
Non-delegatable Identity-based Designated Verifier Signature

Qiong Huang∗ Duncan S. Wong∗ Willy Susilo†

July 22, 2009

Abstract

Designated verifier signature is a cryptographic primitive which allows a signer to convince
a designated verifier of the validity of a statement but in the meanwhile prevents the verifier
from transferring this conviction to any third party. In this work we present an identity-based
designated verifier signature scheme that supports non-delegatability, and prove its security in the
random oracle model, based on computational Diffie-Hellman assumption. Our scheme is perfectly
non-transferable, and its non-delegatability follows the original definition proposed by Lipmaa et
al. [LWB05].

Keywords. designated verifier signature, non-delegatability, non-transferability, random oracle model,
signature scheme

∗Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R.,
China. Emails: csqhuang@student.cityu.edu.hk, duncan@cityu.edu.hk.

†School of Computer Science and Software Engineering, University of Wollongong, Northfields Avenue, New South
Wales 2522, Australia. Email: wsusilo@uow.edu.au.

Contents

1 Introduction 1
1.1 Related Work . 1
1.2 Our Work . 2
1.3 Paper Organization . 2

2 Identity-based Designated Verifier Signature 2
2.1 Unforgeability . 3
2.2 Non-Transferability . 4
2.3 Non-Delegatability . 4

3 Mathematical Background 5

4 Our Non-delegatable IBDVS 5
4.1 The Scheme . 5
4.2 Details of Generation and Verification of (1) . 6

5 Security Proofs 8

6 Conclusion 12

1 Introduction

Designated verifier signature (DVS in short), introduced by Jakobsson, Sako and Impagliazzo [JSI96],
aims to allow an entity say, Alice, to prove that she has signed a document Θ to a specific entity say,
Bob, in such a way that Bob is convinced about the fact but, unlike conventional digital signatures,
he could not transfer this conviction to any third party. This property is called non-transferability,
which is accomplished by empowering Bob the ability of producing signatures indistinguishable from
those generated by Alice. After receiving a signature from Alice, Bob is sure about that Alice made
the signature as he didn’t do so. However, any third party only believes that either Alice or Bob is
the signer of the signature. Designated verifier signature has applications in e-voting [JSI96], deniable
authentication [WS09] and etc.

1.1 Related Work

Since the introduction of DVS [JSI96], there have been a lot of work on it and its variants. Jakobsson et
al. [JSI96] proposed a stronger version of DVS, strong designated verifier signature (SDVS), in which
only the verifier can verify the validity of a signature designated to him since the verification requires
the secret key of the designated verifier. Steinfeld et al. [SBWP03] proposed the notion of universal
designated verifier signature (UDVS), in which the holder of a signature can designate any third party
as the designated verifier for checking the validity of the signature, but in the meanwhile, the designated
verifier still could not convince others the source of the signature. Laguillaumie et al. studied other
variants of designated verifier signatures [LV04b, LV04a], i.e. multi-designated verifiers signatures and
etc. Later, Zhang et al. [ZFI05] proposed a UDVS scheme secure without random oracles based on
Boneh-Boyen short signature [BB04]. Independently, Laguillaumie et al. [LLQ06] and Huang et al.
[HSMW07] proposed (almost) the same UDVS schemes based on Waters signature [Wat05], which
are also secure without random oracles. Vergnaud [Ver06] gave another two constructions of UDVS,
one based on Boneh-Boyen short signature [BB04] and secure without random oracles but requiring a
strong assumption named knowledge-of-exponent assumption [Dam92], and the other based on Boneh-
Lynn-Shacham signature [BLS04] and secure in the random oracle model [BR93]. Recently Yu et al.
[YXZL09] gave a construction of universal designated verifier proxy signature scheme without random
oracles, which is essentially an extension of the schemes in [LLQ06, HSMW07].

Besides the aforementioned designated verifier signature schemes and variants in the conventional
public key infrastructure (PKI) setting, another interesting and practically useful variant is identity-
based designated verifier signature (IBDVS in short), which is a combination of DVS and identity-based
cryptography [Sha84]. Susilo et al. [SZM04] studied DVS schemes in the identity-based setting and
proposed an identity-based SDVS scheme based on bilinear Diffie-Hellman (BDH) assumption. Huang
et al. [HSMZ08] also proposed a strong DVS scheme and an identity-based SDVS scheme based on
Diffie-Hellman key exchange, which has very short signature size. Recently, Kang et al. [KBD09]
proposed another identity-based SDVS scheme which is secure based BDH assumption. Cao et al.
[CC09] proposed the first identity-based (universal) designated verifier signature scheme that is secure
without the random oracles. Their scheme is based on Paterson-Schuldt identity-based signature
scheme [PS06], which in turn is based Waters signature scheme [Wat05]. In essence, their scheme is
the two-user version of the identity-based ring signature scheme proposed by Au et al. [ALYW06].

Lipmaa, Wang and Bao considered a new type of attacks against DVS schemes, i.e. delegatability
attack, in which Alice or Bob could release a derivative of their secret key to any third party say
Teddy, so that Teddy can produce signatures on behalf of Alice using this derivative. They proposed
the notion of non-delegatability, which basically requires that if one produces a valid signature with
respect to Alice and Bob, it must ‘know’ the secret key of either Alice or Bob. Many DVS schemes

1

have been shown to be vulnerable to delegatability attacks in [LWB05]. Besides those scheme, it
is also easy to show that the identity-based schemes proposed in [HSMZ08, CC09, KBD09] are also
vulnerable to this kind of attacks.

In 2006, Huang et al. [HSMW06] proposed a UDVS scheme which supports non-delegatability.
However, their scheme is in the PKI setting. Recently, Zhang et al. [ZM08] proposed an identity-based
SDVS scheme which, to the best of our knowledge, is the first one in the identity-based setting that
is claimed to be non-delegatable. However, the proof of non-delegatability of their scheme does not
follow the definition proposed by Lipmaa et al. [LWB05]. What they actually proved is that if there is
an algorithm which produces a signature with respect to the signer and the designated verifier without
the signer or the verifier’s secret key, there is another algorithm which solves the computational Diffie-
Hellman (CDH) problem. However, it is unknown if there is an algorithm which can extract the secret
key of either the signer or the verifier, given black-box oracle access to such a forger.

1.2 Our Work

In this work we propose another non-delegatable identity-based designated verifier signature scheme,
which is based on Gentry et al.’s hierarchical identity-based encryption scheme [GS02]. Though
our scheme does not outperform other schemes like [ZM08, CC09] in terms of signature size, the
non-delegatability of our proposal strictly follows the original definition proposed by Lipmaa et al.
[LWB05], i.e. there is an extractor which, given a forger algorithm, can extract the secret key of
either the signer or the verifier in the black-box manner. In addition, we prove that our scheme is
unforgeable in the random oracle model assuming the hardness of CDH problem which is a widely used
and well studied number-theoretic assumption. Our construction of IBDVS also enjoys perfectly non-
transferability in the sense that the signer’s signatures can be perfectly simulated by the designated
verifier.

1.3 Paper Organization

In the next section we review the definition of IBDVS and its security model. Some mathematical
background is given in Sec. 3. Our IBDVS scheme is then proposed in Sec. 4. We also prove its
security with respect to the given security definitions in the random oracle in Sec. 5, along with a
comparison between our scheme and other existing schemes. The paper is concluded in Sec. 6.

2 Identity-based Designated Verifier Signature

A designated verifier signature scheme [JSI96] consists of four (probabilistic) polynomial-time algo-
rithms, one for key generation, one for the signer to sign with respect to a designated verifier, one for
the designated verifier to simulate the signer’s signature, and the other for verification. Identity-based
designated verifier signature (IBDVS) is the analogy of DVS in the identity-based setting. Below is
the formal definition of it.

Definition 2.1 (IBDVS). An identity-based designated verifier signature scheme consists of five (prob-
abilistic) polynomial-time algorithms, described as below:

* Setup: The algorithm takes as input a security parameter 1k, and outputs a master key pair for
the PKG, i.e. (mpk, msk) ← Setup(1k), where mpk is published, and msk is kept secret by the
PKG.

2

* Extract: The algorithm takes as input the master secret key msk and an identity id which can
be a string of arbitrary length, and outputs the corresponding secret key uskid for the user with
identity id, i.e. uskid ← Extract(msk, id).

* Sign: The algorithm takes as input the secret key of the signer uskS, the identity of the designated
verifier idV , the master public key mpk and a message M ∈ {0, 1}∗, and outputs a signature σ,
i.e. σ ← Sign(uskS , idV , mpk,M).

* Ver: The algorithm takes as input a message M , the identities of the signer and the verifier, i.e.
idS , idV , the master public key mpk and a purported signature σ, and outputs a bit b, which is
1 for acceptance or 0 for rejection, i.e. b← Ver(M, idS , idV , mpk, σ).

* Sim: The algorithm takes as the secret key of the verifier uskV , the identity of the signer
idV , the master public key mpk and a message M , and outputs a signature σ, i.e. σ ←
Sim(uskV , idS , mpk,M).

The completeness requires that for any (mpk, msk) ← Setup(1k), any idS , idV ∈ {0, 1}∗, uskS ←
Extract(msk, idS), uskV ← Extract(msk, idV), any message M ∈ {0, 1}∗, it holds that

Pr[Ver(M, idS , idV , mpk,Sign(uskS , idV , mpk,M)) = 1] = 1, and
Pr[Ver(M, idS , idV , mpk,Sim(uskV , idS , mpk,M)) = 1] = 1

2.1 Unforgeability

Roughly speaking, unforgeability requires that any third party other than the signer and the designated
verifier, cannot forge a signature on behalf of the signer with non-negligible probability. Formally, it is
defined by the following game, Gu, played between a game challenger C and a probabilistic polynomial-
time adversary A:

1. C runs the Setup algorithm to generate a master key pair (mpk, msk), and invokes A on input
mpk.

2. In this phase, the adversary can issue queries to the following oracles, for polynomial times:

* OE: Given a query id from A, the oracle computes uskid ← Extract(msk, id), and returns
uskid to A.

* OSign: Given a query of the form (idS , idV ,M), the oracle first computes the secret key of
idS as uskS ← Extract(msk, idS), and signs M by computing σ ← Sign(uskS , idV , mpk,M).
It returns σ back to A.

* OSim: Given a query of the form (idS , idV ,M), the oracle first computes the secret key of
idV as uskV ← Extract(msk, idV), and signs M by computing σ ← Sim(uskV , idS , mpk,M).
It returns σ back to A.

3. Finally, A outputs its forgery, (id∗S , id∗V ,M∗, σ∗). It wins the game if

(a) 1← Ver(M∗, id∗S , id∗V , mpk, σ∗);
(b) A did not query OE on input id∗S and id∗V , and
(c) A did not query OSign and OSim on input (id∗S , id∗V ,M∗).

Definition 2.2 (Unforgeability). An IBDVS scheme is said to be (T, qE, qSign, qSim, ε)-unforgeable if
there is no adversary A which runs in time at most T , issues at most qE queries to OE, at most qSign

queries to OSign, at most qSim queries to OSim, and wins the game with probability at lease ε.

3

2.2 Non-Transferability

Non-transferability says that given a message-signature pair (M,σ) which is accepted by the designated
verifier, it is infeasible for any probabilistic polynomial-time distinguisher to tell whether the message
was signed by the signer or the designated verifier, if the distinguisher does not know the signer’s
secret key. Formally, we consider the following definition.

Definition 2.3 (Non-Transferability). An IBDVS scheme is non-transferable if the signature output
by the signer is computationally indistinguishable from that output by the designated verifier, i.e.

{Sign(uskS , idV , mpk,M)} ≈ {Sim(uskV , idS , mpk,M)}

That is, for any probabilistic polynomial-time distinguisher D, for any (mpk, msk) ← Setup(1k), any
identities idS , idV ∈ {0, 1}∗, any message M ∈ {0, 1}∗, let uskS ← Extract(msk, idS) and uskV ←
Extract(msk, idV), it holds that∣∣∣∣∣Pr

[
σ0 ← Sign(uskS , idV , mpk,M), σ1 ← Sim(uskV , idS , mpk,M)

b
$← {0, 1}, b′ ← D(mpk, msk, idS , idV , σb)

: b′ = b

]
− 1

2

∣∣∣∣∣ < ε(k)

where ε(k) is a negligible function1 in the security parameter k, and the probability is taken over the
randomness used in Setup, Extract, Sign and Sim, and the random coins consumed by D.

If the two distributions are identical, we say that the IBDVS scheme is perfectly non-transferable.

Remark 1 : The definition of non-transferability above is actually very strong, in the sense that even
the trusted authority (the PKG) cannot tell correctly that a signature is from the signer or from the
designated verifier, with a probability non-negligibly larger than one-half. One can also define a much
weaker version of non-transferability, by restricting the distinguisher from obtaining the master secret
key.

2.3 Non-Delegatability

Intuitively, non-delegatability requires that to generate a valid signature on a message, one has to
‘know’ the secret key of the signer or the designated verifier. Formally, we consider the following
definition, which is an extension of the definition given in [LWB05] to the identity-based setting.

Definition 2.4 (Non-delegatability). Let κ ∈ [0, 1] be the knowledge error. An IBDVS scheme is
(T, κ)-non-delegatable if there exists a black-box knowledge extractor K that, for every algorithm F ,
satisfies the following condition:

For every (mpk, msk)← Setup(1k), every idS , idV ∈ {0, 1}∗, every uskS ← Extract(msk, idS),
uskV ← Extract(msk, idV), and every message M ∈ {0, 1}∗, if F produces a valid signature
on M with respect to idS , idV with probability ε > κ, (denote this algorithm by FS,V,M),
then on input M and on oracle access to FS,V,M , K produces either uskS or uskV in ex-
pected time T · (ε− κ)−1, without counting the time to make oracle queries. Note that the
probability of F is taken over the choice of its random coins and the choices of the random
oracles.

Remark 2 : We stress that if the IBDVS scheme is provably secure in the random oracle model, all
the adversaries in games of unforgeability, non-transferability and non-delegatability have access to
the random oracles. The definitions of the three security properties are modified accordingly to take
into account the numbers of queries to the random oracles issued by the adversaries.

1A function f : N → N is negligible in the security parameter k if for every polynomial q(·), there exists some K ∈ N
such that for every k > K, f(k) < 1/q(k).

4

3 Mathematical Background

(Admissible Pairings): Let G and GT be two cyclic groups of large prime order p. The mapping
e : G×G→ GT is said to be an admissible pairing, if

* Bilinearity : ∀u, v ∈ G and ∀a, b ∈ Z, e(ua, vb) = e(u, v)ab;

* Non-degeneracy : ∃u, v ∈ G such that e(u, v) 6= 1T , where 1T is the identity element of GT ; and

* Computability : there exists an efficient algorithm for computing e(u, v) for any u, v ∈ G.

(CDH Assumption): Let G be a cyclic group of prime order p, and g be a random generator of G.
The computational Diffie-Hellman (CDH) problem is as follows:

Given g, ga, gb for some random a, b
$← Zp, compute gab.

Definition 3.1 (CDH Assumption). We say that the CDH assumption (T, ε) holds in G if there is
no probabilistic polynomial-time adversary A that runs in time at most T and

Pr
[
a, b

$← Zp, D ← A(g, ga, gb) : D = gab
]

> ε

where the probability is taken over the random choices of a, b ∈ G and the random coins consumed by
A.

4 Our Non-delegatable IBDVS

In this section we propose an identity-based designated verifier signature scheme which is non-
delegatable. Before proposing the scheme, we first briefly discuss the difficulty in constructing an
IBDVS scheme.

To the best of our knowledge, all the identity-based (strong) designated verifier signature schemes
use bilinear pairings. These schemes either use a common secret key shared between the signer and
the designated verifier to produce a signature, i.e. [HSMZ08, KBD09, CC09], thus impossible for one
to extract the user secret key from a signature, or use too many blind factors to hide the user secret
key, i.e. [SZM04, ZM08], thus infeasible for one to recover the key.

Based on the observation, we employ a different method in constructing IBDVS schemes. Our
scheme is based Gentry-Silverberg HIBE scheme [GS02], in which there is only one blind factor for
hiding the user secret key. A signature of user with identity id on message M is σ = (S1, S2) =
(H1(id)α · H2(M)r, gr), where H1(id)α is the user secret key. A signature of user id is verified as
e(S1, g) ?= e(H1(id), gα) · e(H2(M), S2) where gα is the master public key. If we do not include S2 = gr

in the signature, but instead set S2 to be a non-interactive proof of knowledge of the randomness r
showing that S1 is binding to either the signer or the designated verifier, the signature becomes a
designated verifier signature. Moreover, given an adversary which forges a signature, we can run the
extractor of the proof of knowledge to extract the randomness r from S2, and then get the secret key
by removing the factor H2(M)r.

4.1 The Scheme

Our construction of IBDVS works as follows:

5

* Setup(1k): The PKG chooses two cyclic groups of prime order p of k bits, G and GT , a random

generator g of G, and an admissible pairing e : G × G → GT . It selects at random α
$← Zp,

sets g1 = gα, and selects three collision-resistant hash functions, H1 : {0, 1}∗ → G, H2 : {0, 1}∗ →
G\{1} and H3 : ({0, 1}∗)3 × G × G2

T → Zp, which will be modeled as random oracles in the
security proofs. The master public key is set to be mpk = (g, g1, H1, H2, H3), and the master secret
key is msk = α.

* Extract(msk, id): The secret key of a user with identity id is set to be uskid = H1(id)α.

* Sign(uskS , idV , mpk,M): To sign a message M with respect to the designated verifier (with
identity idV), the signer (with identity idS) does as follows:

1. Choose at random r
$← Zp.

2. Set S1 = uskS · H2(M)r. Using r and hash function H3, compute the following proof of
knowledge:

S2 = PK

{
β : e(H2(M), g)β =

e(S1, g)
e(H1(idS), g1)

∨
e(H2(M), g)β =

e(S1, g)
e(H1(idV), g1)

}
(M̄)

(1)
where M̄ = (idS , idV ,M, S1). Set σ = (S1, S2). In Sec. 4.2 we give the details in the
generation and verification of S2, which includes two elements of GT and three elements of
Zp.

* Ver(M, idS , idV , mpk, σ): After receiving a signature σ = (S1, S2) and a message M from the
signer (with identity idS), the verifier (with identity idV) checks the validity of the proof of
knowledge S2 with respect to S1. It accepts if the proof of knowledge is valid, and rejects
otherwise.

* Sim(uskV , idS , mpk,M): To simulate a signature on M , the verifier does as the signer, except
that S1 is computed as S1 = uskV · H2(M)r.

It’s easy to see that the scheme is complete. Details can be found in Sec. 4.2.

Efficiency: In our IBDVS scheme a signature comprises of one element of G, two elements of GT

and three elements of Zp. The signing algorithm and the simulation algorithm involves three pairing
evaluations, one exponentiation in G and three exponentiations in GT . The verification algorithm
involves four pairing evaluations and four exponentiations in GT .

4.2 Details of Generation and Verification of (1)

To generate (1), the signer does as the following:

1. Choose r0, e1, z1
$← Zp.

2. Set R0 = e(H2(M), g)r0 and

R1 =
e(H2(M), g)z1

(e(S1, g)/e(H1(idV), g1))
e1

3. Set e = H3(idS , idV ,M, R0, R1).

4. Set e0 = e− e1, z0 = r0 + βe0.

6

The proof of knowledge S2 is set to be S2 = (R0, e0, z0, R1, z1)2.
A designated verifier with identity idV can produce an indistinguishable proofs of knowledge

similarly. The difference is to replace the subscripts of the variables above with their complements.

To verify a proof of knowledge S2 = (R0, e0, z0, R1, z1), the verifier does as the following:

1. Compute e1 = H3(idS , idV ,M,R0, R1)− e0.

2. Check if

e(H2(M), g)z0 ?= R0 ·
(

e(S1, g)
e(H1(idS), g1)

)e0

(2)

e(H2(M), g)z1 ?= R1 ·
(

e(S1, g)
e(H1(idV), g1)

)e1

(3)

It accepts if both of the equations above hold, and rejects otherwise.

The proof of knowledge can be simulated without the knowledge of β efficiently in the random
oracle model. Namely, the simulator randomly selects e0, z0, e1, z1

$← Zp, computes

R0 =
e(H2(M), g)z0

(e(S1, g)/e(H1(idV), g1))
e0

and R1 =
e(H2(M), g)z1

(e(S1, g)/e(H1(idV), g1))
e1

and then patches the random oracle H3 with ((idS , idV ,M, R0, R1), e), i.e. setting H3(idS , idV ,M ,
R0, R1) = e. It’s easy to see that the simulated proof also passes the verification above, and the sim-
ulated proof is perfectly indistinguishable from a real proof generated by the signer or the designated
verifier.

Moreover, given two valid tuples (R0, e0, z0, R1, z1) and (R0, e
′
0, z

′
0, R1, z

′
1) and two different answers

to the query (idS , idV ,M, S1, R0, R1) returned by the random oracle H3, say e and e′ 6= e, there is an
efficient algorithm which extracts the secret β from the two tuples.

If e0 6= e′0. Let R0 = gr0 for some r0 ∈ Zp. From the two instances of Eq. (2) we have that

z0 = r0 + e0β0 and z′0 = r0 + e′0β0

Then β0 can be obtained by computing

β0 =
z0 − z′0
e0 − e′0

It can be verified that
e(S1, g)

e(H1(idS), g1)
= e(H2(M), g)β0

On the other hand, if e−e0 6= e′−e′0, the extractor can extract another β1 ∈ Zp from (e1, z1, e
′
1, z

′
1)

as above, such that
e(S1, g)

e(H1(idV), g1)
= e(H2(M), g)β1

2Actually, one can set S2 = (e0, z0, e1, z1) which has smaller size. However, for the sake of the simplicity in the
security proofs, we choose to include the R values in S2.

7

5 Security Proofs

Informally, since the group G is of prime order p, H2(M)r generates the whole group. Therefore,
H1(idS)α is perfectly hidden by H2(M)r. That is, the distribution of H1(idS)αH2(M)r is identical to
that of H1(idV)αH2(M)r. In addition, the proof of knowledge S2 is perfectly witness indistinguishable.
In a consequence, the signature produced by the signer is perfectly indistinguishable from that by the
verifier.

To see the non-delegatability, we can construct an extractor which controls the output of the
random oracle H2. The validity of a signature indicates that either the secret key of idS or that of idV

is contained in S1. If an adversary outputs a valid signature with respect to idS , idV , the extractor
can first extract the witness r encapsulated in S2 by rewinding the adversary to some previous status,
and then remove the factor H2(M)r from S1.

Theorem 5.1. If CDH assumption (T, ε) holds in G, the IBDVS scheme above is (T ′, qH1 , qH2 , qH3 , qE,
qSign, qSim, ε′)-unforgeable, where

T ′ = Θ(T), ε′ <
10e2q2

E
√

qH3

9
·
√

ε

and e is the natural logarithm.

Proof. Given an adversary A against the unforgeability of the IBDVS scheme with success probability
ε′, we use it to build another algorithm B for solving the CDH problem with success probability ε.
Given a random instance of CDH problem, (g, g1 = ga, g2 = gb), B aims to find gab. It works as
follows:

Setup : B chooses three collision-resistant hash functions H1, H2 and H3 as required by the scheme,
and invokes the adversary A on input mpk = (g, g1, H1, H2, H3). Note that the master secret key
msk = logg g1 = a is unknown to B.

Qeury : B simulates the following oracles for A by maintaining three hash tables, HT1, HT2 and
HT3.

* H1 Query : Given a query id, if there is an entry starting with id in table HT1, B retrieves
the corresponding value H1(id) from HT1, and returns it. Otherwise, B tosses a coin c so

that Pr[c = 1] = δ which will be determined later. If c = 0, B chooses at random t
$← Zp,

and sets H1(id) = gt
2; otherwise, it chooses at random t

$← Zp, and sets H1(id) = gt. In
either, B stores the tuple (id, H1(id), c, t) into table HT1, and returns H1(id) back to A.

* H2 Query : Given an input M , if there is an entry starting with it in table HT2, B retrieves
the corresponding answer H2(M) from the table and returns it. Otherwise, B returns
m← H2(M). It stores (M, H2(M)) into table HT2, and returns the hash value.

* H3 Query : Given an input (idS , idV ,M, S1, R0, R1), if there is an entry starting with it in
table HT3, B retrieves the corresponding answer H3(idS , idV ,M, S1, R0, R1) from the table

and returns it. Otherwise, B chooses at random e
$← Zp, and sets H3(idS , idV ,M, R0, R1) =

e. It stores ((idS , idV ,M, S1, R0, R1), H3(idS , idV ,M, S1, R0, R1)) into table HT3, and
returns the hash value.

* Extract Query : Given an identity id, B retrieves the corresponding tuple (id, H1(id), c, t)
from HT1. If c = 1, B computes the user secret key uskid = gt

1 and returns it to A. If
c = 0, B aborts.

8

* Sign Query : Given a query (idS , idV ,M), B retrieves the tuple (idS , H1(idS), c, t) from
HT1. We distinguish two cases:

– If c = 1, B generates the user secret key of idS as in the simulation of Extract or-
acle, and then computes the signature σ by running the Sign algorithm on input
(uskS , idV , mpk,M).

– If c = 0, B randomly selects S1
$← G. Note that there exists some r (unknown to B)

such that S1 = H1(idS)a·H2(M)r. B then simulates the proof of knowledge S2 in the way
specified in Sec. 4.2. In case there is a collision when patching the oracle H3, B aborts.
This event occurs only with probability at most ((qSign + qSim)2 + (qSign + qSim)qH3)/p.
B returns σ = (S1, S2) to A.

* Sim Query : This kind of queries can be answered by B in a similar way with that above.
The difference is that B generates the signature from the point of the designated verifier.

Forge : Finally, A outputs its forgery, (id∗S , id∗V ,M∗, σ∗) where σ∗ = (S∗
1 , S∗

2 = (R∗
0, e

∗
0, z

∗
0 , R

∗
1, z

∗
1)).

Suppose that A wins the game. (Otherwise B aborts.) B retrieves the two tuples (id∗S , H1(id∗S),
cS , tS) and (id∗V , H1(id∗V), cV , tV) from HT1. If cS = 1 or cV = 1, B aborts. It also retrieves the
tuple (M∗, H2(M∗)) from HT2, and the tuple ((id∗S , id∗V ,M∗, S∗

1 , R∗
0, R

∗
1), H3(id∗S , id∗V , S∗

1 ,M∗,
R∗

0, R
∗
1)) from HT3. Let e∗ = H3(id∗S , id∗V ,M∗, S∗

1 , R∗
0, R

∗
1). Next, B rewinds A to the status

of querying oracle H3 on input (id∗S , id∗V ,M∗, S∗
1 , R∗

0, R
∗
1). It chooses at random e′∗ 6= e∗ ∈

Zp and answers A with e′∗. B then continues to simulates oracles as above for A. Suppose
that again, A outputs a successful forgery, say (id′∗S , id′∗V ,M ′∗, σ′∗) where σ′∗ = (S′∗

1 , S′∗
2 =

(R′∗
0 , e′∗0 , z′∗0 , R′∗

1 , z′∗1)). If (id′∗S , id′∗V ,M ′∗, S′∗
1 , R′∗

0 , R′∗
1) 6= (id∗S , id∗V ,M∗, S∗

1 , R∗
0, R

∗
1), B aborts.

Otherwise, it runs the extractor (described in Sec. 4.2) to extract the secret randomness r∗ from
(S∗

2 , S′∗
2).

* If e(H2(M∗), g)r∗ = e(S∗
1 , g)/e(H1(id∗S), g1), we have that S∗

1 = H1(id∗S)a · H2(M∗)r∗ . Recall
that H1(id∗S) = gtS

2 . B then can recover gab from S∗
1 by computing

gab =
(

S∗
1

H2(M∗)r∗

) 1
tS

* If e(H2(M∗), g)r∗ = e(S∗
1 , g)/e(H1(id∗V), g1), we have that S∗

1 = H1(id∗V)a · H2(M∗)r∗ . Recall
that H1(id∗V) = gtV

2 . B then can recover gab from S∗
1 by computing

gab =
(

S∗
1

H2(M∗)r∗

) 1
tV

In either case B obtains the solution to the given instance of CDH problem.

Probability Analysis: In the process of solving the CDH problem above, there are some cases in
which B aborts.

1. A collision occurs when patching the oracle H3. This does not happen with probability at least
1− ((qSign + qSim)2 + (qSign + qSim)qH3)/p.

2. A issues an Extract query on input an identity id whose corresponding c value (stored in HT1)
is 0. This event does not happen with probability δqE .

3. Conditioned on that B does not abort in the simulation of oracles, A fails in outputting its
forgery. This event does not happen with probability ε′ due to the perfect simulation of the
oracles.

9

4. Conditioned on that B does not abort in the simulation of oracles and A succeeds in outputting
its forgery, either of the two identities, i.e. id∗S , id∗V , has the corresponding c value being 1. This
does not happen with probability (1− δ)2.

Therefore, in the first run of A, B does not abort with probability at least

ε ≥
(

1−
(qSign + qSim)2 + (qSign + qSim)qH3

p

)
· δqE · (1− δ)2 ·

(
ε′ − 1

p

)
where 1/p stems from that A obtains H3(id∗S , id∗V ,M∗, S∗

1 , R∗
0, R

∗
1) without querying the oracle H3. A

similar analysis with that in [PS00, BBS04] shows that with probability at least

ε ≥ ε2

16qH3

=

(
1− (qSign+qSim)2+(qSign+qSim)qH3

p

)2
· (δqE · (1− δ)2)2 ·

(
ε′ − 1

p

)2

16qH3

A outputs a successful forgery that satisfies the aforementioned conditions, which, together with the
successful output in the first run, enables B to solve the given CDH problem. This probability is
maximized when δ = qE

qE+2 . Thus, we get that

ε ≥
(

1−
(qSign + qSim)2 + (qSign + qSim)qH3

p

)2

·

((
1− 2

qE+2

)qE

·
(

2
qE+2

)2
)2

·
(
ε′ − 1

p

)2

16qH3

≈
(

1−
(qSign + qSim)2 + (qSign + qSim)qH3

p

)2

· 1
qH3 · q4

E · e4
·
(

ε′ − 1
p

)2

where e is the natural logarithm. Hence,

ε′ ≤
e2 · q2

E ·
√

qH3(
1− (qSign+qSim)2+(qSign+qSim)qH3

p

) · √ε +
1
p

<
10e2q2

E
√

qH3

9
·
√

ε

This completes the proof.

Remark 3 : In the proof above, hash functions H1 and H3 are modeled as programmable random
oracles, while H2 is modeled as a non-programmable random oracle.

Theorem 5.2. The IBDVS scheme is perfectly non-transferable (see Def. 2.3).

Proof. Note that the first component in a signature is of the form S1 = usk · H2(M)r for some r
randomly chosen from Zp, where usk is either uskS or uskV . Since the group G is of prime order,
H2(M) is a generator of G, and thus H2(M)r perfectly hides the secret key. Therefore, uskS · H2(M)r

and uskV · H2(M)r are identically distributed. Given an S1, there exist r, r′ ∈ Zp such that S1 =
uskS · H2(M)r = uskV · H2(M)r′ . On the other hand, the proof of knowledge S2 is perfectly witness
indistinguishable, thus revealing no information about the randomness r. In a consequence, the
signature σ = (S1, S2) is information-theoretically hiding.

Theorem 5.3. Assume that for some identities idS , idV ∈ {0, 1}∗ and some message M ∈ {0, 1}∗,
the algorithm F can produce valid signatures in time T and with probability ε. Then the IBDVS scheme
is (56T/ε, 1/p)-non-delegatable (see Def. 2.4) in the random oracle model.

10

Scheme Type Signature-Size Non-Trans Non-Dele RO Assump
Ours IBDVS 1G + 2GT + 3Zp perfect

√ √
CDH

[CC09] IBUDVS 4G perfect × × CDH
[HSMZ08] IBSDVS Z∗

p perfect ×
√

Gap-BDH
[KBD09] IBSDVS 2GT perfect ×

√
BDH

[SZM04] IBSDVS 1G + 1Zp + 1Z∗
p perfect ?

√
BDH

[ZM08] IBSDVS 3G perfect ?
√

BDH

Table 1: Comparison between our scheme and other existing schemes.

Proof. Assume that ε > κ = 1/p, where 1/p is the probability that F guesses correctly the hash value
without asking the random oracle H3. There is an extractor K that, on input σ and black-box oracle
access to algorithm F , extracts the secret key of either the signer or the designated verifier.

Let FS,V,M be a forger with input (idS , idV ,M). Consider two runs of FS,V,M on the same random
input to FS,V,M . In both runs, K executes FS,V,M step-by-step, except that K returns different random
values (e versus e′) as the answer to the hash query H3(idS , idV ,M, S1, R0, R1). Since S1, R0, R1 are in
the input to the hash function, their values must be equal in both runs. If both signatures, i.e. (S1, S2 =
(R0, e0, z0, R1, z1)) and (S1, S

′
2 = (R0, e

′
0, z

′
0, R1, z

′
1)), are valid, one can call the extractor of the proof

of knowledge (described in Sec. 4.2) to extract the randomness r from (S2, S
′
2). If e(H2(M), g)r =

e(S1, g)/e(H1(idS), g1), one can find uskS = S1/H2(M)r. If e(H2(M), g)r = e(S1, g)/e(H1(idV), g1), one
can find uskV = S1/H2(M)r.

Now assume that Rewind is an algorithm that given oracle access to FS,V,M , in time TR produces
two different valid signatures (S1, S2 = (R0, e0, z0, R1, z1)) and (S′

1, S
′
2 = (R′

0, e
′
0, z

′
0, R

′
1, z

′
1)) on M

with respect to idS , idV , such that (S1, R0, R1) = (S′
1, R

′
0, R

′
1). Then one can compute uskS or uskV

with probability 1. Thus, given that algorithm Rewind runs in expected time 56/ε, we have proven
the theorem.

The algorithm Rewind works as the following. We are given an algorithm FS,V,M which returns
a valid signature with probability at least ε, where the probability is taken over the random coins
used by FS,V,M and the random outputs of H3 (and H1, H2). Let H be a matrix with a row for each
possible set of random coins for FS,V,M , and one column for each possible H3 value e. Write 1 in an
entry if FS,V,M outputs a valid signature with corresponding random choices and the H3 value, and
0 otherwise. Using FS,V,M as a black box, we can probe any entry in H, and the goal is to find two
1’s in the same row. Note that ε equals the fraction of 1-entries in the matrix H. Using an algorithm
from [DF02], Rewind can find such 1-entries in time 56/ε.

Disavowability: Since our IBDVS is perfectly non-transferable, given a signature, the signer is
unable to disavow that it is the real signer, though it is possible for the signer to confirm the fact.

Comparison: In Table 1 we give a comparison of our scheme with those existing identity-based
DVS schemes, where Non-Trans indicates the level of non-transferability, Non-Dele indicates if
the scheme is non-delegatable under the definition of [LWB05], RO indicates if the security of the
scheme is in the random oracle model, and Assump indicates the assumption used in the proof of
unforgeability of the scheme. Note that the question mark ‘?’ in the Non-Dele column means that
it is unknown whether the scheme can be proved to be (non-)delegatable strictly under the definition
in [LWB05].

11

6 Conclusion

In this work we proposed a new efficient non-delegatable identity-based designated verifier signature
scheme. The scheme was proved to be unforgeable based on CDH assumption in the random oracle
model, and be perfectly non-transferable. Though our scheme has slightly larger signature size than
previous works, it is the first identity-based DVS scheme whose non-delegatability strictly follows the
definition proposed by Lipmaa et al. [LWB05].

References

[ALYW06] Man Ho Au, Joseph K. Liu, Tsz Hon Yuen, and Duncan S. Wong. Id-based ring signature
scheme secure in the standard model. In Proceedings of 1st International Workshop on
Security, IWSEC 2006, volume 4266 of Lecture Notes in Computer Science, pages 1–16.
Springer, 2006.

[BB04] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Advances
in Cryptology - EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science,
pages 56–73. Springer, 2004.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Advances in
Cryptology - CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science, pages
41–55. Springer, 2004.

[BLS04] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. J.
Cryptology, 17(4):297–319, 2004.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for design-
ing efficient protocols. In ACM Conference on Computer and Communications Security,
pages 62–73. ACM, 1993.

[CC09] Feng Cao and Zhenfu Cao. An identity based universal designated verifier signature
scheme secure in the standard model. The Journal of Systems and Software, 82(4):643–
649, 2009.

[Dam92] Ivan Damg̊ard. Towards practical public key systems secure against chosen ciphertext at-
tacks. In Advances in Cryptology - CRYPTO 91, volume 576 of Lecture Notes in Computer
Science, pages 445–456. Springer, 1992.

[DF02] Ivan Damg̊ard and Eiichiro Fujisaki. An integer commitment scheme based on groups with
hidden order. In Advances in Cryptology - ASIACRYPT 2002, volume 2501 of Lecture
Notes in Computer Science, pages 125–142. Springer, 2002.

[GS02] Craig Gentry and Alice Silverberg. Hierarchical ID-based cryptography. In Advances
in Cryptology - ASIACRYPT 2002, volume 2501 of Lecture Notes in Computer Science,
pages 548–566. Springer, 2002.

[HSMW06] Xinyi Huang, Willy Susilo, Yi Mu, and Wei Wu. Universal designated verifier signature
without delegatability. In Proceedings of 8th International Conference on Information
and Communications Security, ICICS 2006, volume 4307 of Lecture Notes in Computer
Science, pages 479–498. Springer, 2006.

12

[HSMW07] Xinyi Huang, Willy Susilo, Yi Mu, and Wei Wu. Secure universal designated verifier signa-
ture without random oracles. International Journal of Information Security, 7(3):171–183,
2007.

[HSMZ08] Xinyi Huang, Willy Susilo, Yi Mu, and Futai Zhang. Short designated verifier signature
scheme and its identity-based variant. International Journal of Network Security, 6(1):82–
93, 2008.

[JSI96] Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. Designated verifier proofs and
their applications. In Advances in Cryptology - EUROCRYPT 96, volume 1070 of Lecture
Notes in Computer Science, pages 143 – 154. Springer, 1996.

[KBD09] Baoyuan Kang, Colin Boyd, and Ed Dawson. A novel identity based strong designated
verifier signature scheme. The Journal of Systems and Software, 82(2):270–273, 2009.

[LLQ06] Fabien Laguillaumie, Benoit Libert, and Jean-Jacques Quisquater. Universal designated
verifier signatures without random oracles or non-black box assumptions. In Proceedings
of 5th International Conference on Security and Cryptography for Networks, SCN 2006,
volume 4116 of Lecture Notes in Computer Science, pages 63–77. Springer, 2006.

[LV04a] Fabien Laguillaumie and Damien Vergnaud. Designated verifier signatures: Anonymity
and efficient construction from any bilinear map. In Proceedings of 4th International
Conference on Security in Communication Networks, SCN 2004, volume 3352 of Lecture
Notes in Computer Science, pages 105–119. Springer, 2004.

[LV04b] Fabien Laguillaumie and Damien Vergnaud. Multi-designated verifiers signatures. In Pro-
ceedings of 6th International Conference on Information and Communications Security,
ICICS 2004, volume 3269 of Lecture Notes in Computer Science, pages 495–507. Springer,
2004.

[LWB05] Helger Lipmaa, Guilin Wang, and Feng Bao. Designated verifier signature schemes: At-
tacks, new security notions and a new construction. In Proceedings of 32th International
Colloquium on Automata, Languages andProgramming, ICALP 2005, volume 3580 of Lec-
ture Notes in Computer Science, pages 459–471. Springer, 2005.

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind
signatures. J. Cryptology, 13(3):361–396, 2000.

[PS06] Kenneth G. Paterson and Jacob C.N. Schuldt. Efficient identity-based signature secure
in the standard model. In Proceedings of 11th Australasian Conference on Information
Security and Privacy, ACISP 2006, volume 4058 of Lecture Notes in Computer Science,
pages 207–222. Springer, 2006.

[SBWP03] Ron Steinfeld, Laurence Bull, Huaxiong Wang, and Josef Pieprzyk. Universal designated-
verifier signatures. In Advances in Cryptology - ASIACRYPT 2003, volume 2894 of Lecture
Notes in Computer Science, pages 523–542. Springer, 2003.

[Sha84] Adi Shamir. Identity-based cryptosystems and signature schemes. In Advances in Cryp-
tology - CRYPTO 84, pages 47–53, 1984.

[SZM04] Willy Susilo, Fangguo Zhang, and Yi Mu. Identity-based strong designated verifier signa-
ture schemes. In Proceedings of 9th Australasian Conference on Information Security and

13

Privacy, ACISP 2004, volume 3108 of Lecture Notes in Computer Science, pages 313–324.
Springer, 2004.

[Ver06] Damien Vergnaud. New extensions of pairing-based signatures into universal designated
verifier signatures. In Proceedings of 33th International Colloquium on Automata, Lan-
guages andProgramming, ICALP 2006, volume 4052 of Lecture Notes in Computer Sci-
ence, pages 58–69. Springer, 2006.

[Wat05] Brent Waters. Efficient identity-based encryption without random oracles. In Ronald
Cramer, editor, Advances in Cryptology - EUROCRYPT 2005, volume 3494 of Lecture
Notes in Computer Science, pages 114–127. Springer, 2005.

[WS09] Bin Wang and Zhaoxia Song. A non-interactive deniable authentication scheme based on
designated verifier proofs. Information Sciences, 179(6):858–865, 2009.

[YXZL09] Yong Yu, Chunxiang Xu, Xiaosong Zhang, and Yongjian Liao. Designated verifier proxy
signature scheme without random oracles. Computers and Mathematics with Applications,
57(8):1352–1364, 2009.

[ZFI05] Rui Zhang, Jun Furukawa, and Hideki Imai. Short signature and universal designated
verifier signature without random oracles. In Proceedings of 3rd International Conference
on Applied Cryptography and Network Security, ACNS 2005, volume 3531 of Lecture Notes
in Computer Science, pages 483–498. Springer, 2005.

[ZM08] Jianhong Zhang and Jane Mao. A novel ID-based designated verifier signature scheme.
Information Sciences, 178(3):766–773, 2008.

14

	Introduction
	Related Work
	Our Work
	Paper Organization

	Identity-based Designated Verifier Signature
	Unforgeability
	Non-Transferability
	Non-Delegatability

	Mathematical Background
	Our Non-delegatable IBDVS
	The Scheme
	Details of Generation and Verification of (1)

	Security Proofs
	Conclusion

