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Abstract

In this paper, using the LLL reduction method and an algorithm for
the computation of the integral points of a class of conics, we find small
solutions of a class of bivariate modular equations of second degree. We
use our result for attacking DSA and ECDSA.
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1 Introduction

In August 1991, the U.S. government’s National Institute of Standards and
Technology (NIST) proposed an algorithm for digital signatures. The algo-
rithm is known as DSA, for Digital Signature Algorithm [11, 10, 9]. It is an
efficient variant of the ElGamal digital signature scheme [3] intended for use in
electronic mail, electronic funds transfer, electronic data interchange, software
distribution, data storage, and other applications which require data integrity
assurance and data authentication. In 1998, an elliptic curve analogue called
Elliptic Curve Digital Signature Algorithm (ECDSA) was proposed and stan-
darized [4, 8, 9].

Let us recall the outlines of DSA and ECDSA. First, for DSA, the signer
chooses a prime p of size between 512 and 1024 bits with increments of 64, q
is a prime of size 160 with q|p − 1 and g is a generator of the unique order
q subgroup G of Z∗p. Further, he chooses a ∈ {1, . . . , q − 1} and computes
A = ga mod p. The public key of the signer is (p, q, g, A) and his private key
a. Furthermore, the signer chooses a publicly known hash function h mapping
messages to {0, . . . , q − 1}. To sign a message m, he chooses a random number
k ∈ {1, . . . , q − 1} which is the ephemeral key, computes

r = (gk mod p) mod q and s = k−1(h(m) + ar) mod q.
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The signature of m is the pair (r, s). The verification of the signature is per-
formed by checking

r = ((gs
−1h(m)modqAs

−1rmodq) mod p) mod q.

The ECDSA uses an elliptic curve E over Zp and a point P ∈ E(Zp) with
order a prime q of size around 160 bits. The signer selects a ∈ {1, . . . , q − 1}
and computes Q = aP . Its public key is (p,E, P, q,Q) and his private key a. To
sign a message m having hash value h(m) ∈ {0, . . . , q− 1}, he selects a random
number k ∈ {1, . . . , q−1} which is the ephemeral key and computes kP = (x, y)
(where x and y are regarded as integer between 0 and p−1). Next, he computes

r = x mod q and s = k−1(h(m) + ar) mod q.

The signature of m is the pair (r, s). For the verification of the signature one
computes

u1 = s−1h(m) mod q, u2 = s−1r mod q, u1P + u2Q = (x0, y0).

He accepts the signature if and only if r = x0 mod q.
The assumption here is that the only way to forge signature is to recover

either the secret key a, or the ephemeral key k (in this case is a simple matter
to compute a). Thus, the parameters of the two systems were chosen in such a
way that the computation of discrete logarithms is computationally infeasible,
and so a or k is well protected.

The use of lattices and the so-called LLL reduction method [16] is a well
established tool for attacking a variety of cryptosystems. Attacks to DSA and
to ECDSA using lattice reduction techniques are given in [1], [7], [12], [13] and
[2]. A common feature of these attacks is that take advantage of the form of
equality s = k−1(h(m) + ar) mod q. In [1] it was shown that one can recover
the DSA secret key a, if the ephemeral key k is produced by Knuth’s linear
congruencial generator with known parameters, or variants. In [7], an attack
on DSA is described in case where for some number of different signatures a
proportion of bits of each of the associated ephemeral keys are revealed. A
polynomial-time attack on DSA which recover a is described in [12], in case
where the size of q is not too small compared with p, the probability of collisions
for the hash function is not too large compared to 1/q and for a polynomially
bounded number of messages, about log1/2

2 (q) of the least significant bits of
the ephemeral keys are known. The previous attack is adapted to the case of
ECDSA [13]. Finally, in [2], under the assumption that the second shortest
vector of the reduced lattice is suffiiently short, it is determined how large the
keys a and k can be in order for them to be computed by considering only one
signature.

In this paper, using the algorithm LLL and an algorithm for the compu-
tation of the integral points of a class of conics, we find small solutions of a
class of bivariate modular equations of second degree. As an application of
this result, we give a new attack on DSA and ECDSA which is based on the
equality s = k−1(h(m) + ar) mod q. Assuming that a signature is available
and the quantities in at least one of the sets {a, k−1 mod q}, {k, a−1 mod q}
and {a−1 mod, k−1 mod q} are smaller that a certain explicit bound, we prove
that the secret keys a and k can be revealed. Moreover, if two signatures with
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ephemeral keys k1 and k2 are available and the quantities in at least one of the
sets {k1, k

−1
2 mod q}, {k2, k

−1
1 mod q} and {k−1

1 mod, k−1
2 mod q} are smaller

that a certain explicit bound, then k1, k2 and so a can be computed. More
precisely, we prove the following theorem:

Theorem 1 Let q be a prime number and h(x, y) = a+bx+cy+xy a polynomial
with integer coefficients. Let S be the set of solutions (x0, y0) ∈ Z2 of the
congruence f(x0, y0) ≡ 0 (mod q) satisfying |x0| < X and |y0| < Y where

1. XY < q1/2/27/2, if abc 6= 0,

2. XY < q1/2/63/4, if a = 0,

3. XY 2 < q/63/2, if b = 0,

4. X2Y < q/63/2, if c = 0.

Then the computation of the elements of S has time complexity O(qε), where ε is
arbitrary small positive real number, provided the prime factorization of integers
da− bc and c are known. Moreover, the number of elements of S is also O(qε).

Let x, x′ ∈ {1, . . . , q−1} be such that x = q−x′. We set x̃ = x if x ≤ x′ and
x̃ = −x′, otherwise. Further, if z = x−1 mod q, then we set x̂ = z̃. We prove
the following corollaries:

Corollary 1 Let (r, s) be the DSA or ECDSA signature of a message m with
ephemeral key k. Suppose that X and Y are positive real numbers such that one
of the following conditions is satisfied:

1. |ã| < X, |k̂| < Y and XY 2 < q/63/2.

2. |k̃| < X, |â| < Y and XY 2 < q/63/2.

3. |k̂| < X, |â| < Y and XY < q1/2/63/4.

Then the secret exponents a and k can be computed in time O(qε), where ε is
arbitrary small positive number.

Corollary 2 Let (r1, s1) and (r2, s2) be the DSA or ECDSA signatures of two
messages m1 and m2 with ephemeral keys k1 and k2, respectively. Suppose that
X and Y are positive real numbers such that one of the following conditions is
satisfied:

1. |k̃1| < X, |k̂2| < Y and XY 2 < q/63/2.

2. |k̃2| < X, |k̂1| < Y and XY 2 < q/63/2.

3. |k̂2| < X, |k̂1| < Y and XY < q1/2/63/4.

Then the secret exponents k1 and k2 (and so a) can be computed in time O(qε),
where ε is arbitrary small positive number.
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In [15], we presented a version of the DSA which combines the intractability
of the integer factorization problem and discrete logarithm problem, and it is
at least as secure as DSA. It uses computations in the group Z∗n, where n is the
product of two large primes which is part of the private key, and so the order of
the underlying group is hidden. An immediate consequence of this fact is that
all the above mentioned attacks (Corollaries 1 and 2 included) do not longer
work.

The paper is organized as follows. In Section 2, some results on the LLL
reduction method are recalled which are necessary for the proof of Theorem
1. An algorithm for the computation of integer solutions of the Diophantine
equation a+bx+cy+dxy = 0 is given. The proofs of Theorem 1 and Corollaries 1
and 2 are obtained in Sections 3 and 4, respectively. Finally, Section 5 concludes
the paper.

2 Lattices and Polynomials

Let B = {b1, . . . ,bn} ⊂ Zn be a basis of Rn. A n-dimensional lattice spanned
by B is the set

L = {z1b1 + · · ·+ znbn/ z1, . . . , zn ∈ Z}.

If bi = (bi,1, . . . , bi,n) (i = 1, . . . , n), then the determinant detL of L is the
absolute value of the determinant whose (i, j) element is bi,j .

The Euclidean norm of a vector v = (v1, . . . , vn) ∈ Rn is defined to be the
quantity ||v|| = (v2

1 + · · ·+ v2
n)1/2 and for a polynomial h(x, y) =

∑
i,j hi,jx

iyj

the quantity ||h|| = (
∑
i,j |hi,j |2)1/2.

The LLL algorithm [16] acting on a matrix with rows the vectors of a basis of
L and produces a basis having a quite short vector. We shall need the following
result:

Lemma 1 (LLL) Let M = max{||b1||, . . . , ||bn||}. The LLL algorithm finds in
time O(n6(logM)3) a vector b ∈ L such that

||b|| ≤ 2(n−1)/4(detL)1/n.

Furthermore, we shall use the following well known lemma whose proof is
given in [7].

Lemma 2 (Howgrave-Graham) Suppose h(x, y) ∈ Z[x, y] is a polynomial which
is the sum of at most ω monomials. Suppose that there are x0, y0 ∈ Z with
|x0| < X, |y0| < Y and ||h(xX, yY )|| < n/

√
ω. Then h(x0, y0) = 0 holds over

integers.

3 The Diophantine equation a + bx + cy + dxy = 0

Let f(x, y) = a+bx+cy+dxy be a polynomial with coprime integer coefficients.
The conic defined by the equation f(x, y) = 0 has two valuations at infinity and
so, the solutions (x, y) ∈ Z2 to the Diophantine equation f(x, y) = 0 can be
computed by the algorithm of [14, Section 4]. In this section, we give a simple
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algorithm for this task specializing the algorithm of [14] to the case of equation
f(x, y) = 0 and we compute its complexity.

SOLVE-CONIC

Input: f(x, y) = a+ bx+ cy+dxy ∈ Z[x, y], with gcd(a, b, c, d) = 1 and bdc 6= 0.
Output: The solutions (x, y) ∈ Z2 to the equation f(x, y) = 0.

1. Compute the quantities A1 = da− bc, A2 = c2 and A3 = cd.

2. Compute the set of divisors D1 and D2 of A1 and c, respectively.

3. Compute the quantities

x(u/v) =
A1v −A2u

A3u
, y(u/v) = −bv + cu

av
, u ∈ D1, v ∈ D2.

4. Output the couples (x(u/v), y(u/v)) with u ∈ D1 and v ∈ D2 such that
x(u/v), y(u/v) ∈ Z and the couple (0,−a/c) if c|a .

Proof of correctness of SOLVE-CONIC. We denote by C the affine conic
defined by the equation f(x, y) = 0. First, we shall construct a parametrization
of C. Since c 6= 0, the point P0 = (0,−a/c) belongs to C. The line l(t) whose
equation is y+a/c = tx, where t ∈Q, intersects C in P0 and in a unique second
point P (t) = (x(t), y(t)). Eliminating y between y + a/c = tx and f(x, y) = 0,
we obtain the equation

x(dtx− ad

c
+ ct+ b) = 0,

whence we get

x(t) =
A1 −A2t

A3t
, y(t) = −b+ ct

d
,

where A1 = ad − bc, A2 = c2 and A3 = cd. Thus, every line l(t) with rational
slope t passing through P0 determines a rational point P (t) on C and a such
point determines with P0 such a line l(t).

Suppose now that (α, β) ∈ Z2 is a solution to f(x, y) = 0 with x 6= 0. Then
there is t ∈Q such that α = x(t) and β = y(t). Setting t = u/v, where u, v are
coprime integers, we obtain the relations:

A3u|A1v −A2u and dv|bv + cu.

Since gcd(u, v) = 1, we get u|A1 and v|c. Thus, if D1 and D2 are the set of
divisors of A1 and c, respectively, then the solutions (x, y) ∈ Z2 to the equation
f(x, y) = 0 with x 6= 0 are among the points (x(u/v), y(u/v)) with u ∈ D1 and
v ∈ D2.

Time complexity of SOLVE-CONIC. Put M = max{|a|, |b|, |c|, |d|}. Step
1 requires O((logM)2) bit operations. If A1 = pa1

1 · · · p
ak

k is the prime factor-
ization of A1, then the computation of a divisor δ = pb11 · · · p

bk

k (0 ≤ bi ≤ ai, i =
1, . . . , k) of A1 requires O((log δ)2) bit operations. By [5, Theorem 315], the
number of positive divisors of A1 is τ(A1) = O(Aε1) for arbitrary small ε > 0.
Thus the time complexity of the computation of the set D1 is O(Aε1). Similarly,
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the time complexity of the computation of the set D2 is O(cε). Hence, Step 2
has time complexity O(M ε), provided the prime factorization of A1 and c are
known. The computation of every couple (x(u/v), y(u/v)) has time complexity
O((logM)2) and so, the time complexity of Step 3 is O(M ε). Therefore, the
time complexity of the algorithm is O(M ε) for arbitrary small ε > 0 (provided
the prime factorization of A1 and c are known).

Remark 1 In case where f(x, y) = a + cy + dxy, with ad 6= 0, the solutions
(x, y) ∈ Z2 to f(x, y) = 0 satisfy y|a and so, their computation has time com-
plexity O(M ε) for arbitrary small ε > 0 (provided the prime factorization of a
is known).

Remark 2 The number of solutions (x, y) ∈ Z2 to f(x, y) = 0 is O(M ε).

4 Proof of Theorem 1

(1) Suppose that abc 6= 0 and XY < q1/2/27/2. We consider the polynomi-
als h0(x, y) = q, h1(x, y) = qx and h2(x, y) = qy. The coefficient vectors of
h(xX, yY ) and hi(xX, yY ) (i = 0, 1, 2) are R-linearly independent and so gen-
erate a lattice L of rank 4. Consider the matrix with rows the coefficient vectors
of h(xX, yY ) and hi(xX, yY ) (i = 1, 2, 3) :

H =


q 0 0 0
0 qX 0 0
0 0 qY 0
a bX cY XY

 .

We have detL = |detH| = q3(XY )2. By Lemma 1, there is a vector v =
(c0, c1X, c2Y, c3XY ) in L such that

||v|| ≤ 23/4q3/4(XY )1/2 < q/2.

Put f(x, y) = c0 + c1x + c2y + c3xy. Then f(xX, yY ) is an integral linear
combination of h(xX, yY ) and hi(xX, yY ) (i = 1, 2, 3). It follows that c3 6= 0
and for every (x0, y0) ∈ S, we have f(x0, y0) ≡ 0 (mod q). Since ||f(xX, yY )|| <
q/2, Lemma 2 yields f(x0, y0) = 0, for every (x0, y0) ∈ S. The algorithm
SOLVE-CONIC computes all the solutions (x, y) ∈ Z2 to f(x, y) = 0. Thus,
the computation of the elements of S has time complexity O(qε), where ε is
arbitrary small.

(2) Suppose that a = 0 and XY < q1/2/63/4. Working similarly as in the
previous case we consider the lattice Λ having as basis the rows of the matrix

I =

 qX 0 0
0 qY 0
bX cY XY

 .

We have detΛ = |detI| = (qXY )2. It follows as in the first case that there is a
polynomial with integer coefficients f(x, y) = c1x+ c2y + c3xy with c3 6= 0 and

||f(xX, yY )|| ≤
√

2(qXY )2/3 < q/
√

3
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such that f(x0, y0) ≡ 0 (mod q), for every (x0, y0) ∈ S, and so, f(x0, y0) = 0,
for every (x0, y0) ∈ S. Next, the algorithm SOLVE-CONIC computes all the
elements of S in time O(qε), where ε is arbitrary small.

(3) Suppose that b = 0 and XY 2 < q/63/2. We consider the lattice Λ having
as basis the rows of the matrix

J =

 q 0 0
0 qY 0
a cY XY

 .

We have detΛ = |detJ | = q2XY 2. It follows that that there is a polynomial
with integer coefficients f(x, y) = c0 + c1y + c2xy with c2 6= 0 and

||f(xX, yY )|| ≤
√

2(q2XY 2)1/3 < q/
√

3

such that f(x0, y0) ≡ 0 (mod q), for every (x0, y0) ∈ S. Thus, f(x0, y0) = 0,
for every (x0, y0) ∈ S. Finally, Remark 1 implies that the elements of S can be
computed in time O(qε), where ε is arbitrary small.

(4) The proof of case c = 0 and X2Y < q/63/2 is similar to (3).
Finally, the maximum of absolute values of the coefficients of f(x, y), in any

case, is less than q. Thus, Remark 2 implies that the number of elements of S
is O(qε).

5 Proof of Corollaries 1 and 2

Proof of Corollary 1. Let m be a message and (r, s) its signature with DSA or
ECDSA. Then there is k ∈ {1, . . . , q − 1} such that r = (gk mod p) mod q and
s = k−1(h(m) + ar) mod q.

(1) Suppose that there are positive real numbers X and Y such that |ã| < X,
|k̂| < Y and XY 2 < q/63/2. Let S be the set of solutions (x0, y0) ∈ Z2 of

xy + yh(m)− sr−1 ≡ 0 mod q

with |x0| < X and |y0| < Y . A such solution is the couple (ã, k̂). By Theorem
1, the elements of S can be computed in time O(qε) and its number is O(qε).
Next, we compute the quantities gx0 mod q, where (x0, y0) ∈ S, until we find
gx0 = A mod q. Then x0 = ã. Since |S| = O(qε), the time complexity of the
computation of ã and k̂, and hence of a and k, is O(qε).

(2) Suppose that there are positive real numbers X and Y such that |k̃| < X,
|â| < Y and XY 2 < q/63/2. A solution of the congruence

xy − h(m)s−1y − rs−1 ≡ 0 mod q.

is (x, y) = (k̃, â). Then working as previously, we compute a and k in time
O(qε).

(3) Suppose that X and Y are positive real numbers such that |k̂| < X,
|â| < Y and XY < q1/2/63/4. The couple (x, y) = (k̂, â) is a solution of the
congruence

xy + rh(m)−1y − sh(m)−1x ≡ 0 mod q.

Working as previously the result follows.
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Proof of Corollary 2. Let (r1, s1) and (r2, s2) be the DSA or ECDSA signa-
tures of two messages m1 and m2 with ephemeral keys k1 and k2, respectively.
Then we have

s1 = k−1
1 (h(m1) + ar1) mod q and s2 = k−1

2 (h(m2) + ar2) mod q.

Eliminating a from the two equalities we obtain the congruence

s1r2k1 − r1s2k2 + r1h(m2)− h(m1)r2 ≡ 0 (mod q).

Hence the couples (k̃1, k̂2), (k̂1, k̃2) and (k̂1, k̂2) are solutions of the congruences

yx+ (s−1
1 r1r

−1
2 h(m2)− h(m1)s−1

1 )y − r1s2s−1
1 r−1

2 ≡ 0 (mod q),

yx+ (s−1
2 r2r

−1
1 h(m1)− h(m2)s−1

2 )y − r1s2s−1
1 r−1

2 ≡ 0 (mod q),

yx+ r2s1(r1h(m2)− r2h(m1))−1y − r1s2(r1h(m2)− r2h(m1))−1x ≡ 0 (mod q),

respectively. Next, working as in Corollary 1 the result follows.
Note that the absolute values of coefficients of the above modular equations

are < q, and so in case where the size of q is 160, the factorization of the numbers
required by Theorem 1 is not an important problem.

6 Conclusion

In this paper, combining lattice reduction techniques with an algorithm for
computing the integral solutions of Diophantine equations of the form a+ bx+
cy+ dxy = 0, we give a method for finding small solutions of bivariate modular
equations of the form a + bx + cy + xy ≡ 0 (mod q). We used this result in
order to devellop an attack on DSA and ECDSA. If a signature is available
and the two keys (secret and ephemeral) are of a certain size, then they can
be computed. The same happens, if two signatures are available and their
ephemeral keys have a certain size. These attacks can also be applied on other
schemes where the secret and the ephemeral keys are solutions of a modular
bivariate linear equation as in DSA or of a modular bivariate equation of second
degree, as above. For instance, such schemes are Schnorr’ signature, Heyst-
Pedersen signature, etc [10, 17].
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