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Abstract. This paper shows some efficient and provably-secure convert-
ible undeniable signature schemes (with both selective conversion and all
conversion), in the standard model and discrete logarithm setting. They
further satisfy unambiguity, which is traditionally required for anony-
mous signatures. Briefly, unambiguity means that it is hard to generate
a (message, signature) pair which is valid for two different public-keys. In
other words, our schemes can be viewed as anonymous signature schemes
as well as convertible undeniable signature schemes. Besides other appli-
cations, we show that such schemes are very suitable for anonymous
auction.
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1 Introduction

1.1 Background

Undeniable Signatures. Almost twenty years ago, Chaum and van Antwer-
pen [11] introduced the concept of undeniable signature (US) scheme, where a
signature is not publicly verifiable, which is in contrast to ordinary signature
schemes. The verification of an undeniable signature requires the cooperation
of the signer through the zero-knowledge confirmation protocol (for validity of
signatures) and zero-knowledge disavowal protocol (for invalidity of signatures).
A mandatory property of a US scheme thus is invisibility, namely without inter-
acting with the signer, it is hard to decide whether a signature is valid or not.
Also, it is worth noting that either the confirmation or disavowal protocol must
be successful if the signer is honest; and the case both protocols fail formally
implies that the signer is not cooperating (or cheating).

Undeniable signature is useful when we sign on sensitive data such as software
[5], electronic cash [6, 12, 35], confidential business agreement [13]. There have
been a wide range of research on the concept [5,10,13,19,24–31,40], to list just
a few. Most of the papers are in the random oracle model, with (even arbitrary)
short signatures [30], or extensive security consideration of a classical scheme



[31]. In the standard model, the first efficient proposal is that of Laguillaumie
and Vergnaud [28] (but relying on a non-standard and strong assumption for
invisibility).

In order to link undeniable signature to regular signature, Boyar et al [5] pro-
posed the concept of conversion. In all conversion, the signer releases a piece of
information so that all issued undeniable signatures can be publicly-verifiable. In
selective conversion, the signer publishes a piece of information so that a single
undeniable signature is publicly-verifiable. The paper [5] gave a generic con-
struction of US scheme with selective and all conversion from one-way function,
but the construction is not practical. Note that selectively-convertible undeni-
able signature schemes play a central role in fair payment protocols [6], so the
more efficient the former is, the more practical the latter can be realized. For
more applications, the readers may find in [5, 13]. We also note that the above
mentioned work of Laguillaumie and Vergnaud [28], while producing very short
signatures (of about 170 bits), does not support any kinds of conversion.

In an attempt to realize practical US schemes with conversions, Damgard
and Pedersen [13] proposed two dlog-based schemes, but they could not formally
prove the invisibility of their schemes, and just conjectured on it. Recently, an-
other attempt was made by Yuen et al [40] using pairings, but their scheme suffers
from a big (exponential) loss factor in security reduction, so that the signer is
only able to produce very few (less than 128) signatures. The scheme in [40] is
claimed to satisfy invisibility, but in Appendix A, we point out that the claim is
incorrect. More recently, El Aimani [14] proposed some generic approaches for
building efficient undeniable signature schemes, but with no selective conversion.
In the full version [17] of [14], El Aimani claims selective conversion property,
but we observe that the claim is correct only if the signer is honest.

However, there exists no convertible undeniable signature scheme which sat-
isfies unambiguity which will be explained below.

Anonymous Signatures. The concept is proposed by Yang et al [39] (at PKC
’06), and has further study in [1,18,36,41]. Anonymous signatures and undeniable
signatures share the same goal of ensuring anonymity (implied by invisibility in
this paper) by not revealing the link between signatures and public-keys. How-
ever, compared to undeniable signature schemes, anonymous signature schemes
do not necessarily have confirmation/disavowal protocols; and yet they have one
more security notion called unambiguity.

To explain more about anonymous signatures, let us recall its typical appli-
cation suggested in all previous works, which is anonymous auction where Alice
(with pkA) wishes to place a bid with value bidA. She wants to be able to claim
the bid as hers in case it wins, but otherwise wishes to remain anonymous. The
natural solution is to provide, at bidding time, the values bidA, pkA, as well as
her anonymous signature of bidA. Later, when the result is announced, and if
Alice has won, she can release the relevant opening information to claim her bid.

We however observe that the above usage of anonymous signatures in auction
may cause trouble, which is overlooked by previous works. Imagine a situation
in which Alice has won, but refuses to provide the opening information. The



natural solution for the auctioneer is to choose the second-highest bidB of Bob
as the winning bid. The real trouble now is that, if Alice and Bob cooperate,
they will win every auction! Alice places the highest bid just after Bob, and then
refuses to open her signature on the bid, so that Bob will be the winner. This is
clearly unfair to other players in the auction. All existing works on anonymous
signatures have not noticed the situation that either the winner refuses to open,
or there is cooperation between two users4.

To overcome the above trouble, we then suggest that one should use undeni-
able signature schemes with selective conversion in anonymous auction, provided
that they meet all security notions of anonymous signatures. Alice then cannot
deny her signature of the bid anymore, since the auctioneer can execute the
confirmation and disavowal protocols to check.

Let us now explain the unambiguity notion [1] (aka, unpretendability [36]). It
intuitively ensures that if Alice has won, and releases the opening information to
claim her bid, then no one else can claim that bid. Previously, unambiguity was
not considered as a security notion for undeniable signature schemes. However,
to serve in the context of anonymous auction as we suggested above, undeniable
signature schemes must satisfy unambiguity.

1.2 Our contribution

We propose two convertible undeniable signature schemes satisfying anonymity,
called SCUS1 and SCUS2. They have the following properties.

– The schemes support both selective and all conversion. Moreover, they enjoy
formally-proven security in the standard model, relying on the strong Diffie-
Hellman (sDH) and the decision linear (DLIN) assumption. Their confirma-
tion and disavowal protocols are of (minimal) four moves5.

– The signature size is about 70 + 3 · |q| (resp, 4 · |q|) bits for SCUS1 (resp,
SCUS2) where |q| ≈ 170. The piece of information for all conversion is of 2·|q|
bits for both schemes. For each selective conversion, the piece of information
is also 2 · |q| bits if we accept stateful signers; otherwise, we employ the NIZK
proof of Groth and Sahai [21], and need to release a few more bits.

– Both SCUS1 and SCUS2 additionally meet the unambiguity notion, under the
discrete log assumption. Therefore, they can be used in anonymous auction to
detect the winner in case she refuses to open (namely, convert) her signature.

4 Interestingly, we find that what we discuss for anonymous auction still applies in
principle to Yahoo auction in Yapan. Namely, in the Yahoo auction, if two identities
(e.g., of one person) cooperate in the way we have described, they will have advan-
tages over ones proceeding honestly. The point is in the Yahoo auction, the winning
identity can easily deny contacting the seller for paying process, making the seller
to choose the identity with second-highest bid as the winner.

5 We remark that the 3-move scheme of Kurosawa and Heng [25] is insecure, as shown
by Ogata et al in [31] (Sect.V.D, page 2013), who furthermore point out that any
3-move (HVZK) confirmation/disavowal protocols are not secure against active at-
tacks.



It is worth noting that it is unknown whether previous undeniable signature
schemes with selective conversion have this additional property.

Above, the scheme SCUS1 produces shorter signatures than SCUS2, but the
public key of SCUS1 (of 170 · |q| bits) is much longer than that of SCUS2 (of
12 · |q| bits). Choosing which one to use thus depends on specific applications.

Let us now look at the ways to obtain the above results. We first focus on
the ideas behind SCUS1.

Sign-then-Encrypt Paradigm. We re-utilize an elegant paradigm introduced
by Damgard and Pedersen [13] in which the undeniable signature σ of a message
m is of the form σ = Encryptpk2(Signsk1(m)), where Encrypt and Sign are re-
spectively some regular encryption and signature scheme. For all conversion, the
signer publishes the secret key sk2 of the encryption scheme, so that everyone
can decrypt σ to get the regular signature Signsk1(m) and then check its validity.
For selective conversion, the signer releases the regular signature Signsk1(m).

Some difficulties when using the above paradigm are: (1) designing efficient
zero-knowledge confirmation and disavowal protocols, (2) proving the invisibility
of the designed scheme, and (3) releasing Signsk1(m) in a provable way (that it is
the signature encrypted in σ). Damgard and Pedersen [13] have overcome (1) but
not (2). For (3), they suggested a method of storing all randomness previously
used in signing. We suggest another method by using the efficient NIZK proof
of Groth and Sahai [21], as seen later.

To overcome (1) (and (3) in an efficient way), one needs to properly choose
simple (but-secure-enough) ingredients. To design SCUS1, we choose the Generic
Bilinear Map (GBM) signature [22] and the linear encryption [3] (LE) scheme.
A GBM signature on m is of the form (s, ρ = H(m)1/(x+s)) for a random s, a
standard model hash function H and the secret key sk1 = x. We use the LE
scheme to encrypt ρ in the ciphertext (u1 = gr11 , u2 = gr22 , u3 = ρ · gr1+r2) for
randomness r1, r2. The undeniable signature σ = (s, u1, u2, u3).

Intuitively, σ seems random-like, unrelated to m, (and thus invisible) because
s is random and (u1, u2, u3) is random-like under the decision linear assumption.
However, the scheme is in fact not invisible. The reason is in the malleability
of LE scheme. In particular, if σ = (s, u1, u2, u3) is valid on a message m (resp,

σ is random), then σ′ = (s, u1g
α
1 , u2g

β
2 , u3g

α+β) is also valid on m (resp, σ′ is
random) for adversarily-chosen randomness α and β. The fact causes a simple
attack on the invisibility of (m,σ) as follows: the adversary first asks the signer
for converting (m,σ′), so that it knows the validity of the pair, and hence it
also is aware of whether the corresponding (m,σ) is valid. (See Definition 3 for
a formal definition on invisibility, which also contains some new insights.)

Fortunately, we can overcome the above attack as follows: we authenticate
the randomness r1, r2 by signing on u1 and u2. In our proposed SCUS1 scheme
(in Sect.4), the values (u1 = gr11 , u2 = gr22 ) are generated first, then the GBM
signature on m,u1, u2 is created:

(
s, ρ = H(m ‖ u1 ‖ u2)1/(x+s)

)
. After all,

set u3 = ρ · gr1+r2 and let the undeniable signature σ = (s, u1, u2, u3). With
the authentication on the randomness, the adversarily-formed σ′ above becomes



invalid regardless of whether σ is valid on m, so that the validity of σ′ cannot be
used to decide that of σ. We succeed in proving the invisibility of our proposed
scheme in Theorem 6.

On Confirmation and Disavowal Protocol. Now we give ideas on con-
structing the confirmation and disavowal protocol for SCUS1. To confirm

(
m,σ =

(s, u1, u2, u3)
)
, the signer needs to prove for secrets x1(= dlogg1g), x2(= dlogg2g),

and x:
u3

ux1
1 u

x2
2

= H(m ‖ u1 ‖ u2)
1

x+s .

Namely, the LE decryption of (u1, u2, u3) gives the GBM signature onm,u1, u2.
Or equivalently,

ux3 · u
−x1(x+s)
1 · u−x2(x+s)

2 = H(m ‖ u1 ‖ u2) · u−s3 ,

which is a proof of representation of public value H(m ‖ u1 ‖ u2) · u−s3 , and can
be realized by standard techniques, using constant moves.

Now we turn to the disavowal protocol. Given
(
m,σ = (s, u1, u2, u3)

)
, the

signer needs to prove for secrets x1, x2, x:

u3
ux1
1 u

x2
2

6= H(m ‖ u1 ‖ u2)
1

x+s ,

or equivalently,

ux+s3 · u−x1(x+s)
1 · u−x2(x+s)

2 ·H(m ‖ u1 ‖ u2)−1 6= 1.

Employing the technique of Camenisch and Shoup [9], we choose r
$← Zq and set

U =
(
ux+s3 · u−x1(x+s)

1 · u−x2(x+s)
2 ·H(m ‖ u1 ‖ u2)−1

)r
.

The signer sends U to the verifier, who checks that U 6= 1. Then both execute
a proof of representation of U , where the signer holds the secrets r, x, x1, x2.
The zero-knowledge protocol can also be accomplished via standard techniques,
also using constant moves. Moreover, since we will work on a pairing group, the
disavowal protocol can be made non-interactive, again thanks to the NIZK proof
of Groth-Sahai [21], interestingly yielding a way to efficiently “convert” (namely,
make publicly-verifiable) even invalid signatures.

More Schemes. The above ideas work well if we replace the GBM signature by

the signature of Boneh and Boyen [2], which is of the form (s, g
1/(x+H(m)+ys)
0 ) for

random s ∈ Zq, g0 ∈ G, and secret signing key x, y. The replacement creates our
SCUS2 described in Sect.5. Furthermore, in the random oracle model, one can
use the BLS signature [4] so that the unforgeability of the resulting undeniable
signature scheme relies on the CDH assumption in bilinear group. We do not
explicitly consider the random oracle scheme in this paper.

More Related Works. Subsequent to a preliminary version of this work [33]
on the Eprint, Schuldt, Matsuura [38], and Huang, Wong [23] have suggested



some other schemes with interesting additional properties. Both works indicate
that, if using NIZK proofs in undeniable signatures, the common reference string
must be legitimately set up (say, by a trusted party like the CA in PKI). Unfortu-
nately, the scheme of Huang and Wong [23] turned out not satisfying anonymity,
as shown in [38]. The scheme of [38], while relying on a more standard assump-
tion, produces longer signatures (or public keys) than the ones in this paper.
Both works [23,38] do not consider unambiguity.

Independently with us, El Aimani [15] also discovered the usage of the NIZK
of Groth and Sahai [21] in the context of confirmer signatures. The sign-then-
encrypt approach is also used to build confirmer signatures in [16] in an abstract
manner. As a trade-off to its generality, the construction in [16] has to employ
the cut-and-choose technique for the confirmation and disavowal protocols, and
hence the protocols are not of constant rounds (say, 80 rounds to reach 2−80

soundness error). In contrast, we take a concrete approach in this paper, resulting
in schemes with minimal 4-round protocols.

The above sign-then-encrypt paradigm has also been successfully re-used
in [34] in the RSA-based setting, creating RSA-based US schemes supporting
(selective and all) conversions, with signatures of (80 + 2 · 1024) bits, converters
of 1024 bits, while the securities rely on the strong RSA assumption and the
decisional N -th residuosity (DNR) assumption in the standard model. Note that
the RSA-based schemes give longer signatures than dlog-based schemes, as usual.

2 Syntax and definitions

We begin with the syntax of selectively-convertible undeniable signature (SCUS
for short) schemes. We focus on the syntax of schemes with selective conversion
here and do not explicitly describe the syntax of all conversion since the latter
is very simple in our proposals.

Definition 1 (SCUS scheme) A selectively-convertible undeniable signature
scheme SCUS = (KeyGen, Usign, Convert, Verify, Confirm, Disavowal) consists of
four algorithms and two protocols whose descriptions are as follows.

– KeyGen(1κ) → (pk, sk): This algorithm generates the public key pk and the
secret key (signing key) sk for user.

– USign(sk,m) → σ: Using the secret key sk, this algorithm produces a sig-
nature σ on a message m.

– Convert(sk,m, σ) → cvt/ ⊥: Using sk, this algorithm releases a converter
cvt if the message-signature (m,σ) pair is valid, enabling everyone to check the
validity of the pair. If the pair is invalid, the output of the algorithm is ⊥. 6

– Verify(pk,m, σ, cvt) → 0/1: Using the converter cvt, everyone can check
the validity of (m,σ) by this algorithm.

6 Note that only valid undeniable signatures can be converted, and the signer has no
responsibility to convert ill-formed ones. These properties are natural, and sufficient
enough for application (e.g., [6]). However, we note in our proposed schemes, the
signer can even “convert” invalid signatures by making the disavowal protocol non-
interactive (via Groth-Sahai result [21], as seen later).



– Confirm: This is a protocol between the signer and a verifier, on common in-
put (pk,m, σ), the signer with sk proves that (m,σ) is a valid message-signature
pair in zero-knowledge.

– Disavowal: This is a protocol between the signer and a verifier, on common
input (pk,m, σ), the signer with sk proves that (m,σ) is an invalid message-
signature pair in zero-knowledge.

Definition 2 (Unforgeability and strong unforgeability of SCUS) A se-
lectively convertible undeniable signature scheme SCUS is said to be existential
unforgeable under adaptive chosen message attack if no poly-time forger F has
a non-negligible advantage in the following game: at the beginning, F is given
the public key pk. Then F is permitted to issue a series of queries shown below.

– Signing queries: F submits a message m to the signing oracle and receives a
signature σ on m. These queries are adaptive, namely the next query can depend
on the answers of previous ones.

– Convert queries: F submits a message-signature pair (m,σ) to the convert
oracle, and receives a converter cvt. These queries are also adaptive.

– Confirmation/disavowal queries: F submits a message-signature pair of
the form (m,σ) to the confirmation/disavowal oracle. We will consider active
attack, where the oracle first checks the validity of (m,σ). If it is a valid pair,
the oracle returns 1 and executes the confirmation protocol with F (acting as
a cheating verifier). Otherwise, the oracle returns 0 and executes the disavowal
protocol with F .

At the end of the game, F outputs a pair (m∗, σ∗). In the definition of un-
forgeability, the forger F wins the game if the pair (m∗, σ∗) is a valid message-
signature pair, and m∗ has never been queried to the signing oracle. The advan-
tage of F is defined to be AdvforgeSCUS (F) = Pr[F wins].
In the definition of strong unforgeability, the only different point is that (m∗, σ∗)
does not coincide with any (m,σ) at signing queries. We denote F ’s advantage

in this case by AdvsforgeSCUS (F) = Pr[F wins].

The notion of invisibility intuitively ensures that no-one (without contacting the
signer) can tell whether a message-signature pair is valid or not, and is formally
given below. We note that this definition is new to this work.

Definition 3 (Strong invisibility) A selectively-convertible undeniable signa-
ture scheme SCUS satisfies strong invisibility under adaptive chosen message
attack if no poly-time distinguisher D has a non-negligible advantage in the fol-
lowing game. At first, KeyGen(1κ) → (pk, sk), and then D is given the public
key pk. Then D is permitted to issue a series of queries: signing queries, convert
queries, confirmation/disavowal queries, as in Definition 2.

At some point, D outputs an arbitrary message m∗, and requests a challenge
signature σ∗ on m∗. The challenge signature σ∗ is generated based on a hidden bit
b. If b = 0, then σ∗ is generated as usual using the signing algorithm; otherwise σ∗

is chosen randomly from the signature space of the scheme (which only depends
on the security parameter κ, and not on pk, sk).



The distinguisher D may additionally issue signing queries, convert queries,
confirmation/disavowal queries with the only restriction that no confirmation/di-
savowal query and convert query (m∗, σ∗) are allowed.

At the end, D outputs a bit b′ as the guess for b. The distinguisher wins
the game if and only if b′ = b and its advantage is defined as AdvinvSCUS(D) =
|Pr[b′ = b]− 1/2|.

Remarks 1 Above, there are some subtleties. First, at step 4, we do allow the
distinguisher to submit convert queries of the form (m∗, σ) with σ 6= σ∗. We
clarify this point here for later use in Appendix A.

Second, D can make signing query m∗, even in multiple times, even before
and after step 3. Intuitively, a scheme meeting the definition enables the signer
to sign on the same message many times without any loss in invisibility, so
that the scheme is very suitable and easy to use at least in licensing software,
which is one of the main applications, where one piece of software may be signed
many times. This second subtlety makes our definition differ from and stronger
than previous ones (say, that of [31]). A scheme meeting the (weak) definition
as in [31] can be turned into another one satisfying our definition by ensuring
that the signing messages are pairwise different (via randomness, the time when
signing, etc).

Similarly to the second point above, we believe that strong unforgeability is
very suitable for undeniable signature schemes, especially in the context of licens-
ing software. Our proposals fortunately meet these strong notions of security.

Another security notion for undeniable signatures is anonymity, intuitively
ensuring that given a message-signature pair, it is hard to know who produces
the pair. As pointed out in [19], invisibility implies anonymity if all signers share
a common signature space, a condition fulfilled by our proposals. We thus focus
on invisibility in the rest of this paper.

Definition 4 (Standard signature schemes) A signature scheme S = (Kg,
Sign, Vrf) is as follows. On input 1κ, the key generation algorithm Kg produces
the public key pk and the secret signing key sk. On input sk and a message m,
the signing algorithm Sign produces a signature σ, which is publicly-verifiable
using the verification algorithm Vrf on input pk and σ.

The unforgeability under chosen message attack (uf-cma security) of a sig-
nature scheme S is defined essentially the same as that of SCUS in Definition
2, except that the forger F against S only issues signing queries. We denote
the advantage of F by Advuf−cmaS (F) = Pr[F wins]. The strong unforgeability
(suf-cma security) is defined in a similar manner and we have the advantage

Advsuf−cmaS (F) = Pr[F wins].

3 Preliminaries

Pairing Group. We call PG = (G,GT , q = |G|, g, ê : G × G → GT ) a pairing
group if G and GT are cyclic groups of prime order q, where the bit length



|q| = κ ≈ 170. The element g is a generator of G, and the mapping ê satisfies
the following properties: ê(g, g) 6= 1, and ê(ga, gb) = ê(g, g)ab.

Dlog Assumption. The assumption claims that, given PG as above, and for all

poly-time adversary A, AdvdlogG,PG(A) = Pr[h = gx : g, h
$←G;x

$←A(g, h,PG)]
is negligible.

Decision Linear Assumption. Given a pairing group PG, the assumption, first
formalized in [3], asserts that the following advantage of a poly-time adversary
A is negligible in the security parameter κ.

AdvdlinG (A) =

∣∣∣∣∣∣∣Pr

b′ = b :

α, β, γ
$← Zq; g1, g2, g3

$←G;

T0 ← gα+β3 ;T1 ← gγ3 ; b
$←{0, 1};

b′
$←A(PG, g1, g2, g3, gα1 , g

β
2 , Tb)

− 1

2

∣∣∣∣∣∣∣ .
Known Dlog-Based ZKIP. We use known techniques for proving statements
about discrete logarithms, such as (1) proof of knowledge of discrete logarithm
[37]; (2) proof of knowledge of an element representation in a prime order group
[32]; and the ∧ proof of (1) and (2). (The ∧ proof is easily designed by choosing
the same challenge while asking the prover to prove both (1) and (2) in parallel.)
These proofs need four moves to become zero-knowledge.

When referring to the proofs above, we use the following kind of notation.
For instance, PoK{(x1, x2): y = gx1 ∧ U = ux1

1 u
x2
2 } denotes a zero-knowledge

proof of knowledge of x1 and x2 such that y = gx1 and U = ux1
1 u

x2
2 . All values

except (x1, x2) are assumed to be known to the verifier.

Known NIZK Proof. We utilize the non-interactive zero-knowledge (NIZK)

proof for proving that a system of equations of the form g0 = Πm
j=1g

Xj

j , over
a group G (with pairing as above) is satisfiable, where Xj are variables and
g0, . . . , gm are constants in G. This is derived from the result of Groth and
Sahai [21]. We will mention more about the NIZK proofs later.

4 Our proposed SCUS1

In this section, we describe our first selectively convertible undeniable signature
(SCUS) scheme and analyze its securities.

4.1 Building blocks

We first need the following ingredients, which operate on a common pairing
group PG = (G,GT , q = |G|, g, ê : G×G→ GT ). The pairing group is implicitly
included in the public keys of the following schemes.

Generic Bilinear Map Signature Scheme GBM [22]. The signature scheme
GBM = (GBM.Kg, GBM.Sign, GBM.Vrf) is briefly recalled with some minor mod-
ifications as follows.



GBM.Kg(1κ): Generate x
$← Zq, X ← gx, and H : {0, 1}∗ → G. Return the

verifying key pk1 = (X,H, η) where η = 70 and the signing key sk1 = x. (The
public key size |pk1| ≈ 162 · log2 q bits, according to the estimation in [22],
due to the concrete description of H.)

GBM.Sign(sk1,m ∈ {0, 1}∗): s
$←{0, 1}η, ρ← H(m)

1
x+s ∈ G. Return (s, ρ) ∈

{0, 1}η ×G as the signature on m.

GBM.Vrf
(
pk1,m, (s, ρ)

)
: Check that (s, ρ) ∈ {0, 1}η × G and ê(ρ,X · gs) =

ê(H(m), g). Return 1 if all checks pass, else return 0.

The signature scheme is known to be strongly unforgeable (suf-cma secure) under
the strong Diffie-Hellman assumption. To be complete, the proof given in [22] is
for the uf-cma case, but holds even for suf-cma security.

Linear Encryption [3]. The linear encryption scheme LE= (LE.Kg, LE.Enc,
LE.Dec) is as follows.

LE.Kg(1κ): Generate x1, x2
$← Zq and set g1 ← g1/x1 , g2 ← g1/x2 . Return the

public key pk2 = (g1, g2) and the secret key sk2 = (x1, x2).

LE.Enc(pk2,m ∈ G): Choose r1, r2
$← Zq and set u1 ← gr11 , u2 ← gr22 , u3 ←

m · gr1+r2 . Return (u1, u2, u3) as the ciphertext of m.

LE.Dec
(
sk2, (u1, u2, u3)

)
: Return u3/(u

x1
1 u

x2
2 ).

The scheme is ind-cpa-secure under the decision linear assumption [3].

4.2 The scheme SCUS1

The scheme is described as follows.

KeyGen(1κ): Run GBM.Kg(1κ) and LE.Kg(1κ) to get (pk1, sk1) and (pk2, sk2).
Return the public key pk = (pk1, pk2) and the signing key sk = (sk1, sk2).

USign(sk,m): First, generate r1, r2
$← Zq, and set u1 ← gr11 , u2 ← gr22 ,

and m = m ‖ u1 ‖ u2. Next, sign on m to get
(
s, ρ = H(m)

1
x+s
) $←

GBM.Sign(sk1,m). Then, encrypt ρ in the ciphertext (u1, u2, u3 = ρ ·gr1+r2).
Return the undeniable signature σ = (s, u1, u2, u3).

Convert(sk,m, σ): Parse σ as (s, u1, u2, u3) ∈ {0, 1}η × G3, and let ρ ←
u3/(u

x1
1 u

x2
2 ). If (s, ρ) is not a GBM signature on m ‖ u1 ‖ u2 then return

⊥. Otherwise, return the converter (ρ, π) ∈ G × G12, where π is a NIZK
proof proving (with secrets x1, x2):

g = gx1
1 , g = gx2

2 , u3/ρ = ux1
1 u

x2
2 . (1)

Such a NIZK proof π can be efficiently created using the result of Groth and
Sahai [21]. See Appendix B for the concrete description of π.

Another method of converting, inspired by Damgard and Pedersen [13],
is to store the randomness r1, r2 used in signing and later release them as
converter. Then, everyone can check u1 = gr11 , u2 = gr22 and compute ρ as
u3/g

r1+r2 .



To do all conversion, release sk2 = (x1, x2) so that everyone can compute
ρ = u3/(u

x1
1 u

x2
2 ) and then check whether (s, ρ) is a valid GBM signature on

m ‖ u1 ‖ u2. Note that in this case, our proposal becomes a regular signature
scheme equivalent to the GBM scheme.

Verify(pk,m, σ, cvt): Parse σ as (s, u1, u2, u3) ∈ {0, 1}η×G3 and cvt as (ρ, π) ∈
G×G12. Return 1 (meaning, valid) if π is a valid proof of the equations (1),
and (s, ρ) is a valid GBM signature on m ‖ u1 ‖ u2. Otherwise return 0. (We
omit details when cvt = (r1, r2).)

Confirm: On common input pk, (m,σ), the signer and the verifier execute

PoK
{
(x, a, b) :ga1 =(Xgs)−1 ∧ gb2 = (Xgs)−1 ∧ ux3ua1ub2 =H(m‖u1 ‖u2)u−s3

}
.

Intuitively, the equations first show that a = −x1(x+ s) and b = −x2(x+ s)
where x = dlogg(X), x1 = dlogg1g and x2 = dlogg2g. With the values a, b, the

final equation is equivalent to u3/(u
x1
1 u

x2
2 ) = H(m ‖ u1 ‖ u2)1/(x+s). Since

u1, u2 ∈ G, a cyclic group, there exist r1, r2 such that u1 = gr11 and u2 = gr22 ,
and thus ux1

1 = gr1 , ux2
2 = gr2 . Hence, u3 = H(m ‖ gr11 ‖ g

r2
2 )1/(x+s) · gr1+r2 ,

showing that σ = (s, u1, u2, u3) is indeed produced by USign on m. The
zero-knowledge proof of knowledge can be implemented using known ZKIPs
described in Sect. 3.

In the above PoK, the signer must also prove the knowledge of the secret
key corresponding to the public key, namely (x, x1, x2) satisfying gx = X, g =
gx1
1 = gx2

2 . We omit these types of conditions hereafter in all PoKs for clarity.

Disavowal: On common input pk, (m,σ), the signer sends a value U 6= 1 to
the verifier, and both execute

PoK
{

(c, d, f, r) : gc(X−1g−s)r = gd1(Xgs)r = gf2 (Xgs)r = 1

∧ U = uc3 · ud1 · u
f
2 ·H(m ‖ u1 ‖ u2)−r

}
.

Intuitively, the equations of the first line give us c = r(x+s), d = −rx1(x+s),
and f = −rx2(x + s). Substituting these values to the second line equation
and noting that U 6= 1 show u3/(u

x1
1 u

x2
2 ) 6= H(m ‖ u1 ‖ u2)1/(x+s), and thus

(m,σ) is invalid. The disavowal protocol is also implemented using known
ZKIPs or NIZK proof in Sect. 3. Note that the NIZK proof for the disavowal
protocol gives a way to “convert” (namely, make publicly-verifiable) invalid
signatures.

Above, if the confirmation protocol fails, then the disavowal protocol is run. If
both fails, we conclude that the signer is cheating (or not cooperating). We now
consider securities of SCUS1, which are ensured by the following theorems.

Theorem 5 (Strong unforgeability) The proposed SCUS1 scheme is strongly
unforgeable if the signature scheme GBM is suf-cma-secure. Moreover, given a
forger F against SCUS1, there exists another forger F ′ against the GBM signature
scheme such that

AdvsforgeSCUS1
(F) ≤ Advsuf−cmaGBM (F ′),



T(F ′) = O(qconf/dis) ·T(F),

where qconf/dis is the total number of confirmation/disavowal queries F made,
and T expresses the running time.

Proof. Given in Appendix C.

Theorem 6 (Strong invisibility) The SCUS1 scheme satisfies strong invisi-
bility. Moreover, given a distinguisher D against SCUS1, there exist an Adlin
against the decision linear assumption, and a forger F against SCUS1 such that

AdvinvSCUS1
(D) ≤ AdvdlinG (Adlin) + AdvsforgeSCUS1

(F),

T(Adlin) = O(qconf/dis) ·T(D), and T(F) ≈ T(D),

where T expresses the running time, and qconf/dis is the total number of confir-
mation/disavowal queries D makes.

Proof. We proceed in games as follows.

Game 0: This is exactly the definitional game as in Definition 3. LetWi (i = 0, 1)
be the event that the distinguisher D wins in Game i, we have AdvinvSCUS1

(D) =
Pr[W0] by definition.

Game 1: This game is the same as Game 0, except that we consider the following
distinguisher: D never issues a convert or confirmation/disavowal query (m,σ)
satisfying (1) the pair is valid (namely, ⊥ or 0 was not returned), and (2) the
pair is different from all previously-issued message-signature pairs at the signing
oracle.

Obviously, if D (in Game 0) issues the pair (m,σ) as above, then we can use
(m,σ) as a forgery (in the strong sense) of the SCUS1 scheme. More precisely, we
can use D to build a forger F against SCUS1 with T(F) ≈ T(D). Thus, Game
0 and Game 1 are indistinguishable thanks to the strong unforgeability of the
scheme, and hence

|Pr[W0]− Pr[W1]| ≤ AdvsforgeSCUS1
(F).

Using the distinguisher D in Game 1, we now build an adversaryAdlin against
the decision linear assumption on G satisfying Pr[W1] ≤ AdvdlinG (Adlin). Note
that

AdvinvSCUS1
(D) = Pr[W0] ≤ Pr[W1] + AdvsforgeSCUS1

(F)

≤ AdvdlinG (Adlin) + AdvsforgeSCUS1
(F),

which completes the proof. Thus the rest is devoted to constructing such Adlin.
The input of Adlin is (PG, g1, g2, g, gα1 , gβ2 , Tb), where T0 = gα+β and T1 = gγ

for α, β, γ
$← Zq. The adversary Adlin itself sets up the keys for GBM signa-

ture scheme: sk1 = x
$← Zq and pk1 = (gx, H, η = 70); and generates a sim-

ulated crs and a trapdoor t for the NIZK of the equations (1). Then Adlin



gives pk = (pk1, g1, g2, crs) to D and begins to simulate the environment for the
distinguisher as follows:

– Signing query m: Adlin chooses the randomness r1, r2
$← Zq and s

$←{0, 1}η,
and computes ρ ← H(m ‖ u1 ‖ u2)1/(x+s) where u1 = gr11 and u2 = gr22 . It
then lets u3 ← ρ · gr1+r2 and returns σ = (s, u1, u2, u3) to D as the undeniable
signature on m. The adversary Adlin internally keeps a record of the values ρ,
and also lets Q ← Q ∪ {(m,σ)} for later use, where Q is an initially empty set
of message-signature pairs appeared so far.

– Convert query (m,σ): If (m,σ) ∈ Q then return the corresponding recorded
ρ and a simulated NIZK proof πsim (of the equations (1)) produced by using
the trapdoor t. If (m,σ) 6∈ Q then return ⊥ to D. The reasoning behind this
simulation is that if (m,σ) 6∈ Q then the pair must be invalid since we are in
Game 1.

– Confirmation/disavowal query (m,σ): Like the simulation for convert query
above, if (m,σ) ∈ Q then return 1 and run the confirmation protocol with D;
otherwise return 0 and run the disavowal protocol. The protocols are simulatable
using the rewinding technique [20] since they are zero-knowledge.

– Challenge query m∗: Let u∗1 ← gα1 and u∗2 ← gβ2 . Choose s∗
$←{0, 1}η and

then compute ρ∗ ← H(m∗ ‖ u∗1 ‖ u∗2)1/(x+s
∗) and u∗3 ← ρ∗ · Tb. Return σ∗ =

(s∗, u∗1, u
∗
2, u
∗
3) to D.

Note that if b = 0 then Tb = T0 = gα+β , so that σ∗ is a valid undeniable sig-
nature on m∗. If b = 1 then Tb = T1 = gγ is a random value over G independent
of the other values, so that σ∗ is also randomly distributed over the signature
space {0, 1}η ×G3.

At the end, the distinguisher D outputs a bit b′ as a guess of the hidden bit b.
The adversary Adlin in turn outputs b′. The advantage of Adlin is exactly the
probability D wins in Game 1, namely AdvdlinG (Adlin) = Pr[W1]. The running
time of Adlin is O(qconf/dis) times that of D due to the rewinding.

5 Our proposed SCUS2

In this section, we describe our second scheme SCUS2, which is also secure under
the same assumptions as those of SCUS1. The scheme SCUS2 uses the Boneh-
Boyen [2] signature scheme as a component. We first recall the Boneh-Boyen
signature scheme, basing on a pairing group PG = (G,GT , q = |G|, g, ê : G×G→
GT ).

Boneh-Boyen Signature Scheme. The (standard) signature scheme BB =
(BB.Kg, BB.Sign, BB.Vrf) is as follows.

BB.Kg(1κ): Generate g0
$←G, x, y

$← Zq, u ← gx, v ← gy, z = ê(g0, g), and
a target collision hash H : {0, 1}∗ → Zq. Return the verifying key pk1 =
(g0, u, v, z,H) and the signing key sk1 = (x, y).

BB.Sign(sk1,m): s
$← Zq, ρ← g

1
x+H(m)+ys

0 ∈ G. Return (s, ρ) ∈ Zq ×G as the
signature on m.



BB.Vrf
(
pk1,m, (s, ρ)

)
: Check that (s, ρ) ∈ Zq×G and ê

(
ρ, u · gH(m) · vs

)
= z.

Return 1 if all checks pass, else return 0.

It was proven in [2] that the above signature scheme is suf-cma-secure under the
strong Diffie-Hellman assumption.

Our Proposal SCUS2. The scheme, whose security analysis is given in Ap-
pendix D, is described as follows.

KeyGen(1κ): Run BB.Kg(1κ) and LE.Kg(1κ) to get (pk1, sk1) and (pk2, sk2).
Return the public key pk = (pk1, pk2) and the signing key sk = (sk1, sk2).

USign(sk,m): First, generate r1, r2
$← Zq, and set u1 ← gr11 , u2 ← gr22 ,

and m = m ‖ u1 ‖ u2. Next, sign on m to get
(
s, ρ = g

1
x+H(m)+ys

0

) $←
BB.Sign(sk1,m). Then, encrypt ρ in the ciphertext (u1, u2, u3 = ρ · gr1+r2).
Return the undeniable signature σ = (s, u1, u2, u3).

Convert(sk,m, σ): The same as that of SCUS1, except now checking whether
(s, ρ) is a BB signature or not. Also, for all conversion, release sk2 = (x1, x2),
so that our proposal becomes a regular signature scheme equivalent to the
BB scheme.

Verify(pk,m, σ, cvt): The same as that of SCUS1, except now checking whether
(s, ρ) is a valid BB signature or not.

Confirm: On common input pk, m, σ = (s, u1, u2, u3), the signer and the
verifier execute

PoK
{
(a, b, c) : ga = uvs ∧ gb1 = gc2 =

(
uvsgH(m‖u1‖u2)

)−1
∧ ua3u

b
1u
c
2 = g0u

−H(m‖u1‖u2)
3

}
.

The first three equations show a = x+ys, b = −x1 (x+H (m ‖ u1 ‖ u2) + ys),
and c = −x2 (x+H (m ‖ u1 ‖ u2) + ys), where x1 = dlogg1g and x2 =
dlogg2g. With the values a, b, c, the final equation is equivalent to u3/(u

x1
1 u

x2
2 )

= g
1/(x+H(m‖u1‖u2)+ys)
0 , showing that (m,σ) is valid. The zero-knowledge

proof of knowledge can be implemented using known ZKIPs or NIZK proofs
described in Sect. 3.

Disavowal: On common input pk, m, σ = (s, u1, u2, u3), the signer sends a
value U 6= 1 to the verifier, and both execute

PoK
{

(d, e, f, r) : gd(ugH(m‖u1‖u2)vs)−r = 1 ∧ ge1(ugH(m‖u1‖u2)vs)r = 1

∧ gf2 (ugH(m‖u1‖u2)vs)r = 1 ∧ U = ud3 · ue1 · u
f
2 · g

−r
0

}
.

Intuitively, the first three equations give us d = r(x+H(m ‖ u1 ‖ u2) + ys),
e = −rx1(x + H(m ‖ u1 ‖ u2) + ys), and f = −rx2(x + H(m ‖ u1 ‖
u2) + ys). Substituting these values to the last equation and noting that

U 6= 1 show u3/(u
x1
1 u

x2
2 ) 6= g

1/(x+H(m‖u1‖u2)+ys)
0 , and thus (m,σ) is invalid.

The disavowal protocol is also implemented using known ZKIPs or NIZK
proof in Sect. 3.



6 SCUS1,2 as anonymous signature schemes

The security notions for an anonymous signature scheme are unforgeability,
anonymity, and unambiguity. The former two notions are met by SCUS1 and
SCUS2, as seen in the previous sections. The last notion, unambiguity, intu-
itively ensures that if one signer releases a converter to convert a signature, then
nobody else can convert that signature. We formalize the notion as follows.

Definition 7 (Unambiguity) A scheme SCUS satisfies unambiguity if for any
poly-time adversary A,

AdvunambSCUS (A)
def
= Pr

 (pkA, skA)
$← KeyGen(1κ), (pkB , skB)

$← KeyGen(1κ)

(mA,mB , σ, cvtA, cvtB)
$←A(pkA, skA, pkB , skB)

Verify(pkA,mA, σ, cvtA) = Verify(pkB ,mB , σ, cvtB) = 1


is negligible in the parameter κ.

If the adversary chooses cvtA randomly and lets mA = mB , the above def-
inition essentially becomes that of Saraswat and Yun [36]. On the other hand,
the difference with Bellare and Duan [1] is that we require the users indeed hold
secret keys corresponding to their public keys (which can be done via efficient
zero-knowledge proofs of knowledge). Ours is stronger than [36], weaker than [1].
It is however worth noting that since our schemes are also undeniable signature
ones, requiring knowledge of valid secret keys is normal; since otherwise a signer
creates a fake pair (sk′, pk) (e.g., unrelated values), then all signatures become
invalid with respect to pk, so the signer obviously can deny signatures he himself
produced.

We now consider the schemes SCUS1 and SCUS2, and let the converters of
the schemes be the randomness of the LE scheme.

Theorem 8 The schemes SCUS1 and SCUS2 (releasing randomness for selective
conversion) satisfy unambiguity, under the discrete-log assumption. In particu-
lar, for any adversary A, there is an adversary B such that

AdvunambSCUS1,2
(A) ≤ AdvdlogG (B),

T(B) ≈ T(A).

The full proof is given in Appendix E, but the intuition is as follows. From the
input g, h of B, we set up the keys (pkA, skA) in base g, and (pkB , skB) in base
h and run A. Any ambiguity will lead to the value dlogg(h), against the dlog
assumption.
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A A flaw in [40]

We first show that the scheme of Yuen et al [40] does not have invisibility in the
sense of Definition 3. Let us briefly recall their undeniable signature scheme. A
signature on a message m is of the form σ = (S1, S2,1, . . . , S2,k) where k = 7
(see the final remark of the paper), and

S1 = gα2 U
r, S2,j = V rj (1 ≤ j ≤ k),

where α is in the secret key, r is random, while g2, U, Vj are publicly-computable
values. Notice that the undeniable signature scheme is not strongly unforge-
able, since σ′ = (S1U

t, S2,1V
t
1 , . . . , S2,kV

t
k ) is also valid on the same m for

an adversarily-chosen randomness t. (The randomness of the signature becomes
r + t.)

The attack on the scheme uses the same idea as the one we present at Sect.1.1.
Namely, the adversary obtains the challenge σ (which is either random or valid)
on its challenge query m, and then submits (m,σ′) as above for selective conver-
sion. If the answer is ⊥, then σ′ is not valid on m, and so σ is not a signature on
m. If the answer is not ⊥, σ′ is valid on m, and so is σ. The attack is sufficient to
show that the scheme of [40] does not satisfy invisibility in the sense of Definition
3.



However, Yuen et al [40] use a weaker (and not natural) definition of invisi-
bility which disallows the convert query (m,σ′) as above. In that case, the above
attack does not apply, but the invisibility proof (Theorem 2 of [40]) is incorrect
in that it makes use of strong unforgeability. Specifically, in the simulation of
the confirmation/disavowal oracle, the following reasoning is used: Let L is the
set of previously-appeared message-signature pairs at the signing oracle. Upon
receiving a confirmation/disavowal query (m,σ), if (m,σ) ∈ L then return 1 and
execute the confirmation protocol, otherwise if (m,σ) 6∈ L then return 0 and
execute the disavowal protocol.

The above simulation is unfortunately imperfect and incorrect, since if the
adversary submits the above (m,σ′) as a confirmation/disavowal query, then
(m,σ′) 6∈ L, but valid, while the simulation will return 0 and execute the dis-
avowal protocol.

In short, if the strong definition of invisibility (Definition 3) is used, the
scheme in [40] is totally insecure; while if the weaker definition is used, then the
invisibility proof provided in [40] is incorrect.

In the full version of [40], Yuen et al have totally revised their scheme, which
is based on the CDH and DLIN assumptions. However, the scheme is not as
efficient as ours, let alone seems hard to meet unambiguity.

B The NIZK proof for selective conversion

We present the concrete NIZK proof of the equations

g = gx1
1 , g = gx2

2 , u3/ρ = ux1
1 u

x2
2 ,

used by the Convert algorithms of SCUS1 and SCUS2. The proof is originally
developed by Groth and Sahai [21], but here we follows the exposition of Ca-
menisch, Chandran and Shoup [8] (Section 4.4). Recall that we work on a pairing
group PG = (G,GT , q = |G|, g, ê : G×G→ GT ).

First, a common reference string, which must be honestly generated, and can

be kept in the public key of the signer, is generated as follows: γ1, γ2, γ3
$←G and

γ = (γ0, γ
′
0, γ
′′
0 )

$←G3. Let the common reference string be crs = (γ1, γ2, γ3,γ),
and define vectors γ1 = (γ1, 1, γ3), γ2 = (1, γ2, γ3).

The prover, with secrets x1, x2, works as follows. It chooses random rij
$← Zq,

where 1 ≤ i, j ≤ 2, and computes

δ1 = γx1 · γ1
r11 · γ2

r12 = (γx1
0 γr111 , γ′x1

0 γr122 , γ′′x1
0 γr11+r123 ) ∈ G3,

δ2 = γx2 · γ1
r21 · γ2

r22 = (γx2
0 γr211 , γ′x2

0 γr222 , γ′′x2
0 γr21+r223 ) ∈ G3,

where exponentiations and products of the vectors are understood (as usual)
as exponentiations and products of the corresponding components. The NIZK
proof is

π =
(
δ1, δ2, (g

r11
1 , gr121 ), (gr212 , gr222 ), (ur111 · ur212 , ur121 · ur222 )

)
∈ G12.



Define E : G×G3 → G3
T , which sends the tuple

(
α, (α1, α2, α3)

)
to the tuple(

ê(α, α1), ê(α, α2), ê(α, α3)
)
, which is also a bilinear map. To verify whether

π =
(
δ1, δ2, (p1, p2), (p′1, p

′
2), (p′′1 , p

′′
2)
)
∈ G12 proves the equations, one checks

whether the following holds

E(g1, δ1) = E(g,γ) · E(p1,γ1) · E(p2,γ2),

E(g2, δ2) = E(g,γ) · E(p′1,γ1) · E(p′2,γ2),

E(u1, δ1) · E(u2, δ2) = E(u3/ρ,γ) · E(p′′1 ,γ1) · E(p′′2 ,γ2).

Derived from [8], the NIZK proof has perfect completeness, statistical sound-
ness, and computational zero-knowledge (based on the decision linear assump-
tion). The zero-knowledge is computational since a simulated crs is needed, and
is created as follows: γ1 and γ2 are generated as above, but γ = γ1

t1γ2
t2 for

trapdoor t = (t1, t2).

C Proof of Theorem 5

Given a forger F against the proposed SCUS scheme, we build a forger F ′
against the ordinary GBM signature scheme. The input of F ′ is pk1 = (PG, X =
gx, H, η = 70) and F ′ has a signing oracle GBM.Sign(sk1 = x, ·). F ′ itself chooses

the keys for the linear encryption scheme sk2 = (x1, x2)
$← Z2

q , and pk2 = (g1 =

g1/x1 , g2 = g1/x2).
The forger F ′ gives pk = (pk1, pk2) as the public key of the SCUS scheme to

F , and begins to simulate the environment for the SCUS forger as follows:

– Signing query m: F ′ chooses r1, r2
$← Zq and sets u1 ← gr11 , u2 ← gr22 , and then

calls m ‖ u1 ‖ u2 to its own signing oracle GBM.Sign(sk1 = x, ·) to obtain the
GBM signature (s, ρ). F ′ then returns the undeniable signature (s, u1, u2, u3 =
ρ · gr1+r2) to F .

– Confirmation/disavowal query (m,σ): Parse σ as (s, u1, u2, u3) ∈ {0, 1}η×G3.
Decrypt (u1, u2, u3) to get ρ (since F ′ has sk2), and then check whether (s, ρ)
is a valid GBM signature on m ‖ u1 ‖ u2 or not. If it is the case, return 1 and
run the confirmation protocol with F (acting as a cheating verifier); otherwise,
return 0 and run the disavowal protocol with F accordingly. The protocols are
simulatable using the rewinding technique [20] since they are zero-knowledge.

– Convert query (m,σ): Parse σ = (s, u1, u2, u3) ∈ {0, 1}η × G3. Let ρ ←
u3/(u

x1
1 u

x2
2 ). If (s, ρ) is a valid GBM signature on m ‖ u1 ‖ u2, then compute the

NIZK proof π (using secrets x1, x2) of the equations (1), and finally return the
converter (ρ, π). Otherwise, if (s, ρ) is not a valid GBM signature on m ‖ u1 ‖ u2,
then return ⊥.

At the end, the forger F outputs
(
m∗, σ∗ = (s∗, u∗1, u

∗
2, u
∗
3)
)
. If F succeeds,

(m∗, σ∗) is a valid pair of the SCUS scheme, we then have

u∗3
(u∗1)x1(u∗2)x2

= H(m∗ ‖ u∗1 ‖ u∗2)
1

x+s∗ .



Based on the above equation, F ′ outputs
(
m∗ ‖ u∗1 ‖ u∗2, (s∗,

u∗3
(u∗1)

x1 (u∗2)
x2

)
)

as

a forgery of the ordinary GBM signature scheme. It is clear that the forgery is
valid, and we just need to prove that it is different from all message-signature
pairs appeared at the oracle GBM.Sign(sk1 = x, ·). By the contrary, suppose that(
m∗ ‖ u∗1 ‖ u∗2, (s∗,

u∗3
(u∗1)

x1 (u∗2)
x2

)
)

=
(
m ‖ u1 ‖ u2, (s, ρ)

)
, a previously-appeared

pair at the signing oracle of F ′. Thus m = m∗, u1 = u∗1, u2 = u∗2, s = s∗, and
furthermore

u∗3 = ρ · (u∗1)x1(u∗2)x2 = ρ · (u1)x1(u2)x2 = u3,

and hence
(
m∗, σ∗ = (s∗, u∗1, u

∗
2, u
∗
3)
)

=
(
m,σ = (s, u1, u2, u3)

)
, which is a con-

tradiction to the success of F .
The running time of F ′ is O(qconf/dis) times that of F due to the rewinding

used in the simulation of the confirmation and disavowal protocol.

D Security of SCUS2

We consider the securities of SCUS2, which are ensured by the following theo-
rems.

Theorem 9 (Strong unforgeability) The SCUS2 scheme is strongly unforge-
able if the signature scheme BB is suf-cma-secure. Moreover, given a forger F
against SCUS2, there exists another forger F ′ against the BB signature scheme
such that

AdvsforgeSCUS2
(F) ≤ Advsuf−cmaBB (F ′),

T(F ′) = O(qconf/dis) ·T(F),

where qconf/dis is the total number of confirmation/disavowal queries, and T
expresses the running time.

Proof. The proof is essentially the same as that of Theorem 5, so we just outline
the main ideas here. The forger F ′ first generates the keys (pk2, sk2) for the
LE scheme, which will be used for the simulation of the convert and confirma-
tion/disavowal oracles. For answering signing queries from F , the forger F ′ uti-
lizes its own signing oracle. Finally, F outputs the pair

(
m∗, σ∗ = (s∗, u∗1, u

∗
2, u
∗
3)
)

satisfying
u∗3

(u∗1)x1(u∗2)x2
= g

1
x+H(m∗‖u∗1‖u

∗
2)+ys∗

0 ,

so that F ′ in turn outputs(
m∗ ‖ u∗1 ‖ u∗2,

(
s∗,

u∗3
(u∗1)x1(u∗2)x2

))
as the forgery in the strong sense of the BB signature, completing the proof.



Theorem 10 (Strong invisibility) The SCUS2 scheme satisfies strong invis-
ibility. Moreover, given a distinguisher D against SCUS2, there exist Adlin and
a forger F against SCUS2 such that

AdvinvSCUS2
(D) ≤ AdvdlinG (Adlin) + AdvsforgeSCUS2

(F),

T(Adlin) = O(qconf/dis) ·T(D), and T(F) ≈ T(D),

where T expresses the running time, and qconf/dis is the total number of confir-
mation/disavowal queries D makes.

Proof. The proof follows along the line of that of Theorem 6, except that Adlin
generates the keys for the BB signature scheme, and uses them to simulate the
signing and challenge oracle for D. The rest remains the same.

E Unambiguity of SCUS1,2

We begin to show unambiguity for the scheme SCUS2 (choosing to release LE
randomness as converter) by proving

AdvunambSCUS2
(A) ≤ AdvdlogG,PG(B),

T(B) ≈ T(A).

Given A against unambiguity of SCUS2, we build B against the dlog assumption
on G of PG. The adversary B gets (g, h) ∈ G2 and the description of the pairing
group PG as input, and needs to output dlogg(h). Using the generator g and PG,
B sets up (pkA, skA) for user A where the value g0 of the Boneh-Boyen signature

scheme is set to ga for a
$← Zq. It does the same for (pkB , skB) except that the

value g0 of the Boneh-Boyen signature scheme is set to h.
The adversary B runs A on input (pkA, skA, pkB , skB ,PG). A returns the

tuple (mA, mB , σ, cvtA, cvtB), where σ = (s, u1, u2, u3), the converters cvtA =
(r1A, r2A) and cvtB = (r1B , r2B) satisfying

u3 = g
a

xA+HA(mA‖u1‖u2)+yAs · gr1A+r2A

u3 = h
1

xB+HB(mB‖u1‖u2)+yBs · gr1B+r2B

The values (xA, yA) and (xB , yB) are respectively in skA and skB , set up by B.
The above equations are thanks to Verify(pkA,mA, σ, cvtA) = Verify(pkA, mA,
σ, cvtA) = 1. Note that we have the Boneh-Boyen signatures in base g in the
first equation and h in the second one. From the above equations, it is clear that
B can compute dlogg(h), ending the proof for SCUS2.

We proceed with unambiguity of SCUS1. Similarly with the above, we have
the equations

u3 = HA(m)
1

xA+s · gr1A+r2A

u3 = HB(m)
1

xB+s · gr1B+r2B



Note that now HA, HB are not arbitrary, but specific hash functions, given as

HY (X) = h0Π
160
i=1h

hash(X)[i]
i for Y ∈ {A,B}, h0, . . . , h160 ∈ G and collision-

resistant hash : {0, 1}∗ → {0, 1}160, where hash(X)[i] denotes the i-th bit of the
hash value. Again, the idea is to set up the base g for HA and the base h for
HB , which can be easily done by the adversary B. We omit further details.

It is interesting to ask whether our schemes with NIZK converters satisfy
unambiguity or not. They seem to meet the notion, but we unfortunately cannot
prove, so leaving it as an open problem.


