
Linearization Framework for Collision Attacks:
Application to CubeHash and MD6

Eric Brier1, Shahram Khazaei2?, Willi Meier3?? and Thomas Peyrin1

1 Ingenico, France
2 EPFL, Switzerland
3 FHNW, Switzerland

Abstract. In this paper, an improved differential cryptanalysis framework for finding collisions in hash
functions is provided. Its principle is based on linearization of compression functions in order to find
low weight differential characteristics as initiated by Chabaud and Joux. This is formalized and refined
however in several ways: for the problem of finding a conforming message pair whose differential trail
follows a linear trail, a condition function is introduced so that finding a collision is equivalent to finding
a preimage of the zero vector for the condition function. Then, the dependency table concept shows how
much influence every input bit of the condition function has on its output bits. Careful analysis of the
dependency table reveals degrees of freedom that can be exploited in accelerated preimage reconstruction
of the condition function. These concepts are applied to an in-depth collision analysis of reduced-round
versions of the two SHA-3 candidates CubeHash and MD6, and are demonstrated to give by far the best
currently known collision attacks on these SHA-3 candidates.
Key words: Hash functions, collisions, differential attack, SHA-3, CubeHash and MD6.

1 Introduction

Hash functions are important cryptographic primitives that find applications in many areas like digital signa-
tures and commitment schemes. A hash function is a transformation which maps a variable-length input to a
fixed-size output. One expects a hash function to possess several security properties, one of which is collision
resistance. Being collision resistant, informally means that it is hard to find two distinct inputs which map
to the same output value. We can always attribute a compression function with fixed-size inputs to any hash
function for which a collision for the compression function results in a direct collision for the hash function.
However, in practice, it is the other way round and the hash functions are based on fixed input size compression
functions, e.g. the renowned Merkle-Damgård construction. Our task is to find two messages for the attributed
compression function such that their outputs are preferably equal (a collision) or differ in a few bits (near-
collision). Collisions for a compression function are then directly translated to collisions for the hash function.
In contrary, the relevance of near collisions depends on the hash function structure. In most of the cases they
provide near collisions for the underlying hash function, but in some cases, like in sponge constructions with
a strong filtering at the end or a Merkle-Damgård construction with a strong final transformation, they are of
little interest.

The goal of this work is to revisit collision-finding methods using linearization of the compression function
in order to find differential characteristics for the compression function. This method was initiated by Chabaud
and Joux on SHA–0 [8] and was later extended and applied to SHA–1 by Rijmen and Oswald [23]. The recent
attack on EnRUPT by Indesteege and Preneel [12] is another application of the method. In particular, in [23]
it was observed that the codewords of a linear code which are defined through a linearized version of the
compression function can be used to identify differential paths leading to a collision for the compression
function itself. This method was later extended by Pramstaller et al. [22] with the general conclusion that
finding high probability differential paths is related to low weight codewords of the attributed linear code. In
this paper we investigate this issue further.

The first contribution of our work is to present a more concrete and tangible relation between the lin-
earization and differential paths. In the case that modular addition is the only involved nonlinear operation, our
results can be stated as follows. GivenH, the parity check matrix of a linear code, and two matrices A and B,
find a codeword ∆ such that A∆ ∨ B∆ is of low weight. This is clearly different from the problem of finding
a low weight codeword ∆. We then consider the problem of finding a conforming message pair for a given

? Supported in part by European Commission through the ICT programme under contract ICT-2007-216676 ECRYPT II.
?? Supported by GEBERT RÜF STIFTUNG, project no. GRS-069/07.

differential trail for a certain linear approximation of the compression function. We show that the problem of
finding conforming pairs can be reformulated as finding preimages of zero output of a function which we call
condition function. We then define the concept of dependency table which shows how much influence every
input bit of the condition function has on its output bits. By carefully analyzing the dependency table, we are
able to find strategies which accelerate preimage reconstruction for the condition function. This contributes to a
better understanding of freedom degrees uses, such as message modifications [24], neutral bits [5], boomerang
attacks [13, 17], tunnels [15] or submarine modifications [18].

We consider compression functions working with n-bit words. In particular, we focus on those using
modular addition of n-bit words as the only nonlinear operation. The incorporated linear operations are XOR,
shift and rotation of n-bit words in practice. We present our framework in detail for these constructions by
approximating modular addition with XOR. We demonstrate its validity by applying it on reduced-round
variants of CubeHash [3] (one of the NIST SHA-3 [19] competitors) which uses addition, XOR and rotation.
CubeHash instances are parametrized by two parameters r and b and are denoted by CubeHash-r/b which
process b message bytes per iteration. Each iteration is made of r rounds. Although we can not break the
original submission CubeHash-8/1, we provide real collisions for the much weaker variants CubeHash-
3/64 and CubeHash-4/48. Interestingly, we show that neither the more secure variants CubeHash-6/16 and
CubeHash-7/64 do provide the desired collision security for 512-bit hash outputs by providing theoretical
attacks with complexities 2222.6 and 2203.0 respectively; nor that CubeHash-6/4 with 512-bit hash outputs
is second-preimage resistant, as with probability 2−478 a second preimage can be produced by only one hash
evaluation. Our theory can be easily generalized to arbitrary nonlinear operations. We discuss this issue and
as an application we provide collision attacks on 16 rounds of MD6 [20], another SHA-3 candidate whose
original number of rounds varies from 80 to 168 when the output hash size ranges from 160 to 512 bits.

2 Differential cryptanalysis

Let’s consider a compression function H = Compress(M,V) which works with n-bit words and maps an
m-bit message M and a v-bit initial value V into an h-bit output H . Our aim is to find a (near-)collision for
such compression functions with a randomly given initial value V . Let us first consider collision attacks, and
for the moment assume that Compress uses only modular additions and linear transformations. This includes
the family of AXR (Addition-XOR-Rotation) hash functions which are based on these three operations. We
are looking for two messages with a difference ∆ that lead to a collision for the compression function. In
particular we are interested in a ∆ for which two randomly chosen messages with this difference lead to
a collision with a high probability for a randomly chosen initial value. We consider a linearized version of
Compress for which all additions are replaced by XOR. This is a common linear approximation of addition.
We discuss in Section 5.2 other possible linear approximations of modular addition which are less addressed
in literature. As addition was the only nonlinear operation, we now have a linear function which we call
Compresslin. Since Compresslin(M,V)⊕Compresslin(M ⊕∆,V) is independent of the value of V , we adopt
the notation Compresslin(M) = Compresslin(M, 0) instead. Let∆ be an element of the kernel of the linearized
compression function, i.e. Compresslin(∆) = 0. We are interested in the probability Pr{Compress(M,V) ⊕
Compress(M⊕∆,V) = 0} for a randomM and V . In the following we present an algorithm which computes
this probability, called raw (or bulk) probability.

2.1 Computing raw probability

We consider a general n-bit vector x = (x0, . . . , xn−1) as an n-bit integer denoted by the same variable, i.e.
x =

∑n−1
i=0 xi2

i. The hamming weight of a binary vector or an integer x, wt(x), is the number of its nonzero
elements, i.e. wt(x) =

∑n−1
i=0 xi. We use + for modular addition of words and ⊕,∨ and ∧ for bit-wise XOR,

OR and AND logical operations between words as well as vectors. We use the following lemma which is a
special case of the problem of computing Pr{

(
(A ⊕ α) + (B ⊕ β)

)
⊕ (A + B) = γ} where α, β and γ are

constants and A and B are independent and uniform random variables, all of them being n-bit words. Lipmaa
and Moriai have presented an efficient algorithm for computing this probability [16]. We are interested in the
case γ = α⊕ β for which the desired probability has a simple closed form.

Lemma 1. (from [16]) Pr{
(
(A⊕ α) + (B ⊕ β)

)
⊕ (A+B) = α⊕ β} = 2−wt

(
(α∨β)∧(2n−1−1)

)
.

Lemma 1 suggests a simple algorithm to compute (estimate) the raw probability Pr{Compress(M,V) ⊕
Compress(M ⊕∆,V) = 0}. Let’s first introduce some notations.

Notations. Let nadd denote the number of additions which Compress uses in total. In the course of evaluation
of Compress(M,V), let the two addends of the i-th addition (1 ≤ i ≤ nadd) be denoted by Ai(M,V) and
Bi(M,V), for which the ordering is not important. The value Ci(M,V) =

(
Ai(M,V) + Bi(M,V)

)
⊕

Ai(M,V)⊕Bi(M,V) is then called the carry word of the i-th addition. Similarly, in the course of evaluation
of Compresslin(∆), denote by αi(∆) and βi(∆) the two inputs of the i-th linearized addition in which the
ordering is the same as that for Ai and Bi. We define five more functions A(M,V), B(M,V), C(M,V),
alpha(∆) and beta(∆) with (n − 1)nadd-bit outputs. These functions are defined as the concatenation of
all the nadd relevant words excluding their MSB’s. For example A(M,V) and alpha(∆) are respectively the
concatenation of the nadd words

(
A1(M,V), . . . , Anadd(M,V)

)
and

(
α1(∆), . . . , αnadd(∆)

)
excluding the

MSB’s. As the functions Compresslin(∆), alpha(∆) and beta(∆) are linear, we consider∆ as anm-bit column
vector and attribute three matrices H, A and B to these three transformations, respectively. The matrix H has
size h×m and the matrices A and B have size (n− 1)nadd ×m and satisfy these equations:

Compresslin(∆) = H∆, alpha(∆) = A∆ and beta(∆) = B∆.

Using these notations, the raw probability can be simply estimated as follows.

Lemma 2. For a compression function Compress (which only uses modular addition and linear transforma-
tion), let three matrices H, A and B be defined as above. Then for any message difference ∆ and for random

values M and V , p∆ = 2−wt
(
A∆∨B∆

)
is a lower bound for Pr{Compress(M,V)⊕Compress(M ⊕∆,V) =

H∆}.

Proof. We start with the following definition.

Definition 1. We say that a message M (for a given V) conforms to (or follows) the trail of ∆ iff 4(
(Ai ⊕ αi) + (Bi ⊕ βi)

)
⊕ (Ai +Bi) = αi ⊕ βi, (1)

for 1 ≤ i ≤ nadd, where Ai, Bi, αi and βi are shortened forms for Ai(M,V), Bi(M,V), αi(∆) and βi(∆),
respectively.

It is not difficult to prove that under some reasonable independence assumptions, p∆ which we call conforming
probability is the probability that a random message M follows the trail of ∆. This is a direct corollary of
Lemma 1 and Definition 1 . The exact proof can be done by induction on nadd, the number of additions in the
compression function. Due to other possible non-conforming pairs which start from difference ∆ and lead to
final differenceH∆, p∆ is a lower bound for the desired probability in the lemma. ut

If H∆ = Compresslin(∆) is of low hamming weight, we get a near collision in the output. The interesting
∆’s for collision search are those which belong to the kernel of H, i.e. satisfy H∆ = 0. From now on, we
assume that∆ is in the kernel ofH, hence looking for collisions. We then callH the parity check matrix of the
compression function. According to Lemma 2, one needs to try around 1/p∆ random message pairs in order to
find a collision which conforms to the trail of ∆. However in a random search it is better not to restrict oneself
to the conforming messages as a collision at the end is all we want. As p∆ is a lower bound for the probability
of getting a collision for a message pair with difference ∆, we might get a collision sooner. In Section 3 we
explain a method which might find a conforming message by avoiding random search.

2.2 Link with coding theory

We would like to conclude this section with a note on the relation between finding low-weigh codewords of
a linear code and finding a high probability linear differential path. Based on an initial work by Chabaud and
Joux [8], the problem has been discussed by Rijmen and Oswald in [23] and by Pramstaller et al. in [22]
with the general conclusion that finding high probable differential paths is related to low weight codewords
of the attributed linear code. In fact the link between these two problems is more delicate. For the earlier, we
are provided with the parity check matrix H of a linear code for which a codeword ∆ satisfies the relation
H∆ = 0. Then, we are supposed to find low-weight ∆’s. This problem is believed to be hard and there are
some heuristic approaches for it, see [7] for example. For the later problem, we are given three matrices H,
A and B and we are supposed to find ∆’s such that H∆ = 0 an A∆ ∨ B∆ is of low-weight, see Lemma 2.
Nevertheless, low-weight codewords ∆’s of the parity check matrixH might be good candidates for providing
low-weight A∆ ∨ B∆, i.e. differential paths with high probability p∆.

4 if and only if.

3 Finding a conforming message pair efficiently

In this section we show that the problem of finding conforming message pairs can be reformulated as finding
preimages of the zero output of a function which we call condition function. It turns out that the condition
function is a useful tool to understand previous attacks on hash functions. Especially, one can analyze the
condition function to see how to reconstruct its preimages of zero output efficiently. We then introduce the
dependency tables and propose a heuristic algorithm to produce preimages of zero output in case the condition
function does not mix well its input bits. Our algorithm can be seen as yet another kind of freedom degrees
use but again it contributes to a better understanding of hash functions and freedom degrees speedup methods.

3.1 Condition function

Let’s assume that we have a differential path for the message difference ∆ which holds with probability
p∆ = 2−y . According to Lemma 2 we have y = wt

(
alpha(∆) ∨ beta(∆)

)
. In this section we show that,

given an initial value V , the problem of finding a conforming message pair such that Compress(M,V) ⊕
Compress(M ⊕ ∆,V) = 0 can be translated into finding a message M such that Condition∆(M,V) = 0.
Here Y = Condition∆(M,V) is a function which maps m-bit message M and v-bit initial value V into y-
bit output Y . In other words, the problem is reduced to find a preimage of zero output for the Condition∆
function. As we will see it is quite probable that not every output bit of the Condition function depends on all
the message input bits. By taking a good strategy, this property enables us to find the preimages of this function
more efficiently than random search. But of course, we are only interested in preimages of zero output. In order
to explain how we derive the function Condition from Compress we first present a quite easy-to-prove lemma.
We remind that the carry word of two words A and B is defined as C = (A+B)⊕A⊕B.

Lemma 3. Let A and B be two n-bit words and C represent their carry word. Let δ = 2i for 0 ≤ i ≤ n− 2.
Then, (

(A⊕ δ) + (B ⊕ δ)
)

= (A+B)⇔ Ai ⊕Bi ⊕ 1 = 0 , (2)(
A+ (B ⊕ δ)) = (A+B)⊕ δ ⇔ Ai ⊕ Ci = 0 . (3)

and similarly (
(A⊕ δ) +B) = (A+B)⊕ δ ⇔ Bi ⊕ Ci = 0 . (4)

For a given difference ∆, a message M and an initial value V , let A = A(M,V), B = B(M,V), C =
C(M,V), α = alpha(∆) and β = beta(∆) where A,B,C, α and β are all (n − 1)nadd-bit vectors. Refer
to the notations presented in Section 2.1 for the definitions of these five functions. Let {i0, . . . iy−1}, 0 ≤
i0 < i1 < · · · < iy−1 < (n − 1)nadd be the positions of 1’s in the vector α ∨ β. We define the function
Y = Condition∆(M,V) as:

Yj =

Aij ⊕Bij ⊕ 1 if (αij , βij) = (1, 1),
Aij ⊕ Cij if (αij , βij) = (0, 1)
Bij ⊕ Cij if (αij , βij) = (1, 0)

. (5)

for j = 0, 1, . . . , y − 1.

Proposition 1. For a given V and ∆, a message M conforms to the trail of ∆ iff Condition∆(M,V) = 0.

Proof. Proof is straightforward from Definition 1, Lemma 3 and the definition of Condition function in equa-
tion (5).

3.2 Dependency table for freedom degrees use

For simplicity and generality, let’s adopt the notation F (M,V) = Condition∆(M,V) in this section. Assume
that we are given a general function Y = F (M,V) which maps m message bits and v initial value bits into y
output bits. Our goal is to reconstruct preimages of a particular output, for example the zero vector, efficiently.
More precisely, we want to find V andM such that F (M,V) = 0. If F mixes its input bits very well, one needs
to try about 2y random inputs in order to find one mapping to zero output. However, in some special cases, not
every input bit of F effects every output bit. Consider an ideal situation where message bits and output bits can
be divided in ` and ` + 1 disjoint subsets respectively as

⋃`
i=1Mi and

⋃`
i=0 Yi such that the output bits Yj

(0 ≤ j ≤ `) only depend on the input bits
⋃j−1
i=1Mi and the initial value V . In other words, once we know the

initial value V , we can determine the output part Y0. If we know the initial value V and the input partM0, the
output portion Y1 is then known and so on. Refer to Section 6 to see the partitioning of a condition function
related to MD6. This property of F suggests Algorithm 1 for finding a preimage of zero output. Algorithm 1
is a backtracking process in essence, similar to [4, 11, 21], and in practice is implemented recursively with a
tree-based search to avoid memory requirements. The values q0, q1, . . . , q` are the parameters of the algorithm
to be determined later. To discuss the complexity of the algorithm, let |Mi| and |Yi| denote the cardinality of
Mi and Yi respectively, where (|Y0| ≥ 0 and |Yi| ≥ 1 for 1 ≤ i ≤ `). We consider an ideal behavior of F
for which each output portion depends in a complex way on all the variables which it depends on. Thus, the
output segment changes independently and uniformly at random if we change any part of the relevant input
bits.

Algorithm 1 : Preimage finding
Require: q0, q1, . . . , q`
Ensure: some preimage of zero output for F

0: Choose 2q0 initial values at random and keep those 2q
′
1 ones which make Y0 part of the output null.

1: For each initial value, choose 2q1−q
′
1 values forM1 and keep 2q

′
2 candidates making Y1 part null.

2: For each candidate, choose 2q2−q
′
2 values forM2 and keep those 2q

′
3 ones making Y2 null.

...
`: For each candidate, choose 2q`−q′` values forM` and keep those 2q

′
`+1 final candidates making Y` null.

To analyze the algorithm, we need to compute the optimal values for q0, . . . , q`. The time complexity of the
algorithm is

∑`
i=0 2qi as at each step 2qi values are examined. The algorithm is successful if we have at least

one candidate left at the end, i.e. q′`+1 ≥ 0. We have q′i+1 ≈ qi − |Yi|. This comes from the fact that at each
step 2qi values are examined each of which making the portion Yi of the output null with probability 2−|Yi|.
Note that we have the restrictions qi− q′i ≤ |Mi| and 0 ≤ q′i since we have |Mi| bits of freedom degree at the
i-th node and we require at least one surviving candidate after each step. Hence, the optimal values for qi’s can
be recursively computed as qi−1 = |Yi−1|+ max(0, qi − |Mi|) for i = `+ 1, `, `− 1, . . . , 1 with q`+1 = 0.

How can we determine the partitionsMi andYi for a given function F ? We propose the following heuristic
method for determining the message and output partitions in practice. We first construct a y×m binary valued
table T called dependency table. The entry Ti,j , 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ y − 1, is set to one iff the
j-th output bit is highly affected by the i-th message bit. To this end we empirically measure the probability
that changing the i-th message bit changes the j-th output bit. The probability is computed over random initial
values and messages. We then set Ti,j to one iff this probability is greater than a threshold 0 ≤ th < 0.5, for
example th = 0.3. We then call Algorithm 2.

Algorithm 2 : Message and output partitioning
Require: Dependency table T
Ensure: `, message partitionsM1, . . . ,M` and output partitions Y0, . . . ,Y`.
1: Put all the output bits j in Y0 for which the row j of T is all-zero.
2: Delete all the all-zero rows from T .
3: ` := 0;
4: while T is not empty do
5: ` := `+ 1;
6: repeat
7: Determine the column i in T which has the highest number of ones and delete it from T .
8: Put the message bit which corresponds to the deleted column i into the setM`.
9: until There is at least one all-zero row in T OR T becomes empty

10: If T is empty set Y` to those output bits which are not in
S`−1
i=0 Yi and stop.

11: Put all the output bits j in Y` for which the corresponding row of T is all-zero.
12: Delete all the all-zero rows from T .
13: end while

In practice, once we make a partitioning for a given function using the above method, there are two issues
which may cause the ideal behaviour assumption to be violated:

1. The message segmentsM0,M1, . . . ,Mi do not have full influence on the output part Yi,
2. The message segmentsMi+1, . . . ,M` have influence on the output segments Y0, . . . ,Yi.

With regard to the first issue, we ideally would like that all the message segmentsM0,M1, . . . ,Mi have
full influence on the output part Yi. In practice the effect of the last few message segmentsMi−di

, . . . ,Mi

(for some small integer di) is more important, though. The bigger the threshold value th is chosen, the more
it helps to increase the effect of the message segments on the relevant output segment. Theoretical analysis
of deviation from this requirement may not be easy. However, with some tweaks on the tree-based search
algorithm, we may overcome this effect in practice. For example if the message segmentMi−1 does not have
a great influence on the output segment Yi, we may decide to backtrack two steps at depth i, instead of one
which is the default value. The reason is as follows. Imagine that you are at depth i of the tree and you are
trying to adjust the i-th message segmentMi, to make the i-th output segment Yi null. If after trying about
2min(|Mi|,|Yi|) choices for the i-th message block, you do not find an appropriate one, you will go one step
backward and choose another choice for the (i − 1)-st message segment Mi−1; you will then go one step
forward once you have successfully adjusted the (i−1)-st message segment. IfMi−1 has no effect on Yi, this
would be useless and increase our search cost at this node. Hence it would be appropriate if we backtrack two
steps at this depth. In general, we may tweak our tree-based search by setting the number of steps which we
want to go backward at each depth.

In contrast, the theoretical analysis of the second issue is easy. Ideally, we would like that the message
segments Mi+1, . . . ,M` have no influence on the output segments Y0, . . . ,Yi. The smaller the threshold
value th is chosen, the less the influence would be. Let’s 2−pi , 1 ≤ i ≤ `, denote the probability that changing
the message segmentMi changes at least one bit from the output segments Y0, . . . ,Yi−1. The probability is
computed over random initial values and messages, and a random non-zero difference in the message segment
Mi. Algorithm 1 must be reanalyzed in order to recompute the optimal values for q0, . . . , q`. Algorithm 1 also
needs to be slightly changed by reassuring that at step i, all the output segments Y0, . . . ,Yi−1 remain null. The
time complexity of the algorithm is still

∑`
i=0 2qi and it is successful if at least one surviving candidate is left

at the end, i.e. q`+1 ≥ 0. However, here we have q′i+1 ≈ qi − |Yi| − pi. This comes from the fact that at each
step 2qi values are examined each of which making the portion Yi of the output null with probability 2−|Yi|

and keeping the previously set output segments Y0, . . . ,Yi−1 null with probability 2−pi (we assume these two
events are independent). Here, our restrictions are again 0 ≤ q′i and qi− q′i ≤ |Mi|. Hence, the optimal values
for qi’s can be recursively computed as qi−1 = pi−1 + |Yi−1|+max(0, qi−|Mi|) for i = `+1, `, `−1, . . . , 1
with q`+1 = 0.

Remark 1. When working with functions with a huge number of input bits, it might be appropriate to consider
the m-bit message M as a string of u-bit units instead of bits. For example one can take u = 8 and work
with bytes. We then use the notation M = (M [0], . . . ,M [m/u − 1]) (assuming u divides m) where M [i] =
(Miu, . . . ,Miu+u−1). In this case the dependency table must be constructed according to the effect of each
message unit on each output bit.

4 Application to CubeHash

CubeHash [3] is Bernstein’s proposal for the NIST SHA-3 competition [19]. Although CubeHash-8/1 is the
official submission which at each iteration processes one message byte in 8 rounds, the author has encouraged
cryptanalysis of CubeHash-r/b variants which at each iteration processes b bytes in r rounds for smaller r’s
and bigger b’s. We refer to [3] for a full specification, but a description is given in Appendix A.

4.1 Definition of the compression function Compress

To be in the line of our general method, we need to deal with fixed-size input compression functions. To this
end, we consider t consecutive iterations which start from an internal state which is set to a random initial
value V (the randomization of internal state can be done by prepending a few random message blocks). The
t message blocks M0, . . . ,M t−1 are processed to make the internal state ready for absorbing the (t + 1)-st
message block. We define the function H = Compress(M,V) with an 8bt-bit message M = M0|| . . . ||M t−1

and a 1024-bit initial value V . The output H is the last (1024− 8b) bits of the final internal state that is ready
to absorb the (t + 1)-st message block. Our goal is to find a collision for this compression function. Once
we have a collision, the (t + 1)-st message block is chosen to erase the differences in the first 8b bits of the
final internal state. In other words we are looking for messages which collide in the whole internal state. Near-
collisions are out of interest as they do neither (directly) help to find a collision for the hash function nor show
a weakness. In the next section we explain how high probability differential paths can be found for linearized
Compress function. In Appendix G, we present Algorithm 4 which shows how CubeHash Condition function
can be implemented in practice for a given differential path.

4.2 Differentials for CubeHash-r/b

As we explained in Section 2, the linear transformation Compresslin can be identified by a matrix Hh×m.
We are interested in ∆’s such that H∆ = 0 and such that the differential trails have high probability. For
CubeHash-r/b with t iterations, ∆ = ∆0|| . . . ||∆t−1 andH has size (1024−8b)×8bt, see Section 4.1. This
matrix suffers from having low rank. This enables us to find good low weight vectors of the kernel which are
luckily good candidates for providing highly probable trails, see Section 2.2. Assume that this matrix has rank
(8bt− τ), τ ≥ 0, signifying existence of 2τ − 1 nonzero solutions to H∆ = 0. To find a low weight nonzero
∆, we use the following method.

The rank ofH being (8bt− τ) shows that the solutions can be expressed by identifying τ variables as free
and expressing the rest in terms of them. Any choice for the free variables uniquely determines the remaining
8bt − τ variables, hence providing a unique member of the kernel. We choose a set of τ free variables at
random. Then, we set one, two, or three of the τ free variables to bit value 1, and the other τ − 1, or τ − 2
or τ − 3 variables to bit value 0 with the hope to get a ∆ providing a high probability differential path. We
have made exhaustive search over all τ +

(
τ
2

)
+
(
τ
3

)
possible choices for all b ∈ {1, 2, 3, 4, 8, 16, 32, 48, 64}

and r ∈ {1, 2, 3, 4, 5, 6, 7, 8} in order to find the best characteristics. Table 1 includes the ordered pair (t, y),
i.e. the corresponding number of iterations and the − log2 probability (number of bit conditions) of the best
raw probability path we found. For most of the cases, the best characteristic belongs to the minimum value of
t for which τ > 0. There are a few exceptions to consider which are starred in Table 1. For example in the
CubeHash-3/4 case, while for t = 2 we have τ = 4 and y = 675, by increasing the number of iterations to
t = 4, we get τ = 40 and a better characteristic with y = 478. This may hold for other cases as well since we
only increased t until our program terminates in a reasonable time.

r \ b 1 2 3 4 8 12 16 32 48 64

1 (14, 1225) (8, 221)? (4, 46) (4, 32) (4, 32) – – – – –
2 (7, 1225) (4, 221)? (2, 46) (2, 32) (2, 32) – – – – –
3 (16, 4238)? (6, 1881) (4, 798) (4, 478)? (4, 478)? (4, 400)? (4, 400)? (4, 400)? (3, 364)? (2, 65)

4 (8, 2614) (3, 964) (2, 195) (2, 189) (2, 189) (2, 156) (2, 156) (2, 156) (2, 130) (2, 130)

5 (18, 10221)? (8, 4579) (4, 2433) (4, 1517) (4, 1517) (4, 1244) (4, 1244) (4, 1244) (4, 1244)? (2, 205)

6 (10, 4238) (3, 1881) (2, 798) (2, 478) (2, 478) (2, 400) (2, 400) (2, 400) (2, 351) (2, 351)

7 (14, 13365) (8, 5820) (4, 3028) (4, 2124) (4, 2124) (4, 1748) (4, 1748) (4, 1748) (4, 1748)? (2, 447)

8 (4, 2614) (4, 2614) (2, 1022) (2, 1009) (2, 1009) (2, 830) (2, 830) (2, 830) (2, 637) (2, 637)

Table 1. The values of (t, y) for the differential path with the best found raw probability.

Second preimage attacks on CubeHash. Any differential path with raw probability greater than 2−512 can
be considered as a (theoretical) second preimage attack on CubeHash with 512-bit output hash size. In Table 1
the entries which do not correspond to a successful second preimage attack, i.e. y > 512, are shown in
gray, whereas the others have been highlighted. For example, our differential path for CubeHash-6/4 with
raw probability 2−478 indicates that by only one hash evaluation we can produce a second preimage with
probability 2−478. Alternatively, it can be stated that for a fraction of 2−478 messages we can easily provide a
second preimage. The list of differential trails for highlighted entries is given in Appendix B.

4.3 Collision attacks on CubeHash variants

Although Table 1 includes our best found differential paths with respect to raw probability or equivalently
second preimage attack, when it comes to freedom degrees use for collision attack, these trails might not be
the optimal ones. In other words, for a specific r and b, there might be another differential path which is worse
in terms of raw probability but is better regarding the collision attack complexity if we use some freedom
degrees speedup. As an example, for CubeHash-3/48, the time complexity can be reduced to about 258.9

(partial) evaluation of its condition function for the path with raw probability 2−364. However, there is another
path with raw probability 2−368 which has time complexity of about 253.3 (partial) evaluation of its condition
function. Table 2 shows the best paths we found regarding the final complexity of the collision attack. Yet,
most of the paths are the optimal ones with respect to the raw probability as well. The starred entries indicate
the ones which invalidate this property. Some of the interesting differential paths for starred entries in Table 2
are given in Appendix C.

r \ b 1 2 3 4 8 12 16 32 48 64

1 (14, 1225) (8, 221) (4, 46) (4, 32) (4, 32) – – – – –
2 (7, 1225) (4, 221) (2, 46) (2, 32) (2, 32) – – – – –
3 (16, 4238) (6, 1881) (4, 798) (4, 478) (4, 478) (4, 400) (4, 400) (4, 400) (3, 368)? (2, 65)

4 (8, 2614) (3, 964) (2, 195) (2, 189) (2, 189) (2, 156) (2, 156) (2, 156) (2, 134)? (2, 134)?

5 (18, 10221) (8, 4579) (4, 2433) (4, 1517) (4, 1517) (4, 1250)? (4, 1250)? (4, 1250)? (4, 1250)? (2, 205)

6 (10, 4238) (3, 1881) (2, 798) (2, 478) (2, 478) (2, 400) (2, 400) (2, 400) (2, 351) (2, 351)

7 (14, 13365) (8, 5820) (4, 3028) (4, 2124) (4, 2124) (4, 1748) (4, 1748) (4, 1748) (4, 1748) (2, 455)?

8 (4, 2614) (4, 2614) (2, 1022) (2, 1009) (2, 1009) (2, 830) (2, 830) (2, 830) (2, 655)? (2, 655)?

Table 2. The values of (t, y) for the differential path with the best found total complexity.

r \ b 1 2 3 4 8 12 16 32 48 64

1 1121.0 135.1 24.0 15.0 7.6 – – – – –
2 1177.0 179.1 27.0 17.0 7.9 – – – – –
3 4214.0 1793.0 720.0 380.1 292.6 153.5 102.0 55.6 53.3 9.4

4 2598.0 924.0 163.0 138.4 105.3 67.5 60.7 54.7 30.7 28.8

5 10085.0 4460.0 2345.0 1397.0 1286.0 946.0 868.0 588.2 425.0 71.7

6 4230.0 1841.0 760.6 422.1 374.4 260.4 222.6 182.1 147.7 144.0

7 13261.0 5709.0 2940.0 2004.0 1892.0 1423.0 1323.0 978.0 706.0 203.0

8 2606.0 2590.0 982.0 953.0 889.0 699.0 662.0 524.3 313.0 304.4

Table 3. Theoretical log2 complexities of improved collision attacks with freedom degrees use at byte level.

CubeHash instance y \ th 0.0 0.025 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.475

3/64 65 16.3 11.3 11.4 10.6 10.2 10.4 9.9 9.4 10.4 10.4 11.4 16.5
4/48 134 50.8 38.3 34.6 33.6 32.3 38.4 35.0 32.2 30.7 32.3 37.7 38.6

4/32 156 75.2 67.4 67.4 63.7 69.0 62.0 54.7 53.8 60.7 66.0 63.9 70.3
3/48 368 99.7 90.6 87.2 80.3 67.6 61.2 65.3 53.3 65.1 83.4 102.6 119.3
3/32 400 91.0 63.3 61.5 57.1 61.8 55.6 70.9 70.7 79.7 82.4 98.9 113.6

Table 4. Theoretical log2 complexities of improved attacks with freedom degrees use at byte level versus threshold value.

Table 3 shows the improved time complexities of collision attack using dependency table and freedom
degrees use at byte level for the differential paths of Table 2 for the optimal threshold value, see Section 3.2.

The time complexities are in logarithm 2 basis and might be improved if the dependency table is analyzed at a
bit level instead. The complexity unit is (partial) evaluation of their respective Condition function. We remind
that the full evaluation of a Condition function corresponding to a t-iteration differential path is almost the same
as application of t iterations (rt rounds) of CubeHash. We emphasize that the complexities are independent
of output hash size. All the complexities which are less than 2c/2 can be considered as a successful collision
attack if the hash size is bigger than c bits. The complexities bigger than 2256 have been shown in gray as they
are worse than birthday attack, considering 512-bit output hash size. The successfully attacked instances have
been highlighted. To see the effect of the threshold value th on the complexity, we focus on five instances
of CubeHash: CubeHash-3/64,-4/48,-3/48,-3/32 and-4/32. The first two instances are the ones for which the
theoretical complexities are practically reachable and we have managed to find their real collision examples.
The other three instances are the ones whose theoretical complexities are just above the practically reachable
values and are most probably the ones for which real collisions will be found in near future either using more
advanced methods or utilizing a huge cluster of computers. Table 4 shows the effect of threshold value on the
complexity for these six instances.

Real collisions for CubeHash-3/64 and -4/48. We use the 2-iteration message difference∆ = ∆0||∆1 of re-
lation (12) given in Appendix B for CubeHash-3/64 and of relation (13) given in Appendix C for CubeHash-
4/48. Remember that the difference ∆2 in a third iteration is used to erase the difference in the internal state
caused by the differences∆0 and∆1 in the previous two iterations. What we need to do is to find three message
blocks M−1, M0 and M1 such that the corresponding Y = Condition∆(M,V) function (M = M0||M1)
produces a zero output vector. The message block M−1 is chosen for randomizing the internal state V and
will be the common first block of the colliding message pairs, i.e. V is the content of the internal state after
processing the message block M−1. Once we find M−1, M0 and M1 message blocks, any message pairs
(M,M ′) whereM = M−1||M0||M1||M2||M ′′ andM ′ = M−1||(M0⊕∆0)||(M1⊕∆1)||(M2⊕∆2)||M ′′
collide for any message block M2 and any message suffix M ′′ of arbitrary length. Appendix D includes the
values of M−1, M0 and M1 for collision on CubeHash-3/64 with 512-bit output hash value, whereas Ap-
pendix E provides the corresponding values for collision constructing on CubeHash-4/48 with 512-bit output
hash values. Note that a collision pair/attack for a given r and b is also a collision pair/attack for the same r
and bigger b’s.

Practice versus theory. We provided a framework which is handy in order to analyze many hash functions
in a generic way. In practice, the practical optimal threshold value may be a little different from the theoretical
one. Moreover, by slightly playing with the neighbouring bits in the suggested partitioning corresponding to a
given threshold value we may achieve a partitioning which is more suitable for applying the attacks. In particu-
lar, Tables 3 and 4 contain the theoretical complexities for different CubeHash instances under the assumption
that the Condition function behaves ideally with respect to the first issue discussed in section 3.2. In practice,
deviation from this assumption makes the practical complexity increase. For particular instances, more simula-
tions need to be done to analyse the potential non-randomness effects in order to give a more exact estimation
of the practical complexity. In the following we compare the practical complexities with the theoretical values
for some cases which their complexities are practically reachable. Moreover, for some CubeHash instances
which their complexities are practically unreachable we try to give a more precise estimation of their practical
complexities.

Our tree-based search implementation for the CubeHash-3/64 case with th = 0.3 has median complexity
221 instead of the 29.4 of Table 4. The median decreases to 217 by backtracking three steps at each depth instead
of one, see section 3.2. We expect the practical complexities for other instances of CubeHash with three rounds
be slightly bigger than the theoretical numbers in Table 3. These cases need to be more investigated.

Our detailed analysis of CubeHash-4/32, CubeHash-4/48 and CubeHash-4/64 show that these cases
perfectly match with theory. According to Table 3, for CubeHash-4/64 (with th = 0.33) and CubeHash-
4/48 (with th = 0.30) we have the theoretical complexities 228.8 and 230.7, respectively. We experimentally
achieve median complexities 228.3 and 230.4 respectively. For CubeHash-4/32 (with th = 0.25) the theoret-
ical complexity is 254.7. In the tree-based search algorithm, we need to satisfy 44 bit conditions at step 18,
i.e. |Y18| = 44. This is the node which has the highest cost and if it is successfully passed, the remaining
steps will easily be followed. Our simulations show that on average we need about 210 (partial) evaluations
of the condition function per one surviving candidate which arrives at depth 18. Hence, our estimation of the
practical complexity is 210 × 244 = 254 which agrees with theory.

In CubeHash-5/64 case (with th = 0.24), the costliest node is at depth 20 for which 70 bit conditions
must be satisfied, i.e. |Y20| = 70. Only one surviving candidates from this node suffices to make the remaining
condition bits null with little cost. Our simulation shows that on average about 27.0 (partial) evaluations of the
condition function is required per one surviving candidate which arrives at depth 20. Hence, our estimation of
the practical complexity is about 27.0+70 = 277.0, versus theoretical value 271.7.

In CubeHash-6/16 case (with th = 0.15), the costliest node is at depth 9 for which 198 bit conditions
must be satisfied, i.e. |Y9| = 198. We need 226 candidates successfully pass this node, i.e. q′10 = 26, see
Algorithm 1. Our simulation shows that on average about 25 (partial) evaluations of the condition function is
required per one surviving candidate which arrives at depth 9. Hence, our estimation of the practical complexity
is about 226+5+198 = 2229, versus theoretical value 2222.6.

In CubeHash-7/64 case (with th = 0.255), the costliest node is at depth 24 for which 201 bit conditions
must be satisfied, i.e. |Y24| = 201. Only one surviving candidates from this node suffices to make the remaining
condition bits null with much less cost. Our simulation shows that on average about 27 (partial) evaluations of
the condition function is required per one surviving candidate which arrives at depth 24. Hence, our estimation
of the practical complexity is about 27+201 = 2208, versus theoretical value 2203.0.

We emphasis that for these later cases we did not attempt to play with the neighbouring bits in the par-
titioning. We believe, in general, complexities can get very close to the theoretical ones if one tries to do
so.

Comparison with the previous results. The first analysis of CubeHash was proposed by Aumasson et al. [2]
in which the authors showed some non-random properties for several versions of CubeHash. A series of col-
lision attacks on CubeHash-1/b and CubeHash-2/b for large values of b were announced by Aumasson [1]
and Dai [9]. Collision attacks were later investigated in deep by Brier and Peyrin [6]. Our results improve on
all existing ones as well as attacking some untouched variants.

5 Generalization

In Sections 2 and 3 we considered compression functions using only modular additions and linear transfor-
mations. Moreover, we concentrated on XOR approximation of modular additions in order to linearize the
compression function. This method is quite general and can be applied to a broad class of hash constructions
which covers a lot of existing hash functions. Besides, it lets us consider other linear approximations as well.
We view a compression functionH = Compress(M,V) : {0, 1}m×{0, 1}v → {0, 1}h as a binary finite state
machine (FSM) 5. The FSM has an internal state which is consecutively updated using message M and initial
value V . We assume that FSM operates as follows.

The internal state is initially set to zero. Afterwards, the internal state is sequentially updated in a limited
number of steps. The output value H is then derived by truncating the final value of the internal state to the
specified output size. At each step, the internal state is updated according to one of these two possibilities:
either the whole internal state is updated as an affine transformation of the current internal state, M and
V , or only one bit of the internal state is updated as a nonlinear Boolean function of the current internal
state, M and V . Without loss of generality, we assume that all of the nonlinear updating Boolean functions
(NUBF) have zero constant term (i.e. the output of zero vector is zero) and none of the involved variables
appear as a pure linear term (i.e. changing any input variable does not change the output bit with certainty).
As we will see, this assumption, coming from the simple observation that we can integrate constants and
linear terms in an affine updating transformation (AUT), is essential for our analysis. Linear approximations
of the FSM can be achieved by replacing AUT’s with linear transformations by ignoring the constant terms
and NUBF’s with linear functions of their arguments. Similar to Section 2 this gives us a linearized version
of the compression function which we denote by Compresslin(M,V). As we are dealing with differential
cryptanalysis, we take the notation Compresslin(M) = Compresslin(M, 0). The argument given in Section 2
is still valid: elements of the kernel of the linearized compression function (i.e. ∆’s s.t. Compresslin(∆) = 0)
can be used to construct differential trails. Let nnl denote the total number of NUBF’s in the FSM. We introduce
three functions Λ(M,V), Γ (∆) and Φ(∆) of output size nnl bits. Let Λ(M,V) include the output value of all
the nnl NUBF in the course of evaluation of Compress(M,V) through the execution of FSM. Similarly in the

5 This model covers even more practical hash constructions. One might also consider the FSM over extensions of binary
fields. For example quite a few of SHA-3 candidates are based on AES components, that is, they can be modeled with
FSM’s over GF(28). Here we only deal with the binary field.

course of evaluation of Compresslin(∆) through linearized version of FSM, let Φ(∆) include the output value
of all the nnl linearized NUBF’s. The function Γ (∆) is an analogy to the function alpha(∆)∨ beta(∆) which
appears in Lemma 2. The i-th bit of Γ (∆), Γi(∆), is set to zero iff all the inputs of the i-th linearized NUBF
are zero. The role of Γ can be explained as follows. Assume that a message pair with difference ∆ follows the
differential trail until just before applying the i-th NUBF. If Γi(∆) = 0 it means that the path will be satisfied
until before applying the (i + 1)-st NUBF with probability one as the input arguments of i-th NUBF are the
same for both messages. However, Γi(∆) = 1 indicates that the input arguments of the i-th NUBF differ for
the two messages and the differential path would not be surely followed after applying this NUBF. It should
now be clear why we need the NUBF’s to be free of linear terms. The reason is that if the difference is only in
linear terms, applying the i-th NUBF still allows the path to follow.

In case Γi(∆) = 1, all we require is to ensure that the differential path is followed after applying the i-th
NUBF. This is exactly the way we construct the condition function. To make it more formal, let’s introduce
another function Λ∆(M,V) of nnl output bits. The i-th bit of Λ∆ simulates the output of the i-th NUBF for the
messageM⊕∆ assuming that the message pair (M,M ⊕∆) conforms to the path until before applying the i-
th nonlinear update function. In other words, Λ∆i (M,V) is built by applying the i-th NUBF on the difference
of the arguments of the functions Λi and Φi. Clearly, the path is followed after applying the i-th NUBF iff
the difference between Λi(M,V) and Λ∆i (M,V) is equal to the output of linearized NUBF, i.e. Φi(∆). To
summarize, similar to the statement in the proof of Lemma 2, under some independence assumptions we

can state that 2−wt
(
Γ (∆)

)
is the probability that a random message pair with difference ∆ for a random

initial value conforms to the differential trail. The generalization of the condition function in Section 3 is
then straightforward to validate Proposition 1 in this case as well. Let y = wt

(
Γ (∆)

)
where {i0, . . . iy−1},

0 ≤ i0 < i1 < · · · < iy−1 < nnl, are the positions of 1’s in the vector Γ (∆). The condition function
Y = Condition∆(M,V) which maps m-bit message M and v-bit initial value V into y-bit output Y is
constructed according to the following relation

Yj = Λij (M,V)⊕ Λ∆ij (M,V)⊕ Φij (∆) (6)

for j = 0, 1, . . . , y − 1.

5.1 Modular addition case

Let’s review the compression functions involving only linear transformations and modular addition of n-bit
words. We deeply studied this subject in Sections 2 and 3. The modular addition Z = X+Y can be computed
by considering one bit memory c for the carry bit. Let X = (x0, . . . , xn−1), Y = (y0, . . . , yn−1) and Z =
(z0, . . . , zn−1). We have

ci+1 = cixi ⊕ ciyi ⊕ xiyi for 0 ≤ i ≤ n− 2
zi = xi ⊕ yi ⊕ ci for 0 ≤ i ≤ n− 1,

where c0 = 0. It can be argued that a compression function which uses only linear transformations and
nadd modular additions can be implemented as a FSM. With regard to the notations in Section 5, the FSM has
nnl = (n−1)nadd NUBF’s, all of the form g(x, y, z) = xy⊕xz⊕yz. Remember the notationAi = Ai(M,V),
Bi = Bi(M,V), Ci = Ci(M,V), αi = alphai(∆) and βi = betai(∆); see notations in Section 2.1 and
the note after Lemma 3). As the input arguments of the i-th NUBF are (Ai, Bi, Ci) we have Λi(M,V) =
g(Ai, Bi, Ci). The XOR approximation of modular additions corresponds to approximating g with the zero
function. Therefore Φ(∆) = 0 and moreover, the input arguments of the i-th linearized NUBF are (αi, βi, 0)
and hence Λ∆i (M,V) = g(Ai ⊕ αi, Bi ⊕ βi, Ci). Note that the input arguments of the i-th linearized NUBF,
(αi, βi, 0), are not all zero iff αi ∨ βi = 1. That is Γi(∆) = αi ∨ βi which is in agreement with Lemma 2.
According to the general equation (6) it follows that for (αij , βij) 6= (0, 0)

Yj = Λij (M,V)⊕ Λ∆ij (M,V)⊕ Φij (∆)
= g(Aij , Bij , Cij)⊕ g(Aij ⊕ αij , Bij ⊕ βij , Cij)
= (αij ⊕ βij)Cij ⊕ αijBij ⊕ βijAij ⊕ αijβij

(7)

which agrees with equation (5).

5.2 Note on the different linear approximations

Different combinations of different linear approximations of the NUBF’s provide different linear approxima-
tions of the compression function. However, one should be careful to avoid approximations which might lead

to contradictions due to dependency between different approximations. In fact the probability 2−Γ (∆) would
not be a good estimate in this case if there are strong correlations between approximations. In the case of linear
approximation of modular addition of n-bit words we have (n − 1) NUBF’s for the carry bits, out of which
n−2 are of the form xy⊕xc⊕yc and one of the form xy (corresponding to the carry of the LSB). This shows
the possibility of 4×8(n−2) different linear approximations. For one particular linear approximation, if the dif-
ference of the two addends are α and β the output difference γ is uniquely determined. In [16] the notation of
"good" differential is introduced to distinguish those differentials which can happen with non-zero probability.
A differential α, β → γ is not "good" iff for some i ∈ [0, n−1], αi−1 = βi−1 = γi−1 6= αi⊕βi⊕γi [16]. The
exact probability of "good" differentials can be computed from Algorithm 2 of [16]. In general, it might not
be easy to take redundancies into account. However, a cryptanalyst should try to do her best. We also would
like to emphasize that although there exists an exponential number of linear approximations (in terms of nnl)
for the compression function, it would be better in practice to concentrate on those for which highly probable
linear differential paths are found easily. For example, by approximating the NUBF’s with the zero function
or sparse linear functions, the h×m matrix H which satisfies Compresslin(∆) = H∆ is more likely sparser,
making it easier to find differential paths with good raw probability.

6 Application to MD6

MD6 [20], designed by Rivest et al., is a SHA-3 candidate that provides security proofs regarding some dif-
ferential attacks. The core part of MD6 is the function f which works with 64-bit words and maps 89 input
words (A0, . . . , A88) into 16 output words (A16r, . . . , A16r+88) for some integer r representing the number of
rounds. Each round is composed of 16 steps. The function f is computed according to the following recursion

Ai+89 = gri,li

(
Si ⊕Ai ⊕ (Ai+71 ∧Ai+68)⊕ (Ai+58 ∧Ai+22)⊕Ai+72

)
, (8)

where Si’s are some publicly known constants and gri,li ’s are some known simple linear transformations. The
89-word input of f is of the formQ||U ||W ||K||B whereQ is a known 15-word constant value,U is a one-word
node ID, W is a one-word control word6, K is an 8-word key and B is a 64-word data block. For more details
about function f and the mode of operation of MD6, we refer to the submission document [20]. We consider
the compression function H = Compress(M,V) = f(Q||U ||W ||K||B) where V = U ||W ||K, M = B and
H is the 16-word compressed value. Our goal is to find a collision Compress(M,V) = Compress(M ′, V) for
arbitrary value of V . We later explain how such collisions can be translated into collisions for the MD6 hash
function.

According to our model in Section 5, MD6 can be implemented as an FSM which has 64 × 16r NUBF’s
of the form g(x, y, z, w) = x · y ⊕ z · w. Remember that the NUBF’s must not include any linear part
or constant term. We focus on the case where we approximate all NUBF’s with the zero function. This
corresponds to ignoring the AND operations in equation (8). This essentially says that in order to compute
Compresslin(∆) = Compresslin(∆, 0) for a 64-word ∆ = (∆0, . . . ,∆63), we map (A′0, . . . , A

′
88) = 0||∆ =

(0, . . . , 0, ∆0, . . . ,∆63) into the 16 output words (A′16r, . . . , A
′
16r+88) according to the linear recursion

A′i+89 = gri,li

(
A′i ⊕A′i+72

)
. (9)

For a given ∆, the function Γ is the concatenation of 16r words A′i+71 ∨ A′i+68 ∨ A′i+58 ∨ A′i+22, 0 ≤ i ≤
16r − 1. Therefore, the number of bit conditions equals

y =
16r−1∑
i=0

wt(A′i+71 ∨A′i+68 ∨A′i+58 ∨A′i+22). (10)

Note that this equation compactly integrates cases 1 and 2 given in Section 6.9.3.2 of [20] for counting the
number of active AND gates. For pedagogical reasons, in Appendix G we present Algorithm 3 which shows
how equation (6) is implemented in practice in order to compute the condition function.

Using a similar linear algebraic method to the one used in Section 4.2 for CubeHash, we have found the
following collision difference for r = 16 rounds with a raw probability p∆ = 2−90. In other words, ∆ is in
the kernel of Compresslin and the condition function has y = 90 output bits. Note that this does not contradict
the proven bound in [20]: one gets at least 26 active AND gates.

6 In the MD6 document, the control word is denoted by V .

i Yi Mi qi q
′
i

0 ∅ – 0 0
1 {Y1, . . . , Y29} {M38} 29 0
2 {Y43, . . . , Y48} {M55} 6 0
3 {Y0} {M0,M5,M46,M52,M54} 1 0
4 {Y31, . . . , Y36} {Mj |j = 3, 4, 6, 9, 21, 36, 39, 40, 42, 45, 49, 50, 53, 56, 57} 6 0
5 {Y30, Y51} {M41,M51,M58,M59,M60} 2 0
6 {Y52, . . . , Y57} {Mj |j = 1, 2, 7, 8, 10, 11, 12, 17, 18, 20, 22, 24, 25, 26, 29, 6 0

33, 34, 37, 43, 44, 47, 48, 61, 62, 63}
7 {Y37, . . . , Y42} {M27} 6 0
8 {Y50} {M13,M16,M23} 1 0
9 {Y49} {M35} 1 0
10 {Y58, Y61} {M14,M15,M19,M28} 2 0
11 {Y59, Y60, Y62 . . . , Y89} {M30,M31,M32} 30 0

Table 5. Dependency table for Condition function of MD6 with r = 16 rounds.

∆i =

F6D164597089C40E i = 2
2000000000000000 i = 36

0 0 ≤ i ≤ 63, i 6= 2, 36
(11)

In order to efficiently find a conforming message pair for this differential path we need to analyze the depen-
dency table of its condition function. Referring to our notations in Section 3.2, our analysis of the dependency
table of function Condition∆(M, 0) at word level (units of u = 64 bits) shows that the partitioning of the
condition function is as in Table 5 for threshold value th = 0. For this threshold value clearly pi = 0. The
optimal values for qi’s (computed according to the complexity analysis of the same section) are also given in
Table 5, showing a total attack complexity of 230.6 (partial) condition function evaluation7. By analyzing the
dependency table with smaller units the complexity may be subject to reduction.

Having set V to zero (which corresponds to choosing null values for the key, the node ID and the control
word in order to simplify things), we found a messageM , given in the Appendix F, which makes the condition
function null. In other words, the message pairs M and M ⊕ ∆ are colliding pairs for r = 16 rounds of f .
This 16-round colliding pair provides near collisions for r = 17,18 and 19 rounds with 63,144 and 270 bit
differences respectively over the 1024-bit long output of f .

Now, let’s discuss the potential of providing collisions for full MD6. The MD6 mode of operation is
optionally parametrized by an integer L, 0 ≤ L ≤ 64, which allows a smooth transition from the default
tree-based hierarchical mode of operation (for L = 64) down to an iterative mode of operation (for L = 0).
When L = 0, MD6 works in a manner similar to that of the well-known Merkle-Damgård construction (or the
HAIFA method). Since in the iterative Merkle-Damgård the first 16 words of the message block are used as a
chaining value, and as our difference in equation (11) is non-zero in the first 16 words, we do not get a collision
but a pseudo-collision. Nevertheless, for 16-round MD6 in the tree-based hierarchical mode of operation (i.e.
for 1 ≤ L ≤ 64) we get a hash collision. We emphasize that one must choose node ID U and control word W
properly in order to fulfill the MD6 restriction on these values as opposed to the null values which we chose.
This is the first real collision example for 16-round MD6.

The original MD6 submission [20] mentions inversion of the function f up to a dozen rounds using SAT
solvers. Some slight nonrandom behaviour of the function f up to 33 rounds has also been reported [14].

7 Conclusion

We presented a framework for an in-depth study of linear differential attacks on hash functions. We applied
our method to reduced round variants of CubeHash and MD6, giving by far the best known collision attacks on
these SHA-3 candidates. Our results may be improved by considering start-in-the middle attacks if the attacker
is allowed to choose the initial value of the internal state.

7 By masking M38 and M55 respectively with 092E9BA68F763BF1 and DFFBFF7FEFFDFFBF after random setting,
the 35 condition bits of the first three steps are satisfied for free, reducing the complexity to 230.0 instead

References

1. J-P. Aumasson. Collision for CubeHash-2/120 − 512. NIST mailing list, 4 Dec 2008, 2008. http://ehash.
iaik.tugraz.at/uploads/a/a9/Cubehash.txt.

2. J-P. Aumasson, W. Meier, M. Naya-Plasencia and T. Peyrin. Inside the hypercube. In C. Boyd and J. González Nieto,
editors, Australasian Conference on Information Security and Privacy – ACISP 2009, volume 5594 of Lecture Notes
in Computer Science, pages 202–213. Springer-Verlag, 2009.

3. D.J. Bernstein. CubeHash specification (2.b.1). Submission to NIST SHA-3 competition, 2008.
4. G. Bertoni, J. Daemen, M. Peeters and G. Van Assche. Radiogatun, a belt-and-mill hash function. Presented at Sec-

ond Cryptographic Hash Workshop, Santa Barbara (August 24-25, 2006). See http://radiogatun.noekeon.
org/.

5. E. Biham and R. Chen. Near-Collisions of SHA-0. In M.K. Franklin, editor, Advances in Cryptology – CRYPTO 2004,
volume 3152 of Lecture Notes in Computer Science, pages 290–305. Springer-Verlag, 2004.

6. E. Brier and T. Peyrin. Cryptanalysis of CubeHash. In D. Pointcheval and M. Abdalla, editors, Applied Cryptography
and Network Security – ACNS 2009, volume 5536 of Lecture Notes in Computer Science, pages 354-ï£¡368. Springer-
Verlag, 2009.

7. A. Canteaut and F. Chabaud. A new algorithm for finding minimum-weight words in a linear code: application
to McEliece’s cryptosystem and to narrow-sense BCH codes of length 511. In IEEE Transactions on Information
Theory, 44(1):367–378, january 1998.

8. F. Chabaud and A. Joux. Differential Collisions in SHA-0. In H. Krawczyk, editor, Advances in Cryptology –
CRYPTO’98, volume 1462 of Lecture Notes in Computer Science, pages 56–71. Springer-Verlag, 1998.

9. W. Dai. Collisions for CubeHash-1/45 and CubeHash-2/89. Available online, 2008. http://www.cryptopp.
com/sha3/cubehash.pdf.

10. eBASH: ECRYPT Benchmarking of All Submitted Hashes. http://bench.cr.yp.to/ebash.html
11. T. Fuhr and T. Peyrin. Cryptanalysis of Radiogatun. In O. Dunkelman, editor, Fast Software Encryption – FSE 2009,

Lecture Notes in Computer Science. Springer-Verlag, 2009.
12. S. Indesteege and B. Preneel. Practical collisions for EnRUPT. In O. Dunkelman, editor, Fast Software Encryption –

FSE 2009, Lecture Notes in Computer Science. Springer-Verlag, 2009.
13. A. Joux and T. Peyrin. Hash Functions and the (Amplified) Boomerang Attack. In A. Menezes, editor, Advances in

Cryptology – CRYPTO 2007, volume 4622 of Lecture Notes in Computer Science, pages 244–263. Springer-Verlag,
2004.

14. D. Khovratovich. Nonrandomness of the 33-round MD6. Presented at the rump session of FSE’09, 2009. Slides are
available online at http://fse2009rump.cr.yp.to/.

15. V. Klima. Tunnels in Hash Functions: MD5 Collisions Within a Minute. ePrint archive, 2006 http://eprint.
iacr.org/2006/105.pdf.

16. H. Lipmaa and S. Moriai. Efficient Algorithms for Computing Differential Properties of Addition. In M. Matsui,
editor, Fast Software Encryption – FSE 2001, volume 2355 of Lecture Notes in Computer Science, pages 336–350.
Springer-Verlag, 2001.

17. S. Manuel and T. Peyrin. Collisions on SHA-0 in One Hour. In K. Nyberg, editor, Fast Software Encryption –
FSE 2008, volume 5086 of Lecture Notes in Computer Science, pages 16–35. Springer-Verlag, 2008.

18. Y. Naito, Y. Sasaki, T. Shimoyama, J. Yajima, N. Kunihiro and K. Ohta. Improved Collision Search for SHA-0. In
X. Lai and K. Chen, editors, Advances in Cryptology – ASIACRYPT’06, volume 4284 of Lecture Notes in Computer
Science, pages 21–36. Springer-Verlag, 2006.

19. National Institute of Science and Technology. Announcing request for candidate algorithm nominations for a new
cryptographic hash algorithm (SHA-3) family. Federal Register, 72(112), November 2007.

20. R.L. Rivest, B. Agre, D.V. Bailey, C. Crutchfield, Y. Dodis, K.E. Fleming, A. Khan, J. Krishnamurthy, Y. Lin,
L. Reyzin, E. Shen, J. Sukha, D. Sutherland, E. Tromer and Y.L. Yin. The MD6 hash function — a proposal to
NIST for SHA–3. Submission to NIST SHA-3 competition, 2008.

21. T. Peyrin. Cryptanalysis of Grindahl. In Kaoru Kurosawa, editor, Advances in Cryptology – ASIACRYPT’07, volume
4833 of Lecture Notes in Computer Science, pages 551–567. Springer, 2007.

22. N. Pramstaller, C. Rechberger and V. Rijmen. Exploiting Coding Theory for Collision Attacks on SHA–1. In Cryp-
tography and Coding, 10th IMA International Conference, volume 3796 of Lecture Notes in Computer Science, pages
78–95. Springer, 2005.

23. V. Rijmen and E. Oswald. Update on SHA–1. In A. Menezes, editor, Topics in Cryptology – CT-RSA 2005, volume
3376 of Lecture Notes in Computer Science, pages 58–71. Springer-Verlag, 2005.

24. X. Wang and H. Yu. How to Break MD5 and Other Hash Functions. In R. Cramer, editor, Advances in Cryptology –
EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages 19–35. Springer-Verlag, 2005.

A CubeHash description

CubeHash, designed by Dan Bernstein [3], works with 32-bit words (n = 32) and uses three simple operations:
XOR, rotation and modular addition. It has an internal state S = (S0, S1, . . . , S31) of 32 words and its variants,

denoted by CubeHash-r/b, are identified by two parameters r ∈ {1, 2, . . . } and b ∈ {1, 2, . . . , 128}. The
internal state S is set to a specified value which depends on the output hash length (limited to 512 bits) and
parameters r and b. The message to be hashed is appropriately padded and divided into b-byte message blocks.
At each iteration one message block is processed as follows. The 32-word internal state S is considered as a
128-byte value and the message block is XORed into the first b bytes of the internal state8. Then, the following
fixed permutation is applied r times to the internal state to prepare it for the next iteration.

1. Add Si into Si⊕16, for 0 ≤ i ≤ 15.
2. Rotate Si to the left by seven bits, for 0 ≤ i ≤ 15.
3. Swap Si and Si⊕8, for 0 ≤ i ≤ 7.
4. Xor Si⊕16 into Si, for 0 ≤ i ≤ 15.
5. Swap Si and Si⊕2, for i ∈ {16, 17, 20, 21, 24, 25, 28, 29}.
6. Add Si into Si⊕16, for 0 ≤ i ≤ 15.
7. Rotate Si to the left by eleven bits, for 0 ≤ i ≤ 15.
8. Swap Si and Si⊕4, for i ∈ {0, 1, 2, 3, 8, 9, 10, 11}.
9. Xor Si⊕16 into Si, for 0 ≤ i ≤ 15.

10. Swap Si and Si⊕1, for i ∈ {16, 18, 20, 22, 24, 26, 28, 30}.

Having processed all message blocks, a fixed transformation is applied to the final internal state to extract the
hash value as follows. First, the last state word S31 is exclusive ORed with integer 1 and then the above per-
mutation is applied 10×r times to the resulting internal state. Finally, the internal state is truncated to produce
the message digest of desired hash length. CubeHash-8/1 is the official submission to SHA-3 competition.
Implementations of CubeHash-8/2, CubeHash-8/4 and CubeHash-8/8 have been benchmarked as well as
part of the eBASH [10] project, though.

B Highest raw probability differential paths found for CubeHash

Here we give differential trials for highlighted entries of Table 1. Remember that ∆ = ∆0||∆1||...||∆t−1 is
the kernel of linearized version of CubeHash in t iterations mapping t message differences each of b bytes into
the last 128− b bytes of the final state before absorbing the (t+1)-st message difference. The difference ∆t is
then used to erase the difference in the first b bytes of the state. Note that a differential path for a given r and b
is also a differential path for the same r and bigger b’s. Therefore we introduce the path for the smallest valid
b.

B.1 Differential paths for CubeHash-1/*

CubeHash-1/4 with y = 32:

(∆0, . . . ,∆4) = (00000001,00000000,40400010,00000000,00000010)

CubeHash-1/3 with y = 46:

(∆0, . . . ,∆4) = (010000,000000,104040,000000,100000)

CubeHash-1/2 with y = 221:

(∆0, . . . ,∆8) = (0080,0000,2200,0000,228A,0000,0280,0000,2000)

B.2 Differential paths for CubeHash-2/*

CubeHash-2/4 with y = 32:

(∆0, ∆1, ∆2) = (00000001,40400010,00000010)

8 The first message byte into the least significant byte of S0, the second one into the second least significant byte of S0,
the third one into the third least significant byte of S0, the fourth one into the most significant byte of S0, the fifth one
into the least significant byte of S1, and so forth until all b message bytes have been exhausted.

CubeHash-2/3 with y = 46:

(∆0, ∆1, ∆2) = (010000,104040,100000)

CubeHash-2/2 with y = 221:

(∆0, . . . ,∆4) = (0040,1100,1145,0140,1000)

B.3 Differential paths for CubeHash-3/*

CubeHash-3/64 with y = 65:

∆0 = 4000
000000000000000000000080000000000000008000000000
00000000000000000000000000000000

∆1 = 000000000004100000000000000010000000000000000000
800020800000008008000208080000000000000000000000
41000010000000000140000000000000

∆2 = 002000
000000000000200000000000000000000000000000000000
00000000000000000000000000000010

(12)

CubeHash-3/48 with y = 364:

∆0 = 000000000000000000000000000000000000010000000000
00000100

∆1 = 000202800002000000020280000200000000000000000000
000000000000000040000101000000004000010100000000

∆2 = 202022000000000020202200000000004000000500000000
400000050000000040440040404400404044004040440040

∆3 = 080000000800020808000000080002080000000000000000
000000000000000000040000000000000004000000000000

CubeHash-3/12 with y = 400:

∆0 = 000200000000000000020000
∆1 = 000000000000000000000000
∆2 = 800A2A8200000000800A2A82
∆3 = 000000000000000000000000
∆4 = 000020000000000000002000

CubeHash-3/4 with y = 478:

(∆0, . . . ,∆4) = (00000100,00000000,41400515,00000000,00000010)

CubeHash-3/3 with y = 798:

(∆0, . . . ,∆4) = (000280,000000,0A2A8A,000000,080020)

B.4 Differential paths for CubeHash-4/*

CubeHash-4/36 with y = 130:

∆0 = 002000000000000000200000000000000000000000000000
000000000000000000001000

∆1 = 000220020000000000022002000000000000000000000000
000000000000000001000110

∆2 = 000020000000000000002000000000000000000000000000
000000000000000000000010

CubeHash-4/12 with y = 156:

∆0 = 040000000000000004000000
∆1 = 004400400000000000440040
∆2 = 000400000000000000040000

CubeHash-4/4 with y = 189:

(∆0, ∆1, ∆2) = (00001000,01000110,00000010)

CubeHash-4/3 with y = 195:

(∆0, ∆1, ∆2) = (000200,200022,000002)

B.5 Differential paths for CubeHash-5/*

CubeHash-5/64 with y = 205:

∆0 = 0400
000000000000000000000008000000000000000800000000
00000000000000000000000000000000

∆1 = 000000000004005000000000000010400000000000000000
000222020002028020202200082020000000000000000000
01400510000000000040040100000000

∆2 = 002000
000000000000200000000000000000000000000000000000
00000000000000000000000000000010

B.6 Differential paths for CubeHash-6/*

CubeHash-6/36 with y = 351:

∆0 = 000100000000000000010000000000000000000000000000
000000000000000000800000

∆1 = 400515410000000040051541000000000000000000000000
000000000000000020A0828A

∆2 = 000010000000000000001000000000000000000000000000
000000000000000000000008

CubeHash-6/12 with y = 400:

∆0 = 000200000000000000020000
∆1 = 800A2A8200000000800A2A82
∆2 = 000020000000000000002000

CubeHash-6/4 with y = 478:

(∆0, ∆1, ∆2) = (00000100,41400515,00000010)

B.7 Differential paths for CubeHash-7/*

CubeHash-7/64 with y = 447:

∆0 = 000080000000000000008000000000000000000000000000
000000000000000000000040000000000000000000000000
00000000000000000000000000000000

∆1 = A880A2888800808000000000000000005004011400000000
154004000000000000000000004510400000000040011000
0000000000000000880A288A08000888

∆2 = 00
000000000000001000000000000000000000000000000000
00000000000020000000000000002000

C Best total attack complexity differential paths found for CubeHash

Here we give the differential trials for some stared entries of Table 2. Please see the note on Appendix B.

CubeHash-3/48 with y = 368:

∆0 = 000000000000000000000000000000004000000000000000
4000

∆1 = 800020800000008080002080000000800000000000000000
000000000000000040400010000000004040001000000000

∆2 = 880800080000000088080008000000000040011000000000
004001100000000011001010110010101100101011001010

∆3 = 000000028000020200000002800002020000000000000000
000000000000000001000000000000000100000000000000

CubeHash-4/36 with y = 134:

∆0 = 000000080000000000000008000000000000000000000000
000000000000000004000000

∆1 = 880080000000000088008000000000000000000000000000
000000000000000000440040

∆2 = 080000000000000008000000000000000000000000000000
000000000000000000040000

(13)

CubeHash-7/61 with y = 455:

∆0 = 0400
000000000000000000000008000000000000000800000000
00000000000000000000000000

∆1 = 000000000450040100000000001400010000000000000000
88A880A288008080880A288A880800080000000000000000
01451040000000005001440000

∆2 = 0002
000000000000000200000000000000000000000000000000
00000000000000000000000001

D Collision for CubeHash-3/64

M−1 = 9B91E97363511AC3AF950F54DBCFD5DF91BC26BDD759104DF15B37847A4F7015
E15A8844ABA3075A3816AE13E583F27640193317724464649F9BE819EB582ECC

M0 = B22A98139CC0C8606525818EE6DD7775CF25B34196DC51F4641E56ACB918296B
BD082AD01D7481EECC950B6C176C45B623CFE1E2638B16255F61E806F34DE91C

M1 = 4D9E9CD62ED12CBDBA1E0B631856DCFE5BD996571CFF6E94A52242382E154FA6
AEB44AC0A247CB298550C7B82BDCA924E81D5E51E997CA67FBDD86FF15D04A0D

E Collision for CubeHash-4/48

M−1 = 741B87597F94FF1CC01761CA0D80B07CC2E6E760C95DF9A5
08FFCBABDA11474E2CCEA7AC62A7C822BE29EDCBA99D476C

M0 = 1D30F8022F4AE8DBD477FA1F7DE37C1AF2516BC6FA4657F9
E51539C10EC114DA3B8264DD9361FE07C3D56E88E8512201

M1 = 014A11BFE2FF346FC306D1E430EE80268785A9F841562C9A
88A6BF5858E95362F541ACF41C2FDCC1C49470DF1DFAEFDC

F Colliding message for MD6 reduced to 16 rounds

5361E9B8579F7CD1, 8B29C52CA2AB51E4, 0BCF2F1E1B116898, 022C254B88191A11,
F0F1CE9D9A7F63B8, 9FB5B2CE87B7D7F5, E7C78F28EEB4F5C7, C5E8C19CEFC07365,
F88B84529ED90209, 8FACF593AE7390CF, 03A93466247C6B54, B12C70C10904143D,
D92EE67244C300D6, 35EEA586ECCC8A77, 9DCF031C64B528F8, C84807607ADCD418,
367E95EE3CB0FC67, 578A2C716FCC5016, B0C30EA5521F61EF, 7F665B24762D5894,
4196BAF0596A7784, ED5F9A8F183B4BCC, 6077463601FCFE46, 495366B1273E119B,
6E11A21AE5B3A48F, 38082264A0F68F93, 4ED510C2DFA9FF98, 35C5ACEC5E9A1756,
1F6731C861879ECD, 8CECD7B4F761CE82, 332A50854FDA8FE6, 588498B1021E9C23,
CB1FFA21CF89C7A5, 63A6871C77848410, 92A550CB4607F31C, 97024803F162E055,
E2D6EA5A57D2DBF3, AEB418A0F1F01CC5, 090A9304040038C1, 5417960E3D9A06A5,
714215C196813F35, BABAD7A4C154F2C3, 71AF3FD02B543940, FA08624B825648DD,
730D61FF48759275, CF85BA5A06D6AED4, 2E12B3150452C65A, 93C7A9FC314220B4,
81B128A4EF361456, BFE652098170C212, 77540989DC246845, 796F353D07721071,
D82776A3CBFEC586, 1132E4391152F408, CE936924CFFB22AA, D338852F80450282,
4F41AB82E790EEF6, F05378CB6BD36203, 5E506F47C6EC4617, FE6FB5A03BDE8E1C,
AB33EA511EEBAEDC, 7D40F8D4F0C62BF4, 1174E2B748B9CC2E, 1EB743671A31547D

G Condition function for CubeHash and MD6

Algorithms 3 and 4 respectively show how the Condition function can be constructed for MD6 and CubeHash.
It is presumed that the input ∆ is in the the kernel of their respective condition functions. Note that, in case
the Condition function needs to be evaluated several times for a fixed differential path ∆, as is the case for
the tree-based search algorithm, we can precompute that part of the function which is independent of the input
message M .

Algorithm 3 : Condition function for MD6
Require: r, ∆, M and V
Ensure: y, Y = Condition∆(M,V)
1: (A0, . . . , A88) := Q||V ||M
2: (A′0, . . . , A

′
88) := 0||∆

3: j := 0
4: for i = 0, 1, . . . , 16r − 1 do
5: Ai+89 := Li

`
Si ⊕Ai ⊕ (Ai+71 ∧Ai+68)⊕ (Ai+58 ∧Ai+22)⊕Ai+72

´
6: A′i+89 := Li

`
A′i ⊕A′i+72

´
7: D := A′i+71 ∨A′i+68 ∨A′i+58 ∨A′i+22

8: T := (Ai+71 ∧Ai+68)⊕ (Ai+58 ∧Ai+22)
9: T ′ :=

`
(Ai+71 ⊕A′i+71) ∧ (Ai+68 ⊕A′i+68)

´
⊕
`
(Ai+58 ⊕A′i+58) ∧ (Ai+22 ⊕A′i+58)

´
10: for all bit positions k = 0, 1, . . . , 63 such that Dk = 1 do
11: Yj := Tk ⊕ T ′k
12: j := j + 1
13: end for
14: end for
15: y := j

Algorithm 4 : Condition function for CubeHash
Require: r, b, t, ∆ = ∆0|| . . . ||∆t−1, M = M0|| . . . ||M t−1 and V = (V0, . . . , V31)
Ensure: y, Y = Condition∆(M,V)
1: (S0, . . . , S31) := V
2: (S′0, . . . , S

′
31) := (0, . . . , 0)

3: j := 0
4: for t ′ from 0 to t− 1 do
5: Xor M t′ into the first b bytes of the state S {see footnote 8}
6: Xor ∆t′ into the first b bytes of the state S′ {see footnote 8}
7: for round from 1 to r do
8: for i from 0 to 15 do
9: α := S′i, β := S′i⊕16, A := Si, B := Si⊕16

10: Add Si into Si⊕16 and xor S′i into S′i⊕16

11: D := α ∨ β
12: C := A⊕B ⊕ Si⊕16 {carry word}
13: T =

`
(α⊕ β) ∧ C

´
⊕ (α ∧B)⊕ (β ∧A)⊕ (α ∧ β) {see equation 5 or 7}

14: for all bit positions k = 0, 1, . . . , 31 such that Dk = 1 do
15: Yj := Tk
16: j := j + 1
17: end for
18: end for
19: for 0 ≤ i ≤ 15 do rotate Si and S′i to the left by seven bits end for
20: for 0 ≤ i ≤ 7 do swap Si and Si⊕8 as well as S′i and S′i⊕8 end for
21: for 0 ≤ i ≤ 15 do xor Si⊕16 into Si and S′i⊕16 into S′i end for
22: for i ∈ {16, 17, 20, 21, 24, 25, 28, 29} do swap Si and Si⊕2 as well as S′i and S′i⊕2 end for
23: for i from 0 to 15 do
24: α := S′i, β := S′i⊕16, A := Si, B := Si⊕16

25: Add Si into Si⊕16 and xor S′i into S′i⊕16

26: D := α ∨ β
27: C := A⊕B ⊕ Si⊕16 {carry word}
28: T =

`
(α⊕ β) ∧ C

´
⊕ (α ∧B)⊕ (β ∧A)⊕ (α ∧ β) {see equation 5 or 7}

29: for all bit positions k = 0, 1, . . . , 31 such that Dk = 1 do
30: Yj := Tk
31: j := j + 1
32: end for
33: end for
34: for 0 ≤ i ≤ 15 do rotate Si and S′i to the left by eleven bits end for
35: for i ∈ {0, 1, 2, 3, 8, 9, 10, 11} do swap Si and Si⊕4 as well as S′i and S′i⊕4 end for
36: for 0 ≤ i ≤ 15 xor Si⊕16 do into Si and S′i⊕16 into S′i end for
37: for i ∈ {16, 18, 20, 22, 24, 26, 28, 30} do swap Si and Si⊕1 as well as S′i and S′i⊕1 end for
38: end for{r rounds}
39: end for{t iterations}
40: y := j

