
A SHORT NOTE ON DISCRETE LOG PROBLEM IN F∗
p

HABEEB SYED

Abstract. Let p be a odd prime such that 2 is a primitive element
of finite field Fp. In this short note we propose a new algorithm
for the computation of discrete logarithm in F∗

p.

Introduction

Consider a finite field Fq (also denoted by GF(q)), where q = pr, p
is a prime and r ∈ N := {1, 2, 3, . . .}. Let α be a primitive element of
Fq i.e., generator of the multiplicative cyclic group F∗

q. For arbitrary
element b ∈ F∗

q computing n ∈ N, n ≤ q − 1 such that

(1) b = αn mod p

is known as discrete log problem (DLP) in F∗
q. Discrete log computa-

tion in finite fields is an important problem mainly due to applications
of these groups in cryptography. Beginning with Diffie-Hellman key
exchange protocol [3], El ElGamal encryption/signature scheme [4] the
DLP in F∗

q has been used as basic mathematical primitive in many cryp-
tographic schemes, and security of these systems depend on difficulty
of DLP in respective F∗

q. It is rather difficult to give even reasonably
good list of references to all the work involving DLP in F∗

q, however
[8, 6] are good to begin with.

In the last couple of decades DLP in F∗
q has been studied extensively

and several algorithms have been proposed for the computation same.
Most efficient algorithm for the computation of DLP is the one based
on Number Field Sieve [5, 9]. See also [2, 7] for results which are not
computationally oriented but certainly give insight into the problem of
DLP in F∗

q. In this short note we are focused on odd primes p for which 2
is primitive element of Fp. For such primes we propose a new algorithm
to compute discrete logarithm in F∗

p. The proposed algorithm is based
on elementary properties of finite fields and is purely theoretical in
nature. Further, complexity of the algorithm is exponential, and as
such it is not being suggested for any computational purposes. This
short note has two sections. In section 1 we begin with basic results
needed and then explain the algorithm in detail. In section 2 we analyze
the complexity of the algorithm.

Key words and phrases. Finite Fields, Discrete Log Problem.
1



A SHORT NOTE ON DISCRETE LOG PROBLEM IN F∗
p 2

1. The Algorithm

In reminder of this note p denotes odd prime and r ∈ N. By logα b =
n we mean n as in (1). We begin with following simple results.

1.1. Mini Lemma. Let a, b ∈ F∗
q, (q = pr) be such that a + b =

0(mod p), then for any primitive element α of Fq we have,

logα a− logα b = logα b− logα a =
q − 1

2
mod(q − 1).

Proof. For any a, b ∈ F∗
q we have,

a + b = 0(mod p) ⇐⇒ a

b
=

b

a
= −1(mod p).

Computing discrete logarithm with respect to any primitive element α
of Fq, we have,

logα

a

b
= logα

b

a
= logα a− logα b = logα(−1).

Now the conclusion follows from the simple observation,

(2) logα(−1) =
q − 1

2
mod(q − 1).

�

1.2. Remark. The result (2) is true in more generality: Let G be a finite
cyclic group of even order say, 2m. Suppose α is a primitive element
of G. It is easy to see that the element β = αm is the only non-trivial
element fixed by all automorphisms of G. This implies that the discrete
logarithm of β is independent of primitive element α of G and is equal
to m. In case of G = Fq, we have (2).

The proposed algorithm depends on above lemma and following sim-
ple fact:

Fact 1. Let a, b ∈ N, 1 < a, b < p be such that a+b = p, then precisely
one of a, b is divisible by 2.

Before we explain the algorithm we remind that this algorithm com-
putes n in (1) when p is a odd prime such that 2 is a primitive ele-
ment of Fp. A necessary condition for such a thing to happen is that
p ≡ ±3(mod 8) [1, Chap 4]. Next we explain the proposed algorithm
with the help of simple example.

Example. Consider the cyclic group F∗
37 which is generated by 2. Sup-

pose we want to find log2 3. Noting that all the operations are per-
formed mod 37, the proposed algorithm works as follows



A SHORT NOTE ON DISCRETE LOG PROBLEM IN F∗
p 3

We have 3 + 34 = 37 and hence

3 = −34 =2 · (−17) = 2 · 20

=2 · (4 · 5) = 23 · 5 = 23 · (−32)

=23 · 25 · (−1) = 28 · 218 = 226

We have log2(3) = 26.

Now we are ready to state the algorithm.

Algorithm 1

INPUT: Element b of F∗
p

OUTPUT: Discrete Log of b to base 2

1: Initialize Out = 0
2: if b = 1 then
3: return 0
4: end if
5: while b 6= 1 do
6: Find the max power k of 2 that divides b
7: if k = 0 then
8: b = p− b
9: Out = Out + (p− 1)/2 (mod (p− 1))

10: else
11: b = b/(2k), Out = Out + k(mod (p− 1))
12: end if
13: end while

Next we prove that the Algorithm 1 converges.

Proof. Suppose we want to compute log2 b (b ∈ N, 1 < b < p) in F∗
p.

Let b = 2rb′, b′ not divisible by 2, then log2 b = r + log2 b′, and hence if
needed we can replace b by b′ and assume that b is not divisible by 2.
Since we are assuming that 2 is primitive element of F∗

p, there exists t
such that 1 < t < p− 1 and

(3) b ≡ 2t(mod p).

Let b0 = p−b. Since b is not divisible by 2 we have that b0 is divisible
by 2. Let b0 = 2rb1 where r ∈ N and b1 is not divisible by 2. If b1 = 1,
we are done. Otherwise,

Claim. r < t.

Suppose not; let r = t + s, s ∈ N, then from (3) we have,

(4) (−b1)2
r ≡ 2t(mod p) =⇒ p divides 2t + b12

t+s = 2t(1 + b12
s)



A SHORT NOTE ON DISCRETE LOG PROBLEM IN F∗
p 4

and hence p divides (1+b12
s). On the other hand (1+b12

s) < b+b0 = p
and hence the only way p can divide (1 + b12

s) is if 1 + b12
s = 0 in Z,

which clearly is not the case.
So we have

(5) − b1 ≡ 2t−r(mod p).

Now we are back to (3) with b = p − b1 and t = t − r. Thus, after at
most t iterations the algorithm stops and returns value of log2 b. �

2. Analysis of The Algorithm

Throughout this section p denotes odd primes for which 2 is primitive
element of Fp. For a given b ∈ F∗

p, to compute log2 b, Algorithm.1 re-
peats steps (6)−(8) each time replacing b by p−b′ until b′ = ±1(mod p).
The space requirements to execute the algorithm are not significant,
but the order of growth of computations is O(2(p−1)/2). This algo-
rithm does not give any advantages over the existing algorithms in
terms of complexity. Our computational experiments with the algo-
rithm suggested that while implementation of the algorithm worst case
scenario (in terms of time taken to compute) occurred while calculating
log2((p− 1)/2). However one can easily check,

log2(
p− 1

2
) =

p− 3

2

Acknowledgments

Author is thankful to Mr. Ramanjulu for his remarks as well as for
his help in coding and computations.

References

[1] Baker, A., A Concise Introduction to the Theory of Numbers, Cambridge
University Press, 1984.

[2] Coppersmith, D., Shparlinski, I.E., On polynomial approximation of the dis-
crete logarithm and the Diffie-Hellman mapping, Journal of Cryptology, 93
(2000), 387-399.

[3] Diffie, W., Hellman, M., New directions in cryptography, IEEE Transactions
of Information Theory, 22 (1976), 644654.

[4] El Gamal, T., A public-key cryptosystem and a signature scheme based on
discrete logarithms, IEEE Transactions of Information Theory, 31 (1985),
469-472.

[5] Gordon, D.M., Discrete logarithms in GF(p) using the number field sieve,
SIAM J. Discrete Math., 6:1 (1993), 124138.

[6] Menezes, A., Okamoto, T., Vanstone, S., Reducing elliptic curve logarithms
to logarithms in a finite field, IEEE Transactions of Information Theory, 39
(1993), 16391646.

[7] Mullen, G.L., White, D., A polynomial representation for logarithms in
GF(q), Acta Arithmetica, 47 (1986), 255-261.



A SHORT NOTE ON DISCRETE LOG PROBLEM IN F∗
p 5

[8] Odlyzko, A.M., Discrete logarithms in finite fields and their cryptographic
significance, pp. 224-314 in Advances in Cryptology: Proceedings of EURO-
CRYPT 84, (T. Beth, N. Cot, and I. Ingemarsson eds.), pp.224-314 Springer-
Verlag, Lecture Notes in Computer Science 209, 1985.

[9] Schirokauer, O., Using number fields to compute logarithms in finite fields,
Mathematics of Computation. 69 (2000), 1267-1283.

Information Security Group
Computational Research Laboratories Limited
Pune, 411 016 - INDIA
E-mail address: habeeb@crlindia.com


	Introduction
	1. The Algorithm
	2. Analysis of The Algorithm
	Acknowledgments
	References

