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Abstract We design a new (single-server) (n, 1)-CPIR protocol BddCpir for `-bit strings as a combination of
a noncryptographic (binary decision diagram-based) data structure and a more basic cryptographic primitive
((2, 1)-CPIR). BddCpir is the first CPIR protocol with online computation substantially depending on the con-
crete database. As two important applications, we show that (a) for reasonably small values of `, the new CPIR
protocol is guaranteed to have simultaneously log-squared communication and sublinear online computation
(no previous sublinear-communication and sublinear-computation CPIR protocols were known), and (b) show
that BddCpir can handle huge but sparse matrices, that are common in data-mining applications, significantly
more efficiently compared to previously known linear-time protocols.
Keywords. Binary decision diagram, computationally-private information retrieval, privacy-preserving data
mining, sublinear communication.

1 Introduction

Computationally-private information retrieval (CPIR, [KO97]) is one of the most basic cryptographic
protocols in the client-server setting. More precisely, in a (single-server) (n, 1)-CPIR protocol, the client
retrieves the xth element of the server’s database f = (f0, . . . , fn−1) of `-bit elements, so that the
server will obtain no knowledge about x. Apart from the security, it is always required that the total
communication of the CPIR protocol be less than n` bits. CPIR protocols constructed in [Lip05,GR05]
are not only almost optimal in the sense of asymptotic communication-efficiency, but communication-
efficient enough to be used in practice for any imaginable database size. However, in all existing CPIR
protocols, the server’s online computational complexity is Ω(n) public-key operations. Thus, in most of
the applications, one is restricted to databases of size n = 216 or even n = 212. This makes computation-
efficiency (and not the communication-efficiency!) the main bottleneck in deploying CPIR in practice.

In the case of multiple databases, [BIM00] constructed several sublinear-computation information-
theoretically private information retrieval protocols. However, the setting and the methods of [BIM00]
are completely different and do not extend to the case of single-server protocols. In particular, they
posed as an open problem to design a sublinear-computation single-server CPIR protocol. Since then,
the construction of sublinear-computation CPIR protocols has been so elusive that many researchers
have claimed linear computation to be lower-bound for any CPIR, see for example [CS07, Sect. 2.3].
Based on empirical research, Carbunar and Sion [CS07] argued that in the foreseeable future all CPIR
protocols will be at least one order of magnitude slower than the trivial CPIR protocol, where the server
just transfers the whole database to the client. (For related work on computation-efficient CPIR protocols,
see for example [GY07,AG07], or various CPIR protocols that assume the existence of server-side trusted
hardware like [WDDB06].)
OUR CONTRIBUTIONS. Up to now, one has considered CPIR to be a basic primitive where the server
does a fixed amount of work that does not depend on the concrete database she has. Such a thinking is
common in cryptography, and optimizing a primitive based on preknowledge of handled data is thought to
be a noncryptographic question. We show that in the case of CPIR protocols, one can efficiently combine
noncryptographic data preprocessing with the cryptographic protocol, such that the combination is still
secure and at the same time more efficient than any of the prior work. (In fact it is clear that without
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preprocessing, the server has to do some online work with every database elements.) More precisely,
the new CPIR protocol has sublinear server’s online computation even in the case of the worst-case
database, while being significantly more efficient in the case of highly redundant databases that are
common in say data-mining applications. This in particular shows that (n, 1)-CPIR is not a monolithic
cryptographic primitive per se but can be seen as a combination of a “noncryptographic” data structure
(in this case, based on binary decision diagrams) and a more basic cryptographic primitive (in our case,
a communication-efficient (2, 1)-CPIR). In our opinion, this presents a significant paradigm shift.
HIGH-LEVEL OVERVIEW: TECHNIQUES AND RELATED WORK. The new CPIR protocol is based
on the recent cryptocomputing method (that we call PrivateBDD) of Ishai and Paskin [IP07]. In
PrivateBDD, the client has an input x (a string), the server has an input f (a function), and client’s
output is f(x). In the offline phase of the PrivateBDD protocol, the server constructs an efficient bi-
nary decision diagram (BDD, see Sect. 2) for f(·). During the online phase, the client and server use a
communication-efficient 2-message (2, 1)-CPIR protocol like the one proposed in [Lip05] to “execute”
the BDD. Because PrivateBDD is still a new protocol and thus not well known, we present it in Sect. 3 in
full detail. Sect. 3 also describes a few optimizations, not present in [IP07]. In particular, [IP07] assumed
that a so called strong oblivious transfer protocol is used in every node. We show that client’s privacy of
PrivateBDD directly follows from the client’s privacy of the basic (2, 1)-CPIR protocol.

In the PrivateBDD protocol, when using Lipmaa’s (2, 1)-CPIR protocol, the output values have
length that is basically proportional tom(`+len(F)), wherem is the length of client input x, ` is (usually)
the length of f(x), and len(F) is an upperbound on the length of the BDD. More precise bound is given
in Sect. 3. Server’s online computation in PrivateBDD is dominated by size(f) public-key operations,
where size(f) is the size of the BDD—the number of non-terminal nodes—that corresponds to server’s
fixed input f .
DETAILS OF NEW CPIR PROTOCOL. In the new (n, 1)-CPIR protocol BddCpir, we write down an
optimized BDD for the function f , f(x) := fx and then use the PrivateBDD protocol to cryptocompute
f . Assume first that ` = 1. In the resulting (n, 1)-CPIR protocol, the online computational complexity of
the server depends heavily on the concrete database itself. Thus, the new CPIR protocol can be seen as a
marriage between a data structure and a more basic (2, 1)-CPIR protocol. To show that this construction
has practical relevance, we will present two different applications of it.
FIRST APPLICATION: SUBLINEAR UPPERBOUND ON COMPUTATION. As the first application of the
general ideas, we show that in the new CPIR protocol, server’s computational complexity is upper-
bounded by (1 + o(1))n/ log2 n online public-key operations. (The bit-cost of a public-key opera-
tion depends on the position of a node in the BDD, see Sect. 4.) The upperbound Θ(n/ log n) fol-
lows from the upperbound on the size of binary decision diagrams to compute an arbitrary Boolean
function [LL92,HM94,BHR95]. In addition, the communication of BddCpir is Θ(k · log2 n), where
k is the security parameter. The offline computational complexity—measured in non-cryptographic
operations—of the new protocol is O(n), while setting up the data structure, and Õ(t), when t ele-
ments are updated. Alternatively, this result shows that one can implement secure function evaluation of
any f : {0, 1}m → {0, 1} with communication O(m2 · k) and server’s online computation O(2m/m).
A similar upperbound (in the multiple-server scenario) was shown in [BIM00]. However, they designed
a monolithic protocol while in our case, sublinear computation follows from a much general approach.

As we will later illustrate with Tbl. 1, in practice this means that say for databases of size 214, about 7
times less public-key operations in the worst case are needed than in Lipmaa’s (n, 1)-CPIR from [Lip05].
Importantly, the new protocol has exactly the same communication as Lipmaa’s CPIR. In general (and
again in the worst case), about 4 to 8 times larger databases can be handled than with Lipmaa’s (n, 1)-
CPIR in the same time, which brings us closer to the practical deployment of (n, 1)-CPIR protocols. We
emphasize that it is natural to compare the efficiency of the new BddCpir protocol and Lipmaa’s CPIR
from [Lip05] in the number of public-key operations since in both cases, one uses the same underlying
public-key primitive on the plaintexts of the same length. Thus, one can expect that the actual running
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time of the BddCpir protocol (measured in seconds) is also about 4 to 8 smaller than the actual running
time of Lipmaa’s CPIR protocol, while having exactly the same communication complexity.

We also show that for any `, one can construct a CPIR protocol with communication Θ(` · log n+ k ·
log2 n) and computationΘ(n`/(log n+log `)) online operations. Thus, if ` = o(log n) then the BddCpir
has guaranteed sublinear online computation.
SECOND APPLICATION: SPARCE MATRICES. As said, the BDD depends on the concrete database. In
practice, when the databases are well-structured, one can thus decrease the computation much more. As a
concrete application of (n, 1)-BddCpir, consider any of the innumerable privacy-preserving data-mining
applications that deal with huge (say, 10 000 times 10 000) but very sparse Boolean matrices. (One could
as well consider sparse vectors or hypercubes, but sparse matrices are so common in data-mining appli-
cations that we stick to them.) A basic operation in such applications is again the private extraction of a
single element from the matrix, that is, CPIR. Clearly, here linear-time CPIR protocols are not applicable
even in principle. However, if the matrix is very sparse, then one can efficiently present the matrix as a
BDD [FMY97], and then apply BddCpir. Moreover, representation as a BDD does not necessarily carry
with itself additional cost, since many common data-mining subroutines can be efficiently performed on
BDDs [FMY97].

More precisely, if a 2a × 2b Boolean matrix contains c ones, then this matrix can be represented by
a BDD of size upperbounded by c · dlog2(a + b)e [FMY97]. Thus, the BddCpir protocol can handle
8 000 × 8 000 times matrices with one 1 in every row (like the permutation matrices), taking ≤ 8 000 ·
log2(16 000) = 8 000 · 14 = 112 000 ≈ 216.78 public-key operations, while all previous CPIR protocols
need 8 0002 ≈ 225.93 public-key operations. If the matrix has say on average 16 ones in every row, the
BddCpir takes ≤ 220.78 online public-key operations. We emphasize that this example is important: one
of the reasons why cryptography-based privacy-preserving data mining has never taken off is the utter
inefficiency of existing cryptographic methods in handling huge but structured data. Instead, one uses
insecure but severely more efficient methods.
SERVER’S PRIVACY. In Sect. 4 we also discuss how to modify BddCpir so that it will also protect server’s
privacy, that is, to an oblivious transfer (OT) protocol. For this, (a) the BDD has to be made layered
(this will guarantee server’s privacy in the semihonest model [IP07]), and (b) a suitable CPIR-to-OT
transformation has to be applied. We show that in the case of the worst-case BDD of size (2+o(1))2m/m,
layering the BDD adds a non-substantial number of nodes to the BDD. Moreover, adding (say) the CPIR-
to-OT transformation from [LL07] makes the CPIR protocol server-private with the minimal overhead
of m public-key operations. We think that this result is important by itself.
OPTIMIZED PrivateBDD PROTOCOL. As a separate contribution, we show how to—by using two sim-
ple balancing techniques—optimize the PrivateBDD protocol even further. As one result we present
three versions of Lipmaa’s (n, 1)-CPIR protocol from [Lip05] that have communication of 2` + (2 +
o(1)) log2 n·k, (1+o(1))`+(1+o(1)) log2 n·log log n·k and (`·log n/ log logn+k ·log2 n/ log logn),
respectively. The second of those results shows that the new CPIR protocol achieves optimal rate 1+o(1)
in the case of a large ` (This result was known for Lipmaa’s CPIR protocol from [Lip05] although we are
not aware of a writeup.), while simultaneously achieving (optimal?) computation in the case of a large n.
The balancing techniques are applicable also in the case of the BddCpir protocol.

2 Preliminaries

NOTATION. Client’s input is x ∈ {0, 1}m, server’s input is a function f : {0, 1}m → {0, 1}σ` for
suitably chosen σ and `. (See the next paragraph for the hidden meaning of σ and `.) k is the security
parameter. We also denote f(x) by fx, that is, we think of f as of the characteristic function of the vector
f = (f0, . . . , f2m−1). n denotes the server’s database size. All logarithms have base 2.
BINARY DECISION DIAGRAMS. A binary decision diagram (BDD, or a branching program, [Weg00])
is a fanout-2 directed acyclic graph (V,E), where the non-terminal (that is, non-sink) nodes are labeled
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by variables from some variable set {x0, . . . , xm−1}, the sinks are labeled by `-bit strings and the two
outgoing edges of every internal node are respectively labeled by 0 and 1. Usually, it is assumed that
a BDD has 1-bit sink labels, then it can be assumed to have two terminal nodes. A BDD with longer
sink labels is thus sometimes called multi-terminal. A BDD that has σ sources computes some function
f : {0, 1}m → {0, 1}σ`. Every source and every assignment of the variables selects one path from this
source to some sink as follows. The path starts from the source. If the current version of path does not
end at a sink, test the variable at the endpoint of the path. Select one of the outgoing edges depending on
the value of this variable, and append this edge and its endpoint to the path. If the path ends at a sink,
return the label of this sink as the value of the corresponding source. The BDD’s value is then equal to
the concatenation of its source values.

In an ordered binary decision diagram (OBDD), an order π of the labels is chosen, and for any edge
(u, v) ∈ E it must hold that π(u) < π(v). A BDD is a decision tree if the underlying graph is a tree.
A BDD is layered if its set of nodes can be divided into disjoint sets Vj such that every edge from a
node in set Vj ends in a node in set Vj+1. For a BDD P , let len(P ) be its length (that is, the length of
its longest path), size(P ) be its size (that is, the number of non-terminal nodes). Let BDD(f)/OBDD(f)
be the minimal size of any BDD/OBDD computing f . Clearly BDD(f) ≤ OBDD(f). It is known that
any Boolean function f : {0, 1}m → {0, 1} has BDD(f) ≤ (1 + o(1))2m/m [BHR95, Thm. 1] and
OBDD(f) ≤ (2 + o(1))2m/m [LL92,HM94,BHR95]. In fact, [BHR95] showed that for some functions
f , BDD(f) ≥ (1− o(1))2m/m.
PUBLIC-KEY CRYPTOSYSTEMS. Let P = (G,E,D) be a length-flexible additively-homomorphic
public-key cryptosystem [DJ01], where G is a randomized key generation algorithm, E is a random-
ized encryption algorithm and D is a decryption algorithm. Here, both E and D receive an additional
length parameter `, so that Epk(`, ·) encrypts plaintexts from some set {0, 1}≤`. In the case of the DJ01
cryptosystem from [DJ01], for every integer ` > 0, Epk(`, ·) ∈ {0, 1}d`/ke·k+k. (In some other length-
flexible cryptosystems like [DJ03], the resulting ciphertext is longer.) In practice, 2` < N where N is
the public key of the DJ01 cryptosystem.

Thus, in the case of the DJ01 cryptosystem, Epk(`,M) is a valid plaintext of Epk(d`/ke · k + k, ·),
and therefore one can multiple-encrypt messages as say in C ← Epk(`+2k,Epk(`+k,Epk(`,M))), and
then recover M by multiple-decrypting, M ← Dsk(` + 2k,Dsk(` + k,Dsk(`, C))). Note that the length
of j-times encrypted M is d`/ke · k + jk ≤ ` + (j + 1) · k bits. Additionally, in any length-flexible
additively-homomorphic cryptosystem, Epk(`,M1) ·Epk(`,M2) = Epk(`,M1 +M2), where the addition
is modulo the public keyN . We will explicitly need the existence of a compression function C that, given
pk, `′ and ` for `′ ≥ `, and Epk(`′,M) for M ∈ {0, 1}`, returns Epk(`,M) ∈ {0, 1}d`/ke·k+k. As shown
in [Lip05] and later in [IP07], DJ01 has a very simple compress function that just reduces Epk(`′,M)
modulo some power of N .

In the CPA (chosen-plaintext attack) game, the challenger first generates a random (sk, pk)← G(1k),
and sends pk to the attacker. Attacker chooses two messages M0,M1 and a length parameter `, and
sends them to the challenger. Challenger picks a random bit b, and sends a ciphertext Epk(`,Mb) to
attacker. Attacker outputs a bit b′, and wins if b = b′. A cryptosystem is CPA-secure if the probability
that any nonuniform probabilistic polynomial-time attacker wins in the CPA-game is negligibly different
from 1/2. Because of the existence of the compress function, a CPA-secure length-flexible cryptosystem
remains CPA-secure even if the adversary sends many message pairs (Mj0,Mj1) and length parameters
`j , and has to guess b after seeing encryptions of all Mjb under the corresponding length parameters
`j . This so-called LFCPA-security [Lip05] of the cryptosystem is crucial for the security of the efficient
PrivateBDD protocol as defined in the next section. The DJ01 cryptosystem [DJ01] is CPA-secure under
the Decisional Composite Residuosity Assumption [Pai99].
CPIR. In a 1-out-of-n computationally-private information retrieval protocol, (n, 1)-CPIR, for `-bit
strings, the client has an index x ∈ {0, . . . , n − 1} and the server has a database f = (f0, . . . , fn−1)
with fi ∈ {0, 1}`. The client obtains fx. The new (n, 1)-CPIR protocol BddCpir, proposed in this paper,
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is based on some (2, 1)-CPIR protocol. For BddCpir to be efficient, the underlying (2, 1)-CPIR protocol
has to satisfy some very specific requirements. We say that a (n, 1)-CPIR protocol Γ = (Q,R,A,C) is
BDD-friendly if it satisfies the next four assumptions:

1. Γ has two messages, a query Q(`, x) from the client and a reply R(`, f,Q) from the server, such that
the stateful client can recover fx by computing A(`, x,R(`, f,Q)).

2. Γ is uniform in `, that is, it can be easily modified to work on other values of `.
3. |Q(`, ·)|, |R(`, ·, ·)| ≤ `+Θ(k) (with possibly Q(`, ·) being shorter).
4. The compress function C maps Q(`′, x) to Q(`, x) for any `′ ≥ ` and x.

More formally, Γ = (Q,R,A,C) is a quadruple of probabilistic polynomial-time algorithms, with
A(`, x,R(`, f,Q(`, x))) = fx, and C(`′, `,Q(`′, x)) = Q(`, x) for any `′ ≥ `, x and f .
LIPMAA’S BDD-FRIENDLY (2, 1)-CPIR PROTOCOL [LIP05]. Let P = (G,E,D) be a length-flexible
additively homomorphic public-key cryptosystem. Client’s private input is x ∈ {0, 1}, server’s private
input is f = (f0, f1) for f0, f1 ∈ {0, 1}`. Lipmaa’s (2, 1)-CPIR protocol consists of the next steps:

1. Client sets (sk, pk)← G(1k), c← Epk(`, x), and sends Q(`, x)← (pk, c) to the server.
2. Server replies with R = R(`, f, (pk, c))← Epk(`, f0) · cf1−f0 .
3. Client outputs A(`, x,R) := Dsk(`,R).

If x ∈ {0, 1}, then clearly R(`, f, (pk,Epk(`, x))) = Epk(`, f0) · cf1−f0 = Epk(`, f0) · Epk(`, x)f1−f0 =
Epk(`, f0 + (f1 − f0) · x) = Epk(`, fx). If P has a compress function, then also Lipmaa’s (2, 1)-CPIR
protocol has a compress function C. Importantly, |Q(`, ·)|, |R(`, ·, ·)| ≤ `+ 2k and thus, this (2, 1)-CPIR
protocol is BDD-friendly.
SEMISIMULATABLE PRIVACY. Let Γ = (Q,R,A,C) be a 2-message (n, 1)-CPIR protocol. Within this
work we use the convention of many previous papers [NP99,Lip05,IP07] on CPIR protocols to only
require (semisimulatable) privacy in the malicious model. More precisely, client’s privacy is guaranteed
in the sense of indistinguishability (CPA-security), while server’s privacy is guaranteed (if at all) in the
sense of simulatability. This assumption makes it possible to design 2-message (n, 1)-CPIR protocols that
are both communication and computation-efficient. We now give an informal definition of privacy. For the
CPA-security (that is, the privacy) of the client, no malicious nonuniform probabilistic polynomial-time
server should be able to distinguish, with non-negligible probability, between the distributions Q(`, x0)
and Q(`, x1) that correspond to any two of client’s inputs x0 and x1 that are chosen by herself. For
server-privacy, we require the existence of an unbounded simulator that, given client’s message Q∗ and
client’s legitimate output corresponding to this message, generates server’s message that is statistically
indistinguishable from server’s message R in the real protocol; here Q∗ does not have to be correctly
computed. A protocol is private if it is both client-private and server-private.

Any (n, 1)-CPIR protocol Γ must be client-private, that is, CPA-secure. Lipmaa’s (2, 1)-CPIR proto-
col [Lip05], when based on the DJ01 cryptosystem [DJ01], is CPA-secure under the Decisional Compos-
ite Residuosity Assumption [Pai99]. Because of the existence of the C function, if Γ is CPA-secure then
it is also difficult to distinguish between any two polynomially large sets {Q(`i, xi0)} and {Q(`i, xi1))},
even if the same public key pk is used in all of them. A private (n, 1)-CPIR protocol is also known as an
(n, 1)-oblivious transfer protocol.

3 The PrivateBDD Protocol

Next, we describe the PrivateBDD (private BDD) cryptocomputing protocol from [IP07]. It generalizes
the cryptocomputing process, done in several previous (n, 1)-CPIR protocols [KO97,Ste98,Lip05]. Our
exposition is simpler than the more general exposition of [IP07]. The concrete protocol has also some
small differences compared to the protocol of [IP07]. More precisely, while the description given by us
can be inferred from the description in [IP07], we have opted to describe explicitly the most efficient
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1. Common inputs: m,σ, `,F , len(F).
2. Private inputs: the server has a function f : {0, 1}m → {0, 1}σ` from F , and the client has bitstring x ∈ {0, 1}m.
3. Offline phase: server computes an efficient BDD Pf for f that has σ sources and `-bit sink labels. Let `max :=
|Q(len(F)−1)(`)|.

4. Online phase:
(a) Client does: For j ∈ {0, . . . ,m− 1}, set Qj ← Q′(`max, xj). Send Q(`, x)← (Q0, . . . ,Qm−1) to the server.
(b) Server does:

i. For all sinks v of Pf , set Rv to be their label. For non-terminal nodes v set Rv ← ⊥.
ii. Do by following some ordering of the nodes:

A. Let v be some node with Rv = ⊥ with children v0 and v1 that have Rv0 ,Rv1 6= ⊥; if no such node exists
then exit the loop.

B. Assume that v is labeled by xi and edges from v to v0/v1 are labeled by 0/1.
C. Compute and store Rv ← R(`∗, (Rv0 ,Rv1),C(`max, `

∗,Qi)), where `∗ ← max(|Rv0 |, |Rv1 |). // If BDD is
layered then |Rv0 | = |Rv1 |.

iii. For all σ sources v, send Rv to the client.
(c) Client does: For any source v, compute private output from Rv by applying A′ recursively up to len(F) times.

Protocol 1: The PrivateBDD protocol

known implementation of the PrivateBDD. Moreover, Ishai and Paskin [IP07] used a strong oblivious
transfer protocol at every node of the underlying BDD, while we just use an efficient (2, 1)-CPIR proto-
col.
SETTING. In the PrivateBDD protocol for some set F of functions, the client has private input x ∈
{0, 1}m, the server has private input f : {0, 1}m → {0, 1}σ` with f ∈ F , and the client will receive
private output f(x). Here, F = {f : {0, 1}m → {0, 1}σ`} is a set of functions, where every f ∈ F
can be computed by some efficient BDD Pf that has σ sources and `-bit sink labels. Define len(F) :=
maxf∈F len(Pf ). Let Γ ′ = (Q′,R′,A′,C′) be a BDD-friendly (2, 1)-CPIR protocol. Since we are going
to recursively apply Γ ′ on databases that consist of the R′ values of some other runs of Γ ′, we need to
define the next few values. Namely, let |Q(1)(`)| := |Q′(`, x)|, |R(j)(`)| := |R′(|Q(j)(`)|, f,Q′)| and
|Q(j+1)(`)| := |Q′(|R(j)(`)|, x)|. We can assume that those values are well-defined, that is, that they do
not depend on the concrete values of x and f . Because Γ ′ has to be secure, this assumption is reasonable.
If Γ ′ is BDD-friendly, then |Q(j)(`)| = |R(j)(`)| ≤ `+ j ·Θ(k).
DESCRIPTION OF PrivateBDD. BDDs are usually evaluated in a top-down manner by following σ paths
that are consistent with the assignment of the input variables xj . It is unknown how to follow this compu-
tational process in a private manner. Instead, following [IP07], we use an alternative, bottom-up, way of
computing a BDD. In the non-private version of this process, the sinks have output values that are equal
to their labels. At every non-terminal node v that is labeled by some xj and for which the output values
Rv0 and Rv1 of both children are known, one sets the output value Rv of v to be equal to Rvxj . The value
of the BDD is equal to the concatenation of the output values of the sources.

In the private version, the server also executes the BDD Pf bottom-up, that is, from the sinks to
the sources. The output values Rv of the sinks are equal to their `-bit labels. Initially, Rv is undefined
for all other nodes. At every node v of the BDD with label xj and children v0/v1 such that the output
values Rv0/Rv1 of v0/v1 are known but the output value Rv of v is not yet defined, the server uses Γ to
obliviously propagate the value Rvxj upwards as Rv. The server does this for all nodes in some ordering,
and then sends the output values of the σ sources to the client. (Ishai and Paskin [IP07] only considered
the depth-first ordering, while in some cases some other ordering may be more efficient.) For every
source, the client applies the decoding procedure A′ repeatedly to obtain the label of the unique sink that
is uniquely determined by this source and by client’s input x. A complete description of the PrivateBDD
protocol for F is depicted by Protocol 1.

Theorem 1. Let Γ ′ = (Q′,R′,A′,C′) be a CPA-secure BDD-friendly (2, 1)-CPIR protocol. Let F be a
set of functions from {0, 1}m to {0, 1}σ` where every f ∈ F can be computed by a BDD Pf . Then F
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has a CPA-secure cryptocomputing protocol with communication m · |Q(len(F))(`)|+σ · |R(len(F))(`)| =
(m + σ)(` + len(F) · k). Server’s online computation is dominated by size(Pf ) public-key operations.
Additionally, if Pf is layered, then the PrivateBDD protocol is server-private in the semihonest model.

Alternatively, if any f : {0, 1} → {0, 1}σ` has an efficient cryptocomputing protocol, then any F :
{0, 1}m → {0, 1}σ` has an “efficient” cryptocomputing protocol.

Proof. The CPA-security follows by a standard hybrid argument from the CPA-security of Γ ′ (and from
the existence of C′). If Pf is layered, then the client is completely oblivious to the shape of the BDD,
except the length of it: he just forms queries corresponding to his input bits by using his knowledge of the
length of the BDD (and on the output length `), and then receives multiple-“encryptions” of the outputs.
Communication complexity is straightforward. Server has to compute R at every node of Pf . ut

If the compress function C does not exist, then the client has to submit up to len(P ) different queries
Q(`′, xj) for every xj and every `′ = |Q(i)(`)| for i ≤ len(P )− 1. This can increase the communication
by a factor of len(P ). C makes it possible to compute Q(|Q(i)(`)|, xj) from Q(`max, xj).

We will assume throughout this paper that we are working with Lipmaa’s (2, 1)-CPIR; this protocol
is currently the most efficient (2, 1)-CPIR for our purposes. In fact, it is the only known protocol that
currently allows the PrivateBDD protocol to achieve communication that is polynomial in len(F) (thus
the name “BDD-friendly”). A precise result follows:

Corollary 1. Assume that the Decisional Composite Residuosity Assumption is true [Pai99]. Let F be
a set of functions f : {0, 1}m → {0, 1}σ`, and for any f ∈ F let Pf be some σ-source BDD with `-bit
sink labels that computes f . Then F has a CPA-secure cryptocomputing protocol with communication
upperbounded by k + (m + σ)(` + (len(F) + 2) · k), and server’s online computation dominated by
size(F) public-key operations.

Proof. Let P = (G,E,D) be the DJ01 length-flexible cryptosystem [DJ01]. This version of the
PrivateBDD protocol generates one single (sk, pk) ← G(1k) and uses the same pk to construct all
m queries Qj . Because Lipmaa’s (2, 1)-CPIR is BDD-friendly and CPA-secure, the CPA-security of
PrivateBDD follows from a standard hybrid argument. Computation-efficiency is straightforward. To
calculate the communication efficiency, note that Qj = Q′(`max, xj) = Epk(` + len(F) · k, xj). Thus,
|Qj | = |Epk(`+ len(F) · k, xj)| = (d`/ke+ len(F) + 1) · k ≤ `+ (len(F) + 2) · k. Thus, client sends a
public key (of length say k) and at most m · (`+ (len(F) + 2)k) additional bits. The output of the BDD
is equal to σ (≤ len(F))-times encryptions of sink values, where the sinks are selected by the encrypted
client inputs xj . Server’s communication consists of σ (≤ len(F))-times encrypted messages of length
≤ `+ (len(F) + 2)k. ut

EXAMPLE: (n, 1)-CPIR. All CPIR-protocols that follow the Kushilevitz-Ostrovsky recursion tech-
nique [KO97,Ste98,Lip05] can be seen as cryptocomputing of an ordered n′-ary decision tree, with
σ = 1, m = dlogn′ ne and varying values of n′. In particular, Lipmaa’s (n, 1)-CPIR protocol
from [Lip05] uses his (2, 1)-CPIR protocol in combination with a ordered binary decision tree Pf , to
achieve communication Θ(m · (` + len(Pf )k)) = Θ(` · log n + k · log2 n), agreeing with Cor. 1. (See
Fig. 2.) Note that such CPIR protocols do not explicitly need the C function, because they cryptocompute
an ordered binary decision tree where every xi is only tested on the ith level of the tree.

4 New Computation-Efficient (n, 1)-CPIR Protocol BddCpir

Assume that σ = 1 (the general case follows easily) and that the database size is n = 2m, that is, that the
server’s database consists of n = 2m bits. (If n is not a power of 2 then one can round up the database
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size.) In this case, we can restate the goals of an (n, 1)-CPIR protocol as follows. Assume that the client
has an input x ∈ {0, 1}m, and that the server’s input is a Boolean function f : {0, 1}m → {0, 1},
such that f(x) = fx. The client needs to retrieve f(x). Thus, F is the set of all functions, F = {f :
{0, 1}m → {0, 1}}. In the new (n, 1)-CPIR protocol, the client and the server run PrivateBDD for this
F . That is:

– In the offline phase of BddCpir, the server computes and stores an efficient BDD Pf for the concrete
f .

– In the online phase of BddCpir, the client and the server follow PrivateBDD as specified in Proto-
col 1. Here, the server uses Pf .

In BddCpir, server’s work is proportional to size(Pf ) while the communication is proportional to
len(F). The size (and to a lesser extent, also the length) of Pf will depend heavily on f (and F) and
not much can be said about it unless we know the concrete database or at least some of its properties.
In what follows, we will consider two different database classes. First, we look at the case of arbitrary
databases. We show that for any possible database f , as long as ` = o(log n), the new (n, 1)-CPIR
protocol has server’s computation upperbounded byΘ(n/ log n) public-key operations. Second, we look
at the case where it is known that f is a very sparse database (like in many privacy-preserving data mining
applications). We show than in the case, BddCpir is significantly more efficient than any other existing
CPIR protocol.

4.1 Upperbound: Sublinear-Computation CPIR for Any Database

In [BHR95], it was shown that any Boolean function f can be computed by a BDD Pf of size (1 +
o(1))2m/m that has length (1 + o(1))m. Unfortunately, this construction is reasonably efficient only
whenm ≥ 25. Instead, we will describe an OBDD WP(f) that meets the upperbound OBDD(Pf ) ≤ (2+
o(1))2m/m from [LL92,HM94,BHR95]. This OBDD also has the benefit of having optimal length m.
Based on this result, even if f is an arbitrary Boolean database, the BddCpir protocol has communication
complexity Θ(k · log2 n) and server’s online computation complexity Θ(n/ log n).

Let f : {0, 1}m → {0, 1} be a Boolean function. (See Fig. 1 for the concrete case m = 6 of the next
general construction.) The description of the corresponding OBDD WP(f), as found in say [Weg00],
follows:

– The BDD starts out as a depth-d, where d is fixed later, ordered binary decision tree where one
branches on variables x0, . . . , xd−1. This part of the BDD has 2d − 1 nodes.

– The BDD has 22m−d more nodes that correspond to all subfunctions g of f on its last m−d variables.
These extra nodes are layered in m − d more levels. The node for a subfunction that first essentially
depends on the jth variable out of thesem−d variables (but not on earlier ones) is on level d+j; nodes
that correspond to constant subfunctions are on levelm. The extra nodes are labeled by corresponding
subfunctions g. Note that the m − d lowest levels have 2, 22 − 21 = 2, 24 − 22 = 12, . . . , 22m−d −
22m−d−1

nodes respectively.
– Let vg be an extra (non-terminal) node. Assume that g(y1, . . . , ym−d) first essentially depends on yj .

For i ∈ {0, 1}, let g|yj=i be the function that we get from g when we set yj ← i. Add an i-edge from
vg to vg|yj=i .

– The above part of the construction only depends on the value of n = 2m and not on the concrete
database. The next part depends on the database: The 2d−1 nodes on level d are labeled by subsequent
2m−d+1 = 2 · 2m−d values of the 2m-bit database f . For a fixed level d node v′, consider the first
2m−d bits of this label to be the truth table of some subfunction g0, and the last 2m−d bits to be a truth
table of some subfunction g1. Add a 0-edge from v′ to vg0 and a 1-edge from v′ to vg1 .
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Figure1. The OBDD corresponding to the presented upperbound (2 + o(1))2m/m for n = 2m = 64 and d = 4
computed according to Eq. (2). Only blue values and edges depend on the concrete database, which is equal to a se-
quence of binary presentations of all 4-bit integers. Everything else depends just on the value of m. For the sake of sim-
plicity, we use the truth tables of corresponding subfunctions to label the extra nodes. The concrete database is f =
(0, 0, 0, 0; 0, 0, 0, 1; 0, 0, 1, 0; 0, 0, 1, 1; 0, 1, 0, 0, . . . ).

It is clear that this OBDD computes f and has length m. The size of WP(f) clearly depends on d.
There are two different recommendations for d. In [BHR95], it was recommend to fix

d := m− blog2(m− 2 log2m)c . (1)

For such d, as it is shown in [BHR95], WP(f) has size upperbounded by (2 + o(1))2m/m. However,
for this choice of d to work, one has to assume that m ≥ 7. Therefore, if m is small, we follow the
recommendation of [Weg00] to take

d := m− blog2(m+ 1− log2m)c . (2)

It was known [Weg00] that with this choice of d, the size of WP(f) is (3 + o(1))2m/m.

Example 1. In the concrete case m = 6, d = 4 according to Eq. (2). The complete ordered decision tree
(which corresponds to the use of Lipmaa’s CPIR protocol from [Lip05]) has 2m − 1 = 63 non-terminal
nodes. The OBDD WP(f) has 2d−1+22m−d−2 = 15+16−2 = 29 non-terminal nodes. Thus even in
this pet case, the BddCpir protocol requires 63/29 ≈ 2 times less public-key operations than Lipmaa’s
CPIR protocol. See Tbl. 1 for 2m − 1 and the size of WP(f) for other values of m, where an optimal d
has been numerically optimized. (Note that this usually agrees with d computed according to Eq. (2).)
There we see that for m = 20, the BddCpir protocol requires 8 times less public-key operations than
Lipmaa’s CPIR protocol.

Now, let us proceed to compute the efficiency of this variation of the BddCpir protocol. Offline com-
putation of the BddCpir protocol (the construction of the OBDD that corresponds to the upperbound)
takes O(2m) non-cryptographic operations. This value is not so important because the offline computa-
tion has to be only done once per database, and not once per query. As evident from the construction of
WP(f), only the location of 2d ≈ 2m/(m + 1 − log2m) = (1 + o(1)) · 2m/m edges depends on the
database. Thus even when the database is completely changed, one has to change O(2d) = O(2m/m)
edges. This takes O(2m/m) time in the RAM model, and can be compared to the 2m work that is neces-
sary to update the database itself. In the case the database is updated in say t element, exactly the location
of t edges is changed.
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m 2m − 1 WP(f) Opt. d Imprv.
1 1 1 1 1.0
2 3 3 1 1.0
3 7 5 2 1.4
4 15 9 3 1.66667
5 31 17 4 1.82353
6 63 29 4 2.17241
7 127 45 5 2.82222
8 255 77 6 3.31169
9 511 141 7 3.62411

10 1 023 269 8 3.80297
11 2 047 509 8 4.02161
12 4 095 765 9 5.35294

m 2m − 1 WP(f) Opt. d Imprv.
13 8 191 1 277 10 6.41425
14 16 383 2 301 11 7.11995
15 32 767 4 349 12 7.53438
16 65 535 8 445 13 7.76021
17 131 071 16 637 14 7.87828
18 262 143 33 021 15 7.93868
19 524 287 65 789 16 7.96922
20 1 048 575 131 069 16 8.00018
21 2 097 151 196 605 17 10.6668
22 4 194 303 327 677 18 12.8001
23 8 388 607 589 821 19 14.2223
24 16 777 215 1 114 109 20 15.0589

Table1. The comparison of the size of the binary decision tree and WP(f)

Online evaluation of the BDD WP(f) on concrete input x takes (3 + o(1))2m/m public-key oper-
ations. As depicted by Tbl. 1, this is smaller than the trivial n = 2m for any m ≥ 3. To the best of our
knowledge, this is the first (n, 1)-CPIR with this property. Note that the upperbound Θ(2m/m) is also
tight because there exist functions f with BDD(f) = (1− o(1))2m/m [BHR95].

For the sake of concreteness, we state the result only in the case when we use Lipmaa’s underlying
(2, 1)-CPIR protocol.

Theorem 2. Assume that the Decisional Composite Residuosity Assumption holds. Fix n and `. Then
there exists a CPA-secure (n, 1)-CPIR protocol for 1-bit strings with communication Θ(log2 n) · k and
server’s online computation of O(n/ log n) public-key operations.

Proof. Follows from Cor. 1 and the upperbound of [LL92,HM94,BHR95], by letting F to be the set of
all Boolean functions f : {0, 1}dlog2 ne → {0, 1}, and using the OBDD WP(f). ut

LONGER STRINGS. Let f : {0, 1}m → {0, 1}` for some ` ≥ 1. By the already mentioned upperbound
of [LL92,HM94,BHR95], clearly BDD(f) ≤ ` · (2 + o(1))2m/m by just evaluating ` BDDs in parallel.
Thus, there exists a sublinear-computation CPIR protocol for say any ` ≤ m/3. However, we can prove
the next more precise result.

Theorem 3. Let f : {0, 1}m → {0, 1}` for some ` ≥ 1. For ` ≥ 1, OBDD(f) ≤ (2+o(1)) ·2m ·`/(m+
log2 `).

Proof. We follow the same ideas as in constructing WP(f). The new OBDD starts with a complete
binary tree of depth d and then has 2`·2

m−d
extra nodes that correspond to all possible subfunctions

f ′ : {0, 1}m−d → {0, 1}`, with 2` of those extra nodes being the sinks. The edges are added in the
natural way. Thus, this construction has 2d− 1 + 2`2

m−d − 2` non-terminal nodes. This value is (almost)
minimized when d = ` · 2m−d, that is, when d = W (2m` ln 2)/ ln 2. Here W (x) is the Lambert’s
W -function, that is the inverse function of f(w) = w · exp(w). Using this value of d, we get that the
constructed OBDD has then 2 · exp(W (2m` · ln 2))− 2` − 1 non-terminal nodes. Next, we use the first
two elements of the series expansion of W (z) = ln z − ln ln z + . . . , to find that the constructed OBDD
has approximately

2 exp(ln(2m` ln 2)− ln ln(2m` ln 2))− 2` − 1 =
2m+1`

m+ log2 `+ log2 ln 2
− 2` − 1 ≤ 2 · 2m`

m+ log2 `

non-terminal nodes. Because d has to be integral, the computations are not precise, and there will be a
small additional multiplicative constant 1+o(1) that this expression will be multiplied with. Note that the
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size of this OBDD is smaller than the trivial 2m−1 if say ` ≤ (m+log2 `)/3 or say ` ≤ (m+logm)/3.
ut

Thus, one can implement a (n, 1)-CPIR for `-bit strings with upperbound of O(n · `/(log n + log `))
online computation.

Theorem 4. Assume that the Decisional Composite Residuosity Assumption holds. There exists a CPA-
secure (n, 1)-CPIR protocol for `-bit strings with communication Θ(` · log n + k · log2 n) and online
computation of O(` · n/(log n+ log `)) public-key operations.

4.2 Case 2: CPIR for Sparse Matrices

In almost all real life data, there is a lot of redundancy. In fact, otherwise most of the existing data-
mining and machine learning algorithms would not be useful in practice. As a concrete application area
of the BddCpir protocol, consider privacy-preserving data mining scenarios that often deal with huge
(say, 8 000 times 8 000) but very sparse Boolean matrices. For example, in such applications every row
of this matrix could be a transaction (say in a supermarket) and every column would correspond to some
item sold in this supermarket. An element mij of this matrix would be 1 exactly when during the ith
transaction the jth item was actually bought.

One of the most basic operations in such applications is private retrieval of a single matrix element.
Clearly, linear-time CPIR protocols are not applicable in this case due to the raw size of the matrices.
However, if the matrix is very sparse, then one can efficiently present the matrix as a BDD (as was
recommended say in [FMY97]), and then apply the BddCpir protocol. As noted in [FMY97], BDD is a
good data structure for representing sparse matrices. In particular, if the matrix is very sparse, then the
next straightforward OBDD representation is already good enough. Namely, assume that the Boolean
matrix has dimensions 2a × 2b and contains c � 2ab ones. We can then represent the matrix as a join
of c paths of length dlog2(a + b)e, where every sink (and thus every path) corresponds to exactly one
1 entry in the matrix. Thus, the size of this OBDD representation is upperbounded by c · dlog2(a +
b)e [FMY97] while its length is upperbounded by dlog2(a + b)e. This is an upperbound, since all paths
share at least one (and usually more) nodes. Thus, in the case of sparse but huge matrices, we can use this
trivial representation and then just apply BddCpir to this. Note that, as shown in [FMY97], many matrix
algorithms can be performed efficiently on the OBDD representation of sparse matrices, which makes
the OBDD representation of sparse matrices reasonable in many data-mining applications and thus one
could apply more complex privacy-preserving operations on the top of CPIR.

For example, assume that we have a 8 000 × 8 000 matrix. If this matrix has exactly one 1 in every
row (like the permutation matrices), then BddCpir has server’s online computation dominated by ≤
8 000 · log2(16 000) = 8 000 · 14 = 112 000 ≈ 216.78 public-key operations, while all previous CPIR
protocols need 8 0002 ≈ 225.93 public-key operations. If the matrix has say 16 ones in every row in
average (this is typical in shopping-basket applications), then BddCpir is still more than 32 times faster
than CPIR protocols with linear computation.

5 Discussions

APPLICATIONS TO CRYPTOGRAPHIC PROTOCOLS. In many existing cryptographic protocols where
the server has to cryptocompute some value and then return it to the client, because of the lack of more
efficient methods, the server precomputes a database of possible answers and then the client and the
server execute an (n, 1)-CPIR protocol. In such cases, the database has a clear structure, and thus the
BddCpir protocol can be applied.
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ACHIEVING SERVER-PRIVACY. Recall that an (n, 1)-CPIR protocol that also achieves server-privacy is
usually called an (n, 1)-OT protocol. As said earlier, as the minimum, the underlying BDD has to be lay-
ered or otherwise the protocol will not preserve server’s privacy. Most of the BDDs that appear in practice
can be easily made layered, and in fact layering makes the BDD at most quadratically larger [IP07].

We will next show that the BDD WP(f) can be made layered in a virtually costless way. For this,
first one has to add m− d− j dummy nodes per each node on bottom d levels, or

m−d∑
j=1

(m− d− j)(22j − 22j−1
) =

m−d−1∑
j=1

22j + 2 = Θ(22m−d−1
)

nodes in total. Now, if d is chosen according to Eq. (1), this will be (2+o(1))2m/2/m nodes. If d is chosen
according to Eq. (2), this will be (

√
2 + o(1))2m/2/

√
m nodes. Both values are negligible compared to

the total number of nodes Θ(2m/m) in the BDD. In addition, for every node on the level d—and there
are (1+ o(1))2m/m2 such nodes if d is chosen according to Eq. (1) and (1+ o(1))2m/m if according to
Eq. (2)—there are database-dependent edges to nodes in bottom layers. Because the number of bottom
layers is m − d, if d is chosen according to Eq. (2), at most (1 + o(1))2m logm/m2 new edges will be
added.

After making the BDD layered, we must add privacy against a malicious server. There are many exist-
ing CPIR-to-OT transformations [NP99,AIR01,Kal05,Lip05,IP07,LL07]. Some of these transformations
can be directly applied in our case. For example, the transformation from [LL07] takes m = log2 n
public-key operations, and modifies the CPIR protocol to a server-private protocol. (With the caveat that
the public key has to be rough.) See [LL07,IP07] for more discussions.
BALANCING. As always, let f : {0, 1}m → {0, 1}σ`. In PrivateBDD, the client sends m messages
and the server sends σ messages. If m � σ and σ` � m, then one can improve the communication
by balancing, as follows. Without loss of generality, assume that σ | m. Denote b := m/σ. Then, for
j ∈ {0, . . . , b − 1}, let fj : {0, 1}m → {0, 1}σ`/b. Here, f0 computes the first `/b bits of every source
(that is, computes f restricted on the first `/b bits of the sink values), f1 computes the next `/b bits
of every source, etc. We then execute the PrivateBDD protocol (by reusing client’s first message) in
parallel for every fj , and concatenate the private outputs. Thus, in this balanced version, the client sends
m messages of length ≤ (`/b + (len(F) + 2) · k). The server returns bσ messages of the same length.
Thus, the total communication of the balanced protocol is ≤ (m + bσ)(`/b + (len(F) + 2) · k) =
2m(σ`/m+ (len(F) + 2) · k) = 2σ`+ 2m(len(F) + 2) · k. Thus, if `� mlen(F)k, then this version
of the PrivateBDD protocol has information rate 1/2. If ` is even longer, one can define b := αm/σ for
some α > 1, then the balanced protocol has communication (1 + 1/α)σ` + (α + 1)m(len(F) + 2)k,
or—for large values of ` and α—information rate 1 + o(1). For example, one can take α = log2m, then
the communication is (1 + o(1))σ`+ (log2m+ 1)m(len(F + 2)k.

In another variant of balancing, we define `max ≈ (`+ len(F)k)/b. Then, after every b levels of the
BDD, the length of the intermediate output values grows longer than `max, which requires us to double
the remaining of the BDD like say in [Ste98]. Here, the total communication is (m + 2bσ)/b · (` +
len(F) · k). Defining b := log2(m/σ), this will become (m+2)

log2m−log2 σ
· (`+ len(F) · k). For integer b, the

communication is (1 + o(1)) ·m/(log2m− log2 σ)) · (`+ len(F) · k).
By using the first balancing technique, the communication of Lipmaa’s (n, 1)-CPIR protocol

from [Lip05] can be improved to 2`+(1+o(1)) · log2
2 n ·k. By using the second balancing technique, the

communication of Lipmaa’s (n, 1)-CPIR protocol can be improved toΘ((`·log n+k·log2 n)/ log logn).
Balancing can also be used on some variations of the BddCpir protocol, especially when ` is large.

MORE OPTIMIZATIONS. As an additional optimization, note that in the case of Lipmaa’s (n, 1)-CPIR
protocol, the client knows in advance in what depth every of the BDD input variable xj is used. Thus,
he does not have to send values Q(`max, xj), but can send values Q(` + (j − 1) · k, xj) for every j.
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This optimization was in fact used in [Lip05] but it is also valid in other similar contexts, including both
presented variations of the BddCpir protocol.
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