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Abstract

The problem of carrying out cryptographic computations when the participating parties
are rational in a game-theoretic sense has recently gained much attention. One problem that
has been studied considerably is that of rational secret sharing. In this setting, the aim is to
construct a mechanism (protocol) so that parties behaving rationally have incentive to cooperate
and provide their shares in the reconstruction phase, even if each party prefers to be the only
one to learn the secret.

Although this question was only recently asked by Halpern and Teague (STOC 2004), a
number of works with beautiful ideas have been presented to solve this problem. However, they
all have the property that the protocols constructed need to know the actual utility values of the
parties (or at least a bound on them). This assumption is very problematic because the utilities
of parties are not public knowledge. We ask whether this dependence on the actual utility values
is really necessary and prove that in the case of two parties, rational secret sharing cannot be
achieved without it. On the positive side, we show that in the multiparty case it is possible to
construct a single mechanism that works for all (polynomial) utility functions. Our protocol has
an expected number of rounds that is constant, and is optimally resilient to coalitions.

In addition to the above, we observe that the known protocols for rational secret sharing
that do not assume simultaneous channels all suffer from the problem that one of the parties
can cause the others to output an incorrect value. (This problem arises when a party gains
higher utility by having another output an incorrect value than by learning the secret itself; we
argue that such a scenario needs to be considered.) We show that this problem is inherent in
the non-simultaneous channels model, unless the actual values of the parties’ utilities from this
attack is known, in which case it is possible to prevent this from happening.
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1 Introduction

1.1 Background

Recently, there has been much interest in the intersection between cryptography and game theory [5,
4, 10, 3, 1, 9, 10]. One specific question that has gained much attention is that of rational secret
sharing. The basic problem that arises when considering secret sharing (or to be more exact,
protocols for the reconstruction phase) is that the parties actually have no incentive to reveal their
share. Specifically, assume that t parties get together to reconstruct a secret that was shared using
a t-out-of-n secret sharing scheme. The standard way that this reconstruction takes place is simply
for each party to broadcast its share to all others. However, if one party does not broadcast its
share, it can still reconstruct the secret (because it received the t− 1 shares of all other parties and
so has t shares overall), but the others cannot (because they only have t− 1 shares). Thus, under
the assumption that parties prefer to be the only one to learn the secret, the rational behavior
in the above naive reconstruction procedure is for every party to remain quiet and not broadcast
its share [5]. The aim of rational secret sharing is therefore to construct a mechanism so that it
is in the interest of rational parties to cooperate, with the result being that all parties learn the
reconstructed secret. The fact that the parties are rational means that they each have a utility
function assigning a value to every possible outcome of the protocol (this value represents the gain
that the party achieves if the given outcome occurs). Furthermore, the parties’ aim is to maximize
their utility. We remark that a mechanism is considered successful if it achieves a Nash equilibrium
(or one of its variants) for the strategy which instructs all parties to cooperate. Loosely speaking,
this means that if any one of the parties deviates from the prescribed strategy (while others follow
it), then it will not obtain a higher utility (and may even lose). Thus, it is in the interest of all
parties to follow the prescribed strategy and cooperate.

In order to construct a mechanism with the above properties, certain natural assumptions are
made regarding the utilities of the parties. In particular, it is assumed that a party always prefers
to learn the secret than to not learn it (this is essential to assume, or else there is no reason for a
party to ever participate in the reconstruction). Furthermore, it is assumed that parties prefer to
learn the secret, and have some or all of the other parties not learn it (when knowledge is power,
this makes a lot of sense). Although the above assumptions are very reasonable, a concern with all
of the known protocols is that they don’t just assume that this “learning preference” holds. Rather,
they assume that the actual utility values of the parties (or at least bounds on them) are known to
all, and the mechanism itself depends on these values. The problem with this assumption is that
in reality the utility of a party may not even be known to itself, let alone to others. Furthermore,
even if a party knows its own utility, it is unclear how others can learn this value (it would not
necessarily be rational for a party to be honest about its utility; rather, it may gain something by
providing incorrect information about its utility function). This problem stands at the center of
this work, and we ask the following fundamental question:

Is it possible to construct a single reconstruction mechanism for rational secret sharing
that achieves a Nash equilibrium for all possible values of utility functions that fulfill the
aforementioned assumptions regarding learning preference?

In addition to the above, we observe that some of the known protocols suffer from a correctness
issue. Specifically, most of the positive results on this topic assumed that the parties have access to
a simultaneous channel (meaning that all parties can simultaneously send messages and so no party
can see what the others broadcast before sending its own message). Since simultaneous channels
are problematic to implement in practice, a recent breakthrough was made that achieved rational

2



secret sharing in non-simultaneous channels [10]. However, the protocol of [10] (and a follow-up
protocol by [6]) has the problem that one of the parties can cause the others to output an incorrect
value, at the expense of not learning the secret itself. Thus, the assumption made by [10] is that
since a party always prefers to learn the secret, it will never follow such a strategy. However, we
do not believe that this assumption is always reasonable. Rather, there are certainly scenarios
where a party can gain more by having another learn incorrect information than by learning the
information itself (for example, consider the case where the use of incorrect information can result
in a loss of reputation, to the potential gain of others). In any case, it would certainly be preferable
to not have to assume this. Noting that this problem of correctness does not arise in any of the
protocols using simultaneous channels, we ask:

Is it possible to construct a reconstruction mechanism for rational secret sharing that
uses non-simultaneous channels and achieves Nash equilibrium even if a party’s utility
when another party outputs an incorrect value is higher than its utility when it learns
the secret? Furthermore, is it possible to achieve this without assuming knowledge of
the actual utility value?

1.2 Our Results

We focus mainly on 2-out-of-2 secret sharing. Let U+
i denote the utility of party Pi when it learns

the secret and the other party does not. Furthermore, let Uf
i denote the utility of party Pi when

the other party outputs an incorrect (false) value, even if Pi itself did not learn the output. We call
a mechanism U+-independent if it achieves Nash equilibrium for all possible (polynomial) values of
(U+

1 , U+
2 ) that fulfill the aforementioned learning-preference assumptions (i.e., that a party prefers

to learn than not learn, and prefers to be the only one to learn). We define Uf -independence
similarly. We stress that when a mechanism is U+ or Uf -independent, it may still know the values
of the other utilities (i.e., the utility when all parties learn the secret or when none learn it). We
begin by proving an interesting connection between U+-independence and complete fairness, and
between Uf -independence and correctness (where fairness and correctness here are in the presence
of malicious adversarial behavior that may not be rational and is aimed only to break the protocol).
In Section 3, we prove the following informally stated theorem:

Theorem 1.1 Any two-party mechanism that achieves U+-independence guarantees complete fair-
ness in the presence of malicious adversarial behavior. Furthermore, any two-party mechanism that
achieves Uf -independence guarantees correctness in the presence of malicious adversarial behavior.

Intuitively, Theorem 1.1 holds because if a mechanism is U+-independent, then it must be in
a party’s interest to cooperate even if its U+ utility is very high. However, if a party’s U+ utility
is high enough – but still polynomial – then it can be shown that its best strategy is to just try
and break fairness (because then it gains U+). Since, it should not be able to succeed in doing
this, it follows that a malicious adversary also can only break fairness with negligible probability.
The connection between Uf independence and correctness is proven in a similar way. It is possible
to use Theorem 1.1 in order to prove that there do not exist two-party reconstruction mechanisms
for rational secret sharing that are independent of U+, by showing how to toss a fair coin given
any such mechanism. (Intuitively, given such a mechanism, we construct a protocol where in the
first stage multiparty computation is used to generate shares of an unbiased coin, and then the
mechanism is used to fairly reveal the coin.) Using the impossibility result of Cleve [2] for coin
tossing, we then conclude that such a mechanism does not exist. However, we stress that unbiased
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coin tossing is only impossible in the non-simultaneous channels model, and thus this would only
prove the impossibility of obtaining U+-independence in this model, and leaves open the possibility
that there do exist U+-independent mechanisms in the simultaneous channels model.

We therefore provide a direct proof, ruling out the possibility of obtaining U+-independence
even when given a simultaneous channel. That is, we prove the following:

Theorem 1.2 There does not exist a two-party reconstruction mechanism for rational secret shar-
ing that is independent of U+ in either the simultaneous or non-simultaneous channels model.

In order to prove this, we present a lower bound on the number of rounds needed for achieving
fair reconstruction and show that this number is dependent on the actual utility functions of the
parties (or, to be more exact, a bound on them). Thus, no mechanism can be independent of the
utilities because this implies that its number of rounds is also independent. Our lower bound is
proven in the simultaneous-channels model and therefore also holds for non-simultaneous channels.

Having established that U+-independence is impossible to achieve, we ask whether the other
utility values must also be known. For example, we know that Uf -independence is possible in
the simultaneous-channels model, because all of the known protocols for the simultaneous-channels
model (cf. [4, 10]) are Uf -independent. This leaves open the question regarding Uf -independence
with non-simultaneous channels. We prove that:

Theorem 1.3 There does not exist a two-party reconstruction mechanism for rational secret shar-
ing that is Uf -independent in the non-simultaneous channels model.

The proof of this theorem uses Theorem 1.1 that states that a Uf -independent mechanism
guarantees correctness. We then prove that in the non-simultaneous channels model, it is not
possible to construct a correct reconstruction mechanism.

Positive results. In Section 5, we present two positive results as follows:

1. We present a multiparty reconstruction mechanism that uses simultaneous channels and is
independent of all utility values. The reconstruction mechanism is also resilient to coalitions
of size t/2, where t is the secret sharing threshold (i.e., when considering t-out-of-n secret
sharing). We also show that it is not possible to achieve resilience to coalitions of a larger
size, while preserving utility independence. Thus, in this sense, our mechanism is optimal.1

2. We present a two-party reconstruction mechanism for rational secret sharing that works in
the non-simultaneous model and achieves correctness. This mechanism uses the actual values
of Uf (recall that by Theorem 1.3 Uf independence is impossible and so the use of the actual
values of Uf here is inherent).

The above results show that (a) utility independence is possible to achieve in the multiparty setting,
and (b) correctness need not be forfeited in the model with non-simultaneous channels.

1We note that in the preliminary version of this paper that appeared at CRYPTO 2009, we presented a mechanism
that achieved utility independence when assuming a relaxation on the assumptions of the utilities functions of the
parties. Here, we present a stronger result which does not need any relaxation at all.
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1.3 Related work.

The question of rational secret sharing was first introduced by [5]. They showed that there does
not exist a mechanism with a constant number of rounds, that achieves Nash Equilibrium that
survives iterated deletions of weakly dominated strategies. Moreover, they presented a protocol
for n ≥ 3 (that is U+-dependent) in the simultaneous model. More protocols, dealing with other
settings, were presented for the simultaneous model in [4, 1, 9, 10], and for the non-simultaneous
model in [10, 6]. The basic question that we ask regarding utility independence was proposed in [5].
The first partial answer to this question was given by [1] who showed that utility independence is
possible for t-out-of-n secret sharing as long as t < n/3. This question was also considered by [14]
who showed that utility independence can be achieved if the number of parties participating in
the reconstruction procedure is strictly greater than the threshold t. The works of [13, 11] can be
used to obtain fair secret sharing, but assume stronger physical assumptions than a simultaneous
channel. Other works have also considered a mix of rational, honest and malicious parties [16, 14, 1].

2 Game-Theoretic Definitions

2.1 Secret Sharing

Informally, a t out of n secret sharing scheme involves a dealer D and n parties P1, .., Pn. The
dealer D wishes to distribute “shares” of a secret s which is chosen according to some efficiently
samplable distribution ensemble S = {Sk}k∈N. The main security requirement is that every subset
of t∗ ≥ t parties is capable of reconstructing s, whereas any subset of t∗ < t parties cannot learn
anything whatsoever about the secret. See [15] for a formal definition.

A secret sharing protocol consists of two phases, called sharing and reconstruction. In the first
phase the dealer selects a secret s according the distribution Sk, where k is the security parameter.
It then generates the shares from the secret, and sends each party its share using a private channel
(we assume that the dealer can distribute the shares perfectly privately). The algorithm used to
generate the shares for each party is denoted share(S), and the shares themselves are denoted
s1, . . . , sn. We remark that the above assumes that share(S) is a non-interactive procedure.
However, our results are unchanged if the sharing phase is interactive and involves all parties. In
the second phase, the parties run an interactive protocol in order to reconstruct the secret. We stress
that the dealer is not involved in this phase, and we assume for simplicity that the participating
parties can communicate via a broadcast channel. At the end of the reconstruction protocol, each
party outputs what it has “learned” (i.e., what it believes that the share is).

The broadcast channel is sometimes simultaneous, meaning that some parties can broadcast
messages at the same time (and so the adversary is not rushing), and sometimes the channel is not
simultaneous, and so there is only a single sender at any one time (or, equivalently, the adversary is
assumed to be rushing). Clearly, it is preferable to have protocols for the non-simultaneous model
as true simultaneity is very hard (if not impossible) to achieve in practice.

2.2 Game Theory and Fair Secret Sharing

We assume that the parties are rational. Therefore, we will refer to the reconstruction protocol as
a mechanism, where a mechanism is a pair (Γ, ~σ), where Γ is the game (i.e., a specification of what
actions are allowed or possible by the parties), and ~σ = (σ1, . . . , σn) is a strategy for that game (σi

is a set of instructions for party Pi in the game). The aim of a mechanism is to have the parties
follow the prescribed strategy ~σ, which in turn will result in the desired outcome. Another way of
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looking at this is that the recommended strategy ~σ is a protocol, and the game Γ is defined to be
all possible deviations from the protocol.

Notation: We call a vector of parties’ strategies a strategy profile, and use the following notations:
~α−i = (α1, ..., αi−1, αi+1, ..., αn), (α′i, ~α−i) = (α1, ..., αi−1, α

′
i, αi+1, ..., αn), and ui(σ′i, ~σ−i) is the

expected utility of party i when it plays according to σ′i, while other parties play according to ~σ.
When considering 2-out-of-2 secret sharing, we sometimes use the notation ui(σ1, σ

′
2), which is the

expected utility of party i ∈ {1, 2}, when party P1 plays according to σ1, and P2 plays according
to σ′2. Again, in the two party setting, letting i ∈ {1, 2} we denote by P−i the party P3−i (i.e., the
participating parties are Pi and P−i).

Definition 2.1 (Nash Equilibrium:) A behavioral strategy profile ~σ for the game Γ is said to
be a Nash equilibrium if for every i ∈ [n] and every behavioral strategy σ′i for Pi, it holds that
ui(σi, σ−i) ≥ ui(σ′i, σ−i).

Definition 2.2 (ε-Nash Equilibrium:) Let ε : N → [0, 1] be a function and let k denote the security
parameter. A behavioral strategy profile ~σ for the game Γ is said to be an ε-Nash equilibrium if for
every i ∈ [n] and every behavioral strategy σ′i, it holds that ui(σ′i, ~σ−i) ≤ ui(σi, ~σ−i) + ε(k).

Definition 2.3 (Strict Nash Equilibrium:) A behavioral strategy profile ~σ for the game Γ is said
to be a strict Nash equilibrium if for every i ∈ [n] and every behavioral strategy σ′i 6= σi, it holds that
ui(σi, ~σ−i) > ui(σ′i, ~σ−i).

Computational Nash Equilibrium. In a computational world, all parties run in probabilistic
polynomial-time, and events that happen with negligible probability are not of any concern. Nash
equilibrium in such a world was defined by [3, 7, 6], as follows:

Definition 2.4 (Computational Nash Equilibrium:) A behavioral strategy profile ~σ for the game Γ
is said to be a Computational Nash equilibrium if it is probabilistic polynomial-time and there exists
a negligible function ε such that it is an ε-Nash equilibrium.

Outcome and utilities. The outcome of an execution of a game Γ with some strategy profile
~σ is denoted o and consists of the output of all of the parties. In the case of 2-out-of-2 secret
sharing, each party may learn or may not learn the secret, and there are therefore exactly four
possible outcomes. (This ignores the issue of correctness which we introduce in this work and
discuss below.) Each party’s utility is a function of these outcomes, and there are therefore also
four possible utility values for each party. The notations for the four possible outcomes, and the
associated utility for each party, are described in Table 1.

P1 receives s P2 receives s Outcome notation P1’s Utility P2’s Utility
NO NO onone U−

1 U−
2

NO YES o+
2 U−−

1 U+
2

YES NO o+
1 U+

1 U−−
2

YES YES oboth U1 U2

Table 1: Outcome and Utility

In this work, we consider the possibility that parties may output incorrect values and introduce
a utility Uf for this event (informally, a party gains Uf

i if it succeeds in having the other party
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output a false/incorrect value). This results in nine possible outcomes of the game (each party may
learn the correct value, not learn, or output an incorrect value). For simplicity we will consider
only the outcome where one party does not learn the secret while the other outputs an incorrect
(or false) value. We denote this event by ofalse

−i where P−i is the party who outputs the incorrect
value. (We explicitly consider this event because this is the one that occurs naturally. Needless to
say, when analyzing mechanisms all possibilities need to be taken into account.)

Assumptions on the utility functions. We assume that the utility functions of all parties are
polynomial in the security parameter. The importance of this is discussed in Appendix A. Formally,
a party’s utility function ui is a function of the outcome and the security parameter k. We therefore
write Ui(1k) = ui(1k, oboth), U+

i (1k) = ui(1k, o+
i ), U−

i (1k) = ui(1k, onone), U−−
i (1k) = ui(1k, o+

−i),
and Uf

i (1k) = ui(1k, ofalse
−i ). As is now standard [5, 4, 10], we assume that each party always prefers

to learn the secret than to not learn it, and that each party most prefers to be the sole party to
learn the secret. We add an additional assumption being that a party prefers to have the other
party output an incorrect value than not, when in both cases the first party does not learn anyway.
We do not make any assumption on Uf

i beyond this. (In [10] they implicitly assume that Uf
i < Ui

for all parties.) For lack of a better name, we call utility functions that fulfill these assumptions
“natural”. Formally:

Definition 2.5 Let U =
{(

U+
i , Ui, U

−
i , U−−

i , Uf
i

)
i∈{1,2}

}
be a set of utility functions for the par-

ties. We say that U is natural if for every i ∈ {1, 2} and for every k ∈ N it holds that

U+
i (k) ≥ Ui(k) ≥ U−

i (k) ≥ U−−
i (k) ≥ 0 and Uf

i (k) ≥ U−
i (k).

We remark that in all previous works, it was formally assumed that U−
i (k) = U−−

i (k), even
though none of the protocols utilized this fact. We have not defined it in this way because we find
it unsatisfactory to assume that once a party has not learned, it makes no difference to its utility
if others did or did not learn. On the contrary, it can be a lot worse if a party does not learn while
others do learn and so protocols should take this into account. We note that all previous protocols
can be modified to work with the value U−−

i . We also note that our lower bounds hold even if
U−

i = U−−
i , and so we do not assume anything about the value U−−

i .

Fair secret sharing. A number of different notions have been used regarding the desired equilib-
rium for rational secret sharing. Our impossibility results refer to the weakest of these assumptions,
which is ε-Nash equilibrium for a negligible function ε(·) [10, 7]. However, we also require that the
number of rounds be polynomial (this is needed for our lower bounds, but we argue that this does
not significantly weaken our results because a mechanism with a super-polynomial of rounds is
not computationally feasible to run). The natural way to model this is as a computational Nash
equilibrium [3, 7] (although our results hold even if local computation by each party is unbounded).
We define computationally fair reconstruction mechanisms in this light:

Definition 2.6 Let U be a set of natural utility functions for P1 and P2 (as in Definition 2.5). We
say that a mechanism (Γ, ~σ) is a fair reconstruction mechanism for U if ~σ is a computational Nash
Equilibrium and if the probability that the result is not oboth when both parties follow ~σ is negligible.
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3 Utility-Independent Mechanisms and Properties

3.1 Definitions

We now formalize the notion of utility independence. Loosely speaking, a mechanism is independent
of a given utility function if it achieves its desired properties for any value of that utility for all
parties.

Definition 3.1 (utility independence): Let Û ∈ {U+, U, U−, U−−, Uf} be a utility type and let
U ′ = {U+

i , Ui, U
−
i , U−−

i , Uf
i }n

i=1 \ {Ûi}n
i=1 be a set of polynomial utility functions (excluding all the

Ûi values). We say that the mechanism (Γ, ~σ) is a Û -independent fair reconstruction mechanism if
for all polynomial utility functions {Ûi}n

i=1 for which U = U ′ ∪ {Ûi}n
i=1 is natural, it holds that

(Γ, ~σ) is a fair reconstruction mechanism for U .

Note that our definition of utility independence includes the assumption that U is natural. In
our results, we focus on U+ and Uf -independence.

Fairness and correctness. In this section, we show that U+ and Uf -independence, respectively,
imply the properties of complete fairness and correctness in the presence of adversarial behavior.
We stress that we define these notions in an adversarial context and not in a game theoretic one.
That is, we say that a protocol or mechanism is completely fair/correct if it maintains this property
when one of the parties follows a worst-case strategy (meaning that it has no aim to gain utility
and its aim is simply to break this property of the protocol). Before proceeding, we remark that we
will freely move between protocols in a cryptographic setting with an adversary A and mechanisms
involving rational adversaries playing a game in order to achieve utility. Despite the apparent
differences between these notions, they are actually very similar. In particular, one can define a
one-to-one mapping φ from a mechanism to a protocol and back, as follows:
• Let (Γ, ~σ) be a mechanism. We define π = φ(Γ, ~σ) to be a protocol where all honest parties

follow the strategy specified in ~σ, according to the game Γ.

• Let π be a protocol. We define (Γ, ~σ) = φ−1(π) to be the mechanism where Γ specifies the
order of sending messages that appears in π, and ~σ is the strategy to follow the instructions of
π honestly.

We now proceed to define complete fairness and correctness. We present the definitions in a
“protocol context”; their translation to the game-theoretic context is discussed below. Intuitively,
a two-party reconstruction protocol is completely fair if whenever one party learns the secret the
other party is also guaranteed to learn the secret, except with negligible probability. Likewise, a
reconstruction protocol is correct if the honest party is guaranteed to either output the correct value
(i.e., the secret that was shared) or a special abort symbol ⊥. Although it is difficult to formalize
these notions for general secure computation without resorting to a full ideal model/real model
definition (since the output depends on the actual inputs used by the possibly malicious parties),
in the case of secret sharing it is much simpler because the output of the protocol is well defined.
In particular, the output can only be the shared secret s or an abort symbol ⊥. We assume that
any reconstruction protocol is non-trivial meaning that if both parties are honest, then they both
learn the secret except with negligible probability.

In order to formalize the above, we introduce some notation. Let realπ,A,i(share(S)) denote
the outcome o of an execution of the reconstruction protocol π, with the parties P1 and P2, an
adversary A controlling party Pi (i ∈ {1, 2}), and a share s that was chosen according to the
distribution S and shared as in share; recall that an outcome is simply the concatenation of the
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outputs of all participating parties (since A controls Pi, we consider only the output of A and the
honest party). Next, denote by outputX(realπ,A,i(share(S)) the output of party X (where X
may be A or the honest party P−i). Recall that the security parameter is denoted k.

Definition 3.2 Let share be a share generation algorithm for a 2-out-of-2 secret sharing scheme,
and let π be the reconstruction protocol for the scheme.

1. We say that π is completely fair if for every probabilistic polynomial-time adversary A that
controls party Pi there exists a negligible function µ(·) such that

Pr[outputA(realπ,A,i(share(S))) = S] ≤ Pr[outputP−i(realπ,A,i(share(S))) = S] + µ(k)

2. We say that π is correct if for every probabilistic polynomial-time adversary A that controls
party Pi there exists a negligible function µ(·) such that

Pr[outputP−i(realπ,A,i(share(S))) /∈ {S,⊥}] ≤ µ(k).

An equivalent formulation of the above for mechanisms is obtained by requiring that the result
of an execution where one party follows the prescribed strategy and the other may follow any
arbitrary alternative strategy is fair (or correct). For example, correctness of a mechanism (Γ, ~σ)
can be formalized by saying that for every arbitrary strategy σ′i followed by party Pi (i ∈ {1, 2})
there exists a negligible function µ such that:

Pr[outputP−i(realΓ,Pi(σ′i),P−i(σ−i)(share(S))) 6∈ {⊥,S}] ≤ µ(k).

(Observe that correctness is guaranteed only when party P−i follows the prescribed strategy σ−i.)

3.2 U+-Independence Implies Fairness

We now prove that the existence of a U+-independent reconstruction mechanism implies the exis-
tence of a completely fair reconstruction protocol. Intuitively this holds because if complete fairness
is not achieved, then there exists an adversary who can participate in the protocol induced from
the mechanism and with non-negligible probability can learn the secret while the honest party does
not. Given such an adversary, we can set the utility U+ of one of the parties to be high enough
so that its expected gain by following the adversarial strategy is high enough. Our proof holds for
both simultaneous and non-simultaneous channels.

Proposition 3.3 If there exists a U+-independent fair reconstruction mechanism for a 2-out-of-
2 secret sharing scheme (as in Definition 3.1), then there exists a completely fair reconstruction
protocol (as in Definition 3.2) for the scheme.

Proof: Let (Γ, ~σ) be a U+-independent fair reconstruction mechanism and let U ′ be a set of utilities
specifying {U,U−, U−−, Uf} for both parties. Denote by π the protocol derived from (Γ, ~σ) by the
mapping φ described above in Section 3.1. Assume by contradiction that π is not a completely fair
reconstruction protocol. This implies that there exists a probabilistic polynomial-time adversary
A that controls some party Pi (i ∈ {1, 2}) and a polynomial p(·) such that for infinitely many k’s:

Pr [outputA (realπ,A,i (share (S))) = S] > Pr
[
outputP−i (realπ,A,i (share (S))) = S]

+
1

p(k)

9



Let σA be the corresponding behavioral strategy of the adversary A in the game Γ. Note that for
infinitely many k’s, the outcome of the game when party Pi plays according to σA, while the other
party plays according to the prescribed strategy ~σ, is o+

i with probability 1/p(k).
We now define the utility function U+

i for party Pi by U+
i ≥ p(k) · (Ui + 1). We show that for

infinitely many k’s, Pi’s utility is greater if it follows σA than if it follows σi, which is a contradiction
to the assumption that ~σ is a (computational) Nash equilibrium. Let O denote the set of all possible
outcomes, and recall that ui(o) is the utility of Pi upon outcome o. We have that for infinitely
many k’s:

ui

(
σAi , σ−i

)
=

∑

o∈O
Pr[o | (σAi , σ−i)] · ui(o)

≥ Pr
[
o+
i | (σAi , σ−i)

]
· U+

i

≥ 1
p(k)

· (p(k) · (Ui + 1)) = Ui + 1.

In contrast,
ui (σi, σ−i) = Ui.

Thus, there exists a non negligible function ε′ (even if Ui is negligible), such that:

ui

(
σAi , σ−i

)
≥ ui (σi, σ−i) + ε′(k)

in contradiction to the assumption that ~σ is a computational Nash equilibrium for Γ. We therefore
conclude that the protocol π induced from (Γ, ~σ) is completely fair, as in Definition 3.2.

3.3 Uf -Independence Implies Correctness

In this section, we prove that Uf independence implies correctness. That is, we show that any pro-
tocol that is Uf -independent achieves correctness in the presence of malicious adversarial behavior.
The intuition for this proof is the same as for U+ and fairness. Namely, if the mechanism does not
achieve correctness then the strategy used to break it can provide a high enough payoff, given a
large enough Uf .

Proposition 3.4 If a fair reconstruction mechanism for a 2-out-of-2 secret sharing scheme is Uf -
independent (as in Definition 3.1), then it achieve correctness (as in Definition 3.2).

Proof: Let (Γ, ~σ) be a Uf -independent mechanism, and assume by contradiction that the mech-
anism does not imply correctness as in Definition 3.2. We will show that for some i ∈ {1, 2} and
a particular value of Uf

i , the prescribed strategy ~σ is not a computational Nash Equilibrium. By
our contradicting assumption, there exists an adversary A that controls party Pi and a polynomial
p(·) such that for infinitely many k’s:

Pr[outputP−i(realπ,A,i(share(S))) 6∈ {⊥,S}] ≥ 1
p(k)

Let σA be the corresponding behavioral strategy of A in the game Γ. Let O denote the set of all
possible outcomes, and recall that ui(o) is the utility of Pi upon outcome o. It follows that for
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infinitely many k’s, the expected utility of party Pi when it plays according to σA, and assuming
that P−i plays according to σi, is:

ui(σA, σ−i) =
∑

o∈O
Pr[o | (σAi , σ−i)] · ui(o) ≥ Pr

[
ofalse
−i | (σAi , σ−i)

]

≥ 1
p(k)

· Uf
i

Now, if Uf
i > p(k) · (Ui + 1), then we have that:

ui(σA, σ−i) ≥ 1
p(k)

· Uf
i >

1
p(k)

· p(k) · (Ui + 1) = Ui + 1

It follows that ui(σA, σ−i) > Ui + 1 and so ~σ is not an ε-Nash Equilibrium for any negligible ε; in
particular ~σ is not a computational Nash equilibrium.

4 Negative Results

4.1 Impossibility for U+-Independence

As we have mentioned, Proposition 3.3 can be used to prove the impossibility of obtaining U+-
independent fair reconstruction mechanisms in the non-simultaneous channels model. This is be-
cause any such mechanism can be used to toss a fair coin, in contradiction to [2]. (Specifically,
secure computation can be used to generate shares of a random bit, which are then reconstructed
using the mechanism. By Proposition 3.3, this mechanism guarantees complete fairness in the pres-
ence of malicious behavior and so neither party can bias the outcome.) Such a proof leaves open the
possibility of obtaining U+-independence in the simultaneous channels model. In this section we
therefore prove a lower bound on the number of rounds that are needed in any fair reconstruction
mechanism, even in the simultaneous model. As we will see, the number of rounds depends on the
U+ utilities of the parties; U+-independence is therefore not achievable.

Completeness assumption. We assume that every execution of the protocol, where both parties
are honest, will end at a point where both parties learn the secret, except with some negligible
probability. Let (Γ, ~σ) be the mechanism, where Γ is the game and ~σ is the prescribed strategy.
The completeness assumptions states that:

Pr
[
outputP1

(
realΓ,P1(σ),P2(σ) (share (S))

)

= outputP2

(
realΓ,P1(σ),P2(σ) (share (S))

)
= S

]
≥ 1− µ(k)

for some negligible function µ.

Number of rounds as random variable. Protocols for rational reconstruction all have an ex-
pected number of rounds (this was proven to be necessary by [5]), and so that the number of rounds
of a protocol is actually a random variable. We denote by rounds

(
realΓ,P1(σ),P2(σ) (share (S))

)

the number of rounds of the execution of the game Γ with parties P1 and P2 where both parties
follow the prescribed strategy ~σ and use the shares generated by the algorithm share. For brevity,
we denote it by RΓ

(σ1,σ2).

Additional assumption on the utility functions of the parties: We add the assumption
that there exists a non-negligible difference between U (the value that the party gains when both
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parties learn the secret) and U−−
i (the value that the party gains when it does not learn the secret,

but the other party does). That is, there exists a non-negligible function ε′ such that for every i
and k,

Ui(k)− U−−
i (k) > ε′(k). (1)

This assumption makes a lot of sense. In particular, assuming that any acceptable mechanism does
not enable party Pi to obtain U+

i , the party may as well just hand its share to the other party and
gain utility U−−

i (which is the same as Ui up to a negligible amount).

Intuition for the Theorem: We prove our lower bound by considering a specific attack (or, an
alternative strategy) that can be carried out on every mechanism. The attack that we consider is
a premature abort. When a party aborts prematurely, it does not broadcast its message in the
round that it quits, while the other party does. Therefore, intuitively, it may gain more information
about the secret than the other party. The mechanism must therefore guarantee that the amount
of information gained in any single round is small enough so that carrying out such an attack is
not profitable and will yield a lower utility. We quantify this amount of information and define an
“aborting threshold” for each party as follows:

β1 =
U1 − U−−

1

U+
1 − U−−

1

and β2 =
U2 − U−−

2

U+
2 − U−−

2

.

Notation: Denote by ai the output of party P1 when P2 quits at round i before sending its message
(that is, at round i only P1 broadcast its message); likewise bi denotes the output of P2 when P1

quits at round i. We call these values “the default outputs”; see Figure 1.

P1 P2

-¾
a0 b0

-¾
a1 b1

...
-¾

ai bi

ai+1 bi+1...

Figure 1: Default output notations (simultaneous)

Note that when P1 quits at round i (before sending its message) and P2 does not quit in that
round, party P1 receives an additional message and therefore may gain additional knowledge about
the secret. In such a case, P1 outputs ai+1, while P2 outputs bi. In the following claim, we bound
the amount of additional knowledge that a party can gain in such a situation:

Claim 4.1 Let U be a set of natural utility functions for P1 and P2 (as in Definition 2.5), and
let the mechanism (Γ, ~σ) be a fair reconstruction mechanism for U (as in Definition 2.6). For every
round i ≥ 0, the following must hold:

1. Pr [ai+1 = s] ≤ Pr [bi = s] + 2β1

2. Pr [bi+1 = s] ≤ Pr [ai = s] + 2β2

12



Proof: We show that the first requirement must hold; the second can be shown in similar way.
Assume by contradiction that there exists a round i such that:

Pr [ai+1 = s] > Pr [bi = s] + 2β1

We show that ~σ is not a computational-Nash Equilibrium in Γ. Denote by σi
1 the strategy when

party P1 acts according to the prescribed strategy σ1 in rounds 1 through i, and does not broadcast
its message at round i + 1. We show that it is better for P1 to play according to σi

1 then σ1, when
P2 plays according to the prescribed strategy σ2. In order to show this, we need to show that the
expected utility of P1 when it plays according to σ1

i is greater than the expected utility when it
plays according to σ1 (when in both cases we assume that P2 plays according to σ2). That is, we
need to show that u1(σi

1, σ2) > u1(σ1, σ2) + ε′, for some non-negligible function ε′. Using the fact
that (Γ, ~σ) is fair, we know that u1(σ1, σ2) = U1. We need to calculate:

u1

(
σi

1, σ2

)
=

∑

o∈O
Pr

[
o | (σi

1, σ2)
]
· u1(o)

≥ Pr
[
o+
1 |

(
σi

1, σ2

)]
· U+

1 +
(
1− Pr

[
o+
1 |

(
σi

1, σ2

)])
· U−−

1 (2)

The above holds since U−−
1 is the lowest utility that P1 can gain. In order to continue, we need to

calculate Pr
[
o+
1 |

(
σi

1, σ2
)]

. When P1 plays according to strategy σi
1, the only way that it can be

the only one to learn the secret is if it learns the secret in round i + 1 and P2 has not yet learned
the secret. Note that P1 plays honestly up until round i+1 and so if the protocol terminates before
round i + 1 it must be that both parties learned the secret. Therefore, P1 is the only one to learn
the secret if and only if round i + 1 is reachable (that is, RΓ

(σ1,σ2) > i), and ai+1 = s while bi 6= s.
We therefore have:

Pr
[
o+
1 |

(
σi

1, σ2

)]
= Pr

[
ai+1 = s ∧ bi 6= s ∧RΓ

(σ1,σ2) > i
]

= Pr [ai+1 = s ∧ bi 6= s] · Pr
[
RΓ

(σ1,σ2) > i | ai+1 = s, bi 6= s
]

(3)

Calculating Pr
[
RΓ

(�1;�2)
> i | ai+1 = s, bi 6= s

]
: Using the completeness assumption, the fact

that bi 6= s implies that the number of rounds is greater than i, except with negligible probability.
That is:

Pr
[
RΓ

(σ1,σ2) > i | ai+1 = s, bi 6= s
]
≥ 1− µ(k)

where µ is some negligible function.

Calculating Pr [ai+1 = s ∧ bi 6= s]: Using the inequality Pr [A ∧ ¬B] ≥ Pr [A]−Pr [B] we have
that:

Pr [ai+1 = s ∧ bi 6= s] ≥ Pr [ai+1 = s]− Pr [bi = s]

Recall that by our contradiction assumption Pr [ai+1 = s] > Pr [bi = s] + 2β1. Therefore:

Pr [ai+1 = s ∧ bi 6= s] > 2β1

Completing the proof of Claim 4.1: By Eq. (3), we have:

Pr
[
o+
1 |

(
σi

1, σ2

)]
= Pr [ai+1 = s ∧ bi 6= s] · Pr

[
RΓ

(σ1,σ2) > i | ai+1 = s, bi 6= s
]

> 2β1 · (1− µ(k)) = 2β1 − µ′(k)

13



for some negligible function µ′, where the latter is true since β is polynomial and µ is negligible.
Plugging this into Eq. (2) we have:

u1

(
σi

1, σ2

)
≥ Pr

[
o+
1 |

(
σi

1, σ2

)]
· U+

1 +
(
1− Pr

[
o+
1 |

(
σi

1, σ2

)])
· U−−

1

= U−−
1 + Pr

[
o+
1 |

(
σi

1, σ2

)]
·
(
U+

1 − U−−
1

)

> U−−
1 + (2β1 − µ′) ·

(
U+

1 − U−−
1

)

= U−−
1 + 2 · U1 − U−−

1

U+
1 − U−−

1

·
(
U+

1 − U−−
1

)
− µ′ ·

(
U+

1 − U−−
1

)

= U−−
1 + 2U1 − 2U−−

1 − µ′ ·
(
U+

1 − U−−
1

)

= U1 + (U1 − U−−
1 )− µ′ ·

(
U+

1 − U−−
1

)

Using the assumption that there is a non-negligible difference between U1 and U−−
1 (see Eq. (1)),

and using the fact that µ′ is negligible function, we conclude that:

u1

(
σi

1, σ2

)
≥ U1 + (U1 − U−−

1 )− µ′ ·
(
U+

1 − U−−
1

)

= U1 + ε′

for some non-negligible function ε′. This contradicts the assumption that ~σ is a computational
Nash equilibrium in Γ, completing the proof of Claim 4.1.

Claim 4.2 Let β ≤ min{β1, β2}. For every i it holds that:

1. Pr [ai = s] ≤ 2iβ + µ(k)

2. Pr [bi = s] ≤ 2iβ + µ(k)

Where µ is some negligible function.

Proof Sketch: Since the mechanism must work for all samplable distributions S over the secret, it
also has to work for the uniform distribution over {0, 1}k. Observe that in this case, the probability
that the parties output the correct secret without any interaction is 2−k. The claim is proven by
induction. The base case follows from the fact that when i = 0 the parties can guess the secret
with only negligible probability, and the inductive step follows from Claim 4.2.

The main theorem: We use the above claims in order to show our main theorem. We now
prove that the number of rounds in any fair reconstruction mechanism depends on {β1, β2} and so
depends on the actual utilities.

Theorem 4.3 Let (Γ, ~σ) be a fair reconstruction mechanism, let RΓ
(σ1,σ2) be a random variable

denoting the number of rounds in Γ when both parties play according to ~σ = (σ1, σ2), and let
β ≤ min {β1, β2} be as above. Then:

E[RΓ
(σ1,σ2)] >

1
8
√

β

Proof: We start by calculating an upper bound on the event RΓ
(σ1,σ2) = i. Recall that the protocol

may fail with some negligible probability, even when both parties are honest. Let good be the event
that both parties learn the secret when both play honestly, and let bad be the event that at least
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one of the parties does not learn the secret when both parties play honestly. By our completeness
assumptions, we know that:

Pr[good] ≥ 1− µ(k) and Pr[bad] ≤ µ(k).

Note that when the number of rounds is i, and we are in good, then both ai = s and bi = s.
Therefore, we have:

Pr
[
RΓ

(σ1,σ2) = i
]

= Pr
[
RΓ

(σ1,σ2) = i | good
]
· Pr[good] + Pr

[
RΓ

(σ1,σ2) = i | bad
]
· Pr[bad]

≤ Pr
[
RΓ

(σ1,σ2) = i | good
]
+ Pr[bad] ≤ Pr [ai = s ∧ bi = s] + µ(k)

≤ Pr[ai = s] + µ(k) (4)

Let r(k) = E[RΓ
(σ1,σ2)]. Then, by Markov’s inequality it holds that:

Pr
[
RΓ

(σ1,σ2) ≥ 2r(k)
]
≤ 1

2

and thus:
Pr

[
RΓ

(σ1,σ2) < 2r(k)
]

>
1
2

We compute an upper bound for the event RΓ
(σ1,σ2) < 2r(k), using Eq. (4):

1
2

< Pr
[
RΓ

(σ1,σ2) < 2r(k)
]

= Pr




2r(k)−1∨

i=0

RΓ
(σ1,σ2) = i


 ≤

2r(k)−1∑

i=0

Pr
[
RΓ

(σ1,σ2) = i
]

≤
2r(k)−1∑

i=0

(Pr [ai = s] + µ(k)) ≤
2r(k)−1∑

i=0

Pr [ai = s] + 2r(k)µ(k)

Therefore, we have:
2r(k)−1∑

i=0

Pr [ai = s] >
1
2
− 2r(k)µ(k)

On the other hand, using Claim 4.2:

2r(k)−1∑

i=0

Pr [ai = s] ≤
2r(k)−1∑

i=0

(2iβ + µ(k)) = 2β ·
2r(k)−1∑

i=0

i +
2r(k)−1∑

i=0

µ(k)

≤ 8r2(k)β + 2r(k)µ(k)

Combine the above together, we have:

1
2
− 2r(k)µ(k) <

2r(k)−1∑

i=0

Pr [ai = s] ≤ 8r2(k)β + 2r(k)µ(k)

That is:
1
2

< 8r2(k)β + 4r(k)µ(k)

Since β is fraction of polynomials, and µ is negligible function, for sufficiently large k’s it holds
that:

β(k) > µ(k)
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and therefore:
1
2

< 8r2(k)β + 4r(k)µ(k) < 8r2(k)β + 4r(k)β < 32r2(k)β

We conclude that:

32r2(k)β >
1
2

r2(k) >
1

64β

r(k) >
1

8
√

β

This completes the proof.

Conclusion: Using Theorem 4.3 we conclude that there do not exist U+-independent fair recon-
struction mechanisms with an expected number of rounds that is polynomial, even in the simultane-
ous model. In order to see this, we show that for all fixed polynomials Ui, U

−
i , U−−

i and r(k), there
exists a polynomial U+

i such that r(k) < 1

8
√

β
. Specifically, take U+

i ≥ 64r2(k)·
(
Ui − U−−

i

)
+U−−

i .

This suffices because in such a case

βi =
Ui − U−−

i

U+
i − U−−

i

≤ Ui − U−−
i

64r2(k) ·
(
Ui − U−−

i

)
+ U−−

i − U−−
i

=
Ui − U−−

i

64r2(k) ·
(
Ui − U−−

i

) =
1

64r2(k)

and thus r(k) ≤ 1

8
√

β
i

in contradiction. We have therefore proven the following:

Theorem 4.4 There do not exist U+-independent fair reconstruction mechanisms for two parties,
even in the simultaneous channels model.

4.2 Impossibility for Uf -Independence (Non-Simultaneous)

In Section 3 we showed that any mechanism that is Uf -independent achieves correctness. In the
simultaneous channels model, Uf -independence – and correctness – has been achieved by previous
protocols [4, 9]. However, as we have mentioned, the known protocols for the model with non-
simultaneous channels do not guarantee correctness. In particular, if Uf

i > Ui for some party Pi

then the strategy profiles ~σ of [10, 6] are not computational Nash equilibriums. In this section
we prove that this is inherent to the non-simultaneous model. That is, there does not exist a fair
reconstruction mechanism that is Uf -independent in the non-simultaneous model.

The Kol-Naor mechanism [10] and correctness. Before proceeding with our proof, we describe
the mechanism of Kol and Naor for non-simultaneous channels and show why it does not achieve
correctness. This example illustrates the problem of achieving Uf -independence and is thus very
instructive. The Kol-Naor mechanism assumes that the utility functions U+, U and U− fulfill the
assumptions in Definition 2.5. Furthermore, the mechanism itself is constructed given the actual
values of the utility functions (i.e., it is utility dependent). The general idea of their protocol is
that the shares assigned to the party are actually lists of possible secrets. One party receives a list
of size ` (this party is called “the short party”), and the other party receives a list of size ` + d
(this party is called “the long party”). The short list is a strict prefix of the other. The lengths `
and d are chosen according to a geometric distribution with parameter β, where β depends on the
utility functions of the parties. The real secret is located at position ` + 1 in the long list, while
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all the other elements in the lists are fake; the (` + 1)th round is called the definitive round because
in this round the secret is learned. In addition to the lists described above, the dealer selects an
independent random permutation for every round; this permutation determines the order in which
the parties send their list elements in the round. The party that sends its message first in the
definitive round is given the long list, and the other party is given the short list. In addition, the
parties receive the permutations for the rounds appearing in their respective lists (i.e., the short
party receives the permutation only for the first ` rounds). We stress that neither party knows if it
the short or long party. In any given round, we call the party who sends its element first the “first
party” and we call the other the “second party”.

In order to reconstruct the secret, the parties proceed round by round; in the ith round each
party sends its ith list element in the order determined by the permutation. At iteration ` + 1
(the “definitive iteration”), the long party is the first to broadcast its share (that is, it is the “first
party”). However, the short party’s list is finished and thus it has no element to send. It therefore
remains silent in this round. The first round in which only one party sends a list element is the
definitive round, and so the secret sent in this round is taken to be the real secret. Intuitively,
fairness is achieved because the owner of the long list does not know the length of the short list,
and in particular does not know which round is the definitive round. It therefore does not know
which of the elements in its list is the real secret and so has to send its share every round. See [10]
for details.

As pointed out in [10, Note 6.2], if one of the parties aborts prematurely (i.e., remains silent in
round i for some i < `) then the other party will output an incorrect value (with high probability
the element si of the ith round will not equal the secret). It is important to note that the aborting
party knows that si is not the real secret because its list is not yet finished. Furthermore, it can
even have some influence over the incorrect value output by the first party (this is because it can
choose at which point to stop and thus it can choose which of the values in the prefix of the list
is output by the first party). The protocol is therefore clearly not correct. We remark that the
same problem also exists for the protocol of [6]. As we have mentioned, [10] assume that rational
parties will not behave in this way because they always prefer to learn the secret than to not learn
it (observe that if a party aborts prematurely then it will not learn the real secret). That is, they
assume that Uf

i < Ui. We show that this assumption is essential as long as Uf -independence is
desired.

The impossibility result. Our proof of impossibility assumes that for all i, U+
i is strictly greater

than Ui by a non-negligible amount. This is called strict competitiveness [10] and is defined as
follows:

Definition 4.5 (strict competitiveness): Let U = {(U+
i , Ui, U

−
i , U−−

i )i∈{1,2}} be a set of natural
utility functions. We say that the set is strictly competitive if for every i ∈ {1, 2}, there exists a
polynomial p(·), such that for infinitely many k’s it holds that:

U+
i (k) ≥ Ui(k) +

1
p(k)

We are now ready to formally state the theorem.

Theorem 4.6 There do not exist two-party Uf -independent fair reconstruction mechanisms for
strictly competitive utility functions in the non-simultaneous model.

17



By Proposition 3.4, Uf -independence implies correctness. We therefore prove that in the non-
simultaneous model there does not exist a fair reconstruction mechanism that is correct, as defined
in Definition 3.2.

Intuition: We begin by describing 2 strategies σstop
1 and σstop

2 . The strategy σstop
1 for party P1 is

the strategy that follows the prescribed strategy ~σ in all the rounds with the following difference.
In every round, P1 checks what its output would be if P2 quits at that round. In the first round for
which the output is not ⊥, the strategy σstop

1 instructs P1 to quit at that round. σstop
2 is defined

analogously. Since we assume correctness, the probability that one of the parties will output a value
which is not s or ⊥ when the other prematurely aborts is negligible. Thus, when playing σstop both
of the parties will output the correct s in the round that they quit. Next, we prove that when both
parties follow ~σstop, with high probability one of them learns the secret while the other does not.
We conclude by showing that the prescribed strategy ~σ is not a computational Nash equilibrium
by showing that one of the ~σstop strategies has a better expected utility than ~σ. That is, we show
that either u2(σ1, σ

stop
2 ) > u2(σ1, σ2) + ε′ or u1(σ

stop
1 , σ2) > u1(σ1, σ2) + ε′, for some non-negligible

function ε′.
Before proceeding to the formal proof, we introduce the notations that needed:

Notations and conventions: Assume that P1 sends the first message, and P2 sends the last
message. A round of (Γ, σ) consists of a message from P1 followed by a message from P2. If P1

aborts before sending its ith-round message, then we will say that P2 outputs bi−1 (thus, if P1 does
not send any messages then P2 outputs b0). Furthermore, if P2 aborts before sending its ith-round
message (which is after it has received the ith message from P1), then we say that P1 outputs ai.
Thus, if P2 sends no messages, P1 outputs a1. For simplicity, if party P1 halts at round i (and
outputs ai), we define aj = ai for every j > i. We define bj = bi after P2 halts in the same way.
We call these values “the default output”. See Figure 2.

P1 P2

¾

-
a1 b0

b1

-

¾

a2

b2

...

-

¾

ai

bi

ai+1

Figure 2: Default output notations (non-simultaneous)

Random coins. Denote by rounds
(
realΓ,P1(σ,ρ1),P2(σ,ρ2) (share (S, ρs))

)
the exact number of

rounds of the execution of the game Γ with parties P1 and P2 using random coins ρ1 and ρ2,
respectively, where both parties follow the prescribed strategy σ and use the shares generated by
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the algorithm share with coins ρs (recall that ρs also determines the secret s chosen according to
S). Furthermore, denote by rounds

(
realΓ,P1(σ),P2(σ) (share (S))

)
the random variable on the

number of rounds when ρ1, ρ2, ρs are uniformly distributed. We denote the expected number of
rounds in r(k); that is r(k) = E

[
rounds

(
realΓ,P1(σ),P2(σ) (share (S))

)]
. For the sake of clarity

(and to reduce the amount of notation), we include the sampling of s according to S in the random
coins of the algorithm share used to generate the shares.

Proof of Theorem 4.6: Let U be a set of strictly competitive utility functions and let S be the
uniform distribution over {0, 1}n. We prove that for every mechanism (Γ, ~σ) one of the following
does not hold:

1. (Γ, ~σ) is a fair reconstruction mechanism for the set of utility functions U .

2. (Γ, ~σ) provides correctness. That is, for every arbitrary strategy σ′i followed by party Pi

(i ∈ {1, 2}) there exists a negligible function µ such that:

Pr[outputP−i(realΓ,Pi(σ′i),P−i(σ−i)(share(S))) 6∈ {⊥,S}] ≤ µ(k).

It suffices to show that every protocol that achieves correctness (item 2) is not a fair reconstruction
mechanism (item 1). We stress that we ignore the Uf utilities in this proof because we assume
Uf -independence.

In the proof below, we will define a set Ω of “good” coins for (share, P1, P2). The set contains
all of the coins with the property that an execution of the share (share) and reconstruction protocol
((Γ, ~σ)) with these coins fulfill a number of requirements. We will then show that the size of the set
Ω is “large”. Furthermore, we show that when both parties use these coins and follow σstop, then
the outcome must be o+

1 or o+
2 (i.e., only one of the parties learns the output). Finally, based on

this, we show that (σ1, σ2) is not a computational Nash Equilibrium, since for at least one of the
parties, its utility is larger by a non-negligible amount when following σstop than when following σ.

Definition 4.7 (the set of coins Ωp(k)) Let p(·) be a polynomial. Define the set Ωp(k) ⊆ {0, 1}∗ ×
{0, 1}∗ × {0, 1}∗ to be the set of coins (ρs, ρ1, ρ2) for (share, P1, P2) that fulfill the following re-
quirements for parties running the prescribed strategy ~σ:

• req1: The number of rounds in the execution of the reconstruction protocol is less than p(k);
that is rounds

(
realΓ,P1(σ,ρ1),P2(σ,ρ2) (share (S, ρs))

)
< p(k)

• req2: In every round, the default outputs of both parties are in {s,⊥}. That is:

– For every i (1 ≤ i ≤ p(k)), it holds that ai ∈ {s,⊥}.
– For every j (0 ≤ i ≤ p(k)− 1), it holds that bj ∈ {s,⊥}.

• req3: Neither party outputs the correct value s without participating in the protocol. That is
a1 6= s and b0 6= s.

• req4: Both parties output s at the end of the protocol. That is, ap(k)−1 = s and bp(k) = s.

We stress that the set Ωp(k) is well defined because the parties’ strategies are specified and
thus the random coins fully determine the flow of execution and outputs. Recall that r(k) is the
expected number of rounds in the reconstruction protocol. The following claim states that “most”
of the random coins are in the set Ωp(k):
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Claim 4.8 For every polynomial q(·), every polynomial p(k) ≥ 2 · r(k) · q(k), and all sufficiently
large k’s, it holds that

Pr
[
ρ ∈ Ωp(k)

]
≥ 1− 1

q(k)

where ρ ∈R {0, 1}∗ × {0, 1}∗ × {0, 1}∗ is uniformly distributed.

Proof: Let q(·) be a polynomial, and define p(k) ≥ 2 · r(k) · q(k). Now, let ρ ∈R {0, 1}∗×{0, 1}∗×
{0, 1}∗ be uniformly distributed. We calculate the probability that ρ ∈ Ωp(k), which occurs when
all the requirement of Definition 4.7 are met by ρ. That is:

Pr
[
ρ ∈ Ωp(k)

]
= Pr [req1 ∧ req2 ∧ req3 ∧ req4]

= Pr [req1] · Pr [req2 | req1] · Pr [req3 | req1 ∧ req2] · Pr [req4 | req1 ∧ req2 ∧ req3]

Computing the first term Pr[req1]: The first requirement states that the number of rounds
should be no more than p(k). Since the expected number of rounds is r(k), by Markov’s inequality
we have that

Pr [¬req1] = Pr
[
rounds

(
realΓ,P1(σ,ρ1),P2(σ,ρ2) (share (S, ρs))

)
≥ p(k)

]
≤ r(k)

p(k)

and thus:

Pr [req1] = Pr
[
rounds

(
realΓ,P1(σ,ρ1),P2(σ,ρ2) (share (S, ρs))

)
< p(k)

]
≥ 1− r(k)

p(k)

Computing the second term Pr[req2 | req1]: Given that req1 holds, we know that the protocol
terminates after no more than p(k) rounds. That is, it suffices to show that for every i ∈ {1, ..., p(k)},
ai ∈ {s,⊥}, and for every j ∈ {0, ..., p(k)− 1}, bj ∈ {s,⊥}. Thus,

Pr [req2 | req1] = Pr [(∀i ∈ {1, ..., p(k)}, ai ∈ {s,⊥}) ∧ (∀j ∈ {0, ..., p(k)− 1}, bj ∈ {s,⊥})]
= 1− Pr [(∃i ∈ {1, ..., p(k)}, ai 6∈ {s,⊥}) ∨ (∃j ∈ {0, ..., p(k)− 1}, bj 6∈ {s,⊥})]

Using the union bound, we get:

Pr [(∃i ∈ {1, ..., p(k)}, ai 6∈ {s,⊥}) ∨ (∃j ∈ {0, ..., p(k)− 1}, bj 6∈ {s,⊥})]

≤
p(k)∑

i=1

Pr [ai 6∈ {s,⊥}] +
p(k)−1∑

j=0

Pr [bj 6∈ {s,⊥}]

≤ 2p(k) · µ(k)

for some negligible function µ. This last inequality follows from the assumption that the reconstruc-
tion protocol achieves correctness and thus a party outputs an incorrect value with only negligible
probability (even if the other party terminates early). By the fact that p(·) is a polynomial, it
follows that there exists a negligible function µ1 such that

Pr [req2 | req1] ≥ 1− 2p(k) · µ(k) ≥ 1− µ1(k)

Computing the third term Pr[req3 | req1 ∧ req2]: The third requirement states that neither
party outputs s without participating in the protocol. Using req2, we know that a1 ∈ {s,⊥},
b0 ∈ {s,⊥} and thus:

Pr [req3 | req1 ∧ req2] = Pr [a1 = ⊥ ∧ b0 = ⊥ | a1, b0 ∈ {⊥, s}]
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We calculate:

Pr [¬req3 | req1 ∧ req2] = 1− Pr [a1 = s ∨ b0 = s | a1, b0 ∈ {⊥, s}]
≥ 1− Pr [a1 = s | a1, b0 ∈ {⊥, s}]− Pr [b0 = s | a1, b0 ∈ {⊥, s}]

We show that Pr [a1 = s | a1, b0 ∈ {⊥, s}] is negligible (the calculation for b0 is equivalent). Since
S is the uniform distribution over {0, 1}k, it holds that:

Pr [a1 = s | a1, b0 ∈ {⊥, s}] ≤ Pr [a1 = s]
Pr [a1, b0 ∈ {s,⊥}]

=
2−k

Pr [a1, b0 ∈ {s,⊥}]

≤ 2−k

1− µ(k)
≤ µ2(k)

for some negligible function µ2(k). (The equality follows from the fact that S is the uniform
distribution over {0, 1}k and the last inequality follows from the assumption of correctness on the
protocol.) Thus,

Pr [req3 | req1 ∧ req2] ≥ 1− 2µ2(k)

Computing the fourth term Pr[req4 | req1∧req2∧req3]: The fourth requirement says that at
the end of the execution of the protocol, both parties output the secret s. By the completeness of
the protocol when both parties follow the prescribed strategy, we know that whenever the strategy
instructs the parties to halt, they must output s, except with negligible probability. Since we
are conditioning on req1, the prescribed strategy instructs the parties to halt before round p(k).
Therefore, there exists a negligible function µ3 such that

Pr [req4 | req1 ∧ req2 ∧ req3] ≥ 1− µ3(k)

Completing the proof: Combining all of the above we have that for all sufficiently large k’s:

Pr
[
ρ ∈ Ωp(k)

]
= Pr [req1] · Pr [req2 | req1] · Pr [req3 | req1 ∧ req2] · Pr [req4 | req1 ∧ req2 ∧ req3]

≥
(

1− r(k)
p(k)

)
· (1− µ1(k)) · (1− 2µ2(k)) · (1− µ3(k))

≥ 1− r(k)
p(k)

− r(k)
p(k)

where the last inequality is due to the fact that r(k)
p(k) is larger than any negligible function (for all

sufficiently large k’s). Since p(k) ≥ 2 · r(k) · q(k):

Pr
[
ρ ∈ Ωp(k)

]
≥ 1− 2 · r(k)

p(k)
≥ 1− 2 · r(k)

2 · r(k) · q(k)
= 1− 1

q(k)

This completes the proof of Claim 4.8.

We now formally define the strategy σstop for both parties:
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Formal description of σstop1 :

• i ← 1.

• calculate a1.

• While ai = ⊥
– Run P1 for round i (send a message

using the strategy σ1 and then receive
a message).

– Increment i.

– Calculate ai.

• On the first element such that ai 6= ⊥, quit,
and output ai.

Formal description of σstop2 :

• j ← 0.

• calculate b0.

• While bj = ⊥
– Increment j.

– Receive the round j message from P1

– Calculate bj .

– If bj = ⊥, run P2 for round j (send a
message using the strategy σ2).

• On the first element such that bj 6= ⊥, quit,
and output bj .

We remark that for the analysis to go through, it is crucial that the strategy ~σstop uses the exact
same random coins as ~σ. Thus, if ~σ does not calculate ai or bj in every step (since such a value
is only needed if indeed the other party aborts early), and if these calculations are probabilistic
and require random coins, then ~σ and ~σstop need a different number of random coins. In order to
overcome this technical detail, we define the profile strategy ~σequal which is equivalent to ~σ except
that it internally calculates ai bj in every step (and does nothing with this additional information).
It is easy to see that ~σ and ~σequal are equivalent. That is, if ~σ is a computational Nash Equilibrium,
then so is ~σequal. Moreover, ~σequal and ~σstop use the exact same number of coins. For the sake of
clarity, we ignore this from now on and just assume that ~σ itself uses the same number of coins as
~σstop

We have shown that for every polynomial, there is a large set of random coins Ωp(k) that
result in a “good” outcome in an execution of the strategy ~σ. We now show that for every set of
random tapes ρ in Ωp(k), if both parties change their strategy to ~σstop and use such a ρ, then with
probability 1 exactly one of the parties will learn the secret. We stress that this is guaranteed only
for the “good” coins in Ωp(k) and thus the probability overall that this occurs when both parties
follow ~σstop equals the probability that a set of random coins are in Ωp(k) (which is close to 1).
Before stating the claim, we introduce the following shorthand. We write

[
o | (σ′1, σ′′2 , ρ ∈ Ωp(k))

]

to denote the event that the outcome is o after an execution where party 1 runs strategy σ′1, party 2
runs strategy σ′′2 and the coins used ρ are in the set Ωp(k) as defined in Definition 4.7. Recall also
that o+

i is the outcome that Pi learns the secret while P−i does not. We have:

Claim 4.9 For every polynomial p(·) it holds that:

Pr
[
o+
1 ∨ o+

2 | (σstop
1 , σstop

2 , ρ ∈ Ωp(k))
]

= 1

Proof: Let p(·) be a polynomial. By the definition of Ωp(k) we have that for every ρ ∈ Ωp(k), the
following holds:
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• The number of rounds is less than p(k).

• At the end of the protocol, both parties learn the secret (as long as they follow the prescribed
strategy).

• a1 = ⊥, b0 = ⊥.

• For every i ∈ {1, ..., p(k)}, j ∈ {0, ..., p(k)− 1}, ai ∈ {s,⊥}, bj ∈ {s,⊥}.
It follows that when both of the parties follow ~σ, there exists a round i such that ai 6= ⊥, and a
round j such that bj 6= ⊥ (this must occur since a1 = b0 = ⊥ and ap(k) = bp(k)−1 = s). We will
consider the first i such that ai 6= ⊥ and the first j such that bj 6= ⊥. Since all ai, bj values are
in {⊥, s} it follows that ai = s and bj = s. Now, if both parties will play according to σstop, then
when one of them receives a value which is not ⊥ it will immediately stop. Since we are working
in the non-simultaneous model, we can show that:

• If i ≤ j, then by the definition of σstop party P1 will not send its round i message and party
P2 will output ⊥. (When i < j this is clear. Furthermore, when i = j, note that P1 defines ai

before sending its message in round i and P2 defines bj only after receive this message from
P1. Thus, when i = j, P2 will output bj−1 = ⊥.) In this case, P1 outputs s and P2 outputs
⊥; thus the outcome is o+

1 . See Figure 3, case (1).

• If j < i, then by the definition of σstop party P2 will stop before sending its message in round
j. Thus, aj = ⊥. This implies that P2 alone learns the secret (since bj = s) and P1 outputs
⊥. The outcome in this case is o+

2 . See Figure 3, case (2).

P1 P2

¾

-
a1 = ⊥ b0 = ⊥

b1 = ⊥
a2 = ⊥ ...

¾
bi−1 = ⊥

-
ai = s

...
-

¾
ap(k)+1 = s

bp(k) = s

(1)

P1 P2

¾

-
a1 = ⊥ b0 = ⊥

b1 = ⊥
a2 = ⊥ ...

-
aj = ⊥

¾
bj = s

...
-

¾
ap(k)+1 = s

bp(k) = s

(2)

(1) P1 learns the secret before P2; quitting in round i will result in o+
1

(2) P2 learns the secret before P1; quitting in round j will result in o+
2

Figure 3: The possible cases of a run with ρ ∈ Ωp(k)
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We conclude that when ρ ∈ Ωp(k) and both parties follow ~σstop, the probability that exactly one
of the parties learns the secret is 1, as required.

In the previous claim we showed that when both parties play according to ~σstop, and when
ρ ∈ Ωp(k), there will be a party that learns the secret alone.

Our aim overall is to show that the strategy ~σ does not achieve computational Nash equilibrium.
In order to do this, we show that for a particular party, there exists a better strategy; in particular,
we will show that σstop is better for one of the parties. A key step in doing this is the next technical
claim which considers what happens when one party uses σstop while the other uses σ. We use the
previous claim to show that:

Corollary 4.10 For every polynomial p(·) it holds that:

Pr
[
o+
1 | (σstop

1 , σ2), ρ ∈ Ωp(k)

]
+ Pr

[
o+
2 | (σ1, σ

stop
2 ), ρ ∈ Ωp(k)

]
= 1

Proof: In Claim 4.9 we proved that:

Pr
[
o+
1 ∨ o+

2 | (σstop
1 , σstop

2 ), ρ ∈ Ωp(k)

]
= 1

We observe the following three facts:

1. o+
1 and o+

2 are disjoint events (i.e., they cannot both occur in a single execution). Hence:

Pr
[
o+
1 ∨ o+

2 | (σstop
1 , σstop

2 ), ρ ∈ Ωp(k)

]

= Pr
[
o+
1 | (σstop

1 , σstop
2 ), ρ ∈ Ωp(k)

]
+ Pr

[
o+
2 | (σstop

1 , σstop
2 ), ρ ∈ Ωp(k)

]

2. We claim that:

Pr[o+
1 | (σstop

1 , σstop
2 ), ρ ∈ Ωp(k)] ≤ Pr[o+

1 | (σstop
1 , σ2), ρ ∈ Ωp(k)].

This is true since in every run with the parties following
(
σstop

1 , σstop
2

)
in which P1 learns the

secret before P2, it follows that P1 learns the secret before P2 even if P2 plays according to
σ. (Until the point that P1 learns the secret, σ2 and σstop

2 are identical.)

3. Pr[o+
2 | (σstop

1 , σstop
2 ), ρ ∈ Ωp(k)] ≤ Pr[o+

2 | (σ1, σ
stop
2 ), ρ ∈ Ωp(k)]. This follows as above.

Combining the above, we conclude that:

Pr
[
o+
1 | (σstop

1 , σ2), ρ ∈ Ωp(k)

]
+ Pr

[
o+
2 | (σ1, σ

stop
2 ), ρ ∈ Ωp(k)

]

≥ Pr
[
o+
1 | (σstop

1 , σstop
2 ), ρ ∈ Ωp(k)

]
+ Pr

[
o+
2 | (σstop

1 , σstop
2 ), ρ ∈ Ωp(k)

]

= Pr
[
o+
1 ∨ o+

2 | (σstop
1 , σstop

2 ), ρ ∈ Ωp(k)

]
= 1

completing the proof of the claim.
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We are now ready to prove our main claim:

Claim 4.11 The prescribed strategy ~σ = (σ1, σ2) is not a computational Nash equilibrium.

Proof: We prove this by showing that there exists a non-negligible function ε′ = ε′(k) for which
at least one of the following holds:

u1(σ
stop
1 , σ2) > u1(σ1, σ2) + ε′

u2(σ1, σ
stop
2 ) > u2(σ1, σ2) + ε′

Let q(·) be a polynomial such that for all sufficiently large k’s it holds that:

q(k) ≥ max

{
2U+

1 + 2U1

U+
1 − U1

,
2U+

2 + 2U2

U+
2 − U2

}
(5)

Such a polynomial q(·) exists because all of the utility functions are polynomial, and by strict
competitiveness there is a non-negligible difference between U+

i and Ui. Now, let p(k) ≥ 2·r(k)·q(k)
(where r(k) equals the expected number of rounds and q(k) is as above), and define Ωp(k) as in
Definition 4.7, using this p(k).

Notation:

• Denote by α the probability that party P1 learns the secret and P2 does not, when P1 follows
σstop, P2 follows σ, and ρ ∈ Ωp(k). That is:

α = Pr[o+
1 | (σstop

1 , σ2), ρ ∈ Ωp(k)]

• Denote by β the probability that ρ ∈ Ωp(k). Recall that by Claim 4.8:

β = Pr[ρ ∈ Ωp(k)] ≥
(

1− 1
q(k)

)

The expected utility of P1: The expected utility of party P1 when it plays according to σstop,
P2 plays according to σ, and when ρ ∈ Ωp(k) is:

u1

(
σstop

1 , σ2 | ρ ∈ Ωp(k)

)
= Pr

[
o+
1 | (σstop

1 , σ2), ρ ∈ Ωp(k)

] · U+
1 + Pr

[
oboth | (σstop

1 , σ2), ρ ∈ Ωp(k)

] · U1

+ Pr
[
o−1 | (σstop

1 , σ2), ρ ∈ Ωp(k)

] · U−
1 + Pr

[
o+
2 | (σstop

1 , σ2), ρ ∈ Ωp(k)

] · U−−
1

We now calculate each of the above probabilities:

• By our above notation, Pr
[
o+
1 |

(
σstop

1 , σ2

)
, ρ ∈ Ωp(k)

]
= α.

• Pr
[
o−1 |

(
σstop

1 , σ2

)
, ρ ∈ Ωp(k)

]
= 0: This holds because when P2 plays according to σ we

know that P1 will always learn the secret. Recall that ρ ∈ Ωp(k) and so when neither party
stops early, both output s with probability 1. Since P2 does not stop early, P1 will only stop
when it learns s (note that P1 only stops when ai 6= ⊥ and by req2 we are given that ai = s).

• Pr
[
o+
2 |

(
σstop

1 , σ2

)
, ρ ∈ Ωp(k)

]
= 0: This follows from the exact same argument as above.

• Pr
[
oboth |

(
σstop

1 , σ2

)
, ρ ∈ Ωp(k)

]
= 1−α: This holds because the sum of all four probabilities

in the expected utility of P1 equal 1 (they cover all possibilities).
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We therefore have
u1

(
σstop

1 , σ2 | ρ ∈ Ωp(k)

)
= α · U+

1 + (1− α) · U1

We have calculated the expected utility of P1 for ρ ∈ Ωp(k). We conclude by calculating the expected
utility for P1 for a randomly chosen ρ:

u1

(
σstop

1 , σ2

)
= u1

(
σstop

1 , σ2 | ρ ∈ Ωp(k)

) · Pr
[
ρ ∈ Ωp(k)

]
+ u1

(
σstop

1 , σ2 | ρ 6∈ Ωp(k)

) · Pr
[
ρ 6∈ Ωp(k)

]

≥ u1

(
σstop

1 , σ2 | ρ ∈ Ωp(k)

) · Pr
[
ρ ∈ Ωp(k)

]

=
(
α · U+

1 + (1− α) · U1

) · β (6)

Below, we will show that when α ≥ 1/2 (and for an appropriate β), this expected utility is greater
than U1 + ε′, where ε′ is non-negligible. Before doing this, we carry out an analogous calculation
for the expected utility of P2.

The expected utility of P2: The expected utility of party P2 when it follows σstop, P1 follows σ,
and ρ ∈ Ωp(k) is:

u2

(
σ1, σ

stop
2 | ρ ∈ Ωp(k)

)
= Pr

[
o+
2 | (σ1, σ

stop
2 ), ρ ∈ Ωp(k)

] · U+
2 + Pr

[
oboth | (σ1, σ

stop
2 ), ρ ∈ Ωp(k)

] · U2

+ Pr
[
o−2 | (σ1, σ

stop
2 ), ρ ∈ Ωp(k)

] · U−
2 + Pr

[
o+
1 | (σ1, σ

stop
2 ), ρ ∈ Ωp(k)

] · U−−
2

We calculate each of the above probabilities:

• Pr[o+
2 | (σ1, σ

stop
2 ), ρ ∈ Ωp(k)] = 1 − α. This follows from Claim 4.10 and the fact that

Pr
[
o+
1 |

(
σstop

1 , σ2

)
, ρ ∈ Ωp(k)

]
= α.

• Pr[o−2 | (σ1, σ
stop
2 ), ρ ∈ Ωp(k)] = 0. This is exactly the same as in the calculation of the utility

of P1.

• Pr
[
o+
1 | (σ1, σ

stop
2 ), ρ ∈ Ωp(k)

]
= 0. Again, as above.

• Pr[oboth | (σ1, σ
stop
2 ), ρ ∈ Ωp(k)] = α. Once again, this follows because all four probabilities

sum to 1.

We therefore write:
u2

(
(σ1, σ

stop
2 ) | ρ ∈ Ωp(k)

)
= (1− α) · U+

2 + α · U2

We have calculated the expected utility for P2 when ρ ∈ Ωp(k). The expected utility for P2 for a
randomly chosen ρ is:

u2

(
σ1, σ

stop
2

)
= u2

(
σ1, σ

stop
2 | ρ ∈ Ωp(k)

) · Pr
[
ρ ∈ Ωp(k)

]
+ u2

(
σ1, σ

stop
2 | ρ 6∈ Ωp(k)

) · Pr
[
ρ 6∈ Ωp(k)

]

≥ u2

(
σ1, σ

stop
2 | ρ ∈ Ωp(k)

) · Pr
[
ρ ∈ Ωp(k)

]

=
(
(1− α) · U+

2 + α · U2

) · β (7)

Below, we will show that when α ≤ 1/2 (and for an appropriate β), this expected utility is greater
than U1 + ε′, where ε′ is non-negligible.

Computing β: In order to complete our analysis, we need to compute the value of β as a function
of the utilities. Recall that we set

β = 1− 1
q(k)

and by Eq. (5):

q(k) ≥ max

{
2U+

1 + 2U1

U+
1 − U1

,
2U+

2 + 2U2

U+
2 − U2

}

26



Let i ∈ {1, 2} be the index for which 2U+
i +2Ui

U+
i −Ui

is the maximum. We have:

β = 1− 1
q(k)

≥ 1− 1
2U+

i +2Ui

U+
i −Ui

= 1− U+
i − Ui

2U+
i + 2Ui

=
2U+

i + 2Ui − U+
i + Ui

2U+
i + 2Ui

=
U+

i + 3Ui

2U+
i + 2Ui

=
4Ui + (U+

i − Ui)
2U+

i + 2Ui
=

Ui + 1
4(U+

i − Ui)
1
2U+

i + 1
2Ui

Therefore, it holds that:

β ≥ U1 + 1
4(U+

1 − U1)
1
2U+

1 + 1
2U1

and β ≥ U2 + 1
4(U+

2 − U2)
1
2U+

2 + 1
2U2

(8)

Concluding the proof: In order to show that ~σ is not an computational-Nash Equilibrium, we
show that at least one of the party will prefer to change its strategy to ~σstop. The specific party
that will prefer to change its strategy depends on the value α. There are two cases:

• Case 1 – 1
2 ≤ α ≤ 1: In this case, we claim that P1 prefers to change its strategy to σstop.

Recall that by Eq. (6):

u1

(
σstop

1 , σ2

)
=

(
α · U+

1 + (1− α) · U1

)
· β

Let α = 1
2 + δ, where δ ≥ 0. We write:

u1

(
σstop

1 , σ2

)
=

((
1
2

+ δ

)
· U+

1 + (1− 1
2
− δ) · U1

)
· β

=
((

1
2

+ δ

)
· U+

1 +
(

1
2
− δ

)
· U1

)
· β

=
(

δ ·
(
U+

1 − U1

)
+

1
2
· U+

1 +
1
2
· U1

)
· β

≥
(

1
2
· U+

1 +
1
2
· U1

)
· β

Using Eq. (8) we know that:

β ≥ U1 + 1
4(U+

1 − U1)
1
2U+

1 + 1
2U1

and so:

u1

(
σstop

1 , σ2

)
≥

(
α · U+

1 + (1− α) · U1

)
· β

≥
(

1
2
· U+

1 +
1
2
· U1

)
· U1 + 1

4(U+
1 − U1)

1
2U+

1 + 1
2U1

= U1 +
1
4
(U+

1 − U1)

However, u1 (σ1, σ2) = U1. By the assumption that the utility functions are strictly competi-
tive, U+

1 = U1 + ε′ for some non-negligible function ε′. Thus:

u1

(
σstop

1 , σ2

)
> u1 (σ1, σ2) + ε
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for a non-negligible function ε. We conclude that when 1 ≥ α ≥ 1
2 , P1 prefers to change its

strategy to σstop.

• Case 2 – 0 ≤ α ≤ 1
2 : This is almost equivalent to the previous case. We claim that in this

case P2 prefers to change its strategy to σstop. By Eq. (7) we have:

u2

(
σ1, σ

stop
2

)
=

(
(1− α) · U+

2 + α · U2

)
· β

Let α = 1
2 − δ, where δ ≥ 0. We write:

u2

(
σ1, σ

stop
2

)
=

(
(1− α) · U+

2 + α · U2

)
· β

=
((

1
2

+ δ

)
· U+

2 +
(

1
2
− δ

)
· U2

)
· β

=
(

δ ·
(
U+

2 − U2

)
+

1
2
· U+

2 +
1
2
· U2

)
· β

≥
(

1
2
· U+

2 +
1
2
· U2

)
· β

Using Eq. (8) we know that:

β ≥ U2 + 1
4(U+

2 − U2)
1
2U+

2 + 1
2U2

and thus:

u2

(
σ1, σ

stop
2

)
≥

(
1
2
· U+

2 +
1
2
U2

)
· β

≥
(

1
2
· U+

2 +
1
2
U2

)
· U2 + 1

4(U+
2 − U2)

1
2U+

2 + 1
2U2

= U2 +
1
4
(U+

2 − U2)

Recall again that u2 (σ1, σ2) = U2 and U+
2 > U2 + ε′ where ε′ is non-negligible (by the

assumption of strict competitiveness). We therefore conclude that:

u2

(
σ1, σ

stop
2

)
> u2 (σ1, σ2) + ε

for some non-negligible function ε. Hence, when 1
2 ≥ α ≥ 0, P2 prefers to change its strategy

to σstop.

We have shown that for every α, there is a party whose utility is higher if it changes its strategy
from σ to σstop. Hence, (σ1, σ2) is not an computational-Nash equilibrium, in contradiction.

This completes the proof of Theorem 4.6.

Remark: Note that when α = 1/2, both parties prefer to change their strategy. In actuality, we
can show that when β is almost 1, for almost every α, it is better for both parties to change their
strategy to vecσstop (assuming that the other party follows the prescribed strategy ~σ). Nevertheless,
~σstop is not a satisfactory prescribed strategy for rational reconstruction because as we have shown,
in such a case only one of them will learn the result (with very high probability). Thus, ~σstop does
not result in oboth.
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4.3 Impossibility of Fair Secret Sharing with Auxiliary Input (Non-Simultaneous)

A closer look at the Kol and Naor mechanism (in the non-simultaneous model), raises another
possible problem, namely the possibility that one of the parties has some prior information about
the secret. The problem is that the party with the long list sees the entire secret s at the definitive
iteration before it is supposed to broadcast it. Suppose that the long party has some prior infor-
mation about the secret s, or has access to some “place” where it can check whether the possible
current secret s′ is the real secret (e.g. the secret is a password to some web server, and the party
can just type the password and sees if it works). In such a case, there is no incentive for the party
to broadcast the secret at the definitive iteration, and therefore the party with the short list does
not learn the secret.

In this section, we ask whether this weakness in the protocol is inherent (for the non-simultaneous
model). In order to formalize this question, we assume that the parties have access to some mem-
bership oracle O, and each party can query the oracle to ask whether the current possible secret
s′ is the actual secret. We assume that the parties are run in polynomial time and so can only
query the oracle a polynomial number of times. Clearly, this implies that fair secret sharing with
auxiliary input is only possible if the secret is taken from a super-polynomial domain. We model
it this way because otherwise there is a non-negligible a priori probability of guessing the secret
anyway.

We define a fair reconstruction mechanism with auxiliary information, to be a mechanism that
achieves fairness, even when the parties have an access to such an oracle. Formally, a membership
Oracle O : S → {0, 1} is defined as follows:

Os(x) =

{
1 x = s
0 o.w.

For simplicity, we assume that the oracle is never wrong. We define fair reconstruction mechanism
with auxiliary information as follows:

Definition 4.12 Let P1, P2 be two parties, let U be a set of natural utility values for the parties (as
in Definition 2.5), and let O be a membership oracle. We say that (ΓO, ~σO) is a fair reconstruction
mechanism with auxiliary information for the set U , if the mechanism is fair (as in Definition 2.6),
even when both parties have access to the oracle O.

We now show another impossibility result in the non-simultaneous model:

Theorem 4.13 There does not exist a fair reconstruction mechanism with auxiliary information
in the non-simultaneous model.

Proof Sketch: The proof for this theorem is the same proof as Theorem 4.6, with some modifi-
cations. Actually, in Theorem 4.6 we assumed that the mechanism achieves correctness. However,
our mechanism does not necessarily guarantee this property, and this requires some changes. Let
(ΓO, ~σO) be the mechanism. We make the following modifications to the proof of Theorem 4.6:
• Default output notation: In the original proof, it is guaranteed that every default output

of the parties is in the set {s,⊥} except with negligible probability. This was crucial for the
definition of the set Ω, and is actually a property of the correctness assumption. In our proof,
(ΓO, ~σO) does not guarantee correctness, and therefore, the above does not hold. Therefore, we
have to modify the definition of the default output: denote by aoriginal

i the output value of party
P1 on round i in the original protocol. We define our “new default output” as follows:
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ai =

{
aoriginal

i if O(ai) = 1
⊥ otherwise

That is, in order to compute the new default output at round i, P1 calculates the default output
of that round (as it did in the previous proof), and queries the oracle with that value. If the
oracle returns 1, then P1 outputs it (using the oracle answer, we know that this value is s).
Otherwise, it sets the new default output to be ⊥. We define the “new default output” for the
party P2 in the same way. With this modification, our new default outputs will also be in the
set {s,⊥}, as needed in the proof. Given this modification, we use the same definition of good
coins (Definition 4.7). The proof that its size is the same as before (except that requirement 2
holds with probability 1, in contrary to the original proof, where it may not hold with at most
negligible probability).

• The alternative strategy σstop: We use exactly the same alternative strategy σstop, but
emphasize that we use the new default output notations in the calculation of this strategy.

• About Uf : In the original proof, we assumed correctness, and therefore we assumed that the
probability of causing the other party to output an incorrect value, and achieve Uf , is negligible.
In other words, we assumed that:

Pr
[
ofalse
2 | (σstop

1 , σ2), ρ ∈ Ωp(k)

]
= 0 and Pr

[
ofalse
1 | (σ1, σ

stop
2 ), ρ ∈ Ωp(k)

]
= 0

The above was true because whenever ρ ∈ Ωp(k), then for both parties the default outputs
were always in {s,⊥}. This assumption was used in the calculations of Claim 4.11. For example,
this is an implicit assumption in the following equation:

u1

(
σstop

1 , σ2 | ρ ∈ Ωp(k)

)
= Pr

[
o+
1 | (σstop

1 , σ2), ρ ∈ Ωp(k)

] · U+
1 + Pr

[
oboth | (σstop

1 , σ2), ρ ∈ Ωp(k)

] · U1

+Pr
[
o−1 | (σstop

1 , σ2), ρ ∈ Ωp(k)

] · U−
1 + Pr

[
o+
2 | (σstop

1 , σ2), ρ ∈ Ωp(k)

] · U−−
1

In the proof here, we do not assume correctness, and therefore, apparently, we cannot ignore
Uf . However, we note that including the possibility of causing the other party to output a
wrong secret can only make the expected utility even bigger (irrespective of the value of Uf and
even if Uf > U). In order to see this, recall that we are considering the case that P1 always
learns the secret. Since Uf is the expected utility when P1 does not learn the secret (but causes
to the other party to output an incorrect value), it follows that Uf does not occur at all. Thus,
the probability of obtaining Uf is zero. Note that there is still the possibility that P1 learns the
secret, and also causes to the other party to output an incorrect value. In this case, the utility
that it achieves may be greater than or equal to U+

1 . However, this only makes the expected
utility of following strategy σstop

1 even greater, as required.

Auxiliary information – simultaneous channels. We remark that in the simultaneous channels
model, it is possible to obtain fair reconstruction with auxiliary information. In particular, the
protocols of [4, 10] achieve this.

5 Positive Results

5.1 Fully Independent Mechanisms for n ≥ 3 with Simultaneous Channels

In this section we show that utility dependence is not always essential. In particular, we show
that it is possible to construct a utility independent fair reconstruction mechanism for the case of
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t-out-of-n secret sharing, where n ≥ 3. Our protocol is also resilient to coalitions, where the size
of the coalition is less than d t

2e. Our protocol can use as a subprotocol any one of the protocols
that were suggested in previous papers (for example [4, 10, 1, 9]). For the sake of concreteness, we
use the protocol of Gordon-Katz [4] and show that our protocol inherits its properties. Specifically,
we achieve a computational Nash equilibrium that survives iterated deletion of weakly dominated
strategies. Using a subprotocol with a stronger Nash equilibrium will yield a stronger guarantee
for our protocol as well.

5.1.1 Preliminaries

Utility functions for the multiparty case. Until this point in this paper we considered the two
party case only. We now introduce the “standard” assumptions [5, 10] on the utility functions that
are used in the multiparty case. Let r be the run of an execution, containing the random tapes of
all parties and all messages sent, and let o(r) = (o1(r), . . . , on(r)) be the outcome of the execution
r such that oi(r) = 1 if and only if party Pi learned the secret in the run r. Let r and r′ be two
possible executions. The assumptions on the utilities are:

1. ui(r) = ui(r′) if o(r) = o(r′). Stated in words, the utilities of the parties depend only on
the outcome of the run (that is, it depends only on who learned and who did not learn the
secret).2

2. For every i, if oi(r) = 1 and oi(r′) = 0, then ui(r) > ui(r′). That is, each party prefers to
learn the secret than not learning it, irrespective of who else learns the secret.

3. If oi(r) = oi(r′) and wt(o(r)) < wt(o(r′)) (where wt(x) is the Hamming weight of the bit
vector x), then ui(r) > ui(r′). (Each party prefers that as few parties as possible learn the
secret.)

The third assumption is general enough to allow parties to have different utilities when different
subsets of parties (of the same size) learn the secret.

Coalitions. We take the definition of an equilibrium that is resilient to coalitions from [1]. Let
C denote a subset of the parties, or coalition. Informally, a joint strategy ~σ = (σ1, . . . , σn) is k-
resilient if for any coalition of parties C of size at most k that jointly deviate from ~σ, none of the
parties in the coalition can gain a higher utility than they would have gained by running ~σ. Let
P = {1, . . . , n} be the set of indices of the parties and let Σi be the set of all possible strategies for
party Pi (note that Σi may be an infinite set). For any subset of parties C ⊂ P, let ΣC be the set
of all possible joint strategies for parties in C, and let σC ∈ ΣC be a joint strategy for those parties.

Definition 5.1 (k-resilient equilibrium) For any non-empty subset of parties C ⊆ P, σC ∈ ΣC is a
group best response for C to σ−C ∈ Σ−C if for every strategy σ′C ∈ ΣC and for every i ∈ C, it holds
that:

ui(σC , σ−C) ≥ ui(σ′C , σ−C)

A join strategy ~σ is a k-resilient Nash equilibrium if for all C ⊂ P for which |C| ≤ k, it holds that σC
is a group best response for C to σ−C.

Weakly dominated strategies and iterated deletion. We refer the reader to [5] for a formal
definition of this notion; our protocol directly inherits this property from the protocol of [4] and
we therefore omit technical details of this notion.

2We ignore here the issue of correctness and assume that it is always achieved. This is reasonable in the simulta-
neous channels model where all protocols – including ours – guarantee correctness except with negligible probability.
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5.1.2 The Gordon-Katz Protocol

We now describe the protocol of [4] for rational secret sharing. This protocol is used as a building
block in our protocol. The protocol of [4] uses an online dealer (or alternatively a protocol for secure
computation), who in every round creates shares of the real secret with probability β, and shares
of a fake secret with probability 1− β, where β is a parameter described below. All the shares are
signed by the dealer. At every round, the parties reveal their shares (at the same time, using the
simultaneous channel). If a party refuses to reveal its share, or if a party reveals an incorrect share
(i.e. a share with an invalid signature), then all the parties stop the execution and the game is
terminated. Thus, if a party decides to remain silent in any particular round and all other parties
reveal their shares in that round, then with probability β the party can reconstruct the secret and
be the only one to learn the secret (thereby gaining utility U+). However, with probability 1− β,
the party will learn nothing and will cause the execution to halt, with the result that it gains utility
U−. Thus, such a party takes a risk by not cooperating.

Consider now for simplicity the case of 2-out-of-2 secret sharing. Assume that party Pi defects
in a given round, while the other party does not (i.e., the other party sends its share in the round).
The expected utility of party Pi when it defects (quits, or remains silent in order to learn the secret
alone) in the current round is:

ui(defect) = β · U+
i + (1− β) · U−

i

This is because with probability β the real secret is revealed in this round and with probability
1− β a fake secret is revealed. Since Pi does not send its share, it is the only party to obtain the
real or fake secret. Thus, with probability β it obtains utility U+

i (when the real secret is revealed)
and with probability 1−β it obtains utility U−

i (observe that when a fake secret is revealed in this
round, the execution is halted and neither party learns the secret).

In contrast, the expected utility of party Pi when it cooperates and broadcasts its share in
every round (assuming that the other party plays according to the prescribed strategy) is Ui;
that is ui(coop) = Ui. Thus, as long as ui(coop) > ui(defect), the prescribed strategy is a Nash
equilibrium. Plugging in our calculations of these expected utility values, we have that the protocol
achieves a Nash equilibrium as long as for every i it holds that

β · U+
i + (1− β) · U−

i < Ui.

By simple manipulation we obtain that this holds as long as for every i,

β <
Ui − U−

i

U+
i − U−

i

.

(We remark that this can be achieved as long as U+
i 6= U−

i because otherwise we divide by 0; this
follows by the assumption in Eq. (1) (see Section 4.1). However, if the difference between U+

i and
U−

i is negligible, then the expected number of rounds of the protocol – which is 1/β – will not
be polynomial. This can be solved by assuming strict competitiveness, or just that there exists a
polynomial p such that for every i and all sufficiently large k’s it holds that U+

i > U−
i + 1/p(k).)

Note that the protocol assumes that the parties can determine whether a given value is the
real secret or a fake one. This can be achieved by simply adding a bit that indicates whether the
value is the real secret or not. Gordon and Katz proved that for β set as above, the prescribed
strategy of this protocol is a Nash equilibrium that survives iterated deletions of weakly dominated
strategies. They also claim that in the case of t-out-of-n secret sharing their protocol is k-resilient
for k = t − 1. See [4] for more details. We also refer to [9] regarding modifications necessary to
obtain resilience to backward induction.
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5.1.3 Our Protocol

We now present a protocol for t-out-of-n secret sharing for n ≥ 3 and any t ≤ n that is completely
independent of all the actual utility values. That is, our protocol achieves a Nash equilibrium that
survives iterated deletions of weakly dominates strategies and is (d t

2e − 1)-resilient for any set of
natural utility functions that are strictly competitive. This is in contrast to all of the protocols
that were suggested in previous papers, and in contrast to our impossibility result in Section 4.1
for the two-party case.

The protocol idea. Our protocol is based on an observation made by [14] that extraneous shares
help to achieve fairness. In particular, consider the case of t-out-of-n secret sharing where t is
strictly less than n, and consider what happens when t∗ > t parties come together to reconstruct
the secret using the naive reconstruction mechanism of just broadcasting the shares. In this case, if
a single party deviates from the prescribed strategy and is silent, then it will not prevent the others
from learning the secret. This is because there are still t∗ − 1 ≥ t shares that are broadcast. This
does not suffice because the strategy of being silent still dominates the strategy of broadcasting
(nothing is lost by being silent). However, if any penalty is introduced that makes being silent
“risky”, then parties will have an incentive to cooperate. In particular, if instead of using the naive
mechanism, the Gordon-Katz protocol is used with β = 1/2, then no party has an incentive to not
cooperate. In order to see why this is the case, we analyze the expected utility of a party Pi who is
silent in some round. If in that round the fake secret is revealed, then Pi will not learn the secret
and will obtain the utility value U−

i . In contrast, if the real secret is revealed then it will learn the
secret. However, since there are t∗ − 1 ≥ t other parties who do participate, then all parties still
learn the secret and the utility gained is Ui (and not U+

i ). Thus, the expected utility of Pi is

1
2
· Ui +

1
2
· U−

i < Ui.

Thus, Pi can only lose by being silent. Note that this can be extended so that any coalition of t∗− t
parties has nothing to gain by being silent. The crucial point here is that the above mechanism
works irrespective of the actual utility values of the parties. However, it does not suffice for our
goal because it requires that t∗ > t parties participate in the reconstruction which cannot always
be guaranteed. In particular, in the highly important case of n-out-of-n secret sharing (which has
many applications in secure computation for example) it is not possible to ever have t∗ > t.

Our protocol works by achieving the effect as above even when t∗ = t. As a first attempt,
consider what happens if instead of sharing the secret using a t-out-of-n secret sharing scheme, a
d t

2e-out-of-n secret sharing scheme is used instead. In this case, when t parties come together to
reconstruct the secret there are always t−d t

2e extraneous shares (i.e., the effect is that of t∗ ≈ 2t),
and so fairness can be achieved as above. Of course, this does not work because the scheme is no
longer a t-out-of-n secret sharing scheme because only d t

2e parties are needed to reconstruct instead
of t. This problem can be solved by first sharing a random value r to mask the secret using a t-
out-of-n secret sharing scheme, and then sharing r ⊕ s using a d t

2e-out-of-n secret sharing scheme.
First observe that now only t parties can reconstruct the secret, because r ⊕ s reveals nothing
about s as long as r remains hidden. Now, in order to reconstruct, the parties first broadcast their
shares of r naively; if any party is silent then they all abort and learn nothing. Then, after r is
reconstructed, they use the Gordon-Katz protocol with β = 1/2 in order to reconstruct r⊕ s. The
key observation is that in this second phase there are t parties, whereas only d t

2e shares are needed.
Thus, no coalition of size less than d t

2e has any incentive to be silent (as shown above, being silent
in this case only decreases their expected utility). As above, this holds irrespective of the actual
utility values of the parties.
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Our protocol:

The Dealer protocol: Let n be the number of parties, let t be the threshold and let
s be the secret to be shared.

• Choose a random r ∈R {0, 1}|s|.
• Generate shares of r using a t-out-of-n secret sharing scheme; let (r1, ..., rn) be the

resulting shares.

• Generate shares of s using a d t
2e-out-of-n secret sharing scheme; let (p1, ..., pn) be

the resulting shares.

• For every i ∈ {1, . . . , n}, send the pair (ri, pi) to party Pi.

All the shares are signed by the dealer.

Reconstruction – the prescribed strategy σi for party Pi: Let σGK
i be the

prescribed strategy for the protocol of Gordon-Katz with β = 1
2 for party Pi. The

prescribed strategy in our protocol is as follows:

• Broadcast the share ri.

• If all other parties that are participating in the reconstruction protocol broadcast
their shares, and the shares are correct, then reconstruct r. Otherwise, abort.

• Run the protocol of Gordon-Katz with β = 1/2 using strategy σGK
i , using as input

the shares p1, . . . , pn of r ⊕ s.3 Let w be the output received from this execution.

• If w = ⊥, then output ⊥. Otherwise, output s = w ⊕ r.

Theorem 5.2 Let n ≥ 3 and t ≤ n be any values. Then, the prescribed strategy ~σ of the game (Γ, ~σ)
is a Nash equilibrium that survives iterated deletions of weakly dominated strategies and is (d t

2e−1)-
resilient, for any set U of natural utility functions that are strictly competitive. Furthermore, the
expected number of rounds of the game is O(1).

Proof: The expected number of phases of the Gordon-Katz protocol is 1/β. Since we use β = 1/2,
the expected number of phases is constant. When using an online dealer the number of rounds is
essentially the same as the number of phases. However, when using secure computation, a constant-
round protocol must be used; see [8]. We now proceed to show that ~σ is a Nash equilibrium that
survives iterated deletions of weakly dominated strategies. (This involves considering only a single
party deviating from the strategy; we will demonstrate resilience to coalitions afterwards.)

We first show that the expected utility of any deterministic aborting strategy is lower than the
expected utility of the prescribed strategy. As is usual, we assume that the only effective actions
a party can take are to send the correct share and be silent. This is because sending an incorrect
share has the same effect as being silent which is to cause the execution to halt. (We ignore the
negligible probability that a signature can be successfully forged.) Clearly, if any party is silent in
the first phase where r is reconstructed, then all parties obtain U−. Thus, any non-zero probability
of following this strategy always yields a lower utility. From here on, we consider the utility of

3The secure computation of Gordon-Katz can be defined so that in every iteration the parties input their shares
p1, . . . , pn. The functionality checks the validity of the shares and then generates either fake shares (with probability
1− β) or new real shares of s, as reconstructed from p1, . . . , pn.
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being silent in the second phase of the protocol. Denote by abortji the deterministic strategy where
party Pi follows the prescribed strategy in rounds 1 through j − 1, and then is silent in round j. If
the protocol concludes before round j, then all parties learn the secret and obtain U . Otherwise,
with probability β = 1/2 no parties learn the secret (in the case that a fake secret is revealed in this
round) and with probability 1− β = 1/2 all parties still learn the secret (because t− 1 shares are
sent and only d t

2e shares are actually needed). Denoting by halt(< j) the event that the protocol
halts before round j, we have that:

ui(abortji , σ−i) = Pr[halt(< j)] · Ui + Pr[¬halt(< j)] ·
(

1
2
· Ui +

1
2
· U−

i

)

= Pr[halt(< j)] · Ui + (1− Pr[halt(< j)]) ·
(

1
2
· Ui +

1
2
· U−

i

)

=
1
2
· Ui +

1
2
· U−

i + Pr[halt(< j)] ·
(

Ui − 1
2
· Ui − 1

2
· U−

i

)

=
1
2
· Ui +

1
2
· U−

i + Pr[halt(< j)] ·
(

1
2
· Ui − 1

2
· U−

i

)

<
1
2
· Ui +

1
2
· U−

i +
(

1
2
· Ui − 1

2
· U−

i

)

= Ui

where the inequality is due to the fact that Pr[halt(< j)] < 1. Thus, for every i ∈ {1, . . . , n} and
for every j,

ui(~σ) > ui(abortji , σ−i)

In order to consider probabilistic strategies, we note that the view of any party until the protocol
terminates is independent of the secret (it contains just fake random secrets). Thus, any strategy
of being silent during the execution can be written as a strategy that assigns an a priori probability
that the party is silent in every round. Specifically, a probabilistic strategy is a set of probabilities
Pi = {pj

i}∞j=1 such that the probability that the party Pi follows strategy abortji equals pj
i and∑∞

j=1 pj
i = 1. Based on this, we have that for every such strategy Pi:

ui(Pi, σ−i) =
∞∑

j=1

pj
i · ui(abortji , σ−i) <

∞∑

j=1

pj
i · ui(~σ) = ui(~σ) ·

∞∑

j=1

pj
i = ui(~σ) = Ui

where the inequality is from our proof above that for every i and j, ui(~σ) > ui(abortji , σ−i). This
shows that ~σ is a Nash equilibrium. The fact that it survives iterated deletion of weakly dominated
strategies is identical to the proof that the Gordon-Katz mechanism has this property. We therefore
do not repeat the proof and refer the reader to [4].

It remains to show that our protocol is (d t
2e− 1)-resilient. This is shown via a reduction to the

fact that the protocol of Gordon-Katz is (t′ − 1)-resilient when t′ is the threshold used. (Note that
we use threshold t′ = d t

2e and thus this is consistent.) Assume by contradiction that our protocol
is not (d t

2e− 1)-resilient. This implies that there exists a coalition of parties C of size less than d t
2e

and a strategy σ′C such that for some i ∈ C,

ui(σ′C , σ−C) > ui(σC , σ−C).

Consider now the strategy σ′C in the first phase of our protocol. If σ′C instructs any of the parties
to not broadcast their share of r in this phase, then as we have seen, this can only lower the utility.
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Thus, if this is the case, then there exists another strategy σ′′C in which all parties in C broadcast
their share of r with probability 1 and for every i ∈ C, ui(σ′′C , σ−C) ≥ ui(σ′C , σ−C), which is greater
than ui(~σ) by the assumption. Now, since σ′′C instructs all parties to broadcast their share of r
with probability 1, they always proceed to the second phase. Let σ̂C be the strategy of σ′′C in the
second phase of the protocol. Clearly, if ui(σ̂C , σGK

−C ) ≤ ui(σGK
C , σGK

−C ), then the expected utility of
every i ∈ C when running our protocol with σ′′C would be less than or equal to the expected utility
of every i ∈ C when running our protocol with the prescribed strategy σC . Thus, it must hold that
for some i ∈ C,

ui(σ̂C , σGK
−C ) > ui(σGK

C , σGK
−C ).

However, the above now relates to the utility purely in the Gordon-Katz protocol. Since this
protocol is resilient to any coalitions of size less than the threshold, it follows that it is resilient to
any coalition of size d t

2e − 1 or less (because the threshold used in the secret sharing of r ⊕ s is
d t

2e). Since by the assumption |C| < d t
2e, we have a contradiction. We conclude that our protocol

is (d t
2e − 1)-resilient, as required.

5.1.4 Optimality of our Protocol with Respect to Coalitions

We now show that it is impossible to achieve fair reconstruction with coalitions of size d t
2e or greater

by showing that this would imply fair reconstruction for the case of n = 2. This shows that it is
impossible to achieve a so-called strong resilient equilibrium as defined by Abraham et al. [1] (a
strategy ~σ is strongly resilient if it is k-resilient for all k ≤ t∗− 1, where t∗ is the number of parties
participating in the reconstruction phase).

Theorem 5.3 Let n ∈ N, let t ≤ n and let k = d t
2e. Then, there does not exist a fair reconstruction

that is k-resilient and U+-independent, even in the simultaneous channels model.

Proof: The proof of this theorem follows by a simple reduction to the two-party case. Assume
by contradiction that there exists such a mechanism, and let ~σ be the prescribed strategy. We
construct a two-party mechanism for parties P̂1 and P̂2 as follows: party P̂1 runs the strategy of
parties P1, . . . , Pd t

2
e in ~σ and P̂2 runs the strategy of parties Pd t

2
e+1, . . . , Pn in ~σ. This means that

P̂1 internally emulates the execution of all parties P1, . . . , Pd t
2
e; all messages that are sent between

these parties are dealt with internally by P̂1 and all messages that are sent to the other parties
are sent to P̂2 (with a clear labeling that states which message is intended for which party). The
simple observation is that both P̂1 and P̂2 constitute coalitions of size at most d t

2e in the mechanism.
Thus, by the assumption, the reconstruction must be fair, and so ~σ (as transformed to the two-
party setting) is a Nash equilibrium for P̂1 and P̂2. However, since in ~σ all parties P1, . . . , Pn

receive the secret, both P̂1 and P̂2 also receive the secret. Thus, we obtain a U+-independent fair
reconstruction mechanism for the two-party case, in contradiction to Theorem 4.4.

5.2 Uf -Dependent Correct Reconstruction in the Non-Simultaneous Model

In this section, we address the basic question of whether or not it is possible to construct a fair
and correct reconstruction mechanism using non-simultaneous channels even if Uf

i ≥ Ui (recall
that the mechanism of [10] achieves correctness when Uf

i < Ui). We answer this in the positive by
constructing a mechanism that works as long as the value of Uf

i for each party Pi is known (in the
same way that the values of U+

i , Ui, U−
i and U−−

i are known).
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The idea behind the mechanism. We will consider the two party case only; the extension to the
multiparty case is straightforward. We assume familiarity with the protocol of Kol and Naor [10];
see the beginning of Section 4.2 for a short description of the protocol and why it does not guarantee
correctness; this will be used below. Looking closely at the strategy for breaking correctness in the
Kol-Naor mechanism, it arises because the first party to send its list element in an iteration has
no way of verifying if the current round is the definitive round or not. This is necessary because
if the long party (i.e., the party with the long list) can determine that the current round is the
definitive one before sending its element, then it can simply not send its element with the result
being that it learns the secret without the other party learning it. Despite this, our key observation
is that it is not necessary that all of the fake iterations be the same, as in the Kol-Naor mechanism.
Rather, we introduce additional rounds with the property that the first party in each such round
knows that the round is fake while the second party does not. Now, if a second party halts in such
a round under the premise that it reached the end of the list, then the first party will know that
it has cheated and so will abort. The result is that the parties do not learn the secret and so the
parties both gain utility U−, and the second party does not gain Uf . By adding enough of these
additional rounds, we have that the probability that a party successfully achieves Uf is low enough
so that a higher expected utility is obtained by playing ~σ and obtaining U .

In more detail, in our new mechanism we will give the first party in every iteration a way to
distinguish between some of the rounds. While in the original protocol, there were two types of
rounds (one real round and many fake rounds), in our protocol we have three different types of
rounds:

• The real round: that is, the definitive iteration. In this round, the secret is exposed.

• Fake rounds: The goal of these fake rounds is to decrease the probability of achieving U+.
The number of fake rounds is chosen according to a geometric distribution with parameter
β that depends on U+, U, U−, as defined in [10]. The number of fake rounds is exactly the
same as in the Kol-Naor mechanism [10].

• Completely fake rounds: The goal of these rounds is to decrease the probability of achiev-
ing Uf . In contrast to fake rounds, at every completely fake round the first party will be
informed that the round is completely fake. That is, it is given a boolean vector that indi-
cates for every round whether it is completely fake or whether it is either fake or real (of
course, without distinction regarding the latter). The number of completely fake rounds is
chosen according to a geometric distribution with a parameter α (we will show how to choose
α below).

The main idea is as follows. The first party at every iteration cannot know which is the definitive
round because it does not know which of the non-completely fake rounds is the real one. This
is exactly the same as in the Kol-Naor mechanism. Furthermore, the second party cannot stop
early and fool the first party into accepting an incorrect value because it does not know which of
the rounds are completely fake and which are fake. Observe that if the second party stops on a
completely fake round then the first party detects this and aborts. In this case, the second party
will obtain U− instead of U or Uf , and so certainly loses.

The protocol itself: Let Dealer(s, β) be the dealer in the Kol-Naor mechanism. In our new
protocol, we use the value of the utility Uf in order to achieve correctness. Our new Dealer takes
the shares generated by Dealer(s, β) and extends the list for the parties.
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The Dealer Protocol:

• Input: A secret s and a set of utility functions of the parties U = {(U+
i , Ui, U

−
i , Uf

i )i∈{1,2}}4.

• Output: A list of shares for each of the parties, denoted Lout
short and Lout

long. Moreover, each
party receives a boolean list, denoted blistlong, blistshort. The values of these lists are false
(informing the party that this round is completely fake), or unknown (meaning that this
round may be either the real round or a fake round). Note that when a party is the first
party to broadcast in a round its value is always unknown.

• The protocol:

1. Compute β as defined in [10], call Dealer(s, β) and obtain the lists Lin
short and Lin

long.
Let `short be the length of the list Lin

short, and `long the length of Lin
long. Initialize blistlong

and blistshort to be empty lists (∅).
2. Set i = 0 and compute α as described below.

3. Repeat `long times:

– Toss a coin with probability α to be 1, and with probability 1−α to be 0. Let b be
the result of the current toss.

– While b = 0:
∗ Add a completely fake round. That is, choose a possible secret (from S),5 and ap-

pend it to the lists Lout
long and Lout

short. Moreover, create at random a permutation
of broadcast order: toss a random coin order ∈R {long, short}:
· If order = long then the first party to talk in this round will be the long party.

Thus, append to blistlong the boolean false and append to blistshort the value
unknown.

· If order = short then the first party to talk in this round will be the short
party. Thus, append to blistshort the value false, and append to blistlong the
value unknown.

∗ Toss the coin again.
– When b = 1, add a real round or a fake round : Take the ith element from Lin

short, L
in
long

and place it in Lout
short, Lout

long. (If there is no such element in Lin
short since it has already

ended, then take the element from Lin
long and put it in Lout

long only). Append to the
blistlong the boolean unknown. If i ≤ `short (Lin

short has not ended yet), append also
to the short party’s boolean list the value unknown.

4. Assign the shares to P1, P2 as Dealer(s, β), and send the long party the list blistlong and
the short party the list blistshort.

Before proceeding, we remark that the expected number of rounds of our protocol is 1/α times
the expected number of rounds in the original Kol-Naor mechanism. Moreover, the vector blist does
not affect the equilibrium demonstrated by Kol and Naor because the number of “fake rounds”
equals the number of rounds in their protocol.

4We ignore U−−i in order to be consistent with the original protocol. However, the protocol can easily be extended
to deal with U−−i .

5Note that at each completely fake round we construct a round which looks exactly like an original round in the
Kol-Naor mechanism. That is, we give each party a masked secret, authentication information, and other details as
described in the protocol. We omit these details as they are not important for our main point.
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Let σKN = (σKN
1 , σKN

2 ) be the prescribed strategy in the Kol-Naor mechanism. The new
prescribed strategy is ~σ = (σ1, σ2) as follows:
• Party Pi:

• Follow the exact same strategy σKN
i .

• When σKN
i instructs to leave the game at round i and output s′, check that blist[i] 6= false.

If yes, output s′. Otherwise, output ⊥.

Setting α: Note that party Pi will obtain Uf
i if it quits at round j (where j is not the definitive

iteration), it is the second party in that round, and blist[i] = unknown (recall that if blist[i] = false
then Pi obtains U−

i ). Let σ′i be the strategy in which party Pi quits at the non-definitive round j.
The expected utility of this strategy is:

ui(σ′i, σ−i) = α · Uf
i + (1− α) · U−

i

In contrast, the expected utility of playing according to the prescribed strategy σ is Ui. Thus, in
order to guarantee that ui(σ1, σ2) > ui(σ′i, σ−i) we require that:

Ui > α · Uf
i + (1− α) · U−

i

= α · Uf
i + U−

i − α · U−
i

= U−
i + α ·

(
Uf

i − U−
i

)

and so
α ·

(
Uf

i − U−
i

)
< Ui − U−

i .

We conclude that ui(σ1, σ2) > ui(σ′i, σ−i) if and only if

α <
Ui − U−

i

Uf
i − U−

i

.

This should hold for every i ∈ {1, 2}. Combining the above with the analysis of [10] we obtain that
the mechanism has the same equilibrium as in the mechanism of Kol-Naor. The expected running
time of the Kol-Naor mechanism is O( 2

β ), and its expected share size is O
(

2 log 2
β (log 1

β + log Umax
ε )

)
,

where Umax is an upper bound on the payoffs that the party may receive. Thus, the expected run-
ning time of our new protocol is O

(
2

α·β
)
, and the expected share size is O

(
2 log 2
α·β (log 1

β + log Umax
ε )

)
.
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A Modeling Utility Functions

The standard definition of a utility function is a function that maps the outcome of an execution
of the protocol to the parties “satisfaction” or benefit from this outcome. The standard definition
states that the utilities depend only on the outcome of the execution of the mechanism. If we use
this definition, then the question of whether there exists a single mechanism that is independent
of the utility functions of the parties is easy, if we allow asymptotics. Specifically, if we view the
utility functions as constant, then we can use the mechanisms that were suggested in the previous
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papers (like the mechanism of [4, 10] etc.) and set β to equal 1/k where k is the security parameter.
This will then guarantee that the mechanism will achieve equilibrium for all large enough values of
k. (This is because for all large enough values of k, β will be smaller than the defined ratio between
the utility functions.)

Although this may seem reasonable at first sight, we argue that it is highly unsatisfactory. In
particular, although we happily work with asymptotics when it comes to cryptographic hardness
assumptions, when it comes to actually using a scheme we need to set a concrete security parameter.
This is not done by mere guessing but by making careful calculations based on the best known
algorithms for solving the hard problem being used. The important point is that this state of art
is public knowledge and so can be used to calculate the security parameter.6 In contrast, it is not
at all clear that it is possible to bound the utility of parties. In particular, a personal gain of a
given party in a game may be based on their investment portfolio and political connections. This
information is often not public knowledge and so cannot be used to reasonably estimate β.

Due to the above, we propose that utility functions should be modeled as functions that are
polynomial in the security parameter. All known protocols work for this modeling, and we believe
that this is what was actually implicitly assumed.

6Of course, it may be the case that a better algorithm is known but has not been published. However, by taking
conservative values of the security parameter, we can make a reasonable estimate of the needed value.
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