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Abstract. We present a variant of Regev’s system first presented in
[Reg05], but with a new choice of paramters. By a recent classical reduc-
tion by Peikert we prove the scheme semantically secure based on the
worst-case lattice problem GapSVP. From this we construct a threshold
cryptosystem which has a very efficient and non-interactive decryption
protocol. We prove the threshold cryptosystem secure against passive
adversaries corrupting all but one of the players, and againts active ad-
versaries corrupting less than one third of the players. Finally we sketch
how one can build a distributed key generation protocol.

1.1 Introduction

Cryptography based on lattice problems is one of the most important examples
of techniques holding promise for public-key cryptography that is secure even
under quantum attacks. Recently, these techniques have become much more
efficient after it has been realized that one can base the actual cryptosystem
on the learning with error problem (LWE), and then argue that the (variant
of the) LWE problem used is as hard as some lattice related problem, typically
computing the shortest vector in a lattice. In the LWE problem, the adversary
must compute a secret vector s with entries in some field or ring, given only the
inner product of s with some public vectors where, however, some noise has been
added to the products. As mentioned, basing a cryptosystem on LWE can lead
to quite efficent cryptosystems, see, e.g., [Reg05],[PVW08],[MR08],[Pei09].

As lattice-based cryptography moves close to practice, it becomes an impor-
tant research question to investigate whether these cryptosystems can provide
the same “extra” functionality we have come to expect from well-known public-
key cryptosystems based on factoring or discrete logarithms. For instance, can
we have threshold versions of these systems? In other words, we want to share
the private key among a set of servers and efficently decrypt a ciphertext while
revealing nothing but the plaintext to the adversary.

In this paper we construct such a threshold cryptosystem, based on a variant
of Regev’s system [Reg05]. We show our scheme is semantically secure based on
a worst-case lattice problem using a recent reduction of Peikert[Pei09]. To the
best of our knowledge, it is the first lattice-based threshold cryptosystem. We
need to use a larger modulus than Regev, thus making ciphertexts larger, on
the other hand we get a very efficient and non-interactive decryption protocol:
each player needs only to do local computation and announce a single element
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from the underlying ring. The basic version of the protocol is secure against a
passive adversary corrupting all but one of the players. For a small number of
players, we show an equally efficent version secure against a malicious adversary
corrupting less than a third of the players. Towards the end of the paper, we
sketch a distributed protocol for generating keys.

Various improvements of Regev’s original cryptosystem have been made since
its first appearence, e.g. in [PVW08] and [MR08]. Our threshold cryptosystem
can be generalized in the same way, but we stick to Regev’s original approach
here for simplicity.

1.2 Preliminaries

When writing x ∈R S we mean that x is chosen uniformly at random from the
set S. Equivalently x ∈χ S means choosing x from the set S according to the
distribution χ.

Given a probability distribution χ on Zq, let n be some integer and s ∈ Znq .
We define As,χ as the distribution on Znq × Zq obtained by choosing a ∈R Znq ,
e ∈χ Zq and outputting (a, 〈a, s〉 + e). We define the decisional Learning With
Errors (LWE) problem as being able to distinguish between a sample from As,χ
and the uniform distribution on Znq × Zq with non-negligible probability. We
define the search LWE problem as given a sample from As,χ finding s with
non-negligible probability.

By Ψα we denote a discrete Gaussian distribution on Zq with mean 0 and
standard deviation qα√

2π
. Likewise Ψα is a continuous Gaussian distribution on

T = R/Z with mean 0 and standard deviation α√
2π

. By χ∗k we denote the
distribution given by summing k independent samples from χ. Note in particular
that when χ = Ψα we have that χ∗k = Ψ√k·α. This follows immediately from
Ψα behaving as an ordinary normal distribution.

1.3 Cryptosystem

We first present the underlying cryptosystem which was proposed first in [Reg05],
but with a new choice of parameters better suited for the distributed decryption
protocol given later.

1.3.1 Description

Let n be the security parameter of the cryptosystem. Then the main parameter
is an integer q which is chosen as q = 2O(n). More specifically q will not be a
prime but a B-smooth number where B is of polynomial size. That is q =

∏
pi

is a product of prime numbers p1, . . . , pk, where pi < B and also pi > u, the
number of players in the distributed decryption protocol. The latter requirement
on the primes is necessary in order to do secret sharing over the the ring Zq,
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more on this later. We also need an integer m which will be chosen to be O(n3).
Finally, we need a distribution χ on Zq which will be taken to be the discrete
Gaussian distribution Ψα, where α = qβ for some β < 1/4.

The cryptosystem is now defined as follows:

– Secret key: Choose s ∈R Znq . The secret key is then s.
– Public key: Choose m vectors a1, . . . ,am ∈R Znq , m elements e1, . . . , em ∈χ

Zq. The public key is then given by (ai, bi = 〈ai, s〉+ ei)mi=1.
– Encryption: Choose a random set S among all the subsets of [m]. Given a

bit γ, the encryption of γ is given by (
∑
i∈S ai, γ · b q2c+

∑
i∈S bi).

– Decryption: Given a ciphertext (a, b), calculate b − 〈a, s〉 and determine
whether it is closer to 0, the encrypted bit being 0, or closer to q

2 , the encrypted
bit being 1.

1.3.2 Correctness

The correctness of the decryption protocol is given in the following theorem.

Theorem 1 (Correctness). If for any k ∈ {0, 1, . . . ,m} it holds that

Pr
e∼χ∗k

(|e| ≥ 3
√
q) ≤ 2−O(n)

then the decryption protocol will give correct output except with negligible prob-
ability.

A similar theorem is proved in [Reg05] for Regev’s original choice of parameters.
The intuition is clear, if the noise added is not too big, we will be able to
decrypt to the right bit. The correctness with the new parameters follows from
the following claim.

Claim (Correctness). For the choice of parameters made, for any k ∈ {0, 1, . . . ,m}
and e ∼ χ∗k it holds that

Pr
e∼χ∗k

(|e| ≥ 3
√
q) ≤ 2−O(n)

Proof. We will prove this using the Chebyshev inequality, but first we will reduce
the problem from Ψα to Ψα. Given e ∼ Ψ

∗k
α we have that e =

∑k
i=1bqxie (mod q),

where xi ∼ Ψα. The value of e is at most k < m < 3
√
q/2 away from∑k

i=1 qxi (mod q), so it is sufficient to prove that |
∑k
i=1 qxi (mod q)| < 3

√
q/2

unless with negligible probability. Since
∑k
i=1 qxi (mod q) comes from a distri-

bution with standard deviation approximately
√
k · qβ and mean 0 we get the

following result from Chebyshev’s inequality, with m = n3 and t =
3√q

2
√
m 4√q ≥

3√q
20√q 4√q = 30

√
q.

Pr (|e| ≥ 3
√
q/2) ≤ Pr (|e| ≥ t ·

√
k 4
√
q) ≤ 1

t2

We see that 1/t2 ≤ 1/ 15
√
q is in fact negligibly small.
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Note that the inequalities used above are not very tight, especially the Chebyshev
inequality. Therefore in practice one would expect to be able to choose much
better parameters, for instance a bigger standard deviation on the distribution
used. This would in turn give us security reductions to the hardness of somewhat
bigger lattice problem instances. Furthermore the claim is actually stronger than
what is needed for the original decryption protocol to be correct, but we will
need this stronger result in the proofs of the distributed decryption protocols
described below.

1.3.3 Security

The security of the cryptosystem is given by the following theorem.

Theorem 2 (Security). The cryptosystem is semantically secure under the as-
sumption that GapSVP is hard in the worst case.

Below we will sketch the ideas of the proof. It boils down to showing how the
proofs given in [Reg05] can be adjusted to the new choice of parameters.

Proof. The proof of security given in [Reg05] is based on the property that
distinguishing between encryptions of 0 and 1 is at least as hard as distinguishing
public keys from randomly chosen elements in Znq ×Zq. The latter problem being
the decision LWE problem. The proof of the reduction does not depend heavily
on the values of the parameters, and is therefore still valid with the new choice
of parameters.

The decision LWE is then further reduced to search LWE. This reduction in
[Reg05] heavily relies on the fact that q is chosen to be polynomial in that it
does exhaustive search over all elements in Zq. But in fact the same idea can be
used when q is exponential in size, but B-smooth with B polynomial. The idea
being to do the reduction modulo each of the primes pi in q, and recombine the
solutions to a full solution modulo q using the Chinese Remainder Theorem.

The last step is to reduce search LWE to standard lattice problems. Since q
is chosen to be exponentially large we can use the reduction to GapSVP made
in [PVW08].

This is another advantage of choosing an exponentially large q: With the original
choice of a polynomial q the reductions to lattice problems are either a quantum
reduction as in [Reg05] or a reduction to a special variant of GapSVP, the
hardness of which is not completely understood.

1.4 Distributed Decryption (Passive Adversaries)

In this section we present a distributed decryption protocol for the above cryp-
tosystem involving u players which is secure against a static, passive adversary
corrupting up to t = u − 1 players. That is, we assume the adversary is able
to see all messages and internal data of a corrupted player, but the player still
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follows the protocol. The adversary must choose which players to corrupt at the
start of the protocol.

We assume that communication is synchronous and that the client has access
to a broadcast channel to all players. Private channels between players are not
necessary since there is no interaction between players in the protocol. We assume
the adversary sees all communication between the client and the players.

We use Shamir secret sharing over Zq as described in [Sha79] to make secret
sharings of various values in the protocol. Normally Shamir secret sharing is
done over a field, but since q is not a prime Zq is only a ring. This turns out
not to be a problem with the choice made of the prime factors in q. The only
thing that is needed is that one can do Lagrange interpolation over the points
1, . . . , u which in turn boils down to being able to invert elements in this range.
We chose q =

∏
pi, where pi > u, so obviously invertion of the points needed is

possible.
We furthermore make use of the concept of pseudorandom secret sharing

(PRSS) described in [CDI05]. PRSS will enable the players to non-interactively
share a common random value from some interval. The idea is as follows. For
each subset A of size t of the players we associate a key KA ∈R Zq. Such a
key is given to player i exactly if i /∈ A. Assume we are given a pseudorandom
function φ that given a key and a ciphertext as input, will output values in the
interval [−√q,√q]. A player can now compute φKA

(c) for all KA he has been
given, and afterwards take an appropriate linear combination of the results.
This will result in all players having a Shamir share of the common random
value x =

∑
A φKA

(c). Since |A| = t there are
(
u
t

)
possibilities for A, so x will be

in the interval
[
−
(
u
t

)√
q,
(
u
t

)√
q
]
. We note that

(
u
t

)
= u for our choice of t (but

we will consider other choices later).
The protocol and proofs will be given in the setting of the Universal Com-

posability (UC) framework proposed by Canetti. For details of this see [Can01].

1.4.1 Key Generation and Distribution

We assume for now that generation and distribution of keys and key-shares to
players are handled by some trusted party. This is described by the functionality
FKeyGen.

Functionality FKeyGen

1. When receiving “start” from all honest players, choose the secret key s and
construct the public key (ai, bi)mi=1 as described in section 3. Furthermore
for each subset A of size t of the players, choose key KA ∈R Zq.

2. For each entry j in the secret key make a share si,j for each player i. We
write [s] as short for the set of shares in s. To each player i privately send
to him his shares from [s] and all keys KA where i /∈ A.

3. Finally send the public key to all players and the adversary.
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1.4.2 Decryption Protocol

We now describe the decryption protocol. To make things more easily describ-
able we introduce a client, who is the party receiving the ciphertext in the first
place, and who wants to decrypt with help from the players.

Protocol Decrypt

1. Each player sends “start” to FKeyGen and stores the public key, the share of
the secret key and the keys KA received.

2. When receiving a ciphertext c = (a, b), the client broadcasts c to all players.
3. The players compute [e′] = [b − 〈a, s〉] = [e + b q2c · γ]. Since (a, b) is public

this is a linear operation on s and only requires the players to locally do
the same linear operation on their shares. Then φKA

(c) is computed for all
the keys KA the player received and the player takes an appropriate linear
combination of the result to obtain a sharing [x] = [

∑
A φKA

(c)]. Finally the
players compute [x+ e′], and send all these shares to the client.

4. Having received all the shares of [x+e′] the client reconstructs x+e′, checks
whether it is closer to 0 or to q/2, and outputs 0 or 1 accordingly.

1.4.3 Security

To prove security we wish to be able to implement the following functionality.

Functionality FKeyGen−and−Decrypt

1. Upon receiving “start” from all honest players, choose the secret key and
construct the public key to be used. Send the public key to all players, the
client and the adversary.

2. Hereafter on receiving “decrypt (a, b)” from the client, send “decrypt (a, b)”
to all players and the adversary.

3. In the next round, send “result γ” to the client and the adversary, where γ
is the bit corresponding to the given ciphertext.

The security is now given by the following theorem.

Theorem 3 (Security). When given access to the functionality FKeyGen and
assuming that φ is a pseudo-random function, the protocol Decrypt securely
implements FKeyGen−and−Decrypt. The adversary is assumed to be passive and
static, corrupting up to t = u− 1 of the players.

Proof. We abbreviate FKeyGen−and−Decrypt by FKG−D in the following. To prove
security we must construct a simulator to work on top of the ideal functionality
FKG−D, such that an adversary playing with either the simulator and ideal func-
tionality or the real world decryption protocol cannot tell in which case he is.
We denote by Adv the adversary communicating with the real decryption pro-
tocol and must show that we can simulate everything Adv sees. The simulation
proceeds as follows.
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1. Let B denote the set of players corrupted by Adv. When receiving “start” to
FKeyGen send “start” to FKG−D. Upon receiving the public key, compute a
sharing of 0, the zero-vector in Znq , to simulate sharing the secret key. Also
choose the necessary keys KA. Then send to the adversary the public key,
the shares of the secret key corresponding to B, and the keys KA that should
be send to players in B.

2. When receiving “decrypt (a, b)” from FKG−D, the ciphertext is sent to Adv
for each player in B. When “result γ” is received in the next round, we have
to simulate the shares of x+ e′ that honest players would send. To play the
role of x, we form a value y as the sum of those φKA

(c) where the adversary
knows KA, and one uniformly random value from [−√q,√q] for each KA

that adversary does not know. The idea is to let y + b q2c · γ play the role of
the value x+e+b q2c·γ that would be revealed in the real protocol. Note that
from the shares and keys given to the adversary, we can compute the shares
corrupted players would send to the client. Using Lagrange interpolation, we
can compute a polynomial f of degree at most t that is consistent with these
shares and has f(0) = y+ b q2c ·γ. We use this polynomial to compute shares
for the honest players and give these to the adversary.

The final thing is to prove that no environment is able to distinguish between
the real decryption protocol and the simulation presented above. This basically
comes down to proving that the decryption protocol is able to recover the bit
encrypted and that the distributions of the shares sent to the adversary in both
cases are computationally indistinguishable.

The shares of the secret key in step 1 are distributed the same in both cases
beacuse of the security of the underlying secret sharing scheme used. The keys
KA are also obviously distributed identically in the two cases.

Next, note that in both simulation and real protocol, the shares revealed in
the decryption step follow deterministically from the information sent in step 1
and the values y + b q2c · γ, x + e + b q2c · γ used in simulation, respectively real
protocol. It is therefore enough to show that these values are computationally
indistinguishable in the view of the adversary. For this, note that in the real
protocol the adversary is not given all keys KA, and so, by pseudorandomness
of φ and construction of y, y + e + b q2c · γ is computationally indistinguishable
from the x + e + b q2c · γ in the view of the adversary. Second since y is a sum
including at least one value that is uniform in an interval of size 2

√
q, which is

exponentially larger than the interval [− 3
√
q, 3
√
q] in which e is distributed, we

find that y + b q2c · γ is statistically indistinguishable from y + e+ b q2c · γ.
Finally in both the simulated and the real run the client will output the

correctly decrypted value. This is obvious in the simulated case and in the real
world it follows from Lemma 1 below.

Lemma 1 (Correctness). Let
(
u
t

)
< 1

4

√
q − 1. Assume that for any k ∈

{0, 1, ...m}, χ∗k satisfies that

Pr
e∼χ∗k

[|e| ≥ b 3
√
qc] ≤ 2−O(n).
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Then the error probability when decrypting is negligible.

Proof. Given an encryption of 0 the result which is reconstructed is given by
b − 〈a, s〉 = e + x =

∑
i∈S ei + x. The distribution of e is exactly given by

χ∗|S|, therefore according to our assumption |e| < b 3
√
qc with probability at

least 1 − 2−O(n). Since
(
u
t

)
< 1

4

√
q − 1 according to our assumption, we have

that |x| < q
4 − 3
√
q. Combined we get that |e + x| < q

4 with probability at least
1 − 2−O(n). In this case the result is closer to 0 than q

2 and the decryption is
correct. A similar proof can be done for an ecryption of 1.

The assumptions in the lemma are fulfilled according to the claim in section 3.
We note that the correctness puts an upper bound on the possible number of
players, which is also to be expected, since there is a limit to how much random
noise can be added before an encryption of 0 turns into an encryption of 1. Note
though that when t = u− 1, as is the case in the passive case, we have

(
u
t

)
= u.

So here the number of players is bounded by approximately
√
q which is still

quite a big number.

1.5 Distributed Decryption for Stronger Adversaries

The protocol for doing distributed decryption against a passive adversary cor-
rupting less than t = u − 1 players, can easily be turned into a protocol secure
against a stronger adversary. First, if the adversary is semi-honest, i.e. corrupted
players follow the protocol but may stop at any point, exactly the same protocol
will be secure, if t < u/2. The proof is the same, one just notes that at least
t+ 1 players will always complete the protocol.

If the adversary is active, again almost the same protocol and proof applies,
if we assume t < u/3. The only significant difference to the protocol is that the
client must use standard methods for error correction to reconstruct x + e′ at
the end of the decryption since some players may lie about their shares. This is
possible exactly when t < u/3.

It should be noted that both variants of the protocol are only feasible to
execute for a small number of players, since the number of keys KA we must give
to each player increases exponentially with u whenever t is a constant fraction of
u. However, in most realistic applications of threshold cryptography, one indeed
expects the number of players to be small.

1.6 Distributed Key Generation

In this section we will briefly sketch how to implement the functionality FKeyGen
against an active adversary. In some of the parts involving interaction between
the players, we will have to assume private communication channels between
players.
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The coordinates of the secret key can be generated as follows. For each co-
ordinate each player chooses uniformly random element in Zq and secret shares
it among all the players. The secret key will now be given by the sum of the
values chosen by the players, and the players can locally compute their share of
the secret key.

The next issue is how to compute the public key which in turn boils down to
securely generating secret shares of the error terms ei distributed according to
the distribution χ = Ψα. The problem especially being that corrupted players
might not construct shares in the right way. For this step we can use the idea
of non-interactive verifiable secret sharing (NIVSS) described in [CDI05], which
builds on top of PRSS described earlier1. In brief NIVSS enables us to securely
construct sharings of a specific secret chosen by one of the players. We then form
the ei’s as sums of secret values chosen by each of the players, where we note
that we can enforce a limitation on the size of the contribution of each player to
the sum.

Assuming that m public vectors a1, . . . ,am has been chosen randomly, each
player can now compute their shares [〈ai, s〉 + ei] and open these to get the
public key. By choosing the parameters appropriately, we can argue that we can
decrypt correctly because the size of each ei is bounded, and furthermore that
the system is semantically secure since this would be the case if we only added
the contributions of honest players to the 〈ai, s〉’s.
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