefficients of shared polynomials. However,

following the computational multiparty computation protocol by Gennaro et al. [34] and AVSS by Cachin et

al. [14], we instead use commitments of evaluations of shared polynomials. This reduces the communication

complexity (the total bit length of messages exchanged) of AVSS by a linear factor and makes verifications of

shares’ products easier in the distributed multiplication protocol of [34]. To that end, we define the Feldman

commitment vector C
(s)
〈g〉 = [gs, gϕ(1), · · · , gϕ(n)] where ϕ is a randomly selected polynomial of degree t over

Zp with ϕ(0) = s. Similarly, the Pedersen commitment vector C
(s,s′)
〈g,h〉 = [gshs

′
, gϕ(1)hψ(1), · · · , gϕ(n)hψ(n)]

where ϕ is as above, and ψ is similar, but with ψ(0) = s′. The jth element of a Feldman commitment vector

(counting from 0) will be denoted by
(

C
(s)
〈g〉

)

j
(and similarly for Pedersen commitment vectors).
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4.2 Non-interactive Proofs of Knowledge

As we assume the random oracle model in this paper, we can use non-interactive zero-knowledge proofs

of knowledge (NIZKPK) based on the Fiat-Shamir methodology [25]. In particular, we use a variant of

NIZKPK of a discrete logarithm and one for proof of equality of two discrete logarithms.

We employ a variant of NIZKPK of a discrete logarithm where given a Feldman commitment C〈g〉(s)
and a Pedersen commitment C〈g,h〉(s, r) for s, r ∈ Zp, a prover proves that she knows s and r such that

C〈g〉(s) = gs and C〈g,h〉(s, r) = gshr. That is, the prover proves that the Feldman commitment and the

Pedersen commitment are to the same value s. We denote this proof as

NIZKPK≡Com(s, r, C〈g〉(s), C〈g,h〉(s, r)) = π≡Com ∈ Z
3
p. (1)

We describe it in detail in Appendix A; it is nearly equivalent to proving knowledge of two discrete loga-

rithms separately.

We also use another NIZKPK (proof of equality) of discrete logarithms [19] such that given two Feldman

commitments C〈g〉(s) = gs and C〈h〉(s) = hs, a prover proves equality of the associated discrete logarithms.

We denote this proof as

NIZKPK≡DLog(s, C〈g〉(s), C〈h〉(s)) = π≡DLog ∈ Z
2
p. (2)

and refer readers to Appendix A for details. Note that g and h can belong two different groups of the same

order.

There exists an easier way to prove this equality of discrete logarithms if a pairing between the groups

generated by g and h is available. Using a technique due to Joux and Nguyen [38] to solve the DDH problem

over pairing-friendly groups, given gx and hx
′

the verifier checks if e(g, hx
′
)

?
= e(gx, h). However, when

using a type 3 pairing, in the absence of an efficient isomorphism between G and Ĝ, if both g and h belong

to the same group (say G without loss of generality), then the pairing-based verification scheme does not

work. In such a situation, the above NIZKPK provides a less efficient but completely practical alternative.

4.3 DKG over Zp

In an (n, t)-DKG protocol over Zp, a set of n nodes generates an element s ∈ Zp in a distributed fashion with

its shares si ∈ Zp spread over the n nodes such that any subset of size greater than a threshold t can reveal or

use the shared secret, while smaller subsets cannot. A DKG protocol consists of a sharing (DKG-Sh) phase

and a reconstruction (DKG-Rec) phase. In the DKG-Sh phase, a distributed secret s ∈ Zp is generated

among n nodes such that each node Pi holds a share si and a commitment vector C(s) of s and all of its

shares. During the DKG-Rec phase, each node Pi reveals its share si and reconstructs s using verified

revealed shares.

Definition 4.1. For our hybrid model having an asynchronous network of n ≥ 3t + 2f + 1 nodes with a

t-limited Byzantine adversary and f -limited crashes and network failures, We use a DKG protocol defined

in [40] satisfying the following conditions:

Liveness: Once protocol DKG-Sh starts, all honest finally up nodes complete the protocol, except with

negligible probability.

Agreement: If some honest node completes protocol DKG-Sh then, except with negligible probability, all

honest finally up nodes will eventually complete protocol DKG-Sh .

Consistency: Once an honest node completes protocol DKG-Sh then there exists a fixed value s ∈ Zp

such that, if an honest node Pi reconstructs zi ∈ Zp during DKG-Rec, then zi = s.
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Privacy: If no honest node has started protocol DKG-Rec then, except with negligible probability, an

adversary cannot compute the shared secret s.

We assume that messages from all the honest and uncrashed nodes are delivered by the adversary.

A closer look at the privacy property suggests that in the presence of an adversary, the shared secret in the

above DKG may not be uniformly random; this is a direct effect of using only Feldman commitments.[33,

§3] However, in many cases, we do not need a uniformly random secret key; the security of these schemes

relies on the assumption that the adversary cannot compute the secret. Most of the schemes in this paper

similarly only require the assumption that it is infeasible to compute the secret given public parameters and

we stick with Feldman commitments those cases. However, we do indeed need a uniformly random shared

secret in few protocols In that case, we use Pedersen commitments, but we do not employ the methodology

defined by Gennaro et al. [33], which increases the latency in the system. We observe instead that with the

random oracle assumption at our disposal, the communicationally demanding technique by Gennaro et al.

can be replaced with the much simpler computational non-interactive zero-knowledge proof of equality of

committed values NIZKPK≡Com described in Eq. 1.

We represent DKG protocols using Feldman commitments and Pedersen commitments as DKGFeld
and DKGPed respectively. For node Pi, the corresponding DKG-Sh and DKG-Rec schemes are defined as

follows.

(

C
(s,s′)
〈g,h〉 , [C

(s)
〈g〉,NIZKPK≡Com], si, s

′
i

)

= DKG-ShPed(n, t, f, t̃, g, h, αi, α
′
i) (3)

(

C
(s)
〈g〉, si

)

= DKG-ShFeld(n, t, f, t̃, g, αi) (4)

s = DKG-RecPed(t, C
(s,s′)
〈g,h〉 , si, s

′
i) (5)

s = DKG-RecFeld(t, C
(s)
〈g〉, si) (6)

Here, t̃ is the number of VSS instances to be chosen (t < t̃ ≤ 2t+ 1), g, h ∈ G are commitment generators,

αi, α
′
i ∈ Zp are respectively a secret and randomness shared by Pi, and C

(s)
〈g〉 and C

(s,s′)
〈g,h〉 are respectively the

Feldman and Pedersen commitment vectors described in §4.1. The optional NIZKPK≡Com is a vector of

zero-knowledge proofs of knowledge that the corresponding entries of C
(s)
〈g〉 and C

(s,s′)
〈g,h〉 commit to the same

values. (The polynomial ϕ for the two types of commitments will be the same in this case.)

The worst-case message and communication complexities of protocol DKG-Sh [40] areO(tdn2(n+d))
and O(κtdn3(n + d)) respectively, while those of protocol DKG-Rec are O(n2) and O(κn2) respectively.

Here, the function d(·) bounds the number of crashes that the adversary is allowed to perform.

Distributed Random Sharing over Zp. This protocol generates shares of a secret z chosen jointly at

random from Zp. Every node generates a random ri ∈ Zp and shares that using the DKG-Sh protocol

with Feldman or Pedersen commitments as DKG-Sh(n, t, f, t̃ = t+ 1, g, [h], ri , [r
′
i]) where the generator h

and randomness r′i are only required if Pedersen commitments are used. Liveness, agreement, consistency,

privacy and message and communication complexities remain the same as those of the DKG-Sh protocol.

We represent the corresponding protocols as follows:

(

C
(z)
〈g〉 , zi

)

= RandomFeld(n, t, f, g) (7)
(

C
(z,z′)
〈g,h〉 , [C

(z)
〈g〉 ,NIZKPK≡Com], zi, z

′
i

)

= RandomPed(n, t, f, g, h). (8)
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4.4 Distributed Addition over Zp

Let α, β ∈ Zp be two secrets shared among n nodes using the DKG-Sh protocol. Let polynomials

f(x), g(x) ∈ Zp[x] be the respectively associated degree-t polynomials and let c ∈ Zp be a non-zero

constant. Due to the linearity of Shamir’s secret sharing [57], a node Pi with shares αi and βi can locally

generate shares of α + β and cα by computing αi + βi and cαi, where f(x) + g(x) and cf(x) are the

respective polynomials. f(x) + g(x) is random if either one of f(x) or g(x) is, and cf(x) is random if

f(x) is. Commitment entries for the resultant shares respectively are
(

C
(α+β)
〈g〉

)

i
=

(

C
(α)
〈g〉

)

i

(

C
(β)
〈g〉

)

i
and

(

C
(cα)
〈g〉

)

i
=

(

C
(α)
〈g〉

)c

i
.

4.5 Distributed Multiplication over Zp

Unlike addition, local distributed multiplication of two shared secrets α and β looks unlikely. We use a

distributed multiplication protocol against a computational adversary by Gennaro et al. [34, §4]. However,

instead of their interactive zero-knowledge proof, we utilize a pairing-based DDH problem solving tech-

nique [38] to verify the correctness of the product value shared by a node non-interactively. For shares αi
and βi with Feldman commitments gαi and ĝβi , given a commitment gαiβi of the shared product, other

nodes can verify its correctness by checking if e(gαi , ĝβi)
?
= e(gαiβi , ĝ) provided the groups of g and ĝ are

pairing-friendly. We observe that it is also possible to perform this verification when one of the involved

commitments is a Pedersen commitment. However, if both commitments are Pedersen commitments, then

we have to compute Feldman commitments for one of the values and employ NIZKPK≡Com to prove its

correctness in addition to using the pairing-based verification. In such a case, the choice between the latter

technique and the non-interactive version of zero-knowledge proof suggested by Gennaro et al. [34] depends

upon implementation efficiencies of the group operation and pairing computations.

In our IBC schemes, we always use the multiplication protocol with at least one Feldman commitment.

We denote the multiplication protocol involving two Feldman commitments as MulFeld and the one involv-

ing a combination of the two types of commitments as MulPed. Liveness and agreement properties are

exactly the same as those of DKG-Sh. For consistency, along with recoverability to a unique value (say s),
protocol Mul also requires that s = αβ. For privacy, along with the secrecy of αβ until DKG-Rec is started,

the protocol should not provide any additional information about the individual values of α or β once αβ is

reconstructed.
(

C
(αβ)
〈g∗〉 , (αβ)i

)

= MulFeld(n, t, f, g∗,
(

C
(α)
〈g〉 , αi

)

,
(

C
(β)
〈ĝ〉 , βi

)

) (9)
(

C
(αβ,αβ′)

〈ĝ,ĥ〉
, (αβ)i, (αβ

′)i

)

= MulPed(n, t, f, ĝ, ĥ,
(

C
(α)
〈g〉 , αi

)

,
(

C
(β,β′)

〈ĝ,ĥ〉
, βi, β

′
i

)

) (10)

For MulFeld, g∗ = g or ĝ. For MulPed, without loss of generality, we assume that β is distributed with the

Pedersen commitment. If instead α uses Pedersen commitment, then the Pedersen commitment groups for

(αβ) change to g and h instead of ĝ and ĥ.

Briefly, the protocol works as follows. Every honest node runs the DKG-Sh(n, t, f, t̃ = 2t + 1, ĝ, [ĥ],
αiβi, [αiβ

′
i]) from Eq. 3 or 4. As discussed above, pairing-based DDH solving is used to verify that the

shared value is equal to the product of αi and βi.
1 At the end of the DKG-Sh protocol, instead of adding the

subshares of the selected VSS instances, every node interpolates them at index 0 to get the new share (αβ)i
of αβ.

Analysis. Here, we roughly prove the properties of protocol Mul. This protocol is almost equivalent to the

share renewal protocol in [40, §5.2] which is a slight modification of protocol DKG-Sh. The liveness and

1For type 3 pairings, a careful selection of commitment generators is required to make the pairing-based verification possible.
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agreement proofs are exactly the same as those of DKG-Sh [40, §4]. The basic consistency proof remains

the same as that of the share renewal protocol [40, §5.2] except the starting polynomial is of degree 2t + 1
here. On the other hand, the pairing-based DDH problem solving technique assures that the value shared

by a node Pi is equal to the product of its shares αi and βi. The basic privacy proof is same as that of the

renewal protocol. Further, the adversary cannot determine α or β even after αβ is reconstructed as the final

shared polynomial for αβ is independent of the shared polynomials for α and β individually. The message

and communication complexities are the same as those of the DKG protocol.

As the distributed addition can be performed locally, the above Mul protocols can be seamlessly extended

for distributed computation of any expression having binary products. For ℓ shared secrets x1, x2, · · · , xℓ,

and their corresponding Feldman commitments C
(x1)
〈g〉 , C

(x2)
〈g〉 , · · · , C

(xℓ)
〈g〉 , shares of any binary product x′ =

∑m
i=1 kixai

xbi with known constants ki and indices ai, bi can be easily computed by extending the protocol

in Eq. 9. We denote this generalization as follows.

(

C
(x′)
〈g∗〉, x

′
i

)

= MulBP(n, t, f, g∗, {(ki, ai, bi)},
(

C
(x1)
〈g〉 , (x1)i

)

,
(

C
(x2)
〈g〉 , (x2)i

)

, · · · ,
(

C
(xℓ)
〈g〉 , (xℓ)i

)

) (11)

Node Pj shares
∑

i ki(xai
)j(xai

)j . For a type 1 pairing, verification of the correctness of the sharing is done

by other nodes as follows.

e(g
P

i ki(xai
)j(xbi

)j , g)
?
=

∏

i

e((g(xai
)j )ki , g(xbi

)j )

For type 2 and 3 pairings, NIZKPK≡DLog is used to provide Feldman commitments to the (xbi)j with

generator ĝ, and then a pairing computation like the above is used. We use the protocol in Eq. 11 during

distributed private-key extraction in the Boneh and Boyen’s BB1-IBE scheme in §5.5.

4.6 Sharing the Inverse of a Shared Secret

Given an (n, t, f)-distributed secret α, computing shares of its inverse α−1 in distributed manner (without

reconstructing α) can be done trivially but inefficiently using a distributed computation of αp−1; this involves

O(log p) distributed multiplications. However, using a technique by Bar-Ilan and Beaver [4], this can be

done using just one Random, one Mul and one DKG-Rec protocol.

This protocol involves a DKG-Rec which outputs the product of the shared secret α with a distributed

random element z. If z is created using Feldman commitments and is not uniformly random, the product

αz may leak some information about α. We avoid this by using Pedersen commitments while generating z.

We represent this protocol as follows:

(

C
(α−1)
〈g∗〉 , (α−1)i

)

= Inverse(n, t, f, ĝ, ĥ,
(

C
(α)
〈g〉 , αi

)

) (12)

Here g∗ belongs to any group of order p. The liveness, agreement and privacy properties of the protocol are

the same as those of DKG-Sh except privacy is defined in the terms of α−1 instead of α; for the consistency

property, along with recoverability to a unique value s, this protocol additionally mandates that s = α−1.

For a distributed secret
(

C
(α)
〈g〉 , αi

)

, protocol Inverse works as follows: every node Pi:

1. runs
(

C
(z,z′)

〈ĝ,ĥ〉
, zi, z

′
i

)

= RandomPed(n, t, f, ĝ, ĥ);

2. computes shares of (w,w′) = (αz, αz′) as
(

C
(w,w′)

〈ĝ,ĥ〉
, wi, w

′
i

)

= MulPed(n, t, f, ĝ, ĥ,
(

C
(α)
〈g〉 , αi

)

,
(

C
(z,z′)

〈ĝ,ĥ〉
, zi, z

′
i

)

);
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3. then sends (wi, w
′
i) to each node and reconstructs w = DKG-RecPed(t, C

(w,w′)

〈ĝ,ĥ〉
, wi, w

′
i). If w = 0,

repeats the above two steps, else locally computes (α−1)i = w−1zi;

4. finally, computes the commitment C
(α−1)
〈g∗〉 using w−1, C

(z,z′)

〈ĝ,ĥ〉
, and if required, any of the NIZKPK

techniques.

A modified form of this protocol is used in §5.4.

Analysis. This protocol is a combination of the RandomPed, MulPed and DKG-Rec protocols along

with some local computations. Therefore, its liveness and agreement properties follow directly from the

corresponding properties of protocol DKG. Uniqueness of the recovered value follows from the consistency

property of protocol DKG, while its equality to α−1 can be proven as follows: a share computed by a node

Pi at the end of protocol Inverse is equal to zi

zα , where C
( z

zα
)

〈g∗〉 is the associated commitment vector. When

reconstructed, it provides α−1 as follows:

DKG-RecFeld(t, C
( z

zα
)

〈g〉 ,
zi
zα

) =
1

zα
DKG-RecFeld(t, C

(z)
〈g〉 , zi) =

z

zα
= α−1

Privacy of protocol Inverse follows directly from privacy of protocols Mul and DKG-ShPed. After the

reconstruction of w = zα, the distributed uniformly random element z and α remain private by the privacy

properties of protocol Mul. As the final shares of α−1 are generated using a local computation, there is no

privacy loss in the last step either. It has the same asymptotic message and communication complexities as

those of protocol DKG-Sh.

5 Distributed PKG for IBE

We present and prove distributed PKG setup and private key extraction protocols for three IBE schemes:

namely, Boneh and Franklin’s IBE (BF-IBE) [10], Sakai and Kasahara’s IBE (SK-IBE) [54], and Boneh

and Boyen’s IBE (BB1-IBE) [12]. Each of these schemes represents a distinct important category of an IBE

classification defined by Boyen [11]. They respectively belong to full-domain-hash IBE schemes, exponent-

inversion IBE schemes, and commutative-blinding IBE schemes. Note that the distributed PKG architectures

that we develop for each of the three schemes apply to every scheme in their respective categories. Our above

choice of IBE schemes is influenced by a recent identity-based cryptography standard (IBCS) [13] and also a

comparative study by Boyen [12], which finds the above three schemes to be the most practical IBE schemes

in their respective categories. In his classification, Boyen [11] also includes another category for quadratic-

residuosity-based IBE schemes; however, none of the known schemes in this category are practical enough

to consider here.

The role of a PKG in an IBE scheme ends with a user’s private-key extraction. The distributed form

of the PKG does not affect the encryption and decryption steps of IBE. Consequently, we concentrate only

the distributed PKG setup and private-key extraction steps of the three IBE schemes under consideration.

However, we recall the original encryption and decryption definitions for our proofs. We start by describing

a bootstrapping procedure required by all IBE schemes.

5.1 Bootstrapping Procedure

Each of the IBE schemes under consideration here requires the following three bootstrapping steps.

1. Determine the node group size n, the security threshold t and the crashed-nodes threshold f such that

n ≥ 3t+ 2f + 1.
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2. Choose the pairing type to be used and compute three groups G, Ĝ, and GT of prime order p such

that there exists a bilinear pairing e of the decided type with e : G × Ĝ → GT . The group order p is

determined by the security parameter κ. We will write all of the groups multiplicatively.

3. Choose two generators g ∈ G and ĝ ∈ Ĝ required to generate public parameters as well as the

commitments. With a type 1 or 2 pairing, set g = φ(ĝ).

Any untrusted entity can perform these offline tasks. Honest DKG nodes can verify the correctness of

the tuple (n, t, f) and confirm the group choices G, Ĝ, and GT as the first step of their distributed PKG

setup. If unsatisfied, they may decline to proceed. We denote the generated bilinear pairing group as

G = 〈e,G, Ĝ,Gt〉.

5.2 Formal Security Model

An IBE scheme with an (n, t, f)-distributed PKG consists of the following components:

• A distributed PKG setup protocol for node Pi that takes the above bootstrapped parameters n, t, f ,

and G as input and outputs a share si of a shared master secret s and a corresponding public-key vector

Kpub of a master public key and n public-key shares.

• A distributed key-extraction protocol for node Pi that takes a client identity ID, the public key vector

Kpub and the master-secret share si as input and outputs a verifiable private-key share (dID)i. The

client computes the private key dID after verifying the received shares (dID)i.

• An encryption algorithm that takes a receiver identity ID, the public key vector Kpub (specifically,

the master public key) and a plaintext message M as input and outputs a ciphertext C .

• A decryption algorithm for client with identity ID that takes a ciphertext C and the private key dID as

input and outputs a plaintext M .

Note that the above distributed PKG setup protocol doesn’t require any dealer and that we mandate ver-

ifiability for the private-key shares rather than obtaining robustness using error-correcting techniques. Dur-

ing private-key extractions, we insist on minimal interaction between clients and PKG nodes—transferring

identity credentials from the client at the start and private-key shares from the nodes at the end.

To define security against an adaptive chosen ciphertext (IND-ID-CCA) attack, we consider the follow-

ing game that a challenger plays against a polynomially bounded adversary.

Setup: The adversary chooses to corrupt a fixed set of t nodes. To run a distributed PKG setup protocol, the

challenger simulates the remaining n − t nodes. Of these, the adversary can further crash any f nodes at

any instance. Modelling these f crashed nodes is trivial. The adversary informs the indices of the crashed

nodes to the challenger, who makes sure not to use the inputs corresponding to those f nodes during the

period they are crashed. It, however, computes the internal states of the crashed nodes using the outputs cor-

responding to other n− t−f nodes that it runs. When the adversary modifies it choice of the crashed nodes,

the challenger models the associated recoveries using the internal states computed during the protocol. Note

that, for the simplicity and clarity of the protocols and the proofs, we ignore these f crashes in exposition of

our distributed PKG setup and private-key extraction protocols.

At the end of the protocol execution, the adversary receives t shares of a shared master secret for its t
nodes and a public key vector Kpub. The challenger knows the remaining n − t shares and can derive the

master secret as n− t− f ≥ t+ 1 in any communication setting.

Phase 1: The adversary adaptively issues private-key extraction and decryption queries to the challenger.

For a private-key extraction query 〈ID〉, the challenger simulates the distributed key extraction protocol for

its n − t nodes and sends verifiable private-key shares for its n − t − f nodes. For a decryption query

〈ID, C〉, the challenger decrypts C by generating the private key dID or using the master secret.
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Challenger: The adversary chooses two equal-length plaintexts M0 and M1, and a challenge identity IDch
such that IDch does not appear in any private-key extraction query in Phase 1. The challenger chooses

b ∈R {0, 1} and encrypts Mb for IDch and Kpub, and gives the ciphertext Cch to the adversary.

Phase 2: The adversary adaptively issues more private-key extraction and decryption queries to the chal-

lenger except for key extraction query for 〈IDch〉 and decryption queries for 〈IDch, Cch〉.
Guess: Finally, the adversary outputs a guess b′ ∈ {0, 1} and wins the game if b = b′.

Security against IND-ID-CCA attacks means that, for any polynomially bounded adversary, b′ = b with

probability negligibly greater than 1/2.

5.3 Boneh and Franklin’s BF-IBE

BF-IBE [10] belongs to the full-domain-hash IBE family. In a BF-IBE setup, a PKG generates a master

key s ∈ Zp and an associated public key gs ∈ G, and derives private keys (d ∈ Ĝ) for clients using their

well-known identities (ID) and s. A client with identity ID receives the private key dID = (H1(ID))s =
hsID ∈ Ĝ, where H1 : {0, 1}∗ → Ĝ

∗ is a full-domain cryptographic hash function. (Ĝ∗ denotes the set of all

elements in Ĝ except the identity.) The security of BF-IBE is based on the BDH assumption.

Distributed PKG Setup. The distributed PKG setup involves generation of the system master key and the

associated system public-key tuple in the (n, t)-distributed form among n nodes. Each node Pi participates

in a common DKG over Zp to generate its share si ∈ Zp of the distributed master key s. The system public-

key tuple is of the form C
(s)
〈g〉 = [gs, gs1 , · · · , gsn ]. We obtain this using our RandomFeld protocol from

Eq. 7 as

(

C
(s)
〈g〉, si

)

= RandomFeld(n, t, g)

Private-key Extraction. After a successful setup, PKG nodes are ready to extract private keys for clients.

As a client needs t + 1 correct shares, it is sufficient for the client to contact any 2t + 1 nodes (say set Q).

The private-key extraction protocol works as follows.

1. Once a client with identity ID contacts every node in Q, every honest node Pi ∈ Q verifies the client’s

identity and returns a private-key share hsi
ID ∈ Ĝ over a secure and authenticated channel.

2. Upon receiving t+1 valid shares, the client can construct her private key dID as dID =
∏

Pi∈Q
(hsi

ID)
λi ∈

Ĝ, where the Lagrange coefficient λi =
∏

Pj∈Q\{i}
j
j−i .

3. The client can verify the correctness of the computed private key dID by checking e(g, dID)
?
=

e(gs, hID)). If unsuccessful, she can verify the correctness of each received hsi
ID by checking if

e(g, hsi
ID)

?
= e(gsi , hID). An equality proves the correctness of the share, while an inequality indi-

cates misbehaviour by the node Pi and its consequential removal from Q.

In asymmetric pairings, elements of G generally have a shorter representation than those of Ĝ. There-

fore, we put the more frequently accessed system public-key shares in G, while the occasionally transferred

client private-key shares belong to Ĝ. This also leads to a reduction in the ciphertext size. However, for type

2 pairings, an efficient hash-to-Ĝ is not available for the group Ĝ [28]; in that case we compute the system

public key shares in Ĝ and use the more feasible group G for the private key shares.
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Encryption and Decryption. Boneh and Franklin obtain an IND-ID-CCA secure IBE encryption proto-

col (FullIdent) [10, §4.2] secure against the BDH assumption by applying the Fujisaki-Okamoto trans-

formation [27] to their IND-ID-CPA secure scheme (BasicIdent). Along with H1 : {0, 1}∗ → Ĝ
∗,

this scheme uses three more random oracles: H2 : Gt → {0, 1}ℓ, H3 : {0, 1}ℓ × {0, 1}ℓ → Zp, and

H4 : {0, 1}ℓ → {0, 1}ℓ .
Encryption: To encrypt a message M of some fixed bit length ℓ for a receiver of identity ID, a sender

chooses σ ∈R {0, 1}ℓ, computes r = H3(σ,M) and hID = H1(ID), and sends C = (u, v,w) =
(gr, σ ⊕H2(e(g

s, hID)
r),M ⊕H4(σ)) to the receiver.

Decryption: To decrypt a ciphertext C = (u, v,w) using the private key dID, the receiver successively

computes σ = v⊕H2(e(u, dID)), M = w⊕H4(σ), and r = H3(σ,M). If gr 6= u, then the receiver rejects

C , else it accepts M as a valid message.

Proof of Security. We prove the IND-ID-CCA security of BF-IBE with the (n, t)-distributed PKG ((n, t)-
FullIdent) based on the BDH assumption in the random oracle model. Hereafter, qE , qD and qHi

denote the

number of extraction, decryption and random oracle Hi queries respectively.

Theorem 5.1. Let H1, H2, H3 and H4 be random oracles. Let A1 be an IND-ID-CCA adversary that has

advantage ǫ1(κ) in running time t1(κ) against (n, t)-FullIdent making at most qE , qD, qH1 , qH2 , qH3 , and

qH4 queries. Then, there an algorithm B that solves the BDH problem in G with advantage roughly equal to

ǫ1(κ)/(qH1qH2(qH3 + qH4)) and running time O(t1(κ), qE , qD, qH1 , qH2 , qH3 , qH4).

For their proof, Boneh and Franklin define two additional public key encryption schemes: IND-CPA

secure BFBasicPub [10, Sec. 4.1], and its IND-CCA secure version BFBasicPubhy [10, Sec. 4.2]. We

use distributed versions of these schemes: (n, t)-BFBasicPubhy and (n, t)-BFBasicPub respectively. Both

(n, t)-BFBasicPubhy and (n, t)-BFBasicPub protocols have three steps: keygen, encrypt and decrypt.

We first define the protocol (n, t)-BFBasicPub:

keygen: Given a bilinear group G for a security parameter κ, a set of n nodes runs the BF-IBE distributed

PKG setup for threshold t (n ≥ 3t + 1) to generate individual private keys si and a public key

tuple C
(s)
〈g〉. n nodes also run protocol DKG-Sh to generate ĥID ∈R Ĝ. Assuming a random oracle

H2 : G → {0, 1}ℓ, where ℓ is the message length, the system public key is 〈G, g, ĝ, C
(s)
〈g〉, ĥID,H2〉.

Every node generates its private-key share (dID)i = ĥsi
ID corresponding to the system’s private key

dID.

encrypt: To encrypt M ∈ {0, 1}ℓ, choose r ∈R Z
∗
p and set the ciphertext C = (gr,M⊕H2(e(g

s, hID)
r)).

decrypt: To decrypt the ciphertext C = (u, v) using the private key shares (dID)i, compute and share

e(u, (dID)i) with every other node or with a common accumulator. Lagrange-interpolate these pairing

values to generate e(u, dID) and compute M = v ⊕H2(e(u, dID)).

Protocol (n, t)-BFBasicPubhy only modifies the encrypt and decrypt steps of the above protocol using

the Fujisaki-Okamoto transformation [27], and random oracles H3 : {0, 1}ℓ × {0, 1}ℓ → Zp and H4 :
{0, 1}ℓ → {0, 1}ℓ.

Boneh and Franklin prove the security of FullIdent in the following proof-sequence: FullIdent →
BFBasicPubhy → BFBasicPub → BDH. Galindo [29] corrects a flaw in their proof maintaining the

same proof-sequence. We also follow the same proof-sequence through Lemmas 5.1, 5.2 and 5.3 to prove

Theorem 5.1:

(n, t)-FullIdent → (n, t)-BFBasicPubhy → (n, t)-BFBasicPub → BDH.
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Lemma 5.1. Let H1, H2, H3 and H4 be random oracles. Let A1 be an IND-ID-CCA adversary that has

advantage ǫ(κ) in running time t(κ) against (n, t)-FullIdent. Suppose A1 makes at most qE , qD, qH1 ,

qH2 , qH3 , and qH4 queries. Then there is an IND-CCA adversary A2 that has advantage at least ǫ(κ)/qH1

against BFBasicPubhy. Its running time is at most t(κ) + c(nqE + qD + qH1) where c is the average time
of exponentiation in Ĝ.

Proof. (Outline) The game between the challenger and the adversary A2 starts with the challenger running

the keygen step of (n, t)-BFBasicPubhy. A2 simultaneously starts adversary A1 and forwards all messages

from the challenger to A1 and vice versa. As a result, in this simulation game, t out of n nodes are run by

A1, while the challenger runs the remaining n − t nodes. A2, however, knows all information gathered

by A1. At the end of the distributed PKG setup, along with A1’s public parameters, A2 also knows secret

shares si for the t nodes run by A1. The rest of the game and the analysis remains the same as that of [29],

except during key extraction queries. Here, instead of a private key dID, A2 has to provide t+ 1 private-key

shares to A1. This is, however, easily possible knowing A1’s t secret shares and the randomness used during

H1 queries. Refer to [29, §3] for the rest of the proof.

Lemma 5.2 (Fujisaki-Okamoto [27]). LetH3 andH4 be random oracles. LetA2 be an IND-CCA adversary

that has advantage ǫ2(κ) in running time t2(κ) against (n, t)-BFBasicPubhy making at most qD, qH3 , and

qH4 queries. Then there is an IND-CPA adversary A3 that has advantage at least 1
2(qH3

+qH4
) [(ǫ2(κ) +

1)(1−2/p)qD −1] against (n, t)-BFBasicPub. Its running time is at most t2(κ)+O((qH3 +qH4)ℓ), where
ℓ is the message length.

Lemma 5.3. Let H2 be a random oracle. Let A3 be an IND-CPA adversary that has advantage ǫ3(κ) in
running time t3(κ) against (n, t)-BFBasicPub making at most qH2 queries. Then there is an algorithm

B that solves the BDH problem in 〈e,G, Ĝ,Gt〉 with advantage at least 2ǫ3(κ)/qH2 and a running time

O(t3(κ)).

Proof. Algorithm B is given a random instance of the BDH problem 〈g, ĝ, ga, ĝa, gb, ĝc〉 in a bilinear group

G. Let D = e(g, ĝ)abc ∈ Gt be the solution to this problem. Algorithm B finds D by interacting with A3 as

follows:

Setup: B runs the keygen step of (n, t)-BFBasicPub using the BDH instance. Let PBad be the set of t
parties corrupted or owned by A3. Let PGood be the set of remaining good parties which will be run by

B. B wants to make sure that the challenge ga and ĝc are included respectively in gs ∈ C
(s)
〈g〉 and ĥID of

(n, t)-BFBasicPub. As in protocol DKG-Sh, the VSSs selection may not be under B’s control, B uses

(ga)µi and (ĝc)µ
′
i for µi, µ

′
i ∈R Z

∗
p as its contributions towards respectively s and ĥID in keygen for every

Pi ∈ PGood. More specifically, for every Pi ∈ PGood, B chooses µi, µ
′
i ∈R Z

∗
p and sij, s

′
ij ∈R Zp for every

Pj ∈ PBad, where si,j and s′ij are subshares for Pj of VSSs run by Pi. Although B does not know the

contributions µia and µ′ic, it can provide consistent commitment vectors C
(µia)
〈g〉 and C

(µ′ic)

〈ĝ〉 to A3 knowing

sij, s
′
ij for Pj ∈ PBad, µi, µ

′
i, g

a, and ĝc. For VSSs run by the adversary nodes Pj ∈ PBad, B can reconstruct

the exact contributions νj and ν ′j using n− t subshares obtained from Pj . Therefore, for any subset of VSSs

Q and Q′ chosen finally, s = a
∑

Pi∈QGood
µi +

∑

Pj∈QBad
νi and ĥID = ĝ

c
P

Pi∈Q′
Good

µ′i+
P

Pj∈Q′
Bad

ν′i .

Note that B knows ν =
∑

Pj∈QBad
νi, ν

′ =
∑

Pj∈Q′
Bad

ν ′i µ =
∑

Pi∈QGood
µi and µ′ =

∑

Pi∈Q′
Good

µ′i.

Let si be the final share of s for each node Pi. Observe that the (unknown) associated private key dID =
ĝ(aµ+ν)(cµ′+ν′) = ĝµµ

′(ac)+µν′(a)+µ′ν(c)+νν′ . B runs random oracle H2 for A3 creating a list H list
2 of

〈Gt, {0, 1}
ℓ〉. An entry 〈xi, hi〉 indicates that hi = H2(xi). Finally, it is easy to see that this simulated view

of A3 is identically distributed as in a real execution of keygen.

The rest of the game and the analysis remains the same as that of [10, Lemma 4.3], except during Guess

step. Here, instead of returning xi from a random tuple 〈xi, hi〉 from H list
2 as answer to the BDH problem,
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B returns
(

xi
e(gb, ĝa)µν

′
e(gb, ĝc)µ

′νe(gb, ĝ)νν
′

)(µµ′)−1

.

5.4 Sakai and Kasahara’s SK-IBE

SK-IBE [54] belongs to the exponent-inversion IBE family. The PKG setup here remains exactly same as

BF-IBE and the PKG generates a master key s ∈ Zp and an associated public key gs ∈ G just as in BF-IBE.

However, the key-extraction differs significantly. Here, a client with identity ID receives the private key

dID = ĝ
1

s+H′
1
(ID) ∈ Ĝ, where H ′

1 : {0, 1}∗ → Zp. Chen and Cheng [20] prove the security of SK-IBE based

on the BDHIassumption.

Distributed PKG Setup. The distributed PKG setup remains the exactly same as that of BF-IBE, where

si ∈ Zp is the master-key share for node Pi and C
(s)
〈g〉 = [gs, gs1 , · · · , gsn ] is the system public-key tuple.

Private-key Extraction. The private-key extraction for SK-IBE is not as straightforward as that for BF-

IBE. We modify the Inverse protocol described in §4.6; specifically, here a private-key extracting client

receives wi from the node in step 3 and instead of PKG nodes, the client performs the interpolation step

of DKG-Rec. In step 4, instead of publishing, PKG nodes forward ĝzi and the associated NIZKPK≡Com

directly to the client, which computes ĝz and then dID = (ĝz)w
−1

. The reason behind this is to avoid

possible key escrow if the node computes both ĝz and w. Further, the nodes precompute another generator

ĥ ∈ Ĝ for Pedersen commitments using
(

C
(r)
〈ĝ〉, ri

)

= RandomFeld(n, t, ĝ), and set ĥ =
(

C
(r)
〈ĝ〉

)

0
= ĝr .

1. Once a client with identity ID contacts all n nodes the system, every node Pi verifies the client’s

identity, runs
(

C
(z,z′)

〈ĝ,ĥ〉
, zi, z

′
i

)

= RandomPed(n, t, ĝ, ĥ) and computes sIDi = si + H ′
1(ID) and for

0 ≤ j ≤ n,
(

C
(sID)
〈g〉

)

j
=

(

C
(s)
〈g〉

)

j
gH

′
1(ID) = gsj+H′

1(ID).

2. Pi performs
(

C
(w,w′)

〈ĝ,ĥ〉
, wi, w

′
i

)

= MulPed(n, t, ĝ, ĥ,
(

C
(sID)
〈g〉 , sIDi

)

,
(

C
(z,z′)

〈ĝ,ĥ〉
, zi, z

′
i

)

), where w = sIDz

= (s+H ′
1(ID))z and w′ = (s+H ′

1(ID))z′ and sends
(

C
(w)

〈ĝ,ĥ〉
, wi

)

along with NIZKPK≡Com(wi, w
′
i,

(

C
(w)
〈ĝ〉

)

i
,
(

C
(w,w′)

〈ĝ,ĥ〉

)

i
) to the client, which upon receiving t + 1 verifiably correct shares (wi) recon-

structs w using Lagrange-interpolation. If w 6= 0, then it computes w−1 or else starts again from step

1.

3. Node Pi sends
(

C
(z)
〈ĝ〉

)

i
= ĝzi along with NIZKPK≡Com(zi, z

′
i,

(

C
(z)
〈ĝ〉

)

i
,
(

C
(z,z′)

〈ĝ,ĥ〉

)

i
) to the client.

4. The client verifies
(

C
(z)
〈ĝ〉

)

i
using the received NIZKPK≡Com, Lagrange-interpolates t+ 1 valid ĝzi to

compute ĝz and derives her private key (ĝz)w
−1

= ĝ
1

(s+H(ID)) .

This protocol can be used without any modification with any type of pairing. Further, online execution of

the RandomPed computation can be eliminated using batch precomputation of distributed random elements
(

C
(z,z′)

〈ĝ,ĥ〉
, zi, z

′
i

)

.
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Encryption and Decryption. Chen and Cheng [20] define an IND-ID-CCA secure version of the SK-

IBE scheme secure against the BDHI assumption. Here, the random oracle H1 in BF-IBE is replaced by

H ′
1 : {0, 1}∗ → Zp. The other random oracles H2, H3 and H4 remain the same. This scheme also uses

Fujisaki-Okamoto transformation [27] to achieve IND-ID-CCA security.

Encryption: To encrypt a message M of some fixed bit length ℓ for a receiver of identity ID, a sender

chooses σ ∈R {0, 1}ℓ, computes r = H3(σ,M) and hID = H ′
1(ID), and sends C = (u, v,w) =

((gsghID)r, σ ⊕H2(e(g, ĝ)
r),M ⊕H4(σ)) to the receiver.

Decryption: To decrypt a ciphertext C = (u, v,w) using the private key dID, the receiver successively

computes σ = v⊕H2(e(u, dID)), M = w⊕H4(σ), and r = H3(σ,M). If (gsghID)r 6= u, then the receiver

rejects C , else it accepts M as a valid message.

Proof of Security. The security of SK-IBE with a distributed PKG ((n, t)-SK-IBE) is based on the BDHI

assumption.

Theorem 5.2. Let H , H ′
1, H2, H3 and H4 be random oracles. Let A1 be an IND-ID-CCA adversary that

has advantage ǫ1(κ) in running time t1(κ) against (n, t)-SK-IBE making at most qE , qD, qH′
1
, qH2 , qH3 ,

and qH4 queries. Then, there is an algorithm B that solves the BDHI problem in G with advantage roughly

equal to ǫ1(κ)/(qH′
1
qH2(qH3 + qH4)) and running time O(t1(κ), qE , qD, qH , qH′

1
, qH2, qH3 , qH4).

Chen and Cheng use the same technique as that of BF-IBE (with the modification by Galindo) to obtain

the proof sequence SK-IBE → SKBasicPubhy → SKBasicPub → BDHI. We also use the same proof se-

quence. Here, however, we divert from the proof of Theorem 5.1 for (n, t)-FullIdent. To prove Theorem 5.2

for (n, t)-SK-IBE, we show that (n, t)-SK-IBE → SKBasicPubhy, where SKBasicPubhy is a public key

encryption scheme based on SK-IBE as defined in [20, §3.2]. Note that SKBasicPubhy is not a distributed

scheme. Therefore, recalling Lemma 2 and 3 from [20] to prove SKBasicPubhy → SKBasicPub and

SKBasicPub → BDHI respectively we complete the proof of Theorem 5.2. Next, we prove (n, t)-SK-IBE

→ SKBasicPubhy .

Lemma 5.4. LetH ′
1,H2 be random oracles. LetA1 be an IND-ID-CCA adversary that has advantage ǫ(κ)

in running time t(κ) against (n, t)-SK-IBE. Suppose A1 makes at most qE , qD, and qH′
1
queries. Then there

is an IND-CCA adversary A2 that has advantage at least ǫ(κ)/qH′
1
against SKBasicPub

hy
. Its running

time is at most t(κ) + c(nqE + qD + qH′
1
) where c is the average time of exponentiation in Ĝ.

Proof. We construct an IND-CCA adversary A2 that uses A1 to gain advantage against SKBasicPubhy.

(For the definition of SKBasicPubhy, refer to [20, §3.2].) The game between a challenger and A2 starts with

the challenger running algorithm keygen of SKBasicPubhy to generate a public keyKpub = 〈G, g, ĝ, gs, h0,

(h1, ĝ
1

h1+s ), . . . , (hi, ĝ
1

hi+s ), . . . , (hqH′
1
, ĝ

1
hq

H′
1

+s

),H2,H3,H4〉. Let ĝ
1

h0+s be the corresponding private

key. The challenger gives Kpub to A2, which is supposed to launch an IND-CCA attack on SKBasicPubhy

using A1. A2 simulates the challenger for A1 as follows.

Setup: As the distributed PKG setup in SK-IBE is same as that of BF-IBE, we reuse much of the Setup

simulation of (n, t)-BFBasicPub in Lemma 5.3. However, we do not require their ĥID computation and

ga is replaced by gs. The master key finally generated is equal to s′ = s
∑

Pi∈QGood
µi +

∑

Pj∈QBad
νi,

where A2 knows ν =
∑

Pj∈QBad
νi and µ =

∑

Pi∈QGood
di. To make the pairs (hi, ĝ

1
hi+s ) compatible with

s′, A2 defines h′i = µhi − ν and ĝ′ = ĝµ. To answer H ′
1 and key extraction queries for A1, A2 uses pairs

(h′i, ĝ
′

1
h′

i
+s′ ), where A2 uses h′i as a hash value and ĝ′

1
h′

i
+s′ as the corresponding private key. Further, A1 is

provided ĝ′ instead of ĝ as a public parameter. A2 also runs random oracle H ′
1 and H for A1, where H is a

random oracle required in NIZKPK≡Com.
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H ′
1 queries: Same as in [20, §3.2].

Phase 1 - Extraction Queries: Though private keys in the form of (h′i, ĝ
′

1
h′

i
+s′ ) tuples are available, A2

has to generate those for A1 in a distributed way as defined in the private-key extraction protocol. This is

non-trivial for A2 as it has to provide shares of w = (s′ + h′i)z to A2 without knowing its shares of s′. To

achieve this, it first chooses w ∈R Z
∗
p and computes ĝ′

w

h′
i
+s′ = ĝ′zw , where zw is the randomness which

A2 wants to obtain from RandomPed. It then completes the actual RandomPed and MulPed protocols

normally by playing the part of good parties. It determines z and z′ generated by RandomPed using its

n − t shares and also knows wi, w
′
i for Pi ∈ PBad. Using w and wi for Pi ∈ PBad, it generates wi and

ĝwi for all parties. To provide the required NIZKPK≡Com for ĝwi , A2 randomly generates challenge τ and

response (u1, u2), computes commitments (t1, t2) and includes an entry 〈(ĝ′, ĥ, F, P, t1, t2), τ〉 in the hash

table of H before forwarding π≡Com = (τ, u1, u2) to A1. Similarly, using ĝ′zw = ĝ′
w

h′
i
+s′ and ĝ′zwi = ĝ′zi

for Pi ∈ PBad, it generates ĝ′zwi for each Pi and provides its NIZKPK≡Com, which results in A1 generating

ĝ′
1

h′
i
+s′ as its private key.

The rest of the game and the analysis remains exactly the same as [20, §3.2]. It is interesting to observe

that despite the different master keys (s for SKBasicPubhy and s′ = sµ+ ν for (n, t)-SK-IBE), the cipher-

text queries C = 〈u, v,w〉 remain the same when transferred from A1 to the challenger during decryption

queries and from the challenger to A1 during the challenge phase.

5.5 Boneh and Boyen’s BB1-IBE

BB1-IBE belongs to the commutative-blinding IBE family. Boneh and Boyen [9] proposed the original

scheme with a security reduction to the decisional BDH assumption [37] in the standard model against

selective-identity attacks. However, with a practical requirement of security against adaptive-identity chosen-

ciphertext attacks (IND-ID-CCA), in the recent IBCS standard [13], Boyen and Martin proposed a modified

version of BB1, which is IND-ID-CCA secure in the random oracle model under the BDH assumption. In

[12], Boyen rightly claims that for practical applications, it would be preferable to rely on the random-oracle

assumption rather than using a less efficient IBE scheme with a stronger security assumption or a weaker

attack model. Here, we consider the modified BB1-IBE scheme as described in [12] and [13].

In the BB1-IBE setup, the PKG generates a master-key triplet (α, β, γ) ∈ Z
3
p and an associated public

key tuple (gα, gγ , e(g, ĝ)αβ). A client with identity ID receives the private key tuple dID = (ĝαβ+(αH′
1(ID)+γ)r,

ĝr) ∈ Ĝ
2, where H ′

1 : {0, 1}∗ → Zp.

Distributed PKG Setup. In [12], Boyen does not include the parameters ĝ and ĝβ from the original BB1

scheme [9] in his public key, as they are not required during key extraction, encryption or decryption (they

are not omitted for security reasons). In the distributed setting, we in fact need those parameters to be public

for efficiency reasons; a verifiable distributed computation of e(g, ĝ)αβ becomes inefficient otherwise. To

avoid key escrow of clients’ private-key components (ĝr), we also need ĥ and C
(β)

〈ĥ〉
; otherwise, parts of

clients’ private keys would appear in public commitment vectors. As in SK-IBE in §5.4, this extra generator

ĥ ∈ Ĝ is precomputed using the RandomFeld protocol. Distributed PKG setup of BB1 involves distributed

generation of the master-key tuple (α, β, γ). Distributed PKG node Pi achieves this using the following

three RandomFeld protocol invocations:
(

C
(α)
〈g〉 , αi

)

= RandomFeld(n, t, f, g),
(

C
(β)
〈ĝ〉 , βi

)

= RandomFeld(n, t, f, ĝ),
(

C
(γ)
〈g〉 , γi

)

= RandomFeld(n, t, f, g).
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Here, (αi, βi, γi) is the tuple of master-key shares for node Pi. We also need C
(β)

〈ĥ〉
; each node Pi

provides this by publishing
(

C
(β)

〈ĥ〉

)

i
= ĥβi and the associated NIZKPK≡DLog(βi, ĝ

βi , ĥβi). The tuple
(

C
(α)
〈g〉 , e(g, ĝ)

αβ, C
(γ)
〈g〉 , C

(β)

〈ĥ〉

)

forms the system public key, where e(g, ĝ)αβ can computed from the public

commitment entries. The vector C
(β)
〈ĝ〉 , although available publicly, is not required for any further computa-

tion.

Private-key Extraction. The most obvious way to compute a BB1 private key seems to be for Pi to

compute αiβi + (αiH
′
1(ID) + γi)ri and provide the corresponding ĝαiβi+(αiH

′
1(ID)+γi)ri , ĝri to the client,

who now needs 2t + 1 valid shares to obtain her private key. However, αiβi + (αiH
′
1(ID) + γi)ri here is

not a share of a random degree-2t polynomial. The possible availability of ĝri to the adversary creates a

suspicion about privacy of the master-key share with this method.

For private-key extraction in BB1-IBE with a distributed PKG, we instead use the MulBP protocol in

which the client is provided with ĝwi , where wi = (αβ + (αH ′
1(ID) + γ)r)i is a share of random degree t

polynomial. The protocol works as follows.

1. Once a client with identity ID contacts all n nodes the system, every node Pi verifies the client’s iden-

tity and runs
(

C〈ĥ,ĝ,〉(r, r
′), [C

(r)

〈ĥ〉
,NIZKPK≡Com], ri, ri

)

= RandomPed(n, t, f, ĥ, ĝ). RandomPed

makes sure that r is uniformly random.

2. Pi computes its share wi of w = αβ + (αH ′
1(ID) + γ)r using protocol MulBP in Eq. 11.

(

C
(w)
〈g∗〉, wi

)

= MulBP(n, t, f, g∗, desc,
(

C
(α)
〈g〉 , αi

)

,
(

C
(β)

〈ĥ〉
, βi

)

,
(

C
(γ)
〈g〉 , γi

)

,
(

C
(r)

〈ĥ〉
, ri

)

)

where desc = {(1, 1, 2), (H ′
1(ID), 1, 4), (1, 3, 4)} is the description of the required binary product

under the ordering (α, β, γ, r) of secrets. To justify our choices of commitment generators, we present

the pairing-based verification in protocol MulBP:

e(gαiβi+(αiH′
1(ID)+γi)ri , ĥ)

?
= e(gαi , ĥβi)e((gαi )H

′
1(ID)gγi , ĥri)

.

For type 2 and 3 pairings, g∗ = g, as there is no efficient isomorphism from G to Ĝ. However, for

type 1 pairings, we use g∗ = ĥ = φ−1(h). Otherwise, the resultant commitments for w (which are

public) will contain the private-key part gαβ+(αH′
1(ID)+γ)r .

3. Once the MulBP protocol has succeeded, Node Pi generates ĝwi and ĝri and sends those to the client

over a secure and authenticated channel.

4. The client Lagrange-interpolates the valid received shares to generate her private key (ĝαβ+(αH′
1(ID)+γ)r,

ĝr). For type 1 and type 2 pairings, the client can use the pairing-based DDH solving to check the

validity of the shares. However, for type 3 pairings, without an efficient mapping from Ĝ to G,

pairing-based DDH solving can only be employed to verify ĝwi . As a verification of ĝri , node Pi
includes a NIZKPK≡DLog(ri, ĥ

ri , ĝri) along with ĝwi and ĝri .

As in SK-IBE in §5.4, online execution of the RandomFeld computation can be eliminated using batch

precomputation of distributed random elements
(

C
(r)

〈ĥ〉
, ri

)

.
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Encryption and Decryption. Similar to the PKG setup and the key extraction protocols for BB1-IBE in

§5.5, we use the BB1-IBE version defined in [12] and [13] for the encryption and decryption protocols here.

Boyen [12] claims IND-ID-CCA security of this system against the BDH assumption. This scheme uses

H ′
3 = Gt × {0, 1}ℓ × G × G → Zp along with H ′

1 and H2 from SK-IBE.

Encryption:To encrypt a message M of some fixed bit length ℓ for a receiver of identity ID, a sender

chooses σ ∈R {0, 1}ℓ, computes k = (e(g, ĝ)αβ)σ and hID = H1(ID), and sends the ciphertext C =
(ρ, ρ0, ρ1, t) = (M ⊕H2(k), g

σ , (gγ(gα)hID)σ, σ +H ′
3(k, ρ, ρ0, ρ1)) to the receiver.

Decryption: To decrypt a ciphertext C = (ρ, ρ0, ρ1, t) using the private key dID = (ĝαβ+(αH′
1(ID)+γ)r, ĝr)

= (d0, d1) (say), the receiver successively computes k = e(ρ0, d0)/e(ρ1, d1) and σ = t−H3(k, ρ, ρ0, ρ1).
If k 6= (e(g, ĝ)αβ)σ or ρ0 6= gσ, then the receiver rejects C , else it accepts M = ρ ⊕ H2(k) as a valid

message.

Proof of Security. We prove IND-ID-CCA security of BB1-IBE with the (n, t)-distributed PKG ((n, t)-
BB1-IBE) based on the BDH assumption. To the best of our knowledge, an IND-ID-CCA security proof for

the modified BB1-IBE scheme has not been published yet and a non-distributed version of our proof is the

first to provide IND-ID-CCA security for this protocol.

Theorem 5.3. Let H , H ′
1, H2 and H ′

3 be random oracles. Let A be an IND-ID-CCA adversary that has

advantage ǫ(κ) in running time t(κ) against (n, t)-BB1-IBE making at most qE , qD, qH′
1
, qH2 , qH′

3
, and qH4

queries. Then, there an algorithm B that solves the BDH problem in G with advantage roughly equal to

ǫ(κ)/(qH′
1
qH′

3
) and running time O(t(κ), qE , qD, qH , qH′

1
, qH2 , qH′

3
, qH4).

Proof. Algorithm B is given a random BDH problem 〈g, ĝ, ga, ĝa, ĝb, gc〉 in bilinear group G as input. Let

D = e(g, ĝ)abc ∈ Gt be the solution to this problem. Algorithm B finds D by interacting with A as follows:

Setup: B makes a virtual network of n parties and runs the distributed setup of (n, t)-BB1-IBE using the

given BDH instance. Let PBad be the set of t parties corrupted or owned by A3. Let PGood be the set of

remaining good parties which will be run by B. B wants to make sure that the challenge ga is included in

both gα ∈ C
(α)
〈g〉 and gγ ∈ C

(γ)
〈g〉 , and the challenge ĝb is included in ĝβ ∈ C

(β)
〈ĝ〉 . Similar to the (n, t)-FullIdent

BF-IBE and (n, t)-SK-IBE proofs, the generated master key tuple (α, β, γ) = (µ1a+ν1, µ2b+ν2, µ3a+ν3).
Let µ3a+ ν3 = −αh∗ID +α′, where h∗ID = −µ3/µ1 is a challenge identity-hash and α′ = ν3 − ν1µ3/µ1 =
αh∗ID + γ. α′ is completely random as the µ and ν values are not under B’s control. Finally, B outputs
(

C
(α)
〈g〉 , e(g, ĝ)

αβ, C
(γ)
〈g〉 , [C

(β)

〈ĥ〉
,NIZKPK≡DLog]

)

as the system public key.

H ′
1 queries: Before initializing H ′list

1 , B chooses j ∈R {1, . . . , qH1}. When A queries H ′
1 for IDi, B

proceeds as follows: if i 6= j, it picks hIDi
∈R Zp, adds a tuple 〈IDi, hIDi

〉 and gives back hIDi
to A. If i =

j, it sets 〈IDj, h
∗
ID〉. Note that multiple queries for the same identity are answered with the corresponding

entry in its H ′list
1 . Further, the output of H ′

1 is uniformly distributed in Zp and independent of A’s view.

H2 and H ′
3 queries: Initially, these lists are empty. When a query for H2 or H ′

3 arrives, B first checks

if an entry for the query input already exists in the corresponding list. If it is presents, B responds with

the associated response, else B sends a random element of the appropriate size as its response, adds an

input and response tuple in the oracle list. The corresponding (random) oracle list entries look as follows:

H list
2 (Gt, {0, 1}

ℓ) = 〈ki, hki
〉, and H ′list

3 (Gt, {0, 1}
ℓ,G,G) = 〈ki, ρi, ρ0i, ρ1i〉, where ℓ is the message

length.

Phase 1 - Extraction Queries: When A asks for the private key for IDi, B first gets H ′
1(IDi) = hIDi

. If

i = j, then B aborts the game and the attack fails. If i 6= j, B starts the distributed private-key extraction

protocol by running
(

C〈ĥ,ĝ,〉(r, r
′), ri, ri

)

= RandomPed(n, t, f, ĥ, ĝ). B knows r, r′ as well as shares of

the nodes as it runs n − t nodes. It then computes ĥr̃ = ĥr

(ĥβ)∆h
= ĥr−β/∆h where ∆h = hIDi

− h∗ID.
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Using ĥr̃ and t adversary commitments ĥri for i ∈ PBad, B computes the commitments C
(r̃)

〈ĥ〉
. To provide the

required NIZKPK≡Com for each entry in C
(r̃)

〈ĥ〉
, A2 randomly generates challenge τi and response (u1i, u2i),

computes commitments (t1i, t2i) and includes an entry 〈(ĝ′, ĥ, ĥr̃i , ĥri ĝr
′
i , t1i, t2i), τi〉 in the hash table of

H before forwarding π≡Com = (τi, u1i, u2i) to A.

It then computes d′0 = (g∗)−βα
′/∆h(g∗)αr∆h+α′r = (g∗)αβ+(αhIDi

+γ)r̃ and using known shares of αi,
βi and γi for Pi ∈ PBad, it runs MulBP for w = αβ + (αhIDi

+ γ)r̃. Note that B does not know its shares,

but it can compute their commitments using d′0 and the inputs from PBad. With its (n, t) subshares, it also

knows the final shares wi for Pi ∈ PBad. It then computes the required private key shares ĝwi and ĝr̃i for

Pi ∈ PGood and forwards them to A.

Phase 1 - Decryption Queries: B answers A’s decryption queries (IDi, Ci) as follows. B first gets

H ′
1(IDi) = hIDi

. If i 6= j, B obtains the private key (ĝαβ+(αhIDi
+γ)r̃, ĝr) and decrypts Ci = (ti, ρi, ρ0i, ρ1i).

If i = j, then B cannot compute the private key and it uses H2 and H ′
3 instead. B searches H ′list

3 for

〈·, ρi, ρ0i, ρ1i〉. If this tuple belongs to a valid ciphertext by A, then there must be one or more correspond-

ing entries in H ′list
3 . For each such entry, retrieve ki and the hash value h′3i. Compute si = ti − h′3IDi

and

check if the component-wise equality (ki, ρ0i)
?
= (e(g, ĝ)s, gs) holds. As e(g, ĝ), g and ρ0i are fixed for a

query, this equality only holds for a single or no ki value and correspondingly a single or no entry in H ′list
3 .

If there is no such entry, then B discards the ciphertext, else B searches for ki in H list
2 . If there is no entry,

then B adds a random entry h2i for ki in H list
2 . Finally, it returns the plaintext M as M = ρi ⊕ h2i.

Challenge: A outputs an identity IDch and two messages M0 and M1. If IDch 6= IDj , then it aborts the

game and the attack fails, else B sends (ρb ∈R {0, 1}ℓ, ρ0b = gc, ρ1b = (gc)α
′
, tb ∈R Zp) as a challenge

ciphertext Cb to A.

Phase 2 - Extraction Queries: B proceeds as in Phase 1, expect the extraction query for IDch is rejected.

Phase 2 - Decryption Queries: B proceeds as in Phase 1, expect the decryption query for 〈IDch, Cb〉 is

rejected.

Guess: A outputs its guess b′ ∈ {0, 1}. Now, there must be one or more entries for 〈·, ρb, ρ0b, ρ1b〉 in H ′list
3 .

B randomly picks one of those tuples 〈ki, ρi, ρ0i, ρ1i〉 and returns ki as its answer D.

For a random BDH problem 〈g, ĝ, ga, ĝa, ĝb, gc〉 in bilinear group G, A’s view is identical to its view in

a real attack game. It is easy to observe that B outputs correct D with probability ǫ(κ)/(qH′
1
qH′

3
).

Note that using a more expensive DKG protocol with uniformly random output, all of our proofs would

become relatively simpler. However, it is important to note that our use of DKG without uniformly random

output does not affect the security reduction factor in any proof. This is something not achieved by the known

previous protocols with non-uniform DKG such as threshold Schorr signatures [33]. Further, we do not

discuss the liveness and consistency properties for our asynchronous protocols as liveness and consistency of

all the distributed primitives provides liveness and consistency for the distributed PKG setup and distributed

key extraction protocols.

6 System Aspects

In this section, we discuss the system aspects of distributed PKGs. As DKG is by far the most important

component of our distributed PKGs, we first implement and test the DKG protocol [40] that we use in our

distributed PKGs. In the process, we propose several system-level optimizations for this DKG. We also

analyze practical aspects of our distributed PKGs and present a comparative study. Finally, we mention

proactive security and group modification protocols for our distributed PKGs.

Note that two distributed CAs for PKC, Ω [53] and Cornell Online Certification Authority (COCA) [61],

have been designed previously. However, with their focus on CAs, the protocols they provide are mis-
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Figure 1: Completion Time (with min/max bars) vs System Size (log-log plot)

matched to the requirements of a distributed PKG. As a result, we do not design our distributed PKGs using

these solutions.

6.1 DKG Implementation on PlanetLab

We design our DKG nodes as state machines (using the state machine replication approach [43, 55]), where

nodes move from one state to another based on messages received. Messages are categorized into three

types: operator messages, network messages and timer messages. The operator messages define interactions

between nodes and their operators, the network messages realize protocol flows between nodes, and the timer

messages implement the weak synchrony assumption described in §3.1.

We aim at building a distributed PKG for IBE schemes. Therefore, we develop our object-oriented C++

implementation over the PBC library [45] for the underlying elliptic-curve and finite-field operations and a

PKI infrastructure with DSA signatures based on GnuTLS [46] for confidentiality and message authentica-

tion. (Note that nodes have TLS PKI certificates, which does not conflict with the goal of providing IBE

private keys to clients.) In order to examine its realistic performance, we test our DKG implementation on

the PlanetLab platform [52].

Performance Analysis. We test the performance of our DKG implementation for systems of up to 40
nodes and we observe an expected approximately cubic growth in the average completion time.2 Figure 1

presents our results in graphical form. In practical applications such as [41], these values, ranging from

seconds to a little over an hour, are small as compared to DKG phase sizes (in days). Importantly, the use of

dedicated high-performance servers instead of unreliable resource-shared PlanetLab nodes can drastically

improve the performance. We also measure minimum and maximum completion times for the experiments.

Big gaps between those values demonstrate the robustness of the DKG system against the Internet’s asyn-

chronous nature and varied resource levels of the PlanetLab nodes.

To check the applicability of the weak synchrony assumption [18] that we use in DKG, we also tested

the system with crashed leaders. In such scenarios, the DKG protocol successfully completed after a few

leader changes. However, we observe that the average completion time of a system critically varies with the

choice of delay(t) functions and we suggest that this should only be finalized for a system after rigorous

testing.

While implementing this system, we also found two system-level optimizations for this DKG.

• To the original DKG protocol, we add a new shared network message from a node to a leader having

2t+f+1 signed ready messages for a completed VSS. The leader can then include this VSS instance

in its DKG send without completion of the VSS instance at its own machine.

2With cubic message complexity, larger distributed systems (n > 50) are not practical for the Internet.
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Table 1: Operation count and key sizes for distributed PKG setups and distributed private-key extractions

(per key)
BF-IBE SK-IBE BB1-IBE

Setup Extraction Setup Extraction Setup Extraction

Operation Count: Generator h or ĥ X
√ √

DKG-Sha

(precomputed) - 0 - 1P - 1P

(online) 1F 0 1F 1P 3F 1F

Parings

@PKG Node 0 0 0 2n 1b 2n

@Client - 2(2t + 2) - 0 - 2n
b

NIZKPK 0 0 0 2n n
b 2n

b

Interpolations 0 1 0 2 1 2

Key Sizes: PKG Public Key (n + 2)Gc (n + 3)G (2n + 3)G, (n + 2)Ĝ, (1)GT

Private-key Shares (2t + 1)Ĝc (3n)Zp, (3n + 1)Ĝ (2n)Zp
b
, (2n)Ĝ

aFor DKG-Sh F indicates use of Feldman commitments, while P indicates Pedersen commitments.
bFor type 1 and 2 pairings, n NIZKPKs can be replaced by 2n extra pairings and the 2n Zp elements are omitted from the

private-key shares.
cFor type 2 parings, the groups used for the PKG public key and the private-key shares are interchanged.

• During our experiments, we observed that the VSS instances are more resource consuming than the

agreement required at the end. Except during the Mul protocol, we only need t+ 1 VSS instances to

succeed. Assuming t+ f VSS instances might fail during a DKG, it is sufficient to start VSSs at just

2t+f +1 nodes instead of at all n nodes. Nodes that do not start a VSS initially may utilize the weak

synchrony assumption to determine to when to start a VSS instance if required.

6.2 Comparing Distributed PKGs

In this section, we concentrate on the performance of the setup and key extraction procedures of the three

distributed PKGs defined in §5. For a detailed comparison of the encryption and decryption algorithms of

BF-IBE, SK-IBE and BB1-IBE, we refer readers to the survey by Boyen [12]. The general recommendations

from this survey are to avoid SK-IBE and other exponent-inversion IBEs due to their reliance on the strong

BDHI assumption, and that BB1-IBE and BF-IBE both are good, but BB1-IBE can be a better choice due to

BF-IBE’s less efficient encryption.

Table 1 provides a detailed operation count and key size comparison of our three distributed PKGs.

We count DKG-Sh instances, pairings, NIZKPKs, interpolations and public and private key sizes. We

leave aside the comparatively small exponentiations and other group operations. As mentioned in §5.5, for

BB1-IBE, with curves of type 1 and 2, there is a choice that can be made between using n NIZKPKs and

2n pairing computations. The table shows the NIZKPK choice (the only option for type 3 pairings), and

footnote b shows where NIZKPKs can be traded off for pairings. As discussed in §5.3, for curves with type

2 pairings, an efficient algorithm for hash-to-Ĝ is not available and we have to interchange the groups used

for the system public key shares and client private-key shares. Footnote c indicates how that affects the key

sizes.

In Table 1, we observe that the distributed PKG setup and the distributed private-key extraction protocols

for BF-IBE are significantly more efficient than those for SK-IBE and BB1-IBE. Importantly, for BF-IBE,

distributed PKG nodes can extract a key for a client without interacting with each other, which is not possible

in the other two schemes; both BB1-IBE and SK-IBE require at least one DKG instance for every private-

key extraction; the second required instance can be batch precomputed. Therefore, for IBE applications in

the random oracle model, we suggest the use of the BF-IBE scheme, except in situations where private-key
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extractions are rare and efficiency of the encryption step is critical to the system. For such applications, we

suggest BB1-IBE as the small efficiency gains in the distributed PKG setup and extraction protocols of SK-

IBE do not well compensate for the strong security assumption required. BB1-IBE is also more suitable for

type 2 and 3 pairings, where an efficient map-to-group hash function H1 is not available. Further, BB1-IBE

can also be proved secure in the standard model with selective-identity attacks. For applications demanding

security in the standard model, our distributed PKG for BB1-IBE also provides a solution to the key escrow

and single point of failure problems, using pairings of type 1 or 2.

6.3 Proactive Security and Group Modification

With an endless supply of software and network security flaws, system attacks not only are prevalent but

have also been growing. The distributed nature of our protocols mitigates the effects of those attacks to some

extent, but their time-independence makes them vulnerable to a gradual break-in by a mobile attacker break-

ing into system nodes one by one. The concept of proactive security [49] has been introduced to counter

these attacks. Further, on a long-term basis, the set of PKG nodes will need to be modified, which can also

cause changes to the system’s security threshold t and the crash-limit f . Therefore, for our distributed PKG

systems, we need proactive security and group modification protocols.

We observe that the proactive security and group modification protocols defined in [40], for the DKG

protocol used in our distributed PKGs, are directly applicable to our distributed PKGs. We suggest the use

of these protocols to achieve proactive security of our master keys and group modification of our PKGs.

Note that this is possible only due to the nature of the master keys for the three IBE schemes that we use.

All master key elements in these three schemes belong to Zp, which is also the output domain for the DKG

protocol. In contrast to the three IBEs that we consider, we leave as an open problem the possibility of

providing proactive security and group modification protocols to the master keys for IBE schemes such as

the original BB1-IBE [9] or Waters’ IBE [60].

7 Conclusion

In this paper, we designed and compared distributed PKG setup and private key extraction protocols for

Boneh and Franklin’s BF-IBE, Sakai and Kasahara’s SK-IBE, and Boneh and Boyen’s BB1-IBE. We ob-

served that the distributed PKG implementation for BF-IBE is the most simple and efficient among all and

we suggest its use when the system can support its relatively costly encryption step. For systems requiring

a faster encryption, we suggest the use of BB1-IBE instead. However, during every distributed private key

extraction, it requires a DKG and consequently, interaction among PKG nodes. That being said, during

private-key extractions, we successfully avoid any interaction between clients and PKG nodes except the

necessary identity at the start and key share transfers at the end. Further, each of the above three schemes

represents a separate category of IBE schemes and our designs can be applied to other schemes in those

categories as well.

While developing our distributed PKGs, we also developed asynchronous computational protocols for

distributed multiplication and distributed inverse computation, which may have their own applications. To

confirm the feasibility of a distributed PKG in the asynchronous communication model, we also imple-

mented and verified the efficiency and the reliability of an asynchronous DKG protocol using extensive

testing over the PlanetLab platform. We also suggested proactive security and group modification protocols

for our distributed PKGs. In the future, we would like add those features to our implementation.
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A Non-interactive Zero-knowledge Proofs

We now present the details of the non-interactive zero-knowledge proofs of knowledge (NIZKPKs) intro-

duced in §4.2. Here, H is a hash function modelled by a random oracle.

The first proof is that a Feldman commitment F = C〈g〉(s) = gs and a Pedersen commitment P =
C〈g,h〉(s, r) = gshr are both committing to the same value s. We denote this by NIZKPK≡Com(s, r, F, P ).
The proof is equivalent to zero-knowledge proofs of knowledge used by Canetti et al. in their adaptive

secure DKG [16].

The proof is generated as follows:
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• Pick v1, v2 ∈R Zp
• Let t1 = gv1 , t2 = hv2

• Let τ = H(g, h, F, P, t1, t2)
• Let u1 = v1 − τ · s (mod p), u2 = v2 − τ · r (mod p)
• The proof is π≡Com = (τ, u1, u2)

The verifier checks this proof (given π≡Com, g, h, F , P ) as follows:

• Let t′1 = gu1F τ , t′2 = hu2(P/F )τ

• Accept the proof as valid if τ = H(g, h, F, P, t′1, t
′
2)

The second proof is that two Feldman commitments F1 = C〈g〉(s) = gs and F2 = C〈h〉(s) = hs commit

to the same value; that is, the discrete logs of F1 and F2 to the bases of g and h respectively are equal. We

denote this by NIZKPK≡DLog(s, F1, F2). The proof is standard [19]:

The proof is generated as follows:

• Pick v ∈R Zp
• Let t1 = gv, t2 = hv

• Let τ = H(g, h, F1, F2, t1, t2)
• Let u = v − τ · s (mod p)
• The proof is π≡DLog = (τ, u)

The verifier checks this proof (given π≡DLog, g, h, F1, F2) as follows:

• Let t′1 = guF τ1 , t′2 = huF τ2
• Accept the proof as valid if τ = H(g, h, F1, F2, t

′
1, t

′
2)
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