
Protecting Circuits from Computationally Bounded

and Noisy Leakage ∗

Sebastian Faust†

Aarhus University
Tal Rabin

IBM Research
Leonid Reyzin‡

Boston University

Eran Tromer§

Microsoft Research and MIT
Vinod Vaikuntanathan¶

Microsoft Research and University of Toronto

November 16, 2012

Abstract

Physical computational devices leak side-channel information that may, and often does,
reveal secret internal states. We present a general transformation that compiles any circuit into
a circuit with the same functionality but resilience against well-defined classes of leakage. Our
construction requires a small, stateless and computation-independent leak-proof component that
draws random elements from a fixed distribution. In essence, we reduce the problem of shielding
arbitrarily complex circuits to the problem of shielding a single, simple component.

Our approach is based on modeling the adversary as a powerful observer that inspects the
device via a limited measurement apparatus. We allow the apparatus to access all the bits
of the computation (except those inside the leak-proof component), and the amount of leaked
information to grow unbounded over time. However, we assume that the apparatus is limited in
the amount of output bits per iteration and the ability to decode certain linear encodings. While
our results apply in general to such leakage classes, in particular, we obtain security against:

• Constant-depth circuits leakage, where the leakage function is computed by an AC0 circuit
(composed of NOT gates and unbounded fan-in AND and OR gates).

• Noisy leakage, where the leakage function reveals all the bits of the internal state of the
circuit, perturbed by independent binomial noise. Namely, for some number p ∈ (0, 1/2],
each bit of the computation is flipped with probability p, and remains unchanged with
probability 1− p.

∗A preliminary version of this work appears in [11]
†Sebastian Faust acknowledges support from the Danish National Research Foundation and The National Science

Foundation of China (under the grant 61061130540) for the Sino-Danish Center for the Theory of Interactive Com-
putation, within part of this work was performed; and from the CFEM research center, supported by the Danish
Strategic Research Council.
‡Supported in part by NSF grants 0546614, 0831281, 1012910, and 1012798.
§Supported by NSF CyberTrust grant CNS-0808907 and AFRL grant FA8750-08-1-0088. Views and conclusions

contained here are those of the authors and should not be interpreted as necessarily representing the official policies
or endorsements, either express or implied, of AFRL, NSF, the U.S. Government or any of its agencies.
¶Part of this work was done while at IBM Research, and was supported by a Josef Raviv Postdoctoral Fellowship.

1 Introduction

The best of cryptographic algorithms are insecure when their implementations inadvertently reveal
secrets to an eavesdropping adversary. Even when the software is flawless, practical computational
devices leak information via numerous side channels, including electromagnetic radiation (visible
and otherwise) [30, 24], timing [5], power consumption [23], acoustic emanations [32], and numerous
effects at the system architecture level (e.g., cache attacks [3, 27, 28]). Leaked information is even
more easily accessible when the computational device is at the hands of an adversary, as is often
the case for many modern devices such as smart-cards, TPM chips and (potentially stolen) mobile
phones and laptops. Reducing such information leakage has proven excruciatingly difficult and
costly, and its complete elimination is nowhere in sight.

Micali and Reyzin [25] proposed a general model for rigorously analyzing protection against
side-channel attacks. They model a side-channel attacker as a two part entity – the first is the
measurement apparatus that performs measurements on the physical state of the device. This is
done on behalf of the second entity which is the adversarial observer. The observer is assumed to
be computationally powerful (e.g., polynomial-time or even unbounded), and takes as input the
measurements of the apparatus. Thus, the power of the adversarial observer is primarily constrained
by the quality of the information provided by the measurement apparatus.

It is interesting to note that even though computational devices leak abundantly, many side
channel attacks are hard to carry out and some devices remain unbroken. This is due to the
fact that useful measurements can often be difficult to realize in practice. Physical measurement
apparatuses often produce a “computationally limited” and “noisy” measurement of the state of
the object: they usually do not carry out sophisticated computation. In-depth analysis typically
happens in the form of post-processing by the observer (rather than in the measurement apparatus).

In this work, we follow the paradigm of Ishai, Sahai, and Wagner [19], who construct a general
transformation from any cryptographic algorithm into one that is functionally equivalent, but also
leakage-resilient. The particular class of leakage functions they consider is the class of spatially
local measurement functions, namely functions that read and output at most k bits of information.
In particular, the leakage functions are completely oblivious to a large portion of the circuit’s state.

In contrast, we are interested in security against global measurements, which are often easier
to carry out than localized measurements that require a focus on specific wires or memory cells; in
many side-channel attacks, the main practical difficulty for the attacker lies precisely in obtaining
high spatial resolution and accuracy. Furthermore, global measurements are typically also more
informative than local measurements. The question that motivates our work is whether, analo-
gously to [19], we can construct a general circuit transformation that tolerates global side-channel
measurements.

1.1 The Model

Inspired by Ishai et al. [19], we model arbitrary cryptographic computation by circuits computing
over a finite fieldK (a special case are Boolean circuits that operate over GF(2)). Since cryptographic
devices are often implemented as digital circuits, our model of computation directly corresponds to
devices in the physical world. Importantly, the circuit has a secret state (such as a cryptographic
key for a block cipher), which we want to protect from the adversary.

Our adversarial model considers an adversary who attacks this circuit by adaptively running it
on inputs of her choice and learning the result of its computation. The result is computed from the

2

input and the state (which may be updated by the computation). With each query to the circuit,
the adversary may choose a leakage function f from some set L of tolerated leakage functions (this
choice, as well as the choice of input to the circuit, may be made adaptively, depending on all the
information obtained by the adversary up to this point). We allow f to depend on the secret state
and all intermediate results that may occur during computation. We model this by giving as input
to f the values that are carried on all the wires connecting the circuit’s gates. Since we do not
make any assumption on the spatial locality of the leakage, we achieve resilience to global leakage
functions.

On computationally weak and noisy leakages. We consider two classes of leakage functions
in this work.

• Computationally-bounded leakage functions: We assume that L contains only simple aggre-
gated leakage functions. That is, functions in L cannot do certain decoding operations and
their range is bounded by some parameter λ. As a concrete example, we consider functions
in the class AC0—that is, functions that can be computed by circuits of small depth1. The
second restriction—bounding the amount of leakage—is necessary, as otherwise even very
simple leakage functions can output the complete secret state (e.g., the identity function).
Notice, however, that while the amount of information leaked each time is bounded, the total
amount of information leaked over multiple runs of the circuit is not.

• Noisy leakage functions: Alternatively, instead of limiting the computational power and out-
put size of f , we assume that L consists only of noisy functions. That is, functions in L do not
compute exact results, but rather their output is perturbed with some noise. As a concrete
example, we assume that the leakage reveals all the bits of the circuit’s state, perturbed by
independent binomial noise. Notice that in this case the amount of leakage for each run of
the circuit is not bounded.

The restriction of computationally bounded and noisy leakages are motivated by the observation
that physical measurement apparatuses typically produce a computaitonally simple or noisy mea-
surement of the device’s state. For instance, the power consumption of a cryptographic devices
is often described as a simple aggregated functions such as the Hamming weight or the Hamming
distance of the processed data. Also, physical measurements are inherently noisy. Such noise may
result from the environment (non-algorithmic noise) or from the device itself (algorithmic noise).
Hence describing the measurement apparatus as a simple (possibly noisy) aggregated function of
the device’s state is a very plausible restriction. We stress that once the leakage is in the hands of
the adversary, she can carry out arbitrary computation (it need not even be efficient).

Of course, the concrete leakage classes for which we present secure circuit transformations are
not particularly strong. For instance, in the computationally bounded setting we instantiate L
with AC0. AC0 is weak since it even cannot compute parity and hence many practical side-channel
attacks do not fall into this class (e.g., the Hamming weight of all wires). Nevertheless it is strong
enough to allow for measuring approximate Hamming weight [1], or the Hamming weight of a subset
of the values on the wires: something routinely measured by side-channel attacks in practice.

For the noisy setting we make the assumption that the value on each wire is perturbed by
independent noise. This assumption ceases to hold in practice since, e.g., algorithmic noise is

1An earlier version of this paper contained an erroneous claim that our results extend to ACC0[p], which is AC0

augmented with MODp gates. They do not, because average-case hardness results are not known for such circuits.

3

correlated with the processed data. Constructing circuits that remain secure against correlated
noisy leakages is an important research question.

On leak-free components. Formally, we model global leakage functions by giving the values
on all wires as input to a single leakage function. One may object that this results into additional
restrictions, as we do not allow the leakage to depend on the internals of the gates. For instance,
such leakage may not depend on the number of conducting transistors from which the Boolean
cell is made, while in practice such low-level effects may significantly contribute to the physical
leakage [33]. Fortunately, our model allows to deal with such low-level effects. Although our
leakage functions are computationally weak, they suffice to evaluate simple operations (e.g., the
number of conducting transistors in a Boolean gate). This allows our leakage functions to simulate
the internal behavior of a gate just by knowing its inputs.

This approach works as long as the atomic gates are not too complex. This is the case for most
gates that are used by our protected circuits. We make one exception. We introduce a special
component, a so called opaque gate, which is too complex to be simulated by the leakage function.
For instance the opaque gate may be a circuit that requires depth linear in the security parameter,
while our leakage functions are restricted to constant depth circuits. To deal with this problem we
assume that such components are leak-free. That is, they leak on their inputs and outputs, but the
leakage function cannot observe their innards.

Many variations of the leak-free component assumption have been made in the literature. We
highlight some of these works below. The model of Micali and Reyzin [25] and many subsequent
works (e.g., [9, 29, 10]) assume the presence of leak-free memory. This is captured by the statement
that “only computation leaks information” (axiom 1 in [25]), i.e., memory that is not accessed
during a computation step does not affect the observable leakage.

The “Oblivious RAM” model of Goldreich and Ostrovsky [13, 15] reverses the roles: while
memory is leaky, the computation is assumed to be on a leak-free secure processor. In this model,
they show a generic transformation that makes random-access machines resilient to polynomial-time
leakage (with polylogarithmic blowup in memory size and running time). We also note that in the
recent circuit compilers of Juma and Vahlis [21], Goldwasser and Rothblum [16], and Dziembowski
and Faust [7, 8] leak-free components have been used (they have been very recently eliminated
in [17]). We discuss these works in more detail in the related work section.

In contrast, the leak-free component that is used in our circuit transformation is simple, stateless
and computation-independent. By this, we mean that the complexity of implementing the leak-free
component is independent of the complexity of the computed circuit, and that it neither holds
secrets nor maintains state. In particular, the leak-free component cannot hold the secret data
used in the computation.

Specifically, our opaque gates, that we denote by O (or Q), are defined as follows. They have
no inputs and output an element sampled according to a fixed distribution which is independent
of the computation being carried out. For example, an opaque gate that we consider is one that
samples k uniformly random bits subject to the condition that they have even parity.

Although the requirement of a leak-free component is a strong one, the leak-free components
we require are minimal in many senses:

1. It is a fixed standardized functionality which can be designed and validated once and added
to one’s standard cell library — which is far better than having to devise separate protection
mechanisms for every circuit of interest.

4

2. It has no secret keys, no inputs and no internal state, i.e., it is independent of the computation
in the circuit and merely samples from a distribution. The assumption of a shielded physical
device that samples perfect randomness is a strong one. For the case of AC0 leakage we can
relax this assumption and require only randomness that is polylog(k) independent [4]. Also,
alternatively, we can de-randomize our construction by using Nisan’s unconditional pseudo-
random generator against AC0 [26]. Notice that such a PRG still has to be implemented
by a leak-free component, and hence, in this case, our opaque gates become stateful, which
requires to build leak-free memory.

3. Alternatively, because we only need samples from a distribution, we can have the opaque
“gate” simply read its output one by one from a pre-computed list. Thus, it suffices to have
leak-proof one-time storage (a consumable “tape roll”) instead of leak-proof computation.
This is an option if the computation is performed only a bounded number of times.

1.2 Our Results

We demonstrate circuit transformations that compile any circuit into one that is functionally
equivalent but resists attacks by leakage functions described above. The circuit transformation
TR takes as input the description of a circuit C and compiles it into a transformed circuit Ĉ that
uses the same gates as C (plus the leak-free component). For example, C may be a standard
block-cipher, in which case Ĉ would be its secure implementation (note that the entire block cipher
does not have to be computed with a single combinatorial circuit—because we allow the circuit to
maintain state, C can be a clocked circuit with registers).

We define resilience of Ĉ against leakage class L by a simulation-based security notion, which
is essentially the same as the one in [19]. A circuit transformation TR is said to be resilient to
leakages of L if observing the computation of Ĉ with leakages from L does not offer any advantage
over black-box access to C without any leakage. Formally, we show that for any adversary A
that gets to interact with Ĉ by giving it inputs, observing some physical leakage f ∈ L from the
computation on those inputs, and viewing its outputs, there exists a simulator S with only black-
box access to C such that A and S have indistinguishable output distributions. Let us now discuss
our constructions in more detail.

Leakage resilience from linear secret sharing. Our constructions, at a high level, are similar
the construction of Ishai et al. [19]: we perform a gate-by-gate transformation. Every wire of C is
encoded into a bundle of wires in Ĉ using a linear secret sharing scheme Π; each wire of the bundle
carries a share of the original wire in C. Each gate in C is replaced by a gadget in Ĉ which operates
on encoded bundles. The gadgets are carefully constructed to use Π internally in a way that looks
“essentially random” to leakages in L (notice that the internals of these gadgets may leak), and
we show that this implies that the whole content of the transformed circuit remains “essentially
random” to a leakage in L. Hence, the adversary gets no advantage from her observation of the
leakage. We provide two constructions: one resilient against computationally weak leakage, and
the other resilient against noisy leakage.

Resilience to computationally weak leakage. The security of our first construction relies on
an assumption on the computational power of L: namely, that it cannot decode Π (even when
the output of a function in L is then processed by a computationally unbounded adversary; see

5

Definition 2 in Section 3.2). This is general for any Π and L that cannot decode Π. As a special
case, to get secure circuit transformations for concrete leakage classes, we can invoke circuit lower
bounds [12, 18]. Thus, for the case where the scheme Π is instantiated with the parity encoding
(i.e., a bit b is shared into random bits whose parity is b), and the leakage class L = AC0, the lower
bound of Hastad [18] implies that to functions in L the encoded bit b looks essentially random.

Resilience to noisy leakage. The security of our second construction relies, instead, on the
assumption that the functions in L output wires of Ĉ perturbed by independent binomial noise.
In that case, we can consider L that consists of just a single leakage function. Namely, if wi is
the value on wire i, the leakage function Np outputs wi ⊕ ηi, where ηi is 1 with some probability
p > 0. For such leakages the parity encoding works again. By the XOR Lemma (see Lemma 3 in
Section 4.1), Np(~a) and Np(~b) are statistically close when ~a and ~b are random bit strings of different
parity. Similar to the construction for AC0 leakages, we show that computing with such encodings
yields secure computation against Np leakages.

Our opaque gates. As already outlined above, our construction makes an extra requirement: Ĉ
uses a small leak-free component O in case of computationally weak leakage and Q in case of noisy
leakages. O merely outputs samples from a fixed distribution, namely the encoding of 0 under Π
(if Π is the parity encoding then O just outputs random bit strings with parity 0). Q is more
complicated and will be described in Section 3.3. Thus, our results can be interpreted as reducing
the physical security of arbitrary circuits to the security of a single simple component, which can
be manufactured in bulk, independently of the larger circuits that need protection. This approach
to physical security follows the approach of Micali and Reyzin [25] of reductions between physical
devices.

Security proof via general composition. Let us call circuit transformations that replace
wires by wire bundles carrying encoded values and gates by gadgets that operate on these bundles
encoding-based. We show a general technique for proving leakage resilience of encoding-based circuit
transformations. Namely, we capture a strong notion of leakage-resilience for transformed circuits
(or their gadgets), by saying that they are reconstructible if there exist certain simulators (so called
reconstructors) for the internal wires that fool the leakage class. More precisely, a reconstructor
is given only the encoded inputs and outputs of a transformed circuit (or gadget) and has to
come up with values for the internal wires that look consistent for leakages in L. We then show
a composition result : if all parts of a circuit are reconstructible then so is the whole circuit. This
essentially will imply security of the transformation. An important contribution of this work are our
proof techniques that are particularly useful for computationally weak leakage functions, and have
recently been used in [8]. We refer the reader to Section 4.2 for an outline of the proof techniques.

1.3 Related Work

Leakage-resilient cryptography is a very active research area; in particular, there is a considerable
amount of recent work that proposes techniques to protect specific cryptographic tasks (such as
signing, decrypting, or zero-knowledge proofs) against leakage. We do not survey this work here
and focus, instead, on general transformations.

6

Ishai, Sahai, and Wagner [19] were the first to propose a general circuit transformation resilient
against adversaries who see up to k wires in each invocation of the circuit. While we use similar
techniques for our construction, our security analysis differs significantly from the one in [19]. This
has two reasons. In contrast to Ishai et al. who focus on security against one specific attack, we
provide security against a broad class of adversaries. Moreover, our leakage functions are global,
while a k-probing attack is oblivious to a large part of the circuit’s state. This makes our proofs
significantly more technical. Notice that our transformation that resists AC0 leakages is trivially
secure against k-probing. Hence, our result can be interpreted as a generalization of [19], using the
ideas of leakage functions and reductions between physical components introduced in the work of
Micali and Reyzin [25].

Following our work, other compilers have been proposed that protect arbitrary computation
against any efficient local leakage function. In particular, Juma and Vahlis [21] and Goldwasser
and Rothblum [16] present techniques that allow computation in the presence of arbitrary bounded-
range polynomial-time leakage functions. While having an obvious advantage over our work
(namely, much stronger leakage functions), these works rely on the additional assumption of “only
computation leaks information”: in other words, they assume that intermediate results can be
placed into non-leaking memory, or equivalently, that different parts of the computation leak inde-
pendently. (In case of [16] this assumption is very strong: the transformed circuit is assumed to be
split into very many pieces that leak independently; in case of [21], only two pieces are required.)

Similar to our work, Juma and Vahlis [21] and Goldwasser and Rothblum [16] make use of leak-
free components. The gate in [21] has to do key refreshing of a secret key for a fully homomorphic
encryption scheme, while in [16] for a given public key the component either outputs a random
encryption or an encryption of 0. An advantage that the work of Juma and Vahlis enjoys over ours
is that they only require a single leak-free component for the whole transformed circuit.

Recently, Dziembowski and Faust [8] proposed a compiler in the same model as [21, 16] but
without relying on computational assumptions. Their compiler relies on homomorphic properties
of the inner product extractor and simplifies both the compiler and the leak-free gates that were
used in earlier works. We would like to emphasize, however, that this work again heavily uses the
assumption that different parts of the computation leak independently. The elimination of this
assumption is one of the main goals of our work. We also note that [8] make use our notions of
reconstructability. Goldwasser and Rothblum [17] eliminate both the computational assumptions
and the need for leak-free components, but retain the assumption that multiple (and numerous)
parts of the circuit leak independently.

Reader’s Guide. In the next two sections we introduce the security notion of a circuit trans-
formation. In Section 3.2 we give our circuit transformation for computationally weak leakages,
and in Section 3.3 for noisy leakages. Security of our construction is proved in Section 4. We first
define the notion of reconstructibility, then in Section 4.3 and 4.4 we prove that our simple gadgets
satisfy these notions. This is followed by our composition lemma in Section 4.5, and finally leads
in Section 4.6 of stateful circuit transformations. In Section 5 we show how our construction for
computationally weak leakage applies to the specific case when the leakage function is in AC0.

7

2 Notation.

In this paper vectors, denoted ~v = (v1, . . . , vn), are column vectors. Matrices are typically denoted
by capital letters with an arrow on top. If a matrix ~M has m columns and n rows, then we say
that it is a m × n matrix. Mi,j denotes the (i, j)th element, i.e., the entry in row i and column j.
Matrix addition and vector multiplication are defined in the standard way.

We denote function composition by f ◦ g : x 7→ f(g(x)). If L1 and L2 are two sets of functions,
then L2◦L1 is a set of functions {f◦g | f ∈ L2, g ∈ L1}. For some set of functions L we write n×L to
denote n “parallel” computations of functions in L. That is, n×L = {(f1, . . . , fn)|f1, . . . , fn ∈ L}.
Notice that we overload notation and sometimes say that functions f ∈ n × L take n copies of
the same input (i.e., f computes (f1(x), . . . , fn(x))), while sometimes f takes n different inputs
x1, . . . , xn (i.e., f computes (f1(x1), . . . , fn(xn))).

Let C(d, s, λ) denotes the class of AND-OR-NOT unlimited fan-in boolean circuits with depth
d (not counting NOT gates), size s and λ bits of output. We will sometimes care about arithmetic
circuits over a finite field K; in the case, let the function class SHALLOW(s, d) (for s, d ∈ N) denote
the class of functions that can be computed by deterministic circuits that have at most s field
addition, subtraction, and multiplication gates that are arranged at most d deep (i.e., the longest
path in the circuit has at most d such gates on it). We will allow an arbitrary number of gates
supplying constants from K; such gates will not be counted as part of s and d. Note that even
K = GF(2), these two classes are different: one deals with unlimited-fan-in boolean operations,
while the other deals with algebraic operations of fan-in 2.

The statistical distance of two random variables D1, D2 is 1
2

∑
x |Pr[D1 = x] − Pr[D2 = x]|.

They are ε-close (denoted by D1 ≈ε D2) if their statistical distance is at most ε. They are (τ, ε)-
computationally close (denoted by D1 ≈τ,ε D2) if for any distinguisher D that runs in time τ and
outputs 0 or 1, D(D1) ≈ε D(D2).

3 Circuit Transformations

A circuit transformation TR takes as input a security parameter k, a circuit C, and an initial state
m0 and produces a new circuit Ĉ and new initial state m̂0.2 Let us discuss how C and Ĉ look and
what properties the transformation TR needs to satisfy. The discussion below adapts the definitions
of [19] to general classes of leakage functions, as suggested in [25].

The original circuit C. We assume that the original circuit C carries values from an (arbitrary)
finite field K on their wires and is composed of the following gates (in addition to the memory gates
which will be discussed later): ⊕,	, and � (which compute, respectively, the sum, difference,
and product in K, of their two inputs), the “coin flip” gate $ (which has no inputs and produces a
random independently chosen element of K), and for every α ∈ K, the constant gate constα (which
has no inputs and simply outputs α).

Fanout in C is handled by a special copy gate that takes as input a single value and outputs two
copies. If we use one output of a gate ` times, then it is passed through a subcircuit of `− 1 copy

gates arranged in a tree (the structure of the tree may be chosen arbitrarily). Notice that copy

gates are just the identity (pass-through wires) and are present mainly for notational convenience.

2Throughout this work, we use the hat notation 2̂ (reminiscent of the proverbial “tinfoil hat”) to designate circuits
or components that are transformed for leakage-resilience.

8

Stateful circuits. As in the work of Ishai et al. [19], we define the notion of a stateful circuit.
A stateful circuit additionally contains memory gates, each of which has a single incoming and a
single outgoing edge. Memory gates maintain state: at any clock cycle, a memory gate sends its
current state down its outgoing edge and updates it according to the value of its incoming edge.
Any cycle in the circuit must contain at least one memory gate. The state of all memory gates
at clock cycle i is denoted by mi, with m0 denoting the initial state. Inputs to and outputs from
clock cycle i are denoted, respectively, by xi and yi.

3 When a circuit is run in state mi−1 on input
xi, the computation will result in a wire assignment Wi (a wire assignment to C is a string in Kt,
t ∈ N, where each element represents a value on a wire in C); the circuit will output yi and the
memory gates will be in a new state mi. We will denote this by (yi,mi,Wi) W C[mi−1](xi).

The transformed circuit Ĉ. Ĉ will make use of the same atomic gates as C but additionally
may use the opaque gadget O (or Q). We require from the transformed circuit Ĉ with state m̂0 that
it “behaves identically” to C with initial state m0. We formalize this by the soundness property of
a circuit transformation TR. That is, for all C and m0, for any number of clock cycles q and any
set of inputs x1, x2, . . . , xq (one for each clock cycle) the distribution of the outputs y1, y2, . . . , yq
is the same for C starting at state m0 and Ĉ starting at state m̂0. (We note that [19] defined a
more relaxed notion of soundness, requiring only indistinguishable, rather than perfectly identical
behavior, but we do not need it in this work.)

Security of circuit transformation TR. We want to make sure that the transformed circuit
leaks no useful information to an adversary. We use the term (L, τ)-adversary to denote an ad-
versary A with physical observations limited to functions in the class L and running time (not
including the computation by the leakage function itself) limited to τ . If the adversary A gets to
query the circuit q times, each time choosing a fresh function from L, which computes its output
based on the entire wire assignment, we call it a q-adaptive (L, τ)-adversary. To formalize that
such an adversary learns nothing useful, we show the existence of a simulator S, and prove that
anything the adversary learns can also be learned by S which does not get any leakage.

Consider the experiments in Figure 1 that start with some circuit C in state m0, and allow it
to run for q iterations. In both experiments, we assume that A and S are stateful, i.e., remember
their state from one invocation to the next.

The security definition below says that the transformed circuit is secure if the outputs of the
two experiments are indistinguishable. We are now ready to state our security notion precisely.
The definition is for both computational and statistical indistinguishability (the latter is obtained
by setting the parameter τD to ∞).

Definition 1 (Security of Circuit Transformation). Recall that k is the security parameter.
A circuit transformation TR is (L, τA, τS , τD, q, ε)-secure if for every q-adaptive (L, τA)-adversary
A there is a simulator S running in time τA such that for all (stateful) circuits C with initial states
m0

Expreal
TR (A,L, q, C,m0, k) ≈τD,ε Exp

sim
TR (S,A, q, C,m0, k) ,

where the random variables are outputs of the experiments. Sometimes, we abbreviate parameters
and refer to a circuit transformation being L-secure, which means it is (L, τA(k), τS(k), τD(k), q(k),
ε(k))-secure for some polynomials τA, τS , τD, q, and some negligible function ε.

3mi, xi and yi will be vectors with length n, nI and nO (resp.).

9

Experiment Expreal
TR (A,L, q, C,m0, k)

(Ĉ, m̂0)← TR(C,m0)

(x1, f1)← A(Ĉ, 1k), with f1 ∈ L
For i = 1 to q − 1

(yi, m̂i,Wi) W Ĉ[m̂i−1](xi);
(xi+1, fi+1)← A(yi, fi(Wi))

(yq, m̂q,Wq) W Ĉ[m̂q−1](xq);
Return output of A(yq, fq(Wq)).

Experiment Expsim
TR (S,A, q, C,m0, k)

(Ĉ, m̂0)← TR(C,m0)

(x1, f1)← A(Ĉ, 1k), with f1 ∈ L
For i = 1 to q − 1

(yi,mi)← C[mi−1](xi)
Λi ← S(xi, yi, fi), with Λi being the leakage
(xi+1, fi+1)← A(yi,Λi)

(yq,mq)← C[mq−1](xq); Λq ← S(xq, yq, fq)
Return output of A(yq,Λq).

Figure 1: The real world with the adversary A observing the computation of the transformed circuit
Ĉ[m̂i] is shown on the left hand side. On the right hand side we describe the simulation.

Note that a stronger result is obtained when L, τA, τS and q are large (as it allows for more leak-
age functions and stronger adversaries), when τS is as close as possible to τA and the distinguishing
advantage ε is small (because it indicates tighter simulation).

In the following sections, we discuss three circuit transformations, which follow a similar ap-
proach that we call encoding based circuit transformations. We then show three examples of en-
coding based circuit transformations. In Section 3.2, we propose encoding based transformations
for computationally weak and in Section 3.3 for noisy leakages.

3.1 Encoding Based Circuit Transformations

At a high-level, in an encoding based circuit transformation each wire w in the original circuit C is
represented by a wire bundle in Ĉ, consisting of k wires ~w = (w1, . . . , wk), that carry an encoding of
w. The gates in C are replaced gate-by-gate with so called gadgets, computing on encoded values.
The main difficulty in the concrete constructions of Section 3.2–3.3 will be to construct gadgets
that remain “secure” even if their internals may leak, but before devising the concrete gadgets, let
us explain the main ingredients of encoding based circuit transformations.

Encoding scheme Π. The main ingredient of the transformations presented below is an encoding
scheme Π = (Enc,Dec), which maps a single element of a finite field K to a vector in Kk and back.
More precisely, for k ∈ N>0, Enc is a (probabilistic) algorithm that, on input x ∈ K, chooses
uniformly at random an element of Dec−1(x), where Dec : Kk → K is a deterministic function.

Linear encoding schemes. A special type of an encoding scheme is a linear encoding scheme,
which requires that Dec is an affine function. For k ∈ N>0, Dec is defined by a decoding vector
~r = (r1, . . . , rk) ∈ Kk as Dec : (y1, . . . , yk) 7→

∑
i yiri = ~rT~y. In the simplest case of K = GF(2),

a linear encoding of a bit x is a random string of k bits whose exclusive-or is x. The case when
K = GF(2) will be called parity encoding, denoted with Πparity. Further examples of linear encoding
schemes are any threshold or non-threshold linear secret sharing scheme [2].

We abuse notation and use Enc(x) to denote the distribution of encodings of x, ~x to denote a par-
ticular encoding from this distribution and Enc(x1, . . . , xn) = (Enc(x1), . . . ,Enc(xn)) = (~x1, . . . , ~xn)

10

to denote the encoding of a set of elements x1, . . . , xn ∈ K. Furthermore, denote by Enc(·) the uni-
form distribution over all encodings.

Encoding inputs – decoding outputs. Because the transformed gadgets in Ĉ operate on
encodings, Ĉ needs to have a subcircuit at the beginning that encodes the inputs and another
subcircuit at the end that decodes the outputs. However, in our proofs, we want to be able to
also reason about transformed circuits without encoding and decoding. Thus, we do not require
that every transformed circuit Ĉ should have such encoding and decoding. Instead, we introduce
artificial input and output gates that can be part of C for syntactic purposes. If such gates are
present (as they would be on any “complete” circuit that one would actually wish to transform),
then Ĉ will include input encoding and output decoding. If they are not, then Ĉ will operate on
already encoded inputs and produce encoded outputs.

More precisely, if we wish for Ĉ to include input encoding and output decoding, then the circuit
C given to TR must have a special encoder gate on every input wire. In C the encoder gate is
simply the identity, since no encoding is needed. Also, on every output wire there must be a special
decoder gate, which is also the identity. These special gates must not appear anywhere else in C
and do not count for the size of the circuit. In Ĉ each encoder gate is replaced by an ̂encoder
gadget which performs encoding (see below) and each decoder gate is replaced by a ̂decoder gadget
that performs decoding (see below).

The ̂encoder gadget takes an input a ∈ K and outputs an encoding (i.e., a wire bundle) ~a ∈ Kk
of a. The encoding can be chosen arbitrarily from the support of Enc(a), e.g., ~a = (r−1

1 a, 0, . . . , 0).

The ̂decoder gadget takes an encoding (i.e., a wire bundle) ~a ∈ Kk of a and outputs a← Dec(~a). For
our concrete transformations below, ̂encoder and ̂decoder can be implemented with just constα,
⊕, and � gates.

Transformation of the state. So far we have considered the transformation of stateless cir-
cuits. A stateful circuit C additionally has an initial state m0 that is stored in memory cells. For
syntactical reasons we assume that each such memory cell in C is followed by a mask gate, which
is implemented in C by the identity function.

To augment the circuit transformation to handle stateful circuits, we have to explain how to
transform the initial state m0 and what to do with each memory gate. The initial state is replaced
by a randomly chosen encoding Enc(m0). Each memory gate is replaced by a gadget that consists
of k memory gates to store the encoding, followed by a m̂ask gadget that represents the mask gate in
C. The implementation of the m̂ask gadget is transformation specific and will be described for our
concrete instantiations below. Notice that in contrast to ̂encoder and ̂decoder, the m̂ask gadget is
necessary to achieve security; otherwise we cannot safely tolerate leakage that exceeds the length
of a single encoding.4 The high-level structure of the circuit transformation is given in Figure 2.

3.2 Circuit Transformations Resilient to Computationally-Bounded Leakage

The transformation of [19] protects against leakage that reveals the values of up to k−1 wires, and
hence, is oblivious to huge parts of the computation. In this section we now present our circuit
transformation TRC that protects circuits against global, but computationally bounded leakage.

4The purpose of m̂ask is to guarantee re-randomization of the memory and destroy partial information that an
adversary may have learnt about the secret state.

11

memory dmemory

Figure 2: An example of a circuit C and its transformation Ĉ.

More precisely, we will show that from any linear encoding scheme Π over K, we can construct a
circuit transformation TRC that protects circuits against leakages from class L, where L contains
all functions that cannot decode Π.

To capture formally that leakage functions in L cannot decode Π, we will need the notion of
leakage-indistinguishability. Roughly speaking, this notion formalizes what it means for an encoding
of two values to be indistinguishable in the presence of leakage from L. But let us first introduce
a more general definition that speaks about leakage-indistinguishability of two distributions:

Definition 2 (Leakage-Indistinguishability of Distributions and Encodings). Two distri-
butions X,X ′ are said to be p-adaptive (L, τ, ε)-leakage-indistinguishable, if for any adversary A,
running in time τ and making at most p queries to its oracle,

|Pr[x← X : AEval(x,·)(1k) = 1]− Pr[x← X ′ : AEval(x,·)(1k) = 1| ≤ ε, (1)

where Eval(x, ·) takes as input a leakage function f ∈ L and outputs f(x).
We say that an encoding scheme Π is p-adaptive (L, τ, ε)-leakage-indistinguishable if for any

a, a′ ∈ K the two distributions Enc(a) and Enc(a′) are p-adaptive (L, τ, ε)-leakage-indistinguishable.

Recall that the function class SHALLOW(s, d) (for s, d ∈ N) is the class of functions that can
be computed by deterministic circuits (i.e., ones without $ gates) that have at most s ⊕,	, and
� gates that are arranged at most d deep (i.e., the longest path in the circuit has at most d such
gates on it).5

The theorem below shows the existence of a circuit transformation TRC based on arbitrary
leakage-indistinguishable linear encoding schemes Π.

Theorem 1 (Security against computationally bounded leakage). Recall that k is the
security parameter. Furthermore, let LΠ be some class of leakage functions and let q, εΠ, τΠ ≥
0.6 If there exists a linear encoding scheme Π over K that is 2-adaptive (LΠ, τΠ, εΠ)-leakage-
indistinguishable, then there exists a circuit transformation TRC that is (L, τA, τS , τD, q, ε)-secure
for

5Note that copy and constα gates are allowed in the circuit and do not count towards d or s.
6We omit to explicitly parameterize these values by k.

12

• any τA and τD satisfying τA + τD ≤ τΠ − qsO(k2), where s is the number of gates in C,

• some τS ≤ τA + qsO(k2),

• some ε ≤ εΠ(q + 1)(s(k + 2) + n), where n is the number of memory gates in C,

• any L that satisfies L◦SHALLOW(3, O(k2)) ⊆ LΠ (for K = GF(2), L◦SHALLOW(2, O(k2)) ⊆
LΠ) .

In particular, if the encoding scheme is 2-adaptive LΠ-leakage indistinguishable, then the trans-
formation is L-secure.

Notice that we define L implicitly by LΠ and the function class SHALLOW(3, O(k2)). Loosely
speaking, if we want that our circuits are resilient to functions in L, then we need an encoding
scheme Π that is resilient to functions at least from some set L ◦ SHALLOW(3, O(k2)). Our result
is better (or tighter) if the difference between L and LΠ can be described by functions that are as
simple as possible. In our case the difference between L and LΠ (in terms of computational power)
is described by the class SHALLOW(3, O(k2)). We will present a concrete instantiation of the above
theorem in Section 5, where we set Π to Πparity and L to AC0, in which case we obtain statistical,
rather than computational, indistinguishability.

Ideally, one would hope that our transformation TRC requires only standard gates of constant
size to transform arbitrary circuits. Unfortunately, it is not clear how to prove security when
we restrict TRC to only use such gates. To show security, we allow TRC to additionally use the
leak-free gate O. The O gate has size linear (in k), but as discussed in the introduction is very
simple otherwise. In particular, it has no inputs, and merely outputs an encoding sampled from
the distribution Enc(0). Crucially, while the wires coming out of this gate can be observed by
the leakage function, we assume that the gate itself does not leak information. For the case of
K = GF(2) our leak-free component can be implemented by a leak-free subcircuit that works as
follows: generate k random bits b0, . . . , bk−1 and output bi ⊕ bi+1 mod k for 0 ≤ i ≤ k − 1.

Our transformation follows the outline given in Section 3.1 using the gadgets given in Figure 3.
A visual description of its main component, the �̂ gadget, is presented in Figure 4. At a high-level
the �̂ gadget first computes a (non-uniform) encoding of a� b represented by the k× k matrix ~B.
Next, ~B is “randomized” with the matrix ~S, which yields into ~U . Since eventually �̂ has to output
a uniform encoding of a� b with length k, we compress the “rows” of ~U by decoding to obtain ~q.
The transformation increases the size of each multiplication gate by a factor of O(k2) and the rest
of the circuit by a factor of O(k), where the constants hidden in O(·) are small.

Incidentally, observe in Figure 3 that because every gadget other than ̂encoder or ̂decoder ends
with a masking by an output of O, 7 and wire bundles do not fan-out (instead, they go through
the ĉopy gadget), each wire bundle between two gadgets carries an encoding of its value that is
chosen uniformly and independently of all the wires in the transformed circuit. This fact, together
with the construction of the gadgets, is what enables to show security.

Transformation of stateful circuits. To augment the transformation to handle stateful circuits
we proceed as outlined in Section 3.1 – namely, we encode the initial memory m0 by m̂0 ← Enc(m0)

7One can instead define the basic gadgets as not including this masking with O, and instead place a mask gate
on every wire. The resulting transformation is similar. However, this does not cleanly generalize to the case of
transformations not necessarily based on linear encodings.

13

Transformation c = a� b ⇒ ~c← ~a�̂~b:
Compute the k × k matrix

~B = ~a~bT = (ai � bj)1≤i,j≤k using k2 � gates

Compute the k × k matrix ~S

where each column of ~S is output by O
~U = ~B ⊕ ~S (using k2 ⊕ gates)

Decode each row of ~U using k − 1 ⊕ gates,
k � gates, and k constα gates

to obtain ~q = ~U~r,
where ~r is the decoding vector
(it does not matter how this decoding is
performed as long as there are O(k) wires
in the decoding subcircuit and each one
carries some linear combination of the
wires being decoded, plus possibly a
constant)

~o← O
~c = ~q ⊕ ~o (using k ⊕ gates)

Transformation c← $ ⇒ ~c← $̂:
ci ← $ for i ∈ [1, k]

Transformation c = a⊕ b ⇒ ~c← ~a⊕̂~b
(or c = a	 b ⇒ ~c← ~a	̂~b):

~q = ~a⊕~b (or ~q = ~a	~b)
using k ⊕ (or) gates

~o← O
~c = ~q ⊕ ~o (using k ⊕ gates)

Transformation b = mask(a) ⇒ ~b← m̂ask(~a)
~o← O
~b = ~a⊕ ~o (using k ⊕ gates)

Transformation a = constα ⇒ ~a← ĉonstα,
for any α ∈ K

Let ~α be a fixed arbitrary encoding of α.
~o← O
~a = ~α⊕ ~o (using k ⊕ gates)

Gadget (~b,~c)← ĉopy(~a)
~ob ← O, ~oc ← O
~b = ~a⊕ ~ob (using k ⊕ gates)
~c = ~a⊕ ~oc (using k ⊕ gates)

Figure 3: Gadgets used in the stateless circuit transformation TRC .

a
r

b
r

●

jb

ia

















ttt

t

baba

baba

...

...

1

111

B
1

… c
r

a
r

b
r

B

2

… c
r

















ttt

t

ss

ss

...

...

1

111

+

…

S

O O

















tu

u

r

r
1

U

a
r

b
r c

r

















tu

u

r

r
1

)(1uDec
r

)(tuDec
r

1q

tq

… …

+

O

















to

o1

=
















ts

s

r

r
1

+

U

B

S
3

Figure 4: A step-by-step illustration of the �̂ gadget. Steps (1-3) are all part of the transformed
gadget �̂.

and use |m̂0| memory cells to store the result. Each such bundle of k memory cells is followed by
the m̂ask gadget to re-randomize the state. This masking is necessary to guarantee security as will
be discussed later.

In the following Lemma we show that our transformation outputs circuits that are functionally
equivalent to C. The security proof is given in Section 4 within our general framework to analyze
security of encoding based circuit transformations.

Lemma 1 (Soundness of TRC). The circuit transformation TRC is sound.

14

Proof. Since we encode the input, do a gate-by-gate transformation, and then decode the output,
it suffices to prove that our gate gadgets work correctly on encoded values (recall that ~r is the
decoding vectors):

⊕̂: For ~c = ~a⊕~b⊕ ~o, with ~o being an encoding of 0, we get by linearity that Dec(~c) = a⊕ b.

�̂ : Dec(~c) = ~rT(~q ⊕ ~o) = ~rT((~B ⊕ ~S)~r ⊕ ~o) = ~rT((~a~bT ⊕ ~S)~r ⊕ ~o) = (~rT~a)(~bT~r) ⊕ (~rT~S)~r ⊕ ~rT~o =
ab⊕~0T~r ⊕ 0 = ab

	̂, ĉopy, ĉonstα, m̂ask and $̂: Similar to ⊕̂, by linearity.

3.3 Circuit Transformations Resilient to Noisy Leakage

So far, Ishai et al. [19] discussed leakage classes that consider probing attacks, and we discussed
those that are constrained in terms of their computational power and output length (Section 3.2).
In this section, we consider the noisy leakage model, and present a transformation TRN that makes
arbitrary Boolean circuits resilient to leakage that consists of the values of all the wires in the
circuit, except that each bit is flipped with some probability p ∈ (0, 1/2]. 8

Noisy leakage. For some noise parameter p ∈ (0, 1/2] the single tolerated leakage function is
L = {Np}, where Np is probabilistic, and is defined as follows: Let Bp be the binomial distribution
with parameter p which outputs 1 with probability p and 0 otherwise. Then, for some input
~x ∈ {0, 1}∗ we have Np(~x) = ~x⊕~b, where each bit bi is drawn independently from the distribution
Bp.

Ideally, we would hope that the circuit transformation from the previous section provides secu-
rity against noisy leakage as well. Indeed, since Theorem 1 is very general, we could just plug-in
Np for L, and get “some” Np resilience for our circuit transformation TRC . The security, however,
would rely on the additional assumption that Πparity is Np ◦ SHALLOW(3, O(k2))-leakage indistin-
guishable, and it is not clear what such an assumption would mean in a setting where Np reveals
all its inputs perturbed by independent binomial noise (recall that SHALLOW(3, O(k2)) describes
the difference between the class of leakages that is tolerated by Πparity and the transformed circuit).

Furthermore, by inspection of our construction it turns out that TRC is not particularly tailored
to protect against noisy leakages. Indeed, TRC remains “secure” for very large noise p, but this
is not what we want. In practice, we are typically interested in what happens for low noise and,
unfortunately, we can show that in such a case there is an explicit attack against the transformation
TRC (as well as against the transformation of [19]).

An attack with noisy leakages. Specifically, the attack is against the construction of the
multiplication gadget �̂ in Figure 3. The gadget takes as input two encodings ~a and ~b and first
computes the k2 bits {ai � bj : i, j ∈ [k]}. Consider the first k bits (a1 � b1, . . . , a1 � bk). If a1 = 0,
then all these bits are 0, whereas if a1 = 1, then roughly half of them are 1. Given such disparity,
using error correction the adversary can determine whether a1 is 0 or 1, even if he is given a noisy

8Notice that similar to Section 3.2 we can generalize the class of circuits that we can transform (i.e., to circuits that
do computation over an arbitrary field K) and the class of noisy leakage that we can tolerate. For ease of description
we omit the details here.

15

version of these k bits. Proceeding in a similar way, he can reconstruct all the bits ai, and thus the
input bit a itself. The fundamental reason why this attack works is that the construction of the �̂
gadget in Figure 3 does not use its input in a local way, namely it accesses the input bits a large
number of times.

To avoid this attack we propose a new circuit transformation TRN . TRN uses as underlying
encoding scheme the parity encoding and proceeds in the same way as the transformation TRC from
Section 3.2 (cf. Figure 3), except for the construction of the multiplication gadget �̂. This new
construction of the multiplication gadget avoids the attack outlined above, and is constructed using
a new opaque gate that we call Q (in addition to the opaque gate O). We stress that the opaque
gate Q, inherits the main characteristics of the opaque gate O in that it is stateless, and independent
of the computation. In other words, Q simply produces samples from a fixed distribution.

Before we give the specification of the opaque gate Q and the construction of the new �̂ gadget,
let us state our main theorem that deals with noisy leakages. Note that, in contrast to Theorem 1,
this theorem deals with a much more restricted leakage class, but, as a result, obtains statistical,
rather than computational, indistinguishability.

Theorem 2. Recall that k is the security parameter. Let p ∈ (0, 1/2], q > 0 and the leakage function
Np be defined as above. There exists a circuit transformation TRN that is (Np, τA, τS , τD =∞, q, ε)-
secure for any τA, for some τS = τA + qsO(k2), and

ε ≤ (q + 1)(n+ (2k + 3)s)(exp(−64kp6) + exp(−15kp5)) + negl(k) ,

where s is the size of the transformed circuit and n is the size of its state.

We prove this theorem in a similar way as Theorem 1. Namely, we base the security of TRN
on the indistinguishability of the underlying parity encoding scheme Πparity. As it turns out (which
will be discussed in Section 4.1), the parity encoding scheme is information theoretic Np leakage
indistinguishable (note that this is the reason why in the above theorem we can eliminate to
explicitly condition on the leakage indistinguishability of Πparity). For the details of the proof, we
defer to the next section.

Similar to TRC , the transformation TRN increases the size of each multiplication gate by a
factor of O(k2) and the rest of the circuit by a factor of O(k). Notice that in contrast to the circuit
transformation TRC , our circuit transformation for noisy leakages requires leak-free gates of size
O(k2). All constants hidden in O(·) notation are small.

The new opaque gate Q. The opaque gateQ is probabilistic, takes no inputs and outputs 2k2+1
bits. It operates in the following way: Sample 2k uniformly random 0-encodings ~r(1), . . . , ~r(k) and
~s(1), . . . , ~s(k). Let ~R and ~S be the following two k × k matrices:

~R =



~r(1)

...⊕
j∈[1,i] ~r

(j)

...⊕
j∈[1,k] ~r

(j)

 and ~S =



~s(1)

...⊕
j∈[1,i] ~s

(j)

...⊕
j∈[1,k] ~s

(j)


We define by ~R ⊗ ~S the sum of the component wise product, i.e., ⊕i,j∈[1,k]Ri,j � Ri,j , then the

output of the opaque gate Q is the tuple (~r(1), . . . , ~r(k), ~s(1), . . . , ~s(k), ~R⊗ ~ST).

16

Subgadget ~q ← m̂ult(~a,~b):
Compute 2k2 + 1 bits with Q:

(~r(1), . . . , ~r(k), ~s(1), . . . , ~s(k), u)← Q.

Let ~a(0) = ~a and ~b(0) = ~b. Compute for i ∈ [k]:

~a(i) = ~a(i−1) ⊕ ~r(i) and ~b(i) = ~b(i−1) ⊕ ~s(i)

(using O(k2) ⊕ gates).

Let ~A = (~ai)i∈[1,k] and ~B = (~bi)i∈[1,k].

Compute z
(1)
1 = A1,1 �B1,1 ⊕ u and

for (i, j) 6= (1, 1): z
(i)
j = Ai,j �Bj,i

(using O(k2) � gates).

For i ∈ [k]: ~w(i) ← O (using O(k) opaque gates O).

Compute ~q(i) = ~z(i) ⊕ ~w(i); let ~q = (~q(1), . . . , ~q(k))
(using O(k2) ⊕ gates).

Subgadget ~c← ̂compress(~q):

Let ~q = (~q(1), . . . , ~q(k)), with ~q(i) ∈ {0, 1}k.
~c = ~q(1)⊕̂ . . . ⊕̂~q(k) (using O(k) ⊕̂ gadgets).

Transformation c = a� b ⇒ ~c← ~a�̂~b
~q ← m̂ult(~a,~b)

(using O(k2) standard gates and O(k)
O gates and one Q gate).

~c← ̂compress(~q)
(using O(k2) ⊕ gates and O(k) O gates).

Figure 5: Gadget �̂ in the circuit transformation TRN and its sub-gadgets m̂ult and ̂compress.
The constants hidden in the O-Notation are small.

The new multiplication gadget �̂. The operation of the multiplication gadget �̂ proceeds in
two stages.

• The first stage uses a sub-gadget m̂ult that takes as input two encodings ~a = (a1, . . . , ak) and
~b = (b1, . . . , bk) of a and b (resp.), and outputs a k2 long encoding ~q = (q1, . . . , qk2) of a� b.

• The second stage “compresses” this longer encoding into an encoding ~c = (c1, . . . , ck), using
a gadget ̂compress.

We describe these two stages and their costs in more detail in Figure 5. Notice that �̂ is carefully
constructed to prevent the above outlined attack. Crucially, this requires that the inputs, ~a and ~b,
are not used too often. We achieve this by generating k copies of ~a and ~b as ~a(i) = ~a(i−1)⊕~r(i) and
~b(i) = ~b(i−1) ⊕ ~s(i), with ~r(i), ~s(i) ← Enc(0). Next, ~A = (~a(i))i and ~B = (~b(i))i are used to compute
the k2 long encoding ~q = (q1, . . . , qk2) of a � b. For this to be correct we need the value u that is
output by Q. Unfortunately, it is not clear how to compute u in clear as, e.g., ~r(1) and ~s(1) are
used k times in the computation of u.

The transformation of the other gates, i.e., of ⊕, $, const, mask and copy, is done as in the
transformation TRC and is omitted in Figure 5.

In the following lemma we prove the correctness of our circuit transformation TRN . The security
proof follows our general approach and will we presented in the next section.

Lemma 2 (Soundness of TRN). The circuit transformation TRN is sound.

Proof. Since the only difference between TRN and TRC is the transformation of the � gate, we

focus on correctness of �̂. Let ~R and ~S be the matrices defined above, and let ~̂A be a matrix whose

rows are k copies of the vector ~a, and ~̂B be a matrix whose rows are k copies of the vector ~b. First,
a simple calculation shows that

~̂A⊗ ~ST =
⊕
i∈[k]

ai �
⊕
j∈[i]

=0︷ ︸︸ ︷
~s

(j)
1 ⊕ . . .⊕ ~s

(j)
k


 = 0 (2)

~R⊗ ~̂BT = 0 (3)

17

and

~̂A⊗ ~̂BT =
⊕
i,j

a
(i)
j � b

(j)
i =

(⊕
i

ai

)
�

⊕
j

bj

 = a� b (4)

We now establish the correctness of the �̂ gadget by the following computation:⊕
i,j∈[1,k]

q
(i)
j =

⊕
i,j∈[1,k]

[
w

(i)
j

]
⊕ u⊕ (~̂A⊕ ~R)⊗ (~̂B ⊕ ~S)T

= u⊕ ~̂A⊗ ~̂BT ⊕ ~̂A⊗ ~ST ⊕ ~R⊗ ~ST ⊕ ~R⊗ ~̂BT

= u⊕ ~̂A⊗ ~̂BT ⊕ ~R⊗ ~ST (by Equation 2 and 3)

= ~̂A⊗ ~̂BT (since ~R⊗ ~ST = u, by definition)

= a� b (by Equation 4)

4 Proof of Security

Before we outline the security proof and introduce our technical tools, we first discuss useful proper-
ties of the parity encoding Πparity. This will allow us to prove security for concrete function classes,
namely, for AC0 and Np noisy leakages.

4.1 Leakage-Indistinguishability of the Parity Encoding Πparity

We show leakage indistinguishability of the Πparity encoding against multi-bit range AC0 functions
and noisy leakages Np (for p ∈ (0, 1/2]).

AC0 leakage-indistinguishability of Πparity. The decoding function of the Πparity encoding is
exactly the parity function, which is hard for AC0. This observation enables us to prove AC0

leakage-indistinguishability of Πparity.
Recall that C(d, s, λ) denotes the class of AND-OR-NOT unlimited fan-in circuits with depth d,

size s and λ bits of output. If we translate the classical result of Hastad [18] (as cited in [22,
Corollary 1]) to our definition of leakage indistinguishability, we get that the parity encoding

is (C(d, 2k1/d
, 1),∞, 2−k1/d+1

)-leakage-indistinguishable, for any constant d. In other words, this
protects against AC0 circuits that output 1 bit. Using the result of Dubrov and Ishai [6, Theorem
3.4], we get the following corollary that later will be applied to show security of TRC against
multi-bit AC0 leakages (cf. Section 5).

Proposition 1 (AC0 leakage indistinguishability of Πparity). For some 0 < δ < 1, and
d ∈ N>1 the parity encoding Πparity is (C(d, exp(O(k(1−δ)/d)), kδ),∞, exp(−Ω(k(1−δ)/d)))-leakage-
indistinguishable.9

9 An even better result is obtained if one restricts d to d = 1: in that case, the ε parameter gets reduced to
exp(−Ω(k − kδ log k))

18

Np leakage-indistinguishability of Πparity. In this paragraph we prove some useful properties
of the parity encoding Πparity for Np leakages, which yields into Proposition 2 showing that Πparity

is Np leakage indistinguishability (for p ∈ (0, 1/2]).
We first present a simple version of the information-theoretic XOR Lemma.

Lemma 3 (XOR Lemma [14, 34]). Let X0 and X1 be two distributions. For any k ∈ N>0 and
b ∈ {0, 1} we define the distributions

−→
Xb = (Xb1 , . . . , Xbk) with b1 ⊕ . . .⊕ bk = b.

If ∆(X0;X1) ≤ ε, then ∆(
−→
X0,
−→
X1) ≤ εk.

The above lemma can be used to show that Enc(0) is indistinguishable from Enc(1) by noisy
leakage. However, if the same share of an encoding appears on multiple wires, and each wire leaks
with independent noise, the noise can cancel out, making it easier for the adversary to distinguish.
Thus, we now show a technical lemma that bounds the statistical distance of ` copies of Np(Enc(0))
from ` copies of Np(Enc(1)).

Lemma 4. For any constant `, any vectors ~c1, . . . ,~c` ∈ {0, 1}k and any b ∈ {0, 1}, we have
∆(D0, D1) ≤ (1− (2p)`)k with

Db := Db(~c1, . . . ,~c`) =

(
(Np(~e⊕ ~c1), . . . ,Np(~e⊕ ~c`))

)
~e←Enc(b)

.

Proof. Since the vectors ~ci are known, it suffices to show that

∆(D0(0, . . . ,0), D1(0, . . . ,0) ≤ (1− (2p)`)k

That is, given ` copies of an encoding ~e perturbed by independent binomial noise drawn from Np,
it is (information-theoretically) hard to distinguish whether ~e is an encoding of 0 or an encoding of
1.

Towards showing this, first consider the ith coordinate of the encoding ~e perturbed by ` inde-
pendent noise terms from Np, i.e., consider the distribution

D′ei = (ei + ηi,1, . . . , ei + ηi,`)

where each ηi,j is drawn independently from the binomial distribution Bp. The statistical distance
between D′0 and D′1 is at most 1 − (2p)` by an elementary calculation. By applying the XOR
Lemma (cf. Lemma 3) we get

∆(D0, D1) ≤ ∆(D′0, D
′
1)k ≤ (1− (2p)`)k,

which concludes the proof.

Of course, the situation in the actual transformed circuit won’t be as simple as in Lemma 4:
we will not have just multiple copies of the wires, but wires that depend in predictable ways on
other wires. Intuitively, noise cancellation will not be a problem if a single wire doesn’t influence
too many other wires, and hence its value is not leaked too many times with independent noise.
To formalize this contraint, we introduce the function class LOCAL(`). For some `,m, n ∈ N, a
function f : {0, 1}mk → {0, 1}n with inputs ~x1, . . . , ~xm ∈ {0, 1}k is said to be in LOCAL(`) if the
following holds for each i ∈ [1,m]:

19

For fixed ~x1, . . . , ~xi−1, ~xi+1, . . . , ~xm the function f(~x1, . . . , ~xm) is constant except for k` ≤ n
output bits which are ~xi ⊕ ~d, for some constant ~d.

The identity function, for instance, is in LOCAL(1), while a function that outputs ` copies of its
inputs is in LOCAL(`).

Informally, the proposition below says that an adversary that picks q times functions f ∈
Np ◦ LOCAL(`) obtains nothing more than q` noisy copies of the target encoding (essentially Np ◦
LOCAL(`) takes as input an encoding and outputs ` noisy copies). To sum it up, we get

Proposition 2 (Noisy leakage indistinguishability of Πparity). For any p ∈ (0, 1/2] and any
constant `, q ∈ N≥1 the parity encoding Πparity is q-adaptive (Np◦LOCAL(`),∞, (1−(2p)q`)k)-leakage
indistinguishable.

In particular, Πparity is (Np,∞, (1− 2p)k)-leakage indistinguishable (since Np ◦ LOCAL(1) = Np
outputs a single noisy copy of its input).

The proof follows immediately from definition of locality and Lemma 4 and is omitted.

4.2 Outline of the proof techniques

Notation. ByWC(x) we denote a distribution of wire assignments (recall that a wire assignment
of a circuit C is a string in Kt, where each element represents a value on a wire of C) that is induced
when a circuit C is being evaluated on an input x (in particular, if C is deterministic, then WC(x)
has only one element in its support). We use WC(x|y) to denote the same distribution conditioned
on the fact that the output of C(x) was y.

In order to show security of our transformation according to Definition 1 (cf. Section 3), we need
to build a simulator that comes up with an indistinguishable environment for arbitrary adversaries
A. This simulation must provide answers to A’s leakage queries f ∈ L, which will be done as
follows. For a leakage query f ∈ L, the simulator comes up with an assignment of all the internal
wires of Ĉ that is consistent with the inputs and outputs of the circuit. This assignment is fed into
f and the simulator returns the result to A.

The computation of the wire assignment is quite simple: wire bundles that are between two
gadgets will be assigned random values, and the internals of the gadgets will be simulated to be
consistent with those random values (note that this will imply that the simulated outputs of O
(and Q) used within gadgets will no longer be encodings of 0). The wires that are used to encode
the inputs of Ĉ (in the ̂encoder gadget) and decode the outputs (in the ̂decoder gadget) will be
simulated honestly, because the simulator knows its inputs and its outputs. The difficult part is
showing that A cannot distinguish the real wire distribution from the simulated one when its access
to the wire values is limited by functions available in the class L.

A mental experiment – Security proof with leak-free gadgets. Conceptually, proving this
indistinguishability proceeds in two steps. First, consider a mental experiment where each gadget
in the transformed circuit Ĉ is perfectly opaque. Namely, the only wires that the adversary A can
“see” (via the leakage function f) are the external wires of the gadgets that connect the output of
a gadget to the input of another gadget (these are exactly the wires that carry encodings of the
values in the circuit C). The internals of the gadgets are off-limits to A. Once in this (imaginary)
world, we use the first key property of our gadget transformations presented in Figure 3 and 5,
namely

20

Definition 3 (Rerandomizing). Let C be a stateless circuit with nI inputs and nO outputs, and no
encoder or decoder gates. Let Ĉ be the corresponding transformed circuit. We say that Ĉ is reran-
domizing if, for any fixed input (x1, x2, . . . , xnI) and its encoded input X ∈ Enc(x1, x2, . . . , xnI), the

encoded output Ĉ(X) is distributed like Enc(C(x1, x2, . . . , xnI)), i.e., independently of the particular
encoding X.

This definition particular applies to single-gadget circuits. In Section 4.3 (for TRC) and Sec-
tion 4.4 (for TRN), we show that all our gadgets are rerandomizing, i.e., the gadget’s encoded
output is uniformly distributed and independent from the gadget’s encoded input. For a circuit
Ĉ composed of such gadgets this implies that wire-bundles external to gadgets are distributed like
(~w1, . . . , ~wm) where ~wi ← Enc(wi) are random and independent encodings of the values w1, . . . , wm
on the wires in C. In the mental experiment this observation suffices to simulate wire assignments
without getting noticed by adversaries equipped with leakages in L. More precisely, the simulator
(who does not know the real wi as they may depend on the secret state) uses an independent
random vector ~wi

′ for the external wire-bundles. By the leakage indistinguishability of the encod-
ing scheme such a change in the distribution will not get noticed by the adversary. By a hybrid
argument, the same holds for a vector of independent encodings of m values as well.

Reduction. Before we declare victory (in this imaginary world), let us look a little more carefully
at the hybrid argument. At each hybrid step, we will prove indistinguishability by a reduction to
the security of the underlying encoding scheme. In other words, we will show by reduction that if A
equipped with functions from L can distinguish two hybrid wire distributions, then some adversary
AΠ, equipped with functions from LΠ, can distinguish two encodings. Given a target encoding, our
reduction will need to fake the remaining wires of the circuit in a consistent way and give them as
input to the function from L (notice that functions from L expect as input a full wire assignment
for Ĉ).

Efficient reduction for computationally weak leakages. If A specifies a leakage function
f ∈ L for Ĉ, then AΠ will specify its own leakage function fΠ ∈ LΠ for the target encoding and
return its result to A. Since AΠ has only access to its target encoding via fΠ, fΠ has to fake (in
a way that will look real to f and A) all the wires of Ĉ before it can invoke f . At the same time,
fΠ should not be much more complex than f , because our result is more meaningful when the
difference between the power of LΠ and the power of L is smaller (recall that in Theorem 1 the
difference between L and LΠ was described by SHALLOW(3, O(k2)). The main trick is for AΠ to
hardwire as much as possible into fΠ, so that when fΠ observes the encoding, it has to do very
little work before it can invoke f . In fact, in this imaginary situation, all the remaining wires of the
hybrid wire distribution can be hardwired into fΠ because of the rerandomizing property (i.e., the
encodings are independent), so fΠ has to simply invoke f on its input wires and hardwired values.

Local reduction for noisy leakages. Also to show security against noisy leakages we do a
reduction to the security of the underlying encoding scheme. In contrast to computationally weak
leakages efficiency of such a reduction is not of particular interest. Rather, we get a more meaningful
result if the reduction works “locally”. That is, from a single target encoding we need to fake the
wire assignment of Ĉ by using the target encoding as little as possible before feeding it into the noisy
leakage function Np. We guarantee such little usage by choosing most of the wires in Ĉ independent

21

of the target encoding. In fact, in our imaginary world in each hybrid the target encoding is only
used once for ~wi while all the other wires are independent. Since in such a case the adversary only
gets a single noisy copy of the target encoding, by the Np leakage indistinguishability of the parity
encoding (cf. Proposition 2) she will not be able to tell apart two consecutive hybrid distributions.

The real world – Gadgets may leak. The second step in the proof is to move from the mental
experiment to the real world, where the internals of the gadgets also leak. Unlike in the mental
experiment, where the values of all wire bundles were independent, values of wires inside a gadget
are correlated to its input and output wire bundles. Thus, they cannot be hardwired. Nor, can
they efficiently (or locally) be computed, because the complexity of the gadgets is too high.

We address this problem by invoking the second key property of transformed circuits, namely:

Definition 4 (Reconstructor). Let Ĉ be a (transformed) stateless circuit. We say that a pair of
strings (X,Y) is plausible for Ĉ if Ĉ might output Y on input X, i.e., if Pr[Ĉ(X) = Y] > 0.

Consider a distribution REC
Ĉ

over the functions whose input is a pair of strings, and whose out-

put is an assignment to the wires of Ĉ. Define REC
Ĉ

(X,Y) as the distribution obtained by sampling
R
Ĉ
← REC

Ĉ
and computing R

Ĉ
(X,Y). Such a distribution is called a (L, τ, ε)-reconstructor for

Ĉ if for any plausible (X,Y), the following two wire assignment distribution are (L, τ, ε)-leakage-
indistinguishable:

• W
Ĉ

(X|Y),

• REC
Ĉ

(X,Y).

If the support of the distribution REC
Ĉ

is in some set of functions R, we say that Ĉ is (L, τ, ε)-
reconstructible by R.

Intuitively, if a circuit Ĉ is L-reconstructible in R, then there exists functions in R that given
Ĉ’s encoded inputs X and outputs Y can compute a wire assignment for Ĉ that is L-leakage
indistinguishable from Ĉ’s real wire distribution (conditioned on the inputs being X and the outputs
being Y). Putting it differently, reconstructibility of Ĉ allows to simulate Ĉ’s internals from just
knowing its inputs and outputs.

On a high-level, in the simulation we replace each gadget with its reconstructor in addition to
replacing connecting wire bundles, i.e., the wires that go between gadgets, with random encodings.
The proof that the simulation is indistinguishable requires first doing a hybrid argument over
gadgets as they are replaced by reconstructors one-by-one, and then modifying the hybrid argument
over the wire-bundles (replacing them by random encodings) as described above. In the hybrid
argument over the wire-bundles, we can hardwire values for every wire in the circuit except the
gadgets connected to the challenge encoding. Simulating the internals of these gadgets will be done
using the reconstructor. We show that all gadgets in Ĉ have either very efficient reconstructors (for
the gadgets of TRC refer to Section 4.3), or reconstructors that make very little use of their inputs
(for the gadgets of TRN refer to Section 4.4). We then show that (efficient or local) reconstructibility
composes, which allows us to efficiently (or locally) reconstruct the internals of a complete circuit
Ĉ given only its inputs. Formally such composition is proven in Lemma 13 (cf. Section 4.5).

To conclude the proof we rely on the reconstructibility of Ĉ to show security of the transfor-
mation according to Definition 1. Informally, the simulator replaces the secret state by random
encodings and let the reconstructors of the gadgets compute the internals of Ĉ in a way that is

22

consistent with the random state and the inputs and outputs of Ĉ. Again, we rely on the efficiency
(or locality) of the reconstructors to keep our results as meaningful as possible.

A cautionary remark on our proofs. The proofs that we present in the next sections are tech-
nical and require a careful bookkeeping of the involved parameters, in particular, of the relation
between the leakage classes LΠ and L. This is necessary, if we want to make meaningful security
statements about low-complexity leakages such as circuits of low-depth. In particular, we require
that the reduction can be evaluated by low-depth circuits: If we start with some low-depth leakage
LΠ, and loose too much in the reduction, then L will become the empty set and no meaningful se-
curity statement can be made. Surprisingly, we show that our reductions are very efficient (namely,
they can be computed by depth 3 circuits), even though they may have to “fake” computation
carried out by deep and complex circuits.

Reader’s guide to the security proof. For readers only interested in the high-level concept,
we give the following reading guide. In Section 4.3 we present reconstructors for the gadgets of TRC .
We advise to read Lemma 5 as it gives a simple application of efficient reconstructors. The main
technical part of Section 4.3 are Lemma 9 and Lemma 10. In Section 4.4 we present reconstructors
for TRN . A simple example of a local reconstructor is given in Lemma 11. The main technical part
is Lemma 12, whose proof is moved to the appendix. In Section 4.5 we show that reconstructors
compose. The outline from the last pages highlighted the main ideas of such composition. Finally,
in Section 4.6 we discuss security of stateful circuits in Lemma 15 whose proof may safely be
skipped. The proofs of the main Theorem 1 and Theorem 2 only sum up parameters and do not
make use of any interesting new techniques.

4.3 Single Gadgets Reconstructors for TRC

We show in this section that all single-gate gadgets from Figure 3 of the transformation TRC have
efficient reconstructors and are rerandomizing. The rerandomizing property follows immediately
from the fact that every gadget’s output is, as the last step of the gadget, masked by the output
of O. Therefore, in the following we focus to show existence of efficient reconstructors. Efficiency
is described by the circuit class SHALLOW(d, s). If a reconstructor is in SHALLOW(d, s), then it
can be computed by circuits of depth d and size s. We are particular interested in keeping d small
as later we want to talk about AC0 reductions (i.e., reductions that can be computed by constant
depth circuits).

We show first existence of reconstructors for the simple gadgets of TRC , namely, for ĉopy, m̂ask,

ĉonstα, $̂, ⊕̂, and 	̂. Except for the ⊕̂ reconstructor the proofs are moved to Appendix A.

Lemma 5 (⊕̂ and 	̂ gadgets of TRC are reconstructible). Recall that k is the security
parameter. The ⊕̂ and 	̂ gadgets are (L,∞, 0)-reconstructible by SHALLOW(2, O(k)) for any L.

Proof. We will do the proof for ⊕̂; the proof for 	̂ is similar. The reconstructor REC⊕̂ is the

distribution whose only support is the following circuit R⊕̂. On inputs (X,Y) where X = (~a,~b)

(i.e., the desired input of the ⊕̂ gate), and Y = (~c) (i.e., its desired output), R⊕̂ assigns the wires

of ⊕̂ to ~q = ~a⊕~b and ~o = ~c	 ~q.
If X,Y are chosen as in the definition of a reconstructor (i.e., they are plausible), then the

resulting output of R⊕̂(X,Y) is identically distributed to the wire distribution W⊕̂(X|Y), since in

23

both cases ~o takes the only possible consistent value ~o = ~c 	 ~q. Notice that R⊕̂ can be computed

by a circuit of depth 2 because on inputs X,Y it first will compute ~q = ~a ⊕~b and based on that
~o = ~c 	 ~q. The 	 and ⊕ gates above operate only on single field elements, so R⊕̂ requires O(k)
size.

Lemma 6 ($̂ of TRC is reconstructible). The $̂ gadget is (L,∞, 0)-reconstructible by SHALLOW(0,
O(k)) for any L.

Lemma 7 (ĉopy, m̂ask, and ĉonstα of TRC are reconstructible). The ĉopy gadget, the m̂ask

gadget, and, for every α ∈ K, the ĉonstα gadget are (L,∞, 0)-reconstructible by SHALLOW(1, O(k)),
for any L.

We are now going to prove the reconstructibility of the �̂ gadget. For our result to be more
meaningful it is of vital importance that our simulation is efficient. Presenting such an efficient
simulator for the �̂ gadget, is the main technical difficulty of this section, since �̂ is a deep, complex
circuit. But before we present our shallow simulator in Lemma 9, we first prove a simple technical
lemma which relates two leakage-indistinguishability statements using a “shallow” wire simulator
fS .

Lemma 8. Let W0,W ′0 be distributions over Kn for some n > 0.10 Let F be a distribution over
n-input functions in some class L . For fS ← F define the following distributions:

W1 ≡ fS(W0) and W ′1 ≡ fS(W ′0). (5)

Let L0 be a class of leakage functions and let ε0 > 0, τ0 > 0. If W0 and W ′0 are (L0, τ0, ε0)-leakage-
indistinguishable, then W1 and W ′1 are (L1, τ1, ε1)-leakage-indistinguishable. Here, for any L1 that
satisfies L1 ◦ L ⊆ L0, ε0 = ε1, and τ0 − τ1 is the time needed to sample from F .

Proof. We show by contradiction that for all adversaries A1 running in time at most τ1

|Pr[AEval1(W1,·)
1 = 1]− Pr[AEval1(W ′1,·)

1 = 1| ≤ ε1, (6)

where Eval1 can be queried once by A1 with a leakage function f1 ∈ L1, where L1 satisfies L1 ◦L ⊆
L0.

Suppose for contradiction that (6) is violated for some (L1, τ1)-adversary A1, then we construct
an (L0, τ0)-adversary A0 that breaks the leakage-indistinguishability of the distributions W0 and
W ′0. The adversary A0 will invoke A1 as a subroutine, answering A1’s leakage query and eventually
outputting whatever A1 outputs (see Figure 6). To answer the leakage query f1 ∈ L1, the adversary
A0 will use its own oracle Eval0. The difficulty is that Eval0 evaluates a leakage function f0 ∈ L0

on a sample either from W0 or W ′0, whereas A1 produces a query f1 to be evaluated on a (possibly
much larger) wire assignment sampled from W1 or W ′1.

We address this by using a function fS , drawn from the distribution F , that takes as input a
single “challenge” that is either sampled from W0 or W ′0 and outputs a full wire assignment from
either W1 or W ′1, respectively. To recap, A0 lets A1 choose f1 ∈ L1, and draws a function fS from
F . It then queries Eval0 on f0 = f1 ◦ fS and forwards the answer back to A1. Finally, if A1 returns
a bit b, then A0 outputs b as its own guess.

10In our case, these will be wire assignments to a circuit with n wires. Notice that this can also just be a single
encoding.

24

OBS0
OBS1

f1 ∈ L1

Eval0(W0, ·)f1 ◦ fS(·)

f0 ∈ L0

f0

f0(W0)

f1 ◦ fS(D)

Output of OBS0

Eval0(W
′

0
, ·)

or

or

f (W ′)
f0 ∈ L0 f0(W

′

0
)

Figure 6: Outline of the reduction in Lemma 8

To analyze the distinguishing advantage of A0, consider the following two cases:

Pr[AEval0(W0,·)
0 = 1] = Pr[AEval1(fS(W0),·)

1 = 1]
(5)
= Pr[AEval1(W1,·)

1 = 1]

Pr[AEval0(W ′0,·)
0 = 1] = Pr[AEval1(fS(W ′0),·)

1 = 1]
(5)
= Pr[AEval1(W ′1,·)

1 = 1]

By taking the difference and with Eqn. (6) we get

|Pr[AEval0(W0,·)
0 = 1]− Pr[AEval0(W ′0,·)

0 = 1| ≤ ε1,

which yields that ε0 = ε1. Observe also that f0 ∈ L0 (i.e., the reduction does not lose much in the
leakage function’s power): since fS ∈ L indeed we have that f0 = f1 ◦ fS ∈ L1 ◦ L ⊆ L0. Finally,
note that the only extra time A0 spends (i.e., τ0 − τ1) is the time required to sample from the
distribution F .

Let us now show that the �̂ gadget is reconstructible by shallow circuits. The lemma below
describes the reconstructor for �̂ and gives the high-level idea of the proof; the technical details
are moved to Lemma 10.

Lemma 9 (�̂ of TRC is reconstructible). Let LΠ be a class of leakage functions and let τ > 0, ε >
0. If Π is (LΠ, τ, ε)-leakage-indistinguishable, then the �̂ gadget is (L, τ −O(k2), kε)-reconstructible
by SHALLOW(2, O(k2)), for any L that satisfies L ◦ SHALLOW(3, O(k2)) ⊆ LΠ (and if K = GF(2),
then L ◦ SHALLOW(2, O(k2)) ⊆ LΠ).

Proof of Lemma 9. We first describe the reconstructor REC�̂ for �̂ gadgets, and then prove that

it is indistinguishable from a wire assignment of a real evaluation of �̂ conditioned on plausible
inputs X and outputs Y .

R�̂ sampled from the reconstructor REC�̂ takes as inputs plausible values (X,Y), where X =

(~a,~b) (i.e., the desired input of the �̂ gate), and Y = (~c) (i.e., its desired output) and is defined as
follows:

1. Sample ~U uniformly from Kk×k and compute the values on the wires in the subsequent
decoding sub-circuits for the computation of ~q. Hardwire the results as R�̂’s outputs.

25

2. On input X, R�̂ computes the matrix ~B = (ai� bj)i,j∈[1,k] and outputs it as part of the wire
assignment.

3. R�̂ computes online ~S = ~B 	 ~U and ~o = ~c 	 ~q (i.e., once using ~B that depends on input X
and once using the input Y = ~c).

Circuits sampled from REC�̂ have size O(k2) (because they need to compute matrices ~B and ~S)

and depth 2, because ~S is computed from ~B, that in turn has been computed from the inputs.
It remains to show that if X,Y are chosen as in the definition of reconstructors, then R�̂(X,Y)

andW�̂(X|Y) are (L, τ−O(k2), kε)-leakage-indistinguishable. The reconstructor from above differs

from the real wires assignment in that ~U is a random matrix (instead of being ~B⊕ ~S, where ~S is a
matrix whose columns decode to 0). In the following we will show that one can replace the matrix
~S by a matrix sampled uniformly at random from Kk×k. Since ~U is computed as ~B ⊕ ~S (i.e., for
random ~S the matrix ~U is random as required by the reconstructor distribution) this will give us
the desired property of reconstructibility and concludes the proof.

We prove that ~S can be replaced by a random matrix using a hybrid argument. We define
hybrid distributions W`

�̂(X|Y) (` ∈ [0, k]) as W�̂(X|Y), except that for the first ` columns of ~S

the elements are drawn uniformly from K. It is easy to see that the 0th hybrid uses matrix ~S as
defined in our construction and the kth hybrid distributions uses a matrix ~S drawn uniformly at
random. We show the leakage-indistinguishability between two consecutive hybrids by a reduction
to the encoding leakage-indistinguishability. More precisely, we will show that for all ` ∈ [1, k] and
all plausible X,Y , W`−1

�̂ (X|Y) and W`
�̂(X|Y) are (L, τ −O(k2), ε)-leakage-indistinguishable.

To this end in the next technical lemma, we show for any ` ∈ [1, k] and any X the existence
of a distribution F ` of functions in SHALLOW(3, O(k2)) samplable in time O(k2) that take as
input a single encoding and map it either to W`−1

�̂ (X|Y) or W`
�̂(X|Y), depending on whether the

given encoding was an encoding of 0 or of a random value. By applying Lemma 8 to Lemma 10
below (setting W0 = Enc(0),W ′0 = Enc(·)) we get that W`−1

�̂ (X|Y) and W`
�̂(X|Y) are (L, τ −

O(k2), ε)-leakage-indistinguishable, where L◦SHALLOW(3, O(k2)) ⊆ LΠ. Using triangle inequality
we get together with the k hybrids that W�̂(X|Y) and R�̂(X,Y) are (L, τ − O(k2), kε)-leakage-
indistinguishable, if Π is (LΠ, τ, ε)-leakage-indistinguishable. This concludes the proof.

The following technical claim proves the existence of the distribution F ` used above in Lemma 9
and may be skipped by the reader.

Lemma 10. For any ` ∈ [1, k] and any plausible X = (~a,~b), Y = (~c), there exists a distribution F `

over functions in SHALLOW(3, O(k2)) (if K = GF(2) then SHALLOW(2, O(k2))) that take as input
a single encoding and output a wire assignment for �̂, such that for fS ← F `:

W`−1
�̂ (X|Y) ≡ fS(Enc(0)), (7)

W`
�̂(X|Y) ≡ fS(Enc(·)). (8)

Proof. fS ← F ` on input an encoding ~e shall output a full wire assignment of �̂, with ~e embedded
into the `th column of ~S, and with the correct distribution on the remaining wire values. This
guarantees that if the target encoding ~e is drawn uniformly-and-independently from Enc(0) then
fS(~e) is distributed identically to the hybrid wire distributionW`−1

�̂ (X|Y). On the other hand, if ~e is

drawn uniformly-and-independently from Enc(·), then fS(~e) is distributed identically toW`
�̂(X|Y).

26

The difficulty is that fS must have small (constant) depth, but needs to output a wire assignment
for the deep circuit �̂. We solve this problem by hard-wiring most of the resulting wire assignment
directly into fS . The only parts of the wire assignment that cannot be hardwired are those that
depend on the input ~e, but fortunately, they can be easily computed (indeed, this was the main
goal in designing the �̂ gadget).

Concretely, the distribution F ` is defined by drawing fS as follows:

1. From given X = (~a,~b) compute consistently the matrix ~B = (aibj)i,j∈[1,k] and hardwire ~a,~b, ~B
into fS .

2. Most columns of ~S are hardwired into fS : left of the `th column they are drawn at random,
and right of the `th column they are drawn from Enc(0). Only the `th column depends on
the input and is filled with the challenge encoding ~e.

3. Using ~B and ~S hardwire all elements of ~U = ~B ⊕ ~S into fS except for the `th column. For
the `th column, fS computes on input ~e, for each i ∈ [1, k], the value Ui,` = Bi,` ⊕ ei.

4. Consider, for i ∈ [1, k], the decoding subcircuits in �̂ that compute ~q with values from ~U . In
each subcircuit the wires carry the linear combination of {Ui,j}j , plus possibly a constant. If
this linear combination does not depend on Ui,` (i.e., the input to fS), then pre-compute this
wire and hardwire the result into fS . On the other hand, if it does depend on Ui,` = Bi,`⊕ ei,
then pre-compute the partial linear combination except the term that depends on ei and
hardwire the result into the description of fS . On input ~e, fS computes the missing outputs
by ⊕-ing the partial linear combination with the missing term (which is ei times a constant).

5. With fixed Y and ~q from the previous step compute ~o = Y 	 ~q and output it.

Let us first consider the outputs of fS that are independent of ~e. In W`−1
�̂ (X|Y) and W`

�̂(X|Y)

the first `− 1 columns in ~S are independently-and-uniformly drawn from Enc(·), whereas the last
k − ` − 1 columns are sampled from Enc(0). The other hardwired outputs that do not depend on
~e, are computed honestly from X,Y and ~S, thus with respect to only these values, W`−1

�̂ (X|Y),

W`
�̂(X|Y) and the outputs of fS are identically distributed. If on the other hand an output of fS

depends on ~e we distinguish two cases:

1. ~e ← Enc(0): This means the `th column of ~S is assigned an encoding drawn from Enc(0).
Together with the observation that all remaining wires are computed honestly using ~S and
~B, we get that fS(Enc(0)) and W`−1

�̂ (X|Y) are distributed identically.

2. ~e ← Enc(·): Here, the `th column of ~S is assigned a random value in Kk. With the same
observation as above we get that fS(Enc(·)) and W`

�̂(X|Y) are distributed identically.

It is clear that functions from F ` can be sampled in time O(k2). It remains to show that they
can indeed be computed by shallow circuits. The input to fS is used to adjust the `th column
of ~U , which requires a circuit of depth 1 and size k. Additionally, adjusting the values in the
subcircuits for the computation of ~q requires computation of depth 2 (for the computation of ei
times a constant and ⊕-ing it) and O(k) size. Finally, once ~q is evaluated, fS needs to compute ~o
which increases the depth by 1. Overall, we get circuits of size O(k2) and depth 3. In the case of
GF(2), there is no need to multiply ei by a constant, so the depth is only 2.

27

4.4 Single Gadgets Reconstructors for TRN

In this section, we prove that the gadgets of TRN from Figure 5 are rerandomizing and recon-
structibile. We only present statements and proofs for reconstructibility of the ⊕̂ and �̂ gadgets,
as for the simpler gadgets reconstructibility can be shown along the lines.

Gadgets of TRN are rerandomizing. By inspection of our gadgets, it is easy to see that they
satisfy the rerandomizing property: as for the gadgets of TRC the reason is that the output of each
gadget is masked with the output of the opaque gate O.

Gadgets of TRN are reconstructible. On a high-level, the reconstructors for the gadgets of
TRN follow the reconstructor constructions from Section 4.3. The main difference is that in the
noisy case, we are not concerned about the computational efficiency of the reconstructor, but rather
the number of times the reconstructor’s output depends on its input bits. That is, given the encoded
inputs and outputs of a gadget, the reconstructor has to simulate the internals in way that looks
indistinguishable (from the real wire distribution) to noisy leakage Np. Since the gadget’s internal
wires depend on its encoded inputs and outputs, the reconstructor will need to use them to compute
the remaining wires of the gadget. We say that a reconstructor operates locally if it does not have
to use its inputs (i.e., the encoded inputs and outputs of the gadgets) too often, which essentially
means that for a large gadget most of its internal wires are independent of the encoded inputs and
outputs, and, hence, can be hardwired into the reconstructor. Because local functions computed
on Enc(0) and Enc(1) are indistinguishable through Np, our reconstructor will work.

We show that the gadgets of TRN exhibit such a locality property. In particular, we prove
that to reconstruct the ⊕̂ gadget, the reconstructor needs to use its inputs only 3 times, and can
hardwire the remaining wires. We show similar locality for the large �̂ gadget.

Importance of locality. One may ask why locality of reconstruction is such an important prop-
erty in the presence of noisy leakage Np. To explain this, let us go back to the outline of the
security proof from Section 4.2. To show security of TRN according to Definition 1, we need to
build a simulator S that answers the adversary’s leakage queries Np. Since S does not know the
circuit’s secret state, it will use random encodings instead. We show by reduction to the leakage
indistinguishability of Πparity that such a change in the wire distribution (namely, replacing the real
secret state with random encodings) will not get noticed by the adversary. To this end, we put
the target encoding in the secret state and let the reconstructor for Ĉ (that we will construct in
the next section by composition from reconstructors of single gadgets) simulate all of Ĉ’s internals.
If the reconstructor for Ĉ works in a local way, i.e., most of the wires in Ĉ are independent of
the target encoding, then by Proposition 2 the statistical distance between the wire distribution
using the correct state and the simulated distribution using random encodings is small. To formally
describe such locality, we use the function class LOCAL(`) formally described in Section 4.1. We
remind the reader that functions in LOCAL(`) allow each input bit to affect at most ` output bits.

Formal Statements. Let us first describe reconstructibility of the ⊕̂ gadget.

Lemma 11 (⊕̂ gadgets of TRN are reconstructible). The ⊕̂ gadget is (L,∞, 0)-reconstructible
by LOCAL(3) for any L.

28

Proof. The reconstructor REC⊕̂ is the distribution whose only support is the following circuit R⊕̂.

On inputs (X,Y) where X = (~a,~b), and Y = (~c), R⊕̂ assigns the wires of ⊕̂ to ~q = ~a ⊕ ~b and
~o = ~c⊕ ~q.

If X,Y are chosen as in the definition of a reconstructor (i.e., they are plausible inputs), then
the resulting output of R⊕̂(X,Y) is distributed as the real wire distribution W⊕̂(X|Y), since in
both cases ~o takes the only possible consistent value ~o = ~c⊕ ~q.

It remains to show that R⊕̂ is in LOCAL(3). We must show that for each input ~a,~b,~c (when
the remaining inputs are fixed) the output of the reconstructor is either a fixed constant or can be
written as the free input plus a constant vector. For input ~a the inputs ~b and ~c are fixed constants
and hence, the output of R⊕̂ is constant except (~a, ~q := ~a⊕~b, ~o := ~a⊕ (~b⊕ ~c)). The same analysis

works for ~b. For ~c observe that ~a and ~b are fixed and all outputs are constant except (~c,~c ⊕ ~q).
Hence, we get that R⊕̂ ∈ LOCAL(3).

The above lemma works for arbitrary leakage classes L. Later, we set L = Np to get recon-
struction for ⊕̂ that is resilient to noisy leakages.

The reconstructibility of �̂ is significantly more complicated. Indeed, we will only fully establish
it in the next section, when we show composability of reconstructors. �̂ is built from two sub-
gadgets: m̂ult and ̂compress, where ̂compress itself is composed of ⊕̂ gadgets. Hence, to apply
composability and show existence of a reconstructor for �̂ (cf. Lemma 14 in Section 4.5) it remains
to show reconstructibility of m̂ult. Indeed, showing this is the main technical part of this section
and is given in the lemma below, whose proof is moved to Appendix B.

Lemma 12 (m̂ult gadgets of TRN are reconstructible). For every p ∈ (0, 1
2], the m̂ult gadget

is (Np,∞, ε(k))-reconstructible by LOCAL(2), where ε(k) ≤ (2k + 1) exp(−15kp5) + negl(k).

4.5 Multi-Gadget Circuit Reconstructors

In the previous two sections we showed reconstructors for the gadgets used by the transformations
TRC and TRN . In this section, we are interested in composing such reconstructors to obtain
a multi-gadget circuit reconstructor, i.e., we show the existence of reconstructors for arbitrary
complex circuits. To keep our composition lemma below as general as possible, we do not focus
on our transformations TRC or TRN but rather prove reconstructor composition for arbitrary
encoding-based circuit transformations.

Recall that in an encoding-based circuit transformation each wire w in the original circuit C is
represented by a wire bundle in Ĉ, consisting of k wires ~w = (w1, . . . , wk), that carry an encoding of
w. The gates in C are replaced gate-by-gate with so called gadgets, computing on encoded values.
For the detailed description of encoding based circuit transformations we refer to Section 3.1.

In this section, we consider transformed circuits Ĉ without ̂encoder and ̂decoder gadgets, i.e.,
we assume that Ĉ’s inputs are already given in encoded form, and the outputs are not explicitly
decoded. The reason for this restriction is that the ̂encoder and ̂decoder gadgets are by definition
not reconstructible, since reconstructors are only defined for gadgets that take encoded values as
inputs and output encoded values.

Lemma 13 (Reconstructor composition for encoding-based circuits). Let Π = (Enc,Dec)
be any (not necessarily linear) encoding scheme that is (LΠ, τΠ, εΠ)-leakage-indistinguishable for
some LΠ, τΠ, εΠ. Let TR be an encoding based circuit transformation and suppose that each cor-
responding gadget, ĝ, is rerandomizing and (Lĝ, τĝ, εĝ)-reconstructible by Rĝ, for some Lĝ, τĝ, εĝ.

29

Then for any stateless circuit C of size s with nI inputs, nO outputs, and m wires, Ĉ ← TR(C) is
rerandomizing and (L

Ĉ
, τ
Ĉ
, ε
Ĉ

)-reconstructible by R
Ĉ

, for

• any L
Ĉ

that satisfies (L
Ĉ
◦ (2×Rĝ)) ⊆ LΠ and L

Ĉ
⊆ Lĝ,

• any τ
Ĉ
≤ min(τΠ, τĝ) − sτsamp, where τsamp is the maximum time to sample Rĝ ← RECĝ for

all gadgets ĝ.11

• some ε
Ĉ
≤ mεΠ + sεĝ,

• R
Ĉ
⊆ (nI + nO)×Rĝ; moreover, if Rĝ ⊆ LOCAL(`), then also R

Ĉ
⊆ LOCAL(`)

Before we give the proof, let us discuss an interpretation of the important parameters. To apply
the lemma we require

• a LΠ-leakage-indistinguishable encoding scheme, and

• that all gadgets in Ĉ are Lĝ-reconstructible by Rĝ.

If that is given, then by the composition lemma it is guaranteed that Ĉ ← TR(C) is L
Ĉ

-reconstructible
for any class L

Ĉ
that satisfies

• (L
Ĉ
◦ (2×Rĝ)) ⊆ LΠ, where (2×Rĝ) denotes two parallel executions of Rĝ,

• L
Ĉ
⊆ Lĝ.

Or put otherwise: if we want that Ĉ is L
Ĉ

-reconstructible, for some L
Ĉ

, then we need an encoding
scheme that “tolerates” at least functions from (L

Ĉ
◦ (2 ×Rĝ)) and all the gadgets have to be at

least L
Ĉ

-reconstructible.

Proof of Lemma 13. Let Ĉ be the transformed circuit, with inputs denoted X = (~x1, . . . , ~xnI) and
outputs denoted Y = (~y1, . . . , ~ynO). Let first gadgets denote the set of topologically-first gadgets in

Ĉ, and let last gadgets denote the set of topologically-last gadgets in Ĉ. The wires that go between
gadgets (i.e., not directly connected to X or Y , and not part of the innards of some gadget) are
called connecting wires.

The fact that Ĉ is rerandomizing follows immediately from the fact that the last gadget are
rerandomizing, and the randomness used in each gadget is independent.

The reconstructor REC
Ĉ

is a distribution over circuits R
Ĉ

with inputs (X,Y). We define REC
Ĉ

,

with R
Ĉ
← REC

Ĉ
, for input (X,Y) that is plausible for Ĉ, as follows:

1. For each ĝ gadget in Ĉ, sample Rĝ ← RECĝ.

2. For each connecting wire bundle, sample a random encoding, i.e., ~v ← Enc(v) with v ← K.

3. For each gadget ĝ in Ĉ except for the first gadgets and last gadgets, pre-compute Rĝ(U, V)
and hardwire the result into R

Ĉ
. Here, U (resp., V) are the encodings assigned above to the

wire bundles that are the inputs (resp., outputs) of ĝ.

11For simplicity we assume that τsamp is larger than the maximal time to compute gadgets ĝ.

30

4. On input (X,Y) the reconstructor R
Ĉ

computes the reconstructors of all the first and last
gadgets. For the first gadgets, the input wire bundles are given in X and the outputs have
been hardwired above. Similarly, for the last gadgets, the inputs have been hardwired and
the outputs are given in Y .

We now analyze the class of the reconstructor REC
Ĉ

. For a circuit C with nI inputs and nO outputs,
R
Ĉ
← REC

Ĉ
on inputs (X,Y) only needs to compute nI + nO reconstructors (for the first gadgets

and last gadgets). Hence, REC
Ĉ

lies in (nI + nO) × Rĝ as claimed in the statement. Moreover,
each input of R

Ĉ
is used only in a single gadget reconstructor, and thus locality provided by gadget

reconstructors is preserved by R
Ĉ

.
It remains to show that for any plausible input/output pair (X,Y), REC

Ĉ
(X,Y) is (L

Ĉ
, τ
Ĉ
,

ε
Ĉ

)-leakage-indistinguishable from W
Ĉ

(X|Y). The proof is by a hybrid argument, outlined as

follows. First, we replace all gadgets in Ĉ by their corresponding reconstructors. Then, we replace
all connecting wires with random encodings, keeping the innards of gadgets consistent with these
random encodings.

We first prove that we can replace each gadget in Ĉ with an appropriate gadget reconstructor
keeping the connecting wires consistent. We will use the following notation. Let {ĝi} for i ∈ [1, s]
denote the gadgets in Ĉ. Drawing a wire assignment from the distribution W

Ĉ
(X|Y) of the real

circuit, we denote its elements as follows. For the ith gadget ĝi in Ĉ, Ui are its inputs and Vi are
its outputs (these are identified with elements of X or Y if ĝi is a first gadget or a last gadget).
Note that (Ui, Vi) is always plausible for ĝi, by definition. Let us define the following hybrid wire
assignment distributions:

W0
Ĉ

: W
Ĉ

(X|Y).

W i
Ĉ

(i ∈ [1, s]): Same as W i−1

Ĉ
except that the assignment to the wires inside ĝi is replaced by

Rĝi(Ui, Vi) with Rĝi ← RECĝi .

The following claim shows that W i−1

Ĉ
and W i

Ĉ
are (Lĝ, τĝ, εĝ)-leakage-indistinguishable for all i ∈

[1, s]. More precisely,

Claim 1. For any i ∈ [1, s], if ĝi is (Lĝ, τĝ, εĝ)-reconstructible, then the distributions W i−1

Ĉ
and

W i
Ĉ

are (Lĝ, τĝ − sτsamp, εĝ)-leakage-indistinguishable.

Proof. For any i ∈ [1, s] we use Lemma 8 with the following mapping: W1 =W i−1

Ĉ
,W ′1 =W i

Ĉ
and

W0 = Wĝi(Ui|Vi),W ′0 = RECĝi(Ui, Vi). To apply Lemma 8, we need to define the distribution F ,
where fS ← F :

1. For all j ≥ i+ 1 sample from Wĝj (Uj |Vj) and hardwire the result into the description of fS .

2. For all j ≤ i − 1 run RECĝj (Uj , Vj) to obtain a valid wire assignment for that part of the
circuit. Hardwire the result into the description of fS .

3. For the part of the wire assignment that represents ĝi, fS just outputs its input.

Note that fS takes as long to sample as the time required to either compute or reconstruct the
s− 1 gadgets, which, in our case is upper bounded by τsamp. It is easy to see that for its input fS
is the identity function (it just outputs its inputs together with hardwired values). Moreover, if fS

31

ĝ−
i

ĝ+
i

�viU V

− +

U V�v′
i

random encoding

W
i−1

Ĉ

W
i

Ĉ

…

… …

…

ĝ−
i

ĝ+
i

… …

Figure 7: This shows the notation used in Claim 2. In the two consecutive experiments, W i−1

Ĉ

and W i
Ĉ

, U and V are sampled from the same distribution, whereas in W i−1

Ĉ
~vi is drawn from the

honest distribution and in W i
Ĉ
~v′i is a random encoding.

takes as input a sample fromWĝi(Ui|Vi) then its output is distributed asW i−1

Ĉ
. On the other hand

if the input is Rĝi(Ui, Vi), then fS ’s output is identically distributed to W i
Ĉ

. These facts, combined

with Lemma 8 and the fact that W0 and W ′0 are (Lĝ, τĝ, εĝ)-leakage-indistinguishable, show that
W1 = W i−1

Ĉ
and W ′1 = W i

Ĉ
are (Lĝ, τĝ − sτsamp, εĝ)-leakage-indistinguishable. This concludes the

claim.

Next, we show that we can replace the connecting wires in Ĉ with random encodings. Associate
each bundle of connecting wires with integer i ∈ [1,m] and denote the encoding carried by this
bundle by ~vi. Denote by ĝi− the gadget that has ~vi as an output wire bundle, and by ĝi+ the gadget
that has ~vi as input (see Figure 7). We define iteratively the following hybrid wire assignment
distributions:

W i
Ĉ

with i ∈ [s + 1, s + m]: Same as W i−1

Ĉ
except that ~vi is replaced with a random encoding

~v′i ← Enc(·) (and the internal wires in ĝi− and ĝi+ are adjusted accordingly, as the wire bundles
are given as inputs to the reconstructors of ĝi− and ĝi+).

Intuitively: Ws
Ĉ

is the wire assignment distribution that results from running, for each gadget in

Ĉ, its corresponding reconstructor using honestly-computed connecting wires. Then, in W i
Ĉ

for
i = s + 1, . . . , s + m, we replace step-by-step the honest encodings at the connecting wires with
random encodings. The final distribution, Ws+m

Ĉ
, is identical to REC

Ĉ
(X,Y).

We next prove a claim stating that for all i ∈ [s+ 1, s+m] the distributions W i−1

Ĉ
and W i

Ĉ
are

(LW , τW , εW)-leakage-indistinguishable.

Claim 2. Let LΠ be some class of leakage functions and let τΠ > 0, εΠ > 0. If Π is (LΠ, τΠ, εΠ)-
leakage-indistinguishable, then for all i ∈ [s + 1, s + m] the distributions W i−1

Ĉ
and W i

Ĉ
are

(LW , τW , εW)-leakage-indistinguishable with εW = εΠ, τW = τΠ − sτsamp, and any LW that sat-
isfies (LW ◦ (2×Rĝ)) ⊆ LΠ.

Proof. To prove this statement for any i ∈ [s + 1, s + m], we apply Lemma 8 with the following
assignment for the distributions: W1 = W i−1

Ĉ
,W ′1 = W i

Ĉ
and W0 = Enc(vi),W ′0 = Enc(v′i), with

v′i ← K. Furthermore, we define the distribution F , with fS ← F that takes as input a single
encoding ~e:

32

1. Sample the values for all the connecting wire bundles except ~vi according to W i
Ĉ

(which is

the same as W i−1

Ĉ
for those wire bundles).

2. For each gadget ĝ in Ĉ except ĝi− and ĝi+, pick a reconstructor from the appropriate recon-
structor distribution Rĝ ← RECĝ, and run Rĝ(U, V), where (U, V) are the sampled values for
the input and output wire bundles of ĝ. The resulting wire assignments for each gadget are
hardwired into fS .

3. Pick and hardwire reconstructors Rĝi−
← RECĝi− and Rĝi+

← RECĝi+ and wire their descrip-

tions into fS . On input ~e, run on-line the reconstructors Rĝi−
and Rĝi+

, using as their inputs

and outputs the wire bundles already sampled and ~vi set to ~e. Output their resulting wire
assignments together with the hardwired wire assignments for all the other gadget reconstruc-
tors from the previous steps.

We claim that

W i−1

Ĉ
≡ fS(~e), if ~e← Enc(vi),

W i
Ĉ
≡ fS(~e), if ~e← Enc(v′i).

Indeed, in either case, all the wires internal to gadgets are computed according to reconstructors,
and the connecting wire bundles except ~vi are sampled identically in the two distributions. If
~e ← Enc(vi) then, because all the gadgets are rerandomizing, the joint distribution of ~e together
with all the other wires is indeed W i−1

Ĉ
(note that this is the only place where we use the fact that

the gadgets are rerandomizing, but the use of this fact here is crucial: if Enc(vi) was correlated
with some other connecting wire bundle, we could not hardwire that bundle into fS , because it
would not be known until ~e was given).

Sampling fS ← F takes sτsamp time, because that is the time required to sample the recon-
structors. Let us now analyze the complexity of fS . Since most of the wire assignments are
hardwired in advance into fS , on input ~e fS only needs to run ĝi− and ĝi+. Thus, we get that
functions fS ← F can be computed in 2 × Rĝ. If we now apply Lemma 8 with the fact that W0

and W ′0 are (LΠ, τΠ, εΠ)-leakage-indistinguishable, we get that W1 = W i−1

Ĉ
and W ′1 = W i

Ĉ
are

(LW , τW , εW)-leakage-indistinguishable for

• τW = τΠ − sτsamp,

• for any class of functions LW that satisfies LΠ ⊇ (LW ◦ (2×Rĝ)) and

• εW = εΠ.

This concludes the proof of the claim.

Putting now the results from Claim 1 and Claim 2 together and setting Lĝ = L
Ĉ

and LW = L
Ĉ

,
we get that W0

Ĉ
=W

Ĉ
(X|Y) and Ws+m

Ĉ
= REC

Ĉ
(X,Y) are (L

Ĉ
, τ
Ĉ
, ε
Ĉ

)-leakage-indistinguishable.

Here, τ
Ĉ

= min(τΠ, τĝ)− sτsamp and

ε
Ĉ

= mεΠ + sεĝ. (9)

This concludes the proof of Lemma 13.

Below we give applications of our general composition lemma by showing that circuits trans-
formed by TRC and TRN are reconstructible.

33

Reconstructibility of Ĉ ← TRC(C). We establish composition of the single gadget reconstruc-
tors presented in Section 4.3 in the corollary below. Since its proof merely adds up parameters, we
move its formal version to Appendix C and give here only a simple sketch.

Corollary 1 (Reconstructor for Ĉ ← TRC(C)). Let LΠ be some set of leakage functions and
εΠ > 0, τΠ > 0. Let Π be the underlying encoding scheme of TRC with Π being (LΠ, τΠ, εΠ)-
leakage-indistinguishable. Let C be a stateless circuit of size s, with nI inputs and nO outputs.
Then the transformed circuit Ĉ ← TRC(C) is rerandomizing and (L

Ĉ
, τ
Ĉ
, ε
Ĉ

)-reconstructible by
SHALLOW(2, (nI +nO)O(k2)). Here, we have ε

Ĉ
= εΠs(k+ 2), τ

Ĉ
= τΠ−O(sk2), and L

Ĉ
satisfies

LΠ ⊆ LĈ ◦ SHALLOW(3, O(k2)) (for K = GF(2), LΠ = L
Ĉ
◦ SHALLOW(2, O(k2))).

Proof (sketch). At a high-level the proof is simple. Since TRC is an encoding based circuit transfor-
mation, and all gadgets used by TRC are rerandomizing and reconstructible, Lemma 13 from above
establishes the corollary. In the formal proof in Appendix C we rigorously analyze the parameters
which establish the above corollary.

Reconstructibility of Ĉ ← TRN (C). Before we show reconstructibility of composed circuits
Ĉ ← TRN (C) we present a reconstructor for �̂ of TRN . We do this by viewing �̂ as a circuit
composed of ⊕̂ and m̂ult gadgets, for which we have shown reconstructibility in the last section.
Then we apply the composition lemma, which gives us a reconstructor for �̂. The proof of the
lemma below and of Corollary 2 can be found in Appendix C.

Lemma 14. For every p ∈ (0, 1
2], the �̂ gadget is (Np,∞, ε�̂)-reconstructible by LOCAL(3), where

ε�̂(k) ≤ (2k + 1)(exp(−64kp6) + exp(−15kp5)) + negl(k).

We establish reconstructibility of transformed circuits Ĉ ← TRN (C).

Corollary 2 (Reconstructor for Ĉ ← TRN (C)). Let L
Ĉ

= Np for some p ∈ (0, 1/2]. Let C

be a stateless circuit of size s, with nI inputs and nO outputs. Then the transformed circuit Ĉ ←
TRN (C) is rerandomizing and (Np,∞, εĈ(k))-reconstructible by LOCAL(3) with ε

Ĉ
(k) ≤ s(2k +

3)(exp(−64kp6) + exp(−15kp5)) + negl(k)

In Lemma 13 and the two corollaries above we considered only the reconstructibility of state-
less circuits. It is possible to extend our definition of reconstructibility and the results above to
stateful circuits. This, however, would make the presentation of the results significantly more com-
plicated, and therefore we do not take this approach. In the next section, we show how to use
reconstructibility of stateless circuits to show security according to Definition 1 (cf. Section 3).

4.6 Security of Full Circuit Transformation

A reconstructor for a stateless circuit Ĉ essentially proves security for a single observation. To
show security according to Definition 1 we need to consider two additional issues: First, in the last
section, we were interested only in stateless circuits. However, our transformation considers stateful
circuits that may contain memory and whose execution may be observed many times. Second, and
related to the last issue, in Definition 1 the adversary may adaptively pick leakage functions from
some leakage class L. This adaptivity makes the proof of the stateful case more delicate, since the
contents of the memory leaks twice: once when it is generated (i.e., in round i− 1 as the new state
m̂i) and a second time when it is used as the initial state for the computation.

34

From stateful circuits to a series of stateless circuits. To prove security of an encoding
based circuit transformation for arbitrary (stateful) circuits C, we view the execution of Ĉ[m̂i−1] as
a series of executions of a stateless circuit Ĉ∗. Each execution of Ĉ∗ “simulates” the computation
of one single clock cycle of Ĉ[m̂i−1], i.e., it additionally inputs m̂i−1 followed by m̂ask gadgets, and
outputs the new state m̂i. We write (yi, m̂i) ← Ĉ∗(xi, m̂i−1) to denote this process for one clock
cycle. It is easy to see that for encoding based circuit transformations, if Ĉ contains s gadgets (i.e.,
C has size s), then Ĉ∗ has the same number of gadgets. Furthermore, notice that when all gadgets
in Ĉ are reconstructible, then of course also all gadgets in Ĉ∗ are reconstructible. We now use this
alternative description of stateful computation in the lemma below to show security of encoding
based circuit transformations according to Definition 1 (cf. Section 3). One may view Lemma 13
as a first step towards the proof of the lemma below.

Lemma 15. Let τΠ > 0, εΠ > 0, let LΠ be some class of leakage functions, and let TR be an
encoding based circuit transformation with underlying encoding scheme Π. Let C be an arbitrary
(stateful) circuit with n memory gates, s other gates (not counting dummy encoder and decoder

gates), and m wires connecting those s gates. Let Ĉ ← TR(C) be its transformation, and let Ĉ∗ be
as outlined above. Suppose all gadgets in Ĉ∗ are rerandomizing and (Lĝ, τĝ, εĝ)-reconstructible by
Rĝ, for some Lĝ, τĝ, εĝ. Suppose also that Π is (LΠ, τΠ, εΠ)-leakage-indistinguishable and 2-adaptive
(L2Π, τ2Π, ε2Π)-leakage-indistinguishable. Then TR is (L, τA, τS , τD, q, ε)-secure for

• any τA and τD satisfying τA + τD ≤ min(τΠ, τ2Π, τĝ) − qsτsamp, where τsamp is the time to
sample Rĝ ← RECĝ,

12

• some τS ≤ τA + qsτsamp,

• some ε ≤ qsεĝ + qmεΠ + (q + 1)nε2Π

• any L that satisfies (L ◦ (2×Rĝ)) ⊆ LΠ, (L ◦ Rĝ) ⊆ L2Π, and L ⊆ Lĝ.

Before starting with the proof, we discuss an interpretation of the important parameters. To
apply the lemma we require

• that for any transformed circuit Ĉ ← TR(C) and its stateless representation Ĉ∗ (as described
above), all gadgets ĝ out of which Ĉ∗ is made are Lĝ-reconstructible, and

• the underlying encoding scheme Π is LΠ-leakage-indistinguishable and 2-adaptive L2Π-leakage-
indistinguishable.

If that is given, then by the above lemma, the encoding-based circuit transformation TR is L-secure
for any class L that satisfies

• (L ◦ (2×Rĝ)) ⊆ LΠ, where (2×Rĝ) denotes parallel execution of Rĝ (which is the function
class in which the gadget reconstructors lie),

• (L ◦ Rĝ) ⊆ L2Π

• L ⊆ Lĝ.
12Like in Lemma 13, we assume that τsamp is larger than the time required to compute gadgets ĝ.

35

Or put otherwise: if we want that TR is L-secure, for some L, then we need an encoding scheme that
“tolerates” at least functions from (L◦(2×Rĝ)) for a single query, functions from (L◦Rĝ) (which is

a smaller class) for two queries; we also need that all gadgets ĝ in Ĉ∗ are at least L-reconstructible.
Before we instantiate the above lemma to show security of our transformations TRC and TRN , we
give a high-level outline of the proof (the details of the proof are in Appendix D).

Outline of the proof. We need to show that for every q-adaptive (L, τA)-adversary A, there
exists a simulator S with only black-box access to C[mi] such that for every stateful circuit C[m0],
the output distribution of A and S are computationally close.

The idea of the proof is simple: S runs A as a subroutine, simulates its environment and outputs
A’s result. S needs to simulate the environment without knowledge of the initial secret state m0;
thus, it has to answer A’s leakage queries without knowing the secret state. Each such leakage
query gets as input the wire assignment of a single clock cycle of Ĉ, hence, it looks promising to
use in each clock cycle directly the reconstructor for Ĉ∗ to simulate the leakage queries in a way
that is consistent with the circuit’s public inputs and outputs. Indeed, this will give us almost
immediately security of a single observation. However, extending this argument to many rounds
requires some additional care.

Main difficulty of the proof. During computation of (m̂i,Enc(yi)) ← Ĉ∗(m̂i−1,Enc(xi)), the
adversary can pick a leakage function fi and obtain some knowledge about the secret state m̂i.
Adaptively, based on that knowledge (i.e., on the output yi and the leakage that may depend on
m̂i), she may pick a leakage function fi+1 and gets leakage from the execution of Ĉ∗(m̂i,Enc(xi+1)).
The difficulty is that the leakage from both observations, the ith and (i + 1)th, may depend on
the secret state m̂i, which is the reason why we require the underlying encoding scheme to be
2-adaptive leakage indistinguishable. We now give a high-level description of the simulator S. The
formal specification is given in Figure 8 in the appendix.

Simulation. S needs to answer the adversary’s query (fi, xi) for each clock cycle 1 ≤ i ≤ q. To
this end, she generates for each i a wire assignment of Ĉ∗ that is consistent with the public input xi
(resp. output yi) and feeds it into the leakage function fi. Since she does not know the content of the
secret memory (but the wire assignment may depend on it) she uses random encodings Z0, . . . , Zq
instead. To assure consistency of the internal wires (notice that for a random secret state and
some input xi the output may not necessarily be equal to yi), the assignment is computed with the
reconstructors RECĝ of the gadgets ĝ.

We need to show that such a simulation is indistinguishable from the adversary’s observations
in the real experiment. Similar to Lemma 13, this is done by a hybrid argument. We first show
that instead of the real wire assignment W

Ĉ∗((Enc(xi), m̂i−1)|(Enc(yi), m̂i)) (for each clock cycle)
we can use the gadget’s reconstructors RECĝ, where we put in between gadgets on the connecting
wires random encodings. Since ĝ is reconstructible and the underlying encoding is leakage indistin-
guishable, this change will not get noticed by the adversary. Notice that these steps are essentially
the same as in the proof of Lemma 13. We could just directly apply Lemma 13 and use the recon-
structor for the entire stateless circuit rather than for each gadget, but that would give us worse
parameters: specifically, the reduction in leakage class would be larger, because the reduciton in
leakage class depends on the size of the reconstructor.

36

Next, we consider n(q + 1) different hybrids, i.e., we make a hybrid argument over the number
of observations q and the size of the secret state n. In each hybrid step, we replace the content of
a single encoded memory cell with some random encoding. By the leakage-indistinguishability of
the underlying encoding scheme Π, two consecutive hybrids will be indistinguishable. Notice that
this is the place where we require Π to be secure even against 2-adaptive adversaries, since the
observation of two consecutive clock cycles will depend on the target encoding. In Appendix D we
give the technical description of the ideas outlined above.

We next consider the proofs of the main theorems stated in Section 3.

Proof of Theorem 1. The proof of Theorem 1 merely puts together the parameters from
Lemma 9 and Lemma 15, and may be skipped by the reader.

Proof of Theorem 1. In this theorem, we are taking assumed parameters from 2-adaptive leakage
indistunguishability and also using them for 1-adaptive leakage indistinguishability (since it is
no worse), in order to simply the theorem statement. So, when applying Lemma 15, we use
(L2Π, τ2Π, ε2Π) = (LΠ, τΠ, εΠ). By definition, TRC is an encoding based circuit transformation for
arbitrary circuits C with size s and n memory cells. Since all gates have fan-in at most 2, it has m ≤
2s wires. Recall from the theorem statement that εΠ > 0, τΠ > 0 and LΠ, L are some leakage classes
that satisfy L◦SHALLOW(3, O(k2)) ⊆ LΠ (replace SHALLOW(3, O(k2) with SHALLOW(2, O(k2) in
the case of GF(2)). Notice, further that as proven in Section 4.3 all gadgets in Ĉ are rerandomizing
and (L

Ĉ
, τĝ, εĝ)-reconstructible by SHALLOW(3, O(k2)) (respectively, SHALLOW(2, O(k2)) for the

case of GF(2)) for some parameters τĝ, εĝ. Since our transformation has to work for any circuit we
can assume13 that C is made solely of � gates. By Lemma 9, we get then τĝ = τΠ − O(k2) and
εĝ = kεΠ.

We are now ready to apply Lemma 15 and get τA + τD ≤ min(τΠ, τĝ)− qsτsamp. With τsamp =
O(k2) this yields τA+τD ≤ τΠ−qsO(k2). Similarly, we get τS ≤ τcA+qsO(k2). Next, we compute
the computational distance between the real experiment and the simulated experiment:

ε = qsεĝ + qmεΠ + (q + 1)nε2Π ≤ εΠ(q + 1)(s(k + 2) + n).

This concludes the proof.

Theorem 1 relies on the assumption that Π is 2-adaptive leakage-indistinguishable. We will
eliminate this additional assumption in the next section using circuit lower bounds, and show an
unconditional results for AC0 leakages.

Proof of Theorem 2. The proof of the main theorem for noisy leakages (Theorem 2) fol-
lows the same line as the proof of Theorem 1 above. We use Proposition 2 to note that the
Πparity encoding is (Np ◦ LOCAL(6),∞, (1− (2p)6)k)-leakage indistinguishable and 2-adaptive (Np ◦
LOCAL(3),∞, (1 − (2p)6)k)-leakage indistinguishable (thus, in this case we apply Lemma 15 with
εΠ = ε2Π < exp(−64kp6), using 1 − x ≤ exp(−x)). Recall from Lemma 14 that the gadgets are
rerandomizing and (Np,∞, εĈ(k))-reconstructible by LOCAL(3) with εĝ ≤ (2k+ 1)(exp(−64kp6) +
exp(−15kp5)) + negl(k). Also note that the number m of internal wires is at most 2s, because each
gate has fan-in at most two.

13since the parameters are worst in this case

37

Notice that Theorem 2, unlike Theorem 1, doesn’t need to make computational assumptions
about hardness of decoding Π.

5 Instantiation of TRC Against AC0 leakage

As mentioned in the last section Theorem 2 doesn’t require computational hardness assumptions,
while Theorem 1 relies on the assumption that decoding is “hard” for functions in L. Lower bounds
on computational tasks are notoriously difficult to prove, and therefore, given our current state of
knowledge, applying our results for computationally bounded leakages will, in most cases, require
computational assumptions about hardness of decoding for a given class of leakage functions. In
this section, however, we highlight a case in which Theorem 1 can be applied for an explicit leakage
class.

Recall that C(d, s, λ) denotes the class of AND-OR-NOT unlimited fan-in circuits with depth d,
size s and λ bits of output. In Proposition 1 (cf. Section 4.1) we showed that the parity encoding
Πparity is (C(d, exp(O(k(1−δ)/d)), kδ),∞, exp(−Ω(k(1−δ)/d))) leakage-indistinguishable, for constants
d ∈ N>0 and 0 < δ < 1.

If we instantiate TRC with Πparity then by Theorem 1 we almost instantly obtain security against
leakages modeled as constant depth circuits. However, there is one caveat. In Theorem 1 we require
that Πparity is 2-adaptive leakage-indistinguishable, while Proposition 1 only talks about a single
observation.

In the following lemma we show generically that a leakage-indistinguishable encoding scheme
Π is also secure against 2-adaptive adversaries. We would like to emphasize that the bounds in
the lemma are rather bad, since the leakage circuit size and the adversarial running time lose
exponentially in λ (i.e., the amount of leakage that we tolerate per observation). However, as it
turns out, this loss will not matter much in the application to Corollary 3, because the adversary
there is information-theoretic (and thus has arbitrary running time), and the circuit size loss will
be absorbed into the exponent.

The lemma is given specifically for leakage functions modeled by circuits with unlimited fan-in
AND and OR gates, such as it is the case for AC0. The proof is moved to Appendix E.

Lemma 16. Let D,E be two distributions and d, s, τ, ε ≥ 0 and L = C(d, s, λ). If D and E are
(L, τ, ε)-leakage-indistinguishable, then D and E are 2-adaptive (L′, 2−λτ, ε)-leakage-indistinguishable,
where L′ = C(d− 2, O(s2−λ), bλ/2c).

We would like to note that we can generalize this lemma in two ways: first, by a similar argument
we can prove security against p-adaptive adversaries. This, however, increases the function’s size
exponentially in p and λ. Second, observe that we state this lemma for the special case that the
leakage functions are circuits with particular gates. This can be generalized in a straightforward
way to other function classes.

We obtain the following corollary by instantiating Theorem 1 with the parity encoding, the
tolerable leakage functions L with AC0 circuits that output up to kδ bits, and using the above
lemma about adaptivity.

Corollary 3. Recall that k is the security parameter. Let 0 < δ < 1, 4 < d < 1/δ − 1, and
q be some constants. There exists a circuit transformation for circuits over K = GF(2) that is
(L, τA, τS , τD =∞, q, ε)-secure for

38

• any τA,

• some τS ≤ τA + qsO(k2), where s is the number of gates in C

• some ε ≤ (q+ 1)(s(k+ 2) +n) exp(−Ω(k(1−δ)/d)), where n is the number of memory gates in
C,

• L = C(d− 4, exp(O(k(1−δ)/d)), bkδ/2c). Notice that this is in AC0 since d− 4 is constant.

Proof. By Proposition 1 the parity encoding is (C(d, exp(O(k(1−δ)/d)), kδ),∞, exp(−Ω(k(1−δ)/d)))-
leakage-indistinguishable. Lemma 16 then shows that the encoding scheme is 2-adaptive (L2Π,∞, ε2Π)-
leakage indistinguishable, where

• L2Π is C(d− 2, exp(O(k(1−δ)/d)− kδ), bkδ/2c). Since by assumption d < 1/δ − 1 we get that
(1− δ)/d > δ and therefore exp(O(k(1−δ)/d)− kδ) = exp(O(k(1−δ)/d)). Thus, we can simplify
L2Π to C(d− 2, exp(O(k(1−δ)/d)), bkδ/2c), and

• ε2Π = exp(−Ω(k(1−δ)/d)).

We now apply Theorem 1 with K = GF(2). To see that the depth of the leakage class goes from
d− 2 to d− 4, we only need to observe that SHALLOW(2, O(k2)) can be implemented in by depth-
two boolean circuits (where we don’t count NOT gates and allow sufficient fan-in) by expressing
arithmetic gates of fan-in-2 and depth-2 as a constant-size CNF or DNF.

Improving the security loss. The bounds from Corollary 3 imply that asymptotically parity
encoding and our transformed circuits can tolerate similar leakage functions as long as d < 1/δ−1.
This restriction can be eliminated (and the parameters can be significantly improved14) by relaxing
the security definition. More precisely, if in Definition 1 we restrict the adversary to choose the
leakage function fi, i ≥ 2, adaptively only depending on the output of the leakage functions
f1, . . . fi−2

15, then in Theorem 1 we will not require that the underlying encoding scheme Π is
2-adaptive leakage-indistinguishable.

Acknowledgments

We thank Yuval Ishai for discussion on [19] and pointing out the result in [6]. Thanks also to Ran
Raz and Debajyoti Bera for discussions on circuit lower bounds, and Ronen Shaltiel for discussions
on alternative constructions. We are grateful to Eric Miles and Emanuele Viola for pointing out
that a claim made in a previous version of our paper—namely, that our construction can achieve
security against ACC0[p] circuits—required stronger circuit lowerbounds than are currently known.

References

[1] Miklós Ajtai. Approximate counting with uniform constant-depth circuits. In Jin-Yi Cai, edi-
tor, Advances in Computational Complexity Theory, DIMACS: Series in Discrete Mathematics
and Theoretical Computer Science, pages 1–20. American Mathematical Society, 1993.

14We can eliminate the exponential security loss in λ that stems from Lemma 16.
15Notice that the choice of fi and the input xi may still depend on the circuit’s outputs y1, . . . , yi−1.

39

[2] Amos Beimel. Secure Schemes for Secret Sharing and Key Distribution. PhD thesis, The
Technion—Israel Institute of Technology, June 1996.

[3] Daniel J. Bernstein. Cache-timing attacks on AES. http://cr.yp.to/papers.html#

cachetiming, 2005.

[4] Mark Braverman. Poly-logarithmic independence fools AC0 circuits. Technical Report TR09-
011, ECCC, 2009.

[5] David Brumley and Dan Boneh. Remote timing attacks are practical. Comput. Netw.,
48(5):701–716, 2005.

[6] Bella Dubrov and Yuval Ishai. On the randomness complexity of efficient sampling. In STOC
’06: Proceedings of the thirty-eighth annual ACM symposium on Theory of computing, pages
711–720, New York, NY, USA, 2006. ACM.

[7] Stefan Dziembowski and Sebastian Faust. Leakage-resilient cryptography from the inner-
product extractor. In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT, volume 7073
of Lecture Notes in Computer Science, pages 702–721. Springer, 2011.

[8] Stefan Dziembowski and Sebastian Faust. Leakage-resilient circuits without computational
assumptions. In Ronald Cramer, editor, TCC, volume 7194 of Lecture Notes in Computer
Science, pages 230–247. Springer, 2012.

[9] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography. Annual IEEE
Symposium on Foundations of Computer Science, pages 293–302, 2008.

[10] Sebastian Faust, Eike Kiltz, Krzysztof Pietrzak, and Guy N. Rothblum. Leakage-resilient
signatures. In Daniele Micciancio, editor, TCC, volume 5978 of Lecture Notes in Computer
Science, pages 343–360. Springer, 2010.

[11] Sebastian Faust, Tal Rabin, Leonid Reyzin, Eran Tromer, and Vinod Vaikuntanathan. Pro-
tecting circuits from leakage: the computationally-bounded and noisy cases. In Henri Gilbert,
editor, EUROCRYPT, volume 6110 of Lecture Notes in Computer Science, pages 135–156.
Springer, 2010.

[12] Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the polynomial-time
hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984.

[13] Oded Goldreich. Towards a theory of software protection and simulation by oblivious rams.
In STOC, pages 182–194, 1987.

[14] Oded Goldreich. Three xor-lemmas—An exposition. Electronic Colloquium on Computational
Complexity (ECCC), 2(56), 1995.

[15] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious rams.
J. ACM, 43(3):431–473, 1996.

[16] Shafi Goldwasser and Guy N. Rothblum. Securing computation against continuous leakage.
In Rabin [31], pages 59–79.

40

http://cr.yp.to/papers.html#cachetiming
http://cr.yp.to/papers.html#cachetiming

[17] Shafi Goldwasser and Guy N. Rothblum. How to compute in the presence of leakage. Technical
Report TR12-010, Electronic Colloquium on Computational Complexity, 2012.

[18] Johan Hastad. Almost optimal lower bounds for small depth circuits. In Symposium on the
Theory Of Computing, 1986.

[19] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware against
probing attacks. In CRYPTO’03, pages 463–481, 2003. revised and abbreviated version of
[20].

[20] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware against
probing attacks. unpublished manuscript ([19] is a revised and abbreviated version), 2003.

[21] Ali Juma and Yevgeniy Vahlis. Protecting cryptographic keys against continual leakage. In
Rabin [31], pages 41–58.

[22] Adam Klivans. On the derandomization of constant depth circuits. In APPROX ’01/RAN-
DOM ’01, pages 249–260. Springer-Verlag, 2001.

[23] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In CRYPTO,
pages 388–397, 1999.

[24] Markus G. Kuhn. Compromising emanations: eavesdropping risks of computer displays. PhD
thesis, University of Cambridge, 2003. Technical Report UCAM-CL-TR-577.

[25] Silvio Micali and Leonid Reyzin. Physically observable cryptography (extended abstract). In
TCC’04, pages 278–296, 2004.

[26] Noam Nisan. Pseudorandom bits for constant depth circuits. Combinatorica, 11(1):63–70,
1991.

[27] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermeasures: The
case of AES. In CT-RSA, pages 1–20, 2006.

[28] Colin Percival. Cache missing for fun and profit. presented at BSDCan 2005, Ottawa, 2005;
see http://www.daemonology.net/hyperthreading-considered-harmful, 2005.

[29] Krzysztof Pietrzak. A leakage-resilient mode of operation. In EUROCRYPT, pages 462–482,
2009.

[30] Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (EMA): Measures and
counter-measures for smart cards. In E-smart, pages 200–210, 2001.

[31] Tal Rabin, editor. Advances in Cryptology - CRYPTO 2010, 30th Annual Cryptology Con-
ference, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings, volume 6223 of Lecture
Notes in Computer Science. Springer, 2010.

[32] Adi Shamir and Eran Tromer. Acoustic cryptanalysis: on nosy people and noisy machines.
presented at the Eurocrypt 2004 rump session; see http://tromer.org/acoustic, 2004.

[33] Kris Tiri and Ingrid Verbauwhede. A vlsi design flow for secure side-channel attack resistant
ics. In DATE, pages 58–63. IEEE Computer Society, 2005.

41

http://www.daemonology.net/hyperthreading-considered-harmful
http://tromer.org/acoustic

[34] Salil Vadhan. A Study of Statistical Zero-Knowledge Proofs. PhD thesis, Massachusetts Insti-
tute of Technology, 1999.

A Proofs Omitted from Section 4.3

Proof of Lemma 6. The reconstructor REC
$̂

is the distribution whose only support is the following

circuit R
$̂
. Given an empty X (i.e., the desired input of $̂) and a Y = (~y) (i.e., the desired output

of $̂), R
$̂
(X,Y) outputs a wire assignment that simply lets the output of $̂ carry the only consistent

value, namely Y . This is distributed identically to the honest case.

Proof of Lemma 7. We will do the proof for the ĉopy gadget; the other two are similar. The
reconstructor RECĉopy is the distribution whose only support is a circuit Rĉopy that on inputs

(X,Y) where X = (~a) (i.e., the desired input of the ĉopy gate), and Y = (~b,~c) (i.e., its desired
output), assigns the wires of ĉopy in the only consistent way: ~ob = ~b	 ~a and ~oc = ~c	 ~a.

If ~a,~b,~c are chosen as in the definition of a reconstructor (i.e., they are plausible inputs), then
the resulting output of Rĉopy(X,Y) is identically distributed to the wire distribution Wĉopy(X|Y),

since in both cases ~ob and ~oc take the only possible consistent value ~ob = ~b 	 ~a and ~oc = ~c 	 ~a.
Notice that Rĉopy can be computed by a circuit of depth 1 because on inputs ~a,~b,~c it needs only
to compute ~ob, ~oc, both requiring a 	 operation. The size of RECĉopy is O(k) for computing the 2k
	 operations.

B Proofs Omitted from Section 4.4

Before we show existence of good (i.e. local) reconstructors for m̂ult gadgets, we present a technical
lemma, which talks about statistical closeness of the distributions D0 and D1 defined as follows.

For any constant `, any constant vectors ~c1, . . . ,~c`,~c ∈ {0, 1}k and any b ∈ {0, 1}, let:

Db := Db(p, `,~c1, . . . ,~c`) =

(
(Np(~e⊕ ~c1), . . . ,Np(~e⊕ ~c`)), 〈~e,~c〉

)
~e←Enc(b)

Here, 〈~e,~c〉 denotes the inner product of ~e and ~c.

Lemma 17. Let p ∈ (0, 1/2], and ` ∈ N be constants, and let ~c1, . . . ,~c` ∈ {0, 1}k and ~c ∈ {0, 1}k
be k-bit vectors such that ~c has Hamming weight at most t (and all the other ~ci are unrestricted).
Then, ∆(D0;D1) ≤ (1− (2p)`)k−t.

Proof. We prove this statement based on two claims. Let I denote the positions where ~c is 0, and
let ~eI denote the restriction of ~e to the positions in I. For every ς ∈ {0, 1}t and b ∈ {0, 1}, define
the distribution Db,ς as follows. Construct a vector ~e such that ~eĪ = ς, and ~eI is a random sharing
of the bit b′ = b⊕ 〈ς, 111 . . . 11〉. Generate the distribution Db using this vector ~e and the vectors
~c,~c1, . . . ,~c`.

Claim 3. For every ς ∈ {0, 1}t the statistical distance ∆(D0;D1) ≤ (1− (2p)`)k−t.

Proof. For a fixed ς the last bit of both distributions D0,ς and D1,ς is fixed to 〈~e,~c〉 = 〈ς, 111 . . . 11〉.
Additionally, in both distributions it fixes t bits of each ~e ⊕ ~ci to the same string. Hence, what

42

remains are k−t coordinates in each ~e⊕~ci. By definition of the distribution we have that
⊕

j∈I ej =
b′, with b′ defined as b⊕ 〈ς, 111 . . . 11〉. Notice that this guarantees that

⊕
j ej = b. Since the only

difference between these two distributions are that in each ~e⊕~ci those k− t coordinates are either
a random encoding of 0⊕ 〈ς, 111 . . . 11〉 or 1⊕ 〈ς, 111 . . . 11〉 we get ∆(D0,ς ;D1,ς) ≤ (1− (2p)`)k−t

by applying Lemma 4. This concludes the proof.

Claim 4. If ∆(D0,ς ;D1,ς) ≤ ε for every ς ∈ {0, 1}t, then ∆(D0;D1) ≤ ε.

Proof. Obviously the distribution Db can alternatively be obtained by first sampling a random ς,
and then producing a sample from Db,ς . Such a sampling gives us by an elementary calculation

∆(D0;D1) ≤
(

1

2

)t
2tε = ε.

Putting the two claims together we get that ∆(D0;D1) ≤ (1 − (2p)`)k−t, which concludes the
proof.

Proof of Lemma 12. The internals of the m̂ult gadget consist of the inputs (~a,~b), the output ~q and
the intermediate values, namely

(~r(1), . . . , ~r(k), ~s(1), . . . , ~s(k),~a(1), . . . ,~a(k),~b(1), . . . ,~b(k), u, ~w, ~z).

The reconstructor REC
m̂ult

for the m̂ult gadget is a distribution over functions R
m̂ult

, which for

plausible inputs (X = (~a,~b), Y = (~q)) proceeds as follows:

1. Set ~a(0) = ~a and ~b(0) = ~b and choose uniformly random vectors ~a(1), . . . ,~a(k),~b(1), . . . ,~b(k).
~A = {~a(i)}i∈[1,k] and ~B = {~b(i)}i∈[1,k] can be hard-wired into the output of R

m̂ult
.

2. From ~a(0), . . . ,~a(k),~b(0), . . . ,~b(k) compute for i ∈ [1, k]: ~r(i) = ~a(i−1)⊕~a(i) and ~s(i) = ~b(i−1)⊕~b(i).
All {~r(i)}i∈[2,k] and {~s(i)}i∈[2,k] can be hard-wired into the reconstructor. ~r(1) is computed

from the reconstructor’s input ~a(0) and ~s(1) from ~b(0), respectively.

3. Choose u uniformly at random and compute from ~A = (~a(i))i∈[1,k], (~b(i))i∈[1,k] and u the vector
~z. These values can be hardwired into the reconstructor.

4. Compute ~w = ~z ⊕ ~q from the reconstructor’s input ~q.

5. Output (~a,~b, {~r(i), ~s(i),~a(i),~b(i)}ki=1, u, ~q, ~z, ~w).

We first discuss the underlying function class of REC
m̂ult

.

Claim 5. The support of REC
m̂ult

is in LOCAL(2).

Proof. We must show that for each input ~a,~b, ~q the output of the reconstructor is either a fixed
constant or can be written as one of the inputs plus a constant vector. For input ~a the other inputs
~b and ~q are fixed constants and, hence, the output of R

m̂ult
is constant except (~a(0) = ~a,~r(1) =

~a ⊕ ~a(1)), where ~a(1) is a constant vector. The same analysis works for ~b and ~q, which yields that
R
m̂ult
∈ LOCAL(2).

43

It is easy to see that reconstructed wire assignment differs from the wire assignment produced by
a real execution of m̂ult. Nevertheless, we show that the output of the reconstructor (on plausible
inputs ~a,~b, ~q) is Np leakage-indistinguishable from the distribution produced during the operation

of the m̂ult gadget on inputs ~a and ~b, conditioned on the output being ~q. There are two main
differences between the reconstructor distribution and the real wire distribution. First,the vectors
~a(i) and ~b(i) are uniformly random whereas in the real world, they are random encodings of a (resp.
b). Secondly, in the reconstructor distribution, the bit u is uniformly random whereas in the real
world, u = ~R⊗ ~ST (where the matrices ~R and ~S are as in Section 3.3).

The indistinguishability is shown by a hybrid argument – consider the following 2k+ 1 hybrids.

• Hybrid H0: This is the real distribution, conditioned on plausible values ~a,~b, ~q. We will take
an alternative view of this distribution, by first sampling the vectors ~a(i) and ~b(i) as random
encodings of a and b respectively, and then defining the vectors ~r(i) and ~s(i) as

~r(i) = ~a(i−1) ⊕ ~a(i) and ~s(i) = ~b(i−1) ⊕~b(i)

exactly as in the real wire distribution. It is easy to see that this is exactly distributed as the
real wire assignment (conditioned on the inputs being ~a,~b and the output being ~q).

• Hybrid H`, for 1 ≤ ` ≤ k: H` is the same as H`−1, except that the vector ~a(`) – which is a
random encoding of a in H`−1 – is replaced with a uniformly random vector. The vector ~r(`)

is computed as ~a(`−1) ⊕ ~a(`) and the vector ~r(`+1) is ~a(`+1) ⊕ ~a(`). The rest of the values are
computed exactly as in the previous hybrids.

• Hybrid Hk+` for 1 ≤ ` ≤ k: Hk+` is the same as Hk+`−1, except that the vector ~b(`) – which is
a random encoding of b in Hk+`−1 – is replaced with a uniformly random vector. The vector
~s(`) is computed as ~b(`−1)⊕~b(`) and ~s(`+1) is ~b(`+1)⊕~b(`). The rest of the values are computed
exactly as in the previous hybrids.

• Hybrid H2k+1: H2k+1 is the same as H2k except that the bit u = ~R ⊗ ~ST is replaced with a
uniformly random bit.

We show that the hybrid H0 (the real distribution) is indistinguishable from the hybrid H2k+1 (the
output of the reconstructor) in the following three claims:

Claim 6. For every p ∈ (0, 1
2] and 1 ≤ ` ≤ k, the hybrids H` and H`−1 are (Np,∞, ε(k))-leakage-

indistinguishable, where ε(k) ≤ exp(−15kp5) + negl(k).

Proof. The only difference between hybrids H` and H`−1 is in the vector ~a(`), and also, some of
the other quantities that are computed using ~a(`). Similar to Lemma 10 we define a distribution
F ` (` ∈ [1, k]) over functions fS that take as input an encoding ~e and embeds it at ~a(`). If ~e is
an encoding of a then fS outputs a wire assignment that is distributed as H`−1. If on the other
hand fS takes as input a random encoding then it produces the distribution H`. In contrast to
Lemma 10 where we were mainly concerned that fS is shallow, in this claim we must guarantee
that fS uses its input only a limited number of times. We solve this by hard-wiring most of fS
outputs directly into the function.

44

For ease of notation below we will denote the vectors ~̃r(i) as the row vectors of the matrix ~R
(notice that these vectors are not visible to the leakage function), i.e.,

~R =

 ~̃r(1)

...

~̃r(k)

 =



~r(1)

...⊕
j∈[1,i] ~r

(j)

...⊕
j∈[1,k] ~r

(j)


We define the distribution F ` by drawing fS as follows:

1. Set ~b(0) = ~b and sample uniformly at random {~si}i∈[1,k] which are encodings of 0. Compute
~bi = ~bi−1 ⊕ ~si and hard-wire the results as fixed outputs into fS . Notice also that {~si}i∈[1,k]

allows us to compute (without making use of the inputs) the matrix ~S.

2. Hard-wire the vectors {~a(i)}i 6=` into fS : for i < ` ~a(i) is a uniformly random k bit string. For
i > ` ~a(i) is a uniformly random encoding of a. Further, set ~a(0) = ~a and compute for all
i /∈ {`, `+ 1} the vectors ~r(i) = ~a(i−1) ⊕ ~a(i). Hard-wire the result into fS .

3. For all i 6= ` compute ~̃r(i) as ~a(0) ⊕ ~a(i). Hard-wire these results into the description of fS as
intermediate values that will later be used to compute u.

4. On input ~e fS sets ~a(`) = ~e and computes ~r(`) = ~a(`−1) ⊕ ~a(`) and ~r(`+1) = ~a(`) ⊕ ~a(`+1).
Further compute ~̃r` as ~a(0) ⊕ ~a(`). The vectors ~r(`) and ~r(`+1) will be part of fS ’s output. ~̃r`

will be used in the next step to compute the bit u.

5. Notice that the whole matrix ~S and all rows except ~̃r(`) of ~R are hard-wired into fS . To
compute u the function fS computes u = ~R⊗ ~ST.

6. From u, ~A, ~B fS computes ~z and together with ~q (which is hard-wired into fS) the vector
~w = ~z ⊕ ~q.

By inspection of the above it is easy to see that if ~e is an encoding of a then ~a(`) is an encoding
of a. Since all other values are computed honestly from ~a(`), and hard-wired values (that have the
correct distribution), we get fS(~e) ≡ Hi−1. Similarly if ~e is a random vector, then fS(~e) ≡ Hi. Let
us next bound ∆(Hi−1;Hi).

Most of the outputs of fS are hard-wired into the function. There are some exceptions. The
values computed in Step 4, ~a(`), ~r(`) and ~r(`+1), have the form of ~e plus some constant. In Step 5
we compute u, which indirectly depends on ~e (via ~̃r(`)). Essentially, for all i 6= ` we can compute
the inner product of the ith row of ~R and the ith column of ~S “off-line” and hardwire the result
into fS as an intermediate value. Additionally, ~̃r(`) can be written as ~a(0) ⊕ ~a(`), where ~a(0) is a
fixed constant. Hence, the inner product of ~a(0) and the `th column of ~S is a fixed constant as well.
We denote the sum of all these fixed inner products as d. What remains is the inner product of
~a(`) = ~e and a fixed constant vector ~c which represents the `th column of ~S. To sum it up we have
u = 〈~e,~c〉 ⊕ d, where ~c is a uniformly random fixed vector and d some fixed constant.

Finally, in Step 6 we compute vectors ~z and ~w of length k2. k2 − k bits of these vectors can be
fixed and are independent of ~e. For ~z, these elements have the form ei � ci for some constant ci.

45

For ~w, they are equal to ei � ci ⊕ qi, where qi are fixed constants. If the bits ci are all 1 then we
have to vectors of the form ~e plus a constant.

To conclude, in total we have at most 5 outputs of the form ~e plus a fixed constant vector, and
the bit 〈~e,~c〉 ⊕ d. If we apply a noisy function Np (for some p ∈ (0, 1/2]) to the outputs of fS ,
then conditioned that ~c having Hamming weight at most 17k/32, we get with Lemma 17 that the
statistical distance between Hi−1 and Hi is upper bounded by

(1− (2p)5)15k/32 ≤ exp(−15kp5)

(here we are using (1 − x) ≤ exp(−x)). Since ~c is a random k bit vector, it has Hamming weight
at most 17k/32 with all but negl(k) probability. Thus, we get

∆(Hi−1, Hi) ≤ ∆(Hi−1, Hi|E) Pr[E] + ∆(Hi−1, Hi|Ē) Pr[Ē]

≤ exp(−15kp5)(1− negl(k)) + 1 · negl(k) ≤ exp(−15kp5) + negl(k)

Claim 7. For every p ∈ (0, 1
2] and 1 ≤ ` ≤ k, the hybrids Hk+` and Hk+`−1 are (Np,∞, ε(k))-

leakage-indistinguishable, where ε(k) ≤ exp(−15kp5) + negl(k).

Proof. The proof follows along the lines of the proof of Claim 6.

Claim 8. For every p ∈ (0, 1
2], the hybrids H2k+1 and H2k are (Np,∞, ε(k))-leakage-indistinguishable,

where ε(k) ≤ exp(−15kp/16) + negl(k).

Proof. The difference between the two hybrids is that in the former, the bit u is computed as ~R⊗~ST,
whereas in the latter, it is uniformly random. To show that they are leakage-indistinguishable,
observe that for every setting of the matrix ~S and all the rows of ~R except the first, u = d⊕〈~r(1),~c〉,
where d is a fixed bit that depends on ~S and the remaining rows of ~R, and ~c is the first column of ~S.
Assuming ~c has Hamming weight at least 15k/32 (which it does with all but negligible probability),
distinguishing u from random is equivalent to distinguishing the XOR of at least 15k/32 bits of ~r(1)

from random given Np(~r(1)). By Lemma 4, it cannot be distingushed from random with advantage
better than (1− 2p)15k/32 ≤ exp(−15kp/16) (using (1− x) ≤ exp(−x)).

Putting the three claims together we get that the distribution output by the reconstructor and
the real wire distribution are (Np,∞, ε(k))-leakage-indistinguishable where

ε(k) ≤ k · (exp(−15kp5) + negl(k)) + k · (exp(−15kp5) + negl(k)) + exp(−15kp/16) + negl(k)

≤ (2k + 1) · exp(−15kp5) + negl(k)

for any constant p ∈ (0, 1/2] (because 15kp/16 ≥ 15kp5 for p ≤ 1/2). This concludes the proof.

C Proofs Omitted from Section 4.5

Proof of Corollary 1. Recall from the corollary statement that εΠ > 0, τΠ > 0 and LΠ, L
Ĉ

are
some leakage classes that satisfy L

Ĉ
◦ SHALLOW(3, O(k2))) ⊆ LΠ. By definition, TRC is an en-

coding based circuit transformation, where by Section 4.3 all gadgets in Ĉ are rerandomizing and

46

(L
Ĉ
, τĝ, εĝ)-reconstructible by SHALLOW(2, O(k2)) for some parameters τĝ, εĝ. Since our transfor-

mation has to work for any circuit we can assume wlog16 that C is made solely of � gates. By
Lemma 9, we get then τĝ = τΠ −O(k2) and εĝ = kεΠ.

We are now ready to apply Lemma 13 and get:

R
Ĉ

= (nI + nO)×Rĝ = (nI + nO)× SHALLOW(2, O(k2))

= SHALLOW(2, (nI + nO)O(k2)).

Notice that (nI + nO) ×Rĝ denotes parallel execution of the reconstructors with different inputs.
Further, we have

• τ
Ĉ
≤ min(τΠ, τĝ)− sτsamp = τΠ −O(sk2), since all our gadgets have size O(k2),

• ε
Ĉ
≤ s(mεΠ + εĝ) = sεΠ(k + 2) (because every gate has fan-in at most two, the number of

wires m is at most 2s).

This concludes the proof.

Proof of Lemma 14. We can view �̂ as a circuit composed of k ⊕̂ gadgets (from ̂compress) and
a single m̂ult gadget. Hence, the circuit consists of s = k + 1 gadgets, takes nI = 2 inputs (in
encoded form), outputs nO = 1 encodings, and has m = 2k− 2 wire bundles that connect gadgets.
In Section 4.4 we showed that ⊕̂ is (L,∞, 0)-reconstructible by LOCAL(3), for any L, and m̂ult is
(Np,∞, εm̂ult)-reconstructible by LOCAL(2) with ε

m̂ult
≤ (2k + 1) exp(−15kp5) + negl(k).

Further, by Proposition 2 the Πparity encoding is (Np ◦ LOCAL(6),∞, (1 − (2p)6)k)-leakage in-
distinguishable. Note that 1− (2p)6 ≤ exp(−(2p)6).

We can put these things together by Lemma 13. In fact, because ε⊕̂ = 0 for all the ⊕̂ gadgets,
we can improve the analysis of Lemma 13 (which assumed, for simplicity, that every gadget has
the same ε as the worst gadget): since Claim 1 is applied to m̂ult only once, we can replace sεĝ by
just ε

m̂ult
in the statement of Lemma 13. We therefore get that �̂ is (Np,∞, ε�̂)-reconstructible by

LOCAL(3) with

ε�̂ ≤ mεΠ + ε
m̂ult

= (2k − 2) · (1− (2p)6)k + (2k + 1) exp(−15kp5) + negl(k)

≤ (2k + 1)(exp(−64kp6) + exp(−15kp5)) + negl(k) .

Notice that the conditions on the leakage classes required by Lemma 13 are satisfied. The reason
for this is that by our choice of the parameters the Πparity encoding tolerates leakages from 2 ×
LOCAL(3) = LOCAL(6), where 2× LOCAL(3) is parallel execution on the same inputs.

Proof sketch of Corollary 2. The proof is similar to the proof of Corollary 1 and we only provide a
sketch here. By definition, TRN is an encoding based circuit transformation, where by Section 4.4
all gadgets in Ĉ are rerandomizing and (Np, τĝ, εĝ)-reconstructible by LOCAL(3) for some param-
eters τĝ, εĝ. Since our transformation has to work for any circuit we can assume without loss of
generality17 that C is made solely of � gates. By Lemma 14, we get then τĝ = ∞, Lĝ = Np and
εĝ ≤ (2k + 1)(exp(−64kp6) + exp(−15kp5)) + negl(k).

Further, by Proposition 2 the Πparity encoding is (LΠ,∞, (1− (2p)6)k)-leakage indistinguishable,
for LΠ = Np ◦ LOCAL(6).

We are now ready to apply Lemma 13 and get R
Ĉ
⊆ LOCAL(3). Further, we have

16since the parameters are worst in this case
17since the parameters are worst in this case

47

Simulator S(A, q, C)
1. Sample uniformly at random encodings (Z0, . . . , Zq), where each Zi consists of

n encodings of random elements of K
2. Run A(q, C)
3. For each query (fi, xi) of A:
4. Query C[mi−1] on input xi to obtain yi and sample Yi ← Enc(yi)

5. Compute wire assignment WE for the ̂encoder with input xi and its output Xi

6. Compute wire assignment WD for ̂decoder gadget with input Yi and output yi
7. Sample for each connecting wire in Ĉ∗ a random encoding ~v ← Enc(v) with v ← K
8. For each gadget ĝ in Ĉ∗ run the corresponding reconstructor Wĝ ← RECĝ(U, V),

where U are the encoded inputs and V are the encoded outputs of the gadgets ĝ.
Notice that U and V are part of the connecting wire bundles sampled above.

9. Let W
Ĉ∗ denote the wire assignment composed from Wĝ in Step (7) and (8).

Return (fi(WE ,WĈ∗ ,WD), yi) to A
10. Return the output of A.

Figure 8: Description of the simulator S that runs in the experiment Expsim
TR .

• τ
Ĉ
≤ ∞

• ε
Ĉ
≤ s(2(1−(2p)6)k+(2k+1)(exp(−64kp6)+exp(−15kp5))+negl(k)) ≤ s(2k+3)(exp(−64kp6)+

exp(−15kp5))+negl(k) (here we use the fact that every gate has fan-in at most two, the num-
ber of wires m is at most 2s).

This concludes the proof.

D Proofs Omitted from Section 4.6

Proof of Lemma 15. Wlog assume that Ĉ contains at least one rerandomizing and reconstructible
gadget (i.e., Ĉ is not the empty circuit). The simulator S is formally defined in Figure 8. S does not
know the real initial secret state m0 but instead uses random encodings (Z0, . . . , Zq). Furthermore,

it computes the internal wires of Ĉ∗ for each round i ∈ [1, q] with the reconstructor RECĝ of the
corresponding gadgets (cf. line 8 in Figure 8). We show in this lemma that S running in experiment
Expsim

TR produces an output that is indistinguishable from A’s output in Expreal
TR (cf. Definition 1 in

Section 3 for the description of these experiments). The proof relies on techniques developed in
Lemma 13 and uses a hybrid argument with a series of hybrid simulators.

The first hybrid simulators will replace the real wire assignment of Ĉ∗ with wire assignments
produced by reconstructors of the gadgets. Then, we replace step-by-step the elements of the secret
state m̂i and the connecting wires (between the gadgets) with random encodings. Once we have
done this replacement, the simulator is as in Figure 8.

More formally, we consider the following series of hybrid simulators:

• Simulators S0
1 , . . . ,S

q·s
1 : for each i ∈ [1, qs], let j = i mod q. We define the simulator Si1

as Si−1
1 except that in the (bi/qc + 1)th execution, we replace the (j + 1)th gadget ĝ with

its reconstructor Rĝ ← RECĝ. Notice that S0
1 is essentially the real execution of the original

48

circuit. Notice further that as in Lemma 13 the inputs and outputs of the reconstructor are
as in the real execution with ĝ.

• Simulators S0
2 , . . . ,S

q·m
2 :

– S0
2 is defined as Sq·s1

– for each i ∈ [1, q ·m] we define the simulator Si2 as Si−1
2 except that we replace the ith

connecting wire bundle by a random encoding sampled from Enc(·). Notice that in each
of the q execution of Ĉ∗ there are at most m connecting wires.

• Simulators S0,0,S0,1, . . . ,S0,n,S1,1, . . . ,Sq,n−1,Sq,n:

– S0,0 is defined as Sq·m2

– Si,j for i ∈ [0, q], j ∈ [1, n]: This is as the previous simulator, but where the jth element
of the ith state is replaced with a random encoding.

Notice that in the simulation given by Sq·m2 the simulator essentially replaces the wire assignment

of Ĉ∗ with the wire assignment produced by the reconstructor of the stateless circuit Ĉ∗. Hence,
the indistinguishability of the simulations given by S0

1 and Sq·m2 follows essentially from Lemma 13.
We repeat the important parts here to obtain the final parameters for our result.

Before we show indistinguishability of the hybrid simulators, we notice that for ease of notation
we omit to explicitly specify the wire assignment for the ̂encoder and ̂decoder gadgets (i.e., WE

and WD in Figure 8). Indeed, we can easily incorporate them into the simulation, since their inputs
and outputs are known to the simulator.

The indistinguishability of the hybrid simulations Si−1
1 and Si1, follows directly from Claim 1

(cf. Lemma 13 in Section 4.5) where it was shown that for transformed stateless circuits we can
replace the real wire assignments of gadgets with the wire assignments of reconstructors. This
yields that the computational distance between the simulation of Si−1

1 and Si1 is upper bounded by
εĝ for any (L, τA)-adversary and distinguisher running in time τD, where L ⊆ Lĝ and τA + τD ≤
τĝ − qsτsamp. By applying this result repeatedly over the q rounds and s gates that are evaluated
in each round, we get for any (L, τA)-adversary A:

Expreal
TR (A,L, q, C,m0, k) ≈τD,q·s·εĝ Exp

sim
TR (Sqs1 ,A, q, C,m0, k) . (10)

We next need to show that for each i ∈ [1, q ·m] the simulations given by Si−1
2 and Si2 are compu-

tationally close. That is, we can show that for each connecting wire we can replace the real encoding
with a random encoding without getting noticed. This was shown in Claim 2 (cf. Lemma 13 in
Section 4.5). More precisely, the computational distance between the simulation of Si−1

2 and Si2
is upper bounded by εΠ for any (L′, τA)-adversary and distinguisher running in time τD, where
L′ ◦ (2×Rĝ) ⊆ LΠ and τA + τD ≤ τΠ − qsτsamp. Applying this result repeatedly over the q rounds
and m wires for each round, we get for any (L′, τA)-adversary A:

Expsim
TR (S0

2 ,A, q, C,m0, k) ≈τD,q·m·εΠ Expsim
TR (Sqm2 ,A, q, C,m0, k) . (11)

Notice that in the simulation of S0,0 we replaced the gadgets in all of the q rounds by reconstructors
and the encodings on the connecting wires between the gadgets by random encodings. To obtain
our final simulation, we show that we can replace step-by-step the memory by random encodings.
We prove this along the lines of Claim 2 in Lemma 13. For ease of notation, we identify in the
following Si,0 with Si−1,n, for i > 0.

49

Claim 9. Suppose Π is 2-adaptive (L2Π, τ2Π, ε2Π)-leakage indistinguishable, A is a q-adaptive
(LW , τW)-adversary such that (LW ◦Rĝ) ⊆ L2Π, where Rĝ is the class of reconstructors for gadgets
ĝ, and τD is the distinguisher running time satisfying τW+τD ≤ τ2Π−qsτsamp. Then for any initial
state m0 and any i ∈ [0, q], j ∈ [1, n]

Expsim
TR (Si,j−1,A, q, C,m0, k) ≈τD,ε2Π Expsim

TR (Si,j ,A, q, C,m0, k) . (12)

Proof. We prove this claim by contradiction. Suppose there exists an adversary A, a distinguisher
D, a state m0, and values i ∈ [0, q], j ∈ [1, n] such that (12) does not hold, then we build a 2-
adaptive (L2Π, τ2Π)-adversary AΠ that distinguishes an encoding of the jth element of m̂i from a
random encoding. Such AΠ will simulate the environment for A, placing its target encoding as the
jth encoding in the ith state. Notice that AΠ can observe its target encoding twice. This enables
the simulator to answer to all of A’s queries (x`, f`) in a consistent way.

We distinguish three cases to answer the query (f`, x`), ` ∈ [1, q], depending on the value of i:

1. The `th observation does not contain the ith state: For such a query AΠ knows the secret
inputs and outputs (which either is the ith real state or a random encoding) and can compute
the answer correctly with the appropriate reconstructor. This simulation is identical to the
simulation of Si,j−1 (which is identical to Si,j for such queries).

2. The ` = (i + 1)th observation accesses the ith state as part of the input memory: AΠ puts
its target encoding at the jth position of the ith state and uses the reconstructor (together
with other hard-wired inputs) to compute a wire assignment for Ĉ∗. If the target encoding
encodes the element of the real state then the simulation is identical to Si,j−1. On the other
hand, if it is an encoding of a random value, then the simulation is identical to Si,j . The
difficulty is that AΠ has to come up with a wire assignment for Ĉ∗ that is consistent with
the target encoding. Since the target encoding is only known to the leakage function, this
has to be done inside the leakage function. Hence, as part of the leakage function, we run the
appropriate reconstructor RECĝ for the gadget that has the target value as input.

3. The ` = ith observation accesses the ith state as part of the output: The analysis is similar
to step 2, except that inside the leakage function, we need to use the reconstructor for the
gadget that outputs the target encoding.

A crucial point in the above simulation is that a consistent simulation requires AΠ to query its
target oracle twice: once when the ith state is an input to an evaluation of Ĉ∗ (i.e., in the (i+ 1)th
round), and a second time when it is part of the output (i.e., in the ith round). This is the reason
why we need to rely on a 2-adaptive leakage indistinguishable encoding scheme. For the details we
refer the reader to Claim 2 in the proof of Lemma 13.

Applying Claim 9 repeatedly, we obtain

Expsim
TR (S0,0,A, q, C,m0, k) ≈τD,(q+1)nε2Π

Expsim
TR (Sq,n,A, q, C,m0, k) . (13)

Note that Equations 10, 11, and 13 hold as long as τA + τD ≤ min(τΠ, τ2Π, τĝ) − qsτsamp.
Combining them and recalling that the simulation given by Sq·s1 is identical to the simulation given
by S0

2 , and the simulation given by Sq·m2 is identical to the simulation of S0,0, we get

Expreal
TR (A,L, q, C,m0, k) ≈τD,qsεĝ+qmεΠ+(q+1)nε2Π

Expsim
TR (S, q, C,m0, k) .

50

E Proofs Omitted from Section 5

Proof of Lemma 16. Assume for contradiction thatD and E are not 2-adaptive (L′, 2−λτ, ε)-leakage-
indistinguishable, then there exists a 2-adaptive (L′, 2−λτ)-adversary A′ that breaks the leakage-
indistinguishability of C and D with functions from L′. We will build a (L, τ)-adversary A such
that

|Pr[AEval(D,·) = 1]− Pr[AEval(E,·) = 1| > ε.

A runs A′ as a subroutine and has to adaptively answer its 2 leakage queries f1, f2, while having
only a single query access to its target oracle Eval (i.e., with the function f ∈ L). We will resolve
this by letting f simulate the adaptivity, and outputting the results of both leakage queries f1 and
f2. This will increase the size of the function f exponentially in λ.
A runs in two phases. A learning phase, where it is supposed to learn all possible leakage

functions that A′ may pick for the second leakage query. Then, a leakage phase, where it builds a
leakage function, obtains valid leakage from Eval with just a single query, and finally returns the
reply to A′.

The learning phase is pretty simple: A runs A′ as a subroutine and gets back f1. Since A is
only allowed to query Eval once, it cannot query Eval with f1 directly. Instead, it needs to figure
out f2 that A′ will use as its second query for every possible return value Λ ∈ {0, 1}λ of f1. To do
so, it rewinds A′ 2λ times, each time giving a different Λ to A′ to obtain the function fΛ

2 . (Observe
that some values of Λ may be invalid for the leakage function f1. This might give A′ indication
that she is run in a simulated environment; in that case, A′ may run forever, but A will stop her
after 2−λτ steps.)

Let us now describe the leakage phase. A will build its leakage function f as follows: on input
S, f computes Λ1 = f1(S), fΛ1

2 (S), and outputs both values.
The rest of the proof is straightforward: A uses its return from the oracle Eval to answer the

two leakage queries f1, f2 of A′. Since this is a perfect simulation, we get that if A′ can distinguish
with advantage more than ε, then so can A. Notice that the running time of A is 2−λτ2λ ≈ τ .

We need to compute the circuit complexity of f . All 2λ possible functions of f2 need to be
hardwired into the circuit, but they can be computed in parallel with f1 (so they increase the
size, but not the depth of the circuit). Then, the output of one of these functions needs to be
“selected” according to the output of f1. This selection can be done by increasing the depth by
2 (not counting NOT gates) and size O(2λ) (cf. Figure 9 for the case when λ = 1). Thus, we get
L′ = C(d− 2, O(s2−λ), bλ/2c) as stated in the lemma.

51

f1(S)

f

f0
2
(S)S AND

NOT

f1(S)

f
2
(S)

f1
2
(S)

AND

OR

AND

f2(S)

Figure 9: The structure of f when L = 1

52

	Introduction
	The Model
	Our Results
	Related Work

	Notation.
	Circuit Transformations
	Encoding Based Circuit Transformations
	Circuit Transformations Resilient to Computationally-Bounded Leakage
	Circuit Transformations Resilient to Noisy Leakage

	Proof of Security
	Leakage-Indistinguishability of the Parity Encoding parity
	Outline of the proof techniques
	Single Gadgets Reconstructors for TRC
	Single Gadgets Reconstructors for TRN
	Multi-Gadget Circuit Reconstructors
	Security of Full Circuit Transformation

	Instantiation of TRC Against AC0 leakage
	Proofs Omitted from Section 4.3
	Proofs Omitted from Section 4.4
	Proofs Omitted from Section 4.5
	Proofs Omitted from Section 4.6
	Proofs Omitted from Section 5

