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Abstract. PRESENT is a hardware-oriented block cipher suitable for resource con-
strained environment. We analyze PRESENT by a multidimensional linear cryptanal-
ysis method. We claim that the PRESENT using 80-bit key can be attacked up to
23 round faster than key exhaustive search with around 259.3 data complexity. Our
results are superior to all the previous attacks under the known plaintext attack sce-
nario. We demonstrate our claim by performing the linear attacks on reduced variants
of PRESENT. Our results exemplify that multidimensional linear attack can improve
the performance of classical linear attack significantly.
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1 Introduction

PRESENT [3] is a lightweight SPN block cipher that is designed for resource restricted
applications such as RFID and sensor networks. PRESENT was proposed by Bogdanov et
al. at CHES 2007. As far as we know, three cryptanalytic studies on PRESENT have been
presented so far. The first attack is a differential cryptanalysis that can recover the secret key
up to 16 rounds using 264 chosen texts and 265 memory accesses [13]. The second attack is a
differential attack using algebraic techniques that can recover a 80-bit key up to 16 rounds
with similar complexity to [13] and a 128-bit key up to 19 rounds by 2113 computations [1].
The third attack is a statistical saturation attack that is applicable up to 24 round using
257 chosen texts and 257 time complexity under the condition that the parts of plaintexts
are fixed to a constant value [4].

In this paper, we analyze PRESENT by a linear cryptanalysis method. We observe that
PRESENT has a large number of linear approximations that hold with the same order of
magnitude of correlations due to the simple structure of the round function. As shown in
[6], a multidimensional linear attack can be efficiently applied to such cipher. According to
our analysis, the PRESENT using 80-bit key can be attacked up to 23 round faster than
key exhaustive search with around 259.3 data complexity. Our results are superior to all the
previous attacks under the known plaintext attack scenario. We demonstrate our claim by
performing the linear attacks on reduced variants of PRESENT.

This paper is organized as follows. In Section 2, the structure of PRESENT is briefly de-
scribed and the framework of multidimensional linear attack is presented. In Section 3, linear
characteristics are derived and their capacities are computed. In Section 4, the attack algo-
rithm using linear characteristics is described. In Section 5, our attack are applied to reduced
variants of PRESENT and the experimental results are presented. Section 6 concludes this
paper.
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2 Preliminaries

2.1 Brief Description of PRESENT

PRESENT is a SPN block cipher that consists of 31 rounds. The block length is 64 bits and
two key lengths of 80 and 128 bits are supported. Each of the 31 rounds consists of three
layers: addRoundKey, SboxLayer and pLayer. The AddRoundKey is a 64-bit eXclusiveOR
operation with a round key. The SboxLayer is a 64-bit nonlinear transform using a single
S-box 16 times in parallel. The S-box is a nonlinear bijective mapping S : F

4
2 7→ F

4
2 given

in Table 4. The pLayer is a bit-by-bit permutation P : F
64
2 7→ F

64
2 given in Table 5. The

design idea of SboxLayer and pLayer is adapted from Serpent [2] and DES block cipher [9],
respectively.

Depending on the key size, two versions of key scheduling algorithms are provided. The
structure and pseudo-code of PRESENT are illustrated in Figure 1 taken from [3]. For
complete description of PRESENT we refer to the paper [3].

Fig. 1. Overview of PRESENT

2.2 Multidimensional Linear Cryptanalysis using Matsui’s Algorithm 2

Multidimensional linear cryptanalysis is an extension of Matsui’s classical linear cryptanal-
ysis [8] in which multiple linear approximations are optimally exploited. The general frame-
work of the multidimensional linear cryptanalysis adapting Matsui’s algorithm 2 was pre-
sented by Hermelin et al. in [7]. In their paper, Hermelin et al. studied two statistic methods:
the log-likelihood ratio (LLR) and the χ2. We apply the χ2 statistic method to PRESENT
since the LLR method is not proper to PRESENT-like structure. The detailed explanation
will be given in Section 4.4.

The brief framework of the χ2 method is given below. Let m denote the dimension of linear
approximations and p be the probability distribution of m-dimensional approximations. The

capacity of p is defined by C =
∑2m

−1
i=0

(pi−ui)
2

ui
where u is the uniform distribution. Suppose

l is the length of the target key. For all values of k ∈ [0, 2l − 1], one obtains the empirical
probability distributions qk by measuring the frequency of m-dimensional vectors of which
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coordinates are parity bits of m linear independent approximations. Then the key candidates
are ranked by computing the χ2-statistic that is defined as

D(k) = 2m
2m

−1
∑

i=0

(qk
i − 2−m)2 (1)

which represents the l2-distance of the qk from the uniform distribution.

If the right key is ranked in the position of d from the top out of 2l key candidates, we say
that the attack has the advantage of (l− log2 d) [12]. The advantage of the χ2-method using
statistic (1) is derived in Theorem 1 in [7] by

advantage =
(NC − 4Φ−2(2Ps − 1))2

8(2m − 1)
, Φ(x) =

∫ x

−∞

1√
2π

e−t2/2dt (2)

where Ps is the success probability, N is the amount of data and C is the capacity.

2.3 Notations

Given a 64-bit string X, we use the notation Xi for indicating the i-th 4-bit string of X
as counting X0 at the right. Let Si denote the i-th S-box in the SboxLayer, P denote the
permutation mapping defined in Table 5 and K(r) denote the r-th round key. Let Ω(r)(a, b)
denote a linear characteristic over r rounds of PRESENT with the input mask a and the
output mask b where a, b ∈ F

64
2 . We write Ω(r)(a, b) = Ω(r)(ai, bi) if only ai, bi 6= 0 and

other bits of a and b are zero. In our notation of the bit masks, we identify F
4
2 with Z16. We

use the little endian for bit notation through the paper, that is, the least significant bit is
counted at the rightmost.

3 Linear Characteristics of PRESENT

Let π(α, β) denote a linear approximation of S-box S where α, β ∈ F
4
2 are an input and

output mask of S, respectively. The correlation of π(α, β) is denoted by ρ(α, β). We observe
that the S-box has the following properties:

S1. For α, β ∈ {2, 4, 8}, ρ(α, β) = ±2−2 except that ρ(8, 4) = 0; and
S2. For α ∈ {1, 2, 4, 8}, ρ(α, 1) = ρ(1, α) = 0.

We focus on the linear trails exploiting the linear approximations of which the input and
output masks have a single active bit, respectively. The linear masks having more than
one active bits affect at least two S-boxes in the consecutive round due to the permutation
property, which yield much less correlations in the multiple rounds of PRESENT.

Definition 1. A single-bit linear trail is a linear trail where the input and output masks of

linear approximations of all intermediate S-boxes are of Hamming weight one.

Hereafter, a linear trail means a single-bit linear trail unless specified otherwise. Let A be
a subset of the SboxLayer defined as A = {S5, S6, S7, S9, S10, S11, S13, S14, S15} and B be a
set of bit locations defined as B = {4i + 1, 4i + 2, 4i + 3|0 ≤ i ≤ 15, Si ∈ A}. We observe
that the permutation P given by Table 5 has the following properties:

P1. For 0 ≤ x ≤ 63, P ◦ P ◦ P (x) = x; and
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P2. If x ∈ B, then P (x) ∈ B. If x 6∈ B, then one of P (x), P ◦P (x) or P ◦P ◦P (x) becomes
the least significant bit of an S-box.

According to Property S2, the linear trails passing through the least significant bit of S-box
do not have correlations. Hence, we focus on the linear characteristics exploiting the S-boxes
in the set A only.

We build the linear characteristics ending with a single S-box in order to minimize the
active S-boxes in the last round. Due to the permutation, a single S-box always activates
four S-boxes in the next round. Since the output of each S-box is 4 bits, our attack targets
to recover the 16 bits of the last round key.

3.1 4 Round Linear Characteristics

Let Ω(4)(a, b) denote a linear characteristic starting with all S-boxes in the set A and end-
ing with S5 where a and b are 64-bit strings. The Ω(4)(a, b) is actually composed of nine
linear characteristics Ω(4)(ai, b5) starting with a single Si ∈ A and ending with S5. Due
to properties of the S-box and the permutation, each Ω(4)(ai, b5) has four dominant linear
trails as shown in Figure 2. Note that the Ω(4)(ai, b5) allows the linear trail using the least
significant bit since the ai and b5 can be arbitrary values between 0 and 15. Each linear trail

ai

?

S
3 2 1 0

?? ? ?

S S S S

? ? ? ?

S S S S

????

S
3 2 1 0

?

b5

Fig. 2. Linear trails in Ω4(ai, b5)

of Ω(4)(ai, b5) takes the following path:

π(ai, 2
j) → π(2u, 2) → π(2v, 2) → π(2j , b5)

where j ∈ {0, 1, 2, 3} and

u =











1, if i = 5, 9, 13

2, if i = 6, 10, 14

3, if i = 7, 11, 15

and v =











1, if i = 5, 6, 7

2, if i = 9, 10, 11

3, if i = 13, 14, 15.

According to the correlation theorem [11], the correlation of Ω(4)(ai, b5) given the key K
is the summation of all linear trails in the characteristic. See also Section 7.9 in [5]. We
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estimate the correlation by the summation of correlations of dominant four linear trails as
follows:

c(4)(ai, b5;K) =

3
∑

j=0

(−1)kj ρ(ai, 2
j) · 2−2 · 2−2 · ρ(2j , b5) (3)

where kj denotes the combination of round key bits located in the j-th linear trail. Since
Ω(4)(a, b) has nine linear characteristics and each one has four linear trails with the correla-
tions of (3), the capacity of Ω(4)(a, b) is estimated by

C(4)(K) = 9 ×
15
∑

α=0

15
∑

β=0

(

c(4)(α, β;K)
)2

. (4)

Due to Parseval’s theorem,
∑15

α=0 ρ(α, β)2 = 1, for a fixed β ∈ F
4
2. Since the S-box is bijective,

also
∑15

β=0 ρ(α, β)2 = 1, for a fixed α ∈ F
4
2. Hence, we obtain the following lemma:

Lemma 1. Let us assume that the round keys of PRESENT are statistically independent.

For a, b ∈ F
64
2 , the expected value of the capacity of Ω(4)(a, b) over the secret key K is

estimated to be 2−2.83.

Proof. From (3), we derive

EK

[

(

c(4)(α, β;K)
)2

]

= EK











3
∑

j=0

(−1)kj · 2−4 · ρ(α, 2j) · ρ(2j , β)





2






= EK





3
∑

j=0

3
∑

v=0

(−1)kj⊕kv · 2−8 · ρ(α, 2j) · ρ(2j , β) · ρ(α, 2v) · ρ(2v, β)





= 2−8 ·
3

∑

j=0

ρ(α, 2j)2 · ρ(2j , β)2

since

EK

[

(−1)kj (−1)kv
]

=

{

1 if j = v,

0 if j 6= v ⇔ kj 6= kv

under the assumption that the round key bits are statistically independent. Then, due to
Parseval’s theorem, we get

EK [C(4)(K)] = 9 ·
15
∑

α=0

15
∑

β=0



2−8 ·
3

∑

j=0

ρ(α, 2j)2 · ρ(2j , β)2



 = 9 · 4 · 2−8 = 2−2.83.

⊓⊔

Since the round keys are expanded from the user-supplied key K by the key scheduling algo-
rithm, the assumption that the round keys are statistically independent is not always fulfilled
in general. Hence, Lemma 1 provides an estimated average capacity of linear characteristic.
However, as studied in Section 7.9 in [5], the assumption on statistical independence of the
round keys is reasonable in practice and we verified the results of Lemma 1 by experiments.
We use this assumption for the analysis of further rounds of PRESENT in the next section.
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3.2 n + 4 Round Linear Characteristic

Let us recall B = {4i + 1, 4i + 2, 4i + 3|0 ≤ i ≤ 15, Si ∈ A} defined in the previous section.
Let Ω1 denote a 1-round characteristic that exploits all linear trails indexed by B, as shown
in Figure 3. For a positive integer n, the n + 4 round linear characteristic Ω(n+4)(a, b) is

??? ??? ?????????????????????

S15 S14 S13 S11 S10 S9 S7 S6 S5

pLayer

??? ??? ?????????????????????

Fig. 3. 1-round linear characteristic Ω1

constructed by repeating n times the Ω1 and adding the 4 round characteristic at the bottom
as shown in Figure 4. We note that the S5 in the last round of the characteristic can be
replaced by any other S-box included in A.

In contrast to the four round characteristic, the Ω(n+4)(a, b) do not allow the linear trails
using the least significant bit of S-box. If the π(1, α) or π(α, 1) for α ∈ {20, 21, 22, 23} is
used at least once in the n + 4 round characteristics, then such linear trails do not have
correlation since ρ(α, 1) = ρ(1, α) = 0 due to Property S2.

Corollary 1. The expected value of the capacity of Ω(4)(a, b) without the least significant

bit trail is 2−3.25.

Proof. The claim is followed by the proof of Lemma 1 with three linear trails. ⊓⊔

The expected capacity of n + 4 round linear characteristics is calculated in two steps: first,
the expected correlations of all linear trails over the second to the n-th round are calculated;
then Corollary 1 is applied to compute the desired capacity.

Let θ
(r)
i denote the correlation of the i-th linear trail over the second to the r-th round where

i ∈ B. As shown in Figure 4, any linear trail of the (r + 1)-th round can be extended to

three linear trails of the r-th round. Hence, given K, the θ
(r+1)
i is recursively expressed as

∀i ∈ B, θ
(r+1)
i (K) =

3
∑

j=1

(−1)K(r+1)
ν ρ(2j , 2i mod 4) θ

(r)
IP (ν)(K), ν = 4⌊i/4⌋ + j (5)

where K
(r+1)
ν denotes the ν-th bit of r + 1 round key and IP is an inverse mapping of P .

Since {IP (ν)|i ∈ B, 1 ≤ j ≤ 3} = B, the expected values of θ
(n)
i are calculated by the

following algorithm:

1. Initialize θ
(0)
i = 1 for all i ∈ B.

2. Repeat for 1 ≤ r ≤ n,

(a) Compute θ
(r)
i (K) using (5) for all possible values of K ∈ F

27
2 .

(b) Assign θ
(r)
i = EK(|θ(r)

i (K)|).

Having θ
(n)
i for all i ∈ B, the capacity of the n + 4 round characteristic is computed by the

following lemma:
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? ? ???????

α5α6α7α9α10α11α13α14α15

n × Ω1

S15 S14 S13 S11 S10 S9 S7 S6 S5

S15 S14 S13 S11 S10 S9 S7 S6 S5

S7 S6 S5

S5

β5

?

Fig. 4. (n + 4) rounds linear characteristic Ω(n+4)(α, β)

Lemma 2. Let us assume that the round keys of PRESENT are statistically independent.

For a, b ∈ F
64
2 , the expected capacity of Ω(n+4)(a, b) over the key K is

2−8
∑

t∈B

(

θ
(n)
t

)2

.

Proof. For ai, b5 ∈ F
4
2, we have

c(n+4)(ai, b5;K) =

3
∑

j=1

(−1)kj · ρ(ai, 2
j) · θ(n)

t (K) · 2−2 · 2−2 · ρ(2j , b5), t = P (4i + j).

Similarly to Corollary 1, we get

EK

[

(

c(n+4)(α, β;K)
)2

]

= EK



2−8
3

∑

j=1

ρ(ai, 2
j)2 · (θ(n)

t (K))2 · ρ(2j , b5)
2



 .

Due to Parseval’s theorem, the capacity is

EK [C(n+4)(K)] = 9

15
∑

α=0

15
∑

β=0

EK

[

(

c(n+4)(α, β;K)
)2

]

= 9 · 3 · 2−8 · EK

[

(

θ
(n)
t (K)

)2
]

.

Since the mapping x 7→ P (x) for x ∈ B is bijective, the claim follows. ⊓⊔

Table 1 shows the average capacities of n+4 round linear characteristics that are calculated
by Lemma 2. By interpolating the results shown in Table 1, we can see that the capacity of
n + 4 round characteristic is estimated into the following formula:

C(n+4) ≈ 2−5.83−2.61(n−5), n > 0. (6)
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The results of Lemma 2 means that the expected capacity of Ω(n+4)(a, b) is the sum of the
square of correlations of all linear trails starting from the second round and ending to the
second last round. Since the multidimensional linear attack takes all the correlations of the
first round and the last round, the capacity of the characteristic is only contributed by the
linear trails of n + 2 rounds.

The idea behind Lemma 2 is well consistent to the results of [10]. In Theorem 1 of [10], it
is proved that the average value of the square of correlation 1 of the linear approximation
is the sum of the square of correlations of all linear trails. See also [5]. This theorem can be
extended to the multidimensional linear cryptanalysis as follows:

Proposition 1. The expected capacity of an m-dimensional linear approximation is the

sum of the square of the expected correlations of all the linear trails that all the 2m − 1
one-dimensional linear approximations have.

In the next section, we describe how the linear characteristics are used for the linear attacks
based on Matsui’s algorithm 2.

round capacity round capacity

5 2−5.83 18 2−39.74

6 2−8.41 19 2−42.36

7 2−11.02 20 2−44.97

8 2−13.63 21 2−47.58

9 2−16.24 22 2−50.19

10 2−18.85 23 2−52.80

11 2−21.46 24 2−55.41

12 2−24.08 25 2−58.02

13 2−26.69 26 2−60.64

14 2−29.30 27 2−63.25

15 2−31.91 28 2−65.86

16 2−34.52 29 2−68.47

17 2−37.13 30 2−71.08

Table 1. Evaluation of capacities of n + 4 round characteristics

4 Multidimensional Linear Attacks on PRESENT

4.1 Selection of linear independent approximations

For a fixed n, the dimension of input masks of the Ω(n)(a, b) is 4 × 9 and the dimension of
output mask is 5. We observe that the linear trails passing more than one S-boxes in each
round have much less correlations than a single-bit linear trails. Hence, for efficiency, we
choose 8-dimensional linear approximations for each Ω(n)(ai, b5) where Si ∈ A. Since there
are nine such characteristics in Ω(r)(a, b), the number of linear approximations spanned for
our attack is 9 × (28 − 1) in total.

We use 8 unit vectors as the linear independent approximations of Ω(n)(ai, b5). Even though
each unit vector does not have any correlation, all the non-negligible linear approximations

1 This is called the potential in [10].
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can be spanned by these unit vectors. The merit of this approach is that the evaluation of
the input and output parities of linear approximations is not needed; the concatenation of
input and output of linear characteristic indicates the index of the multidimensional counter.
Hence, the time complexity of the attack can be reduced by at least a factor of m where m
is the dimension of the linear approximations.

4.2 Attack Complexity

Let nc be the number of linear characteristics and m is the dimension of each characteristic.
The number of linear approximations available for the attack is nc× (2m−1) in total. Then,
the amount of data required for χ2 statistic method is obtained by modifying (2) as follows:

N =
(

√

advantage · 8 · nc · (2m − 1) + 4Φ−2(2Ps − 1)
)

/C(r)

where Ps is the success probability and C(r) is the capacity. If the target key is l-bit, the
time complexity of the attack is estimated as

T = N · nc · 2l + nc · 2l+m ≈ N · nc · 2l

since N is usually much larger than 2m. The memory complexity is around nc · 2l+m.

For the Ω(n+4)(a, b), we set m = 8 and nc = 9. Then the full advantage (16 bits) of the
attack with the success probability 0.95 is achieved by the data complexity of

N =
(

√

16 · 8 · 9 · (28 − 1) + 4Φ−2(2Ps − 1)
)

/C(r) ≈ 29.1/C(r)

with time complexity of 9 · 216 · N = 219.2N and the memory of 9 · 224 ≈ 227.2. Without
increasing the amount of data, we can obtain another 16 bits of the last round key by using
a linear characteristic ending with Si ∈ A−{S5}. We also note that our linear characteristic
can be converted to a reciprocal form; starting with a single Si at round 2 and ending with
nine S-boxes of A in the last round. Then, we target to recover the first round key. According
to the key scheduling of PRESENT, the 64 bits of the user-supplied secret key is used in the
first round key without modification. Hence, we can recover 16n bits of the secret key by
applying linear attacks repeatedly n times. The remaining key 128− 16n or 80− 16n can be
obtained by exhaustive key search. We compares our attacks with previous attacks against
various rounds of PRESENT in Table 2.

round data time source

16 264 265 Differential [13]
241.0 260.2 Linear (this paper)

19 - 2113 Differential + Algebraic [1]
248.8 268.0 Linear (this paper)

23 259.3 278.5 Linear (this paper)

Table 2. Comparison of data and time complexity of the attacks against PRESENT under the
known plaintext attack scenario
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4.3 Algorithm of Linear Attack for Recovering 16 bits of the Key

1. Prepare 9 · 216+8 counters and initialize them by zero.

2. Collect N plaintext-ciphertext pairs.

3. For K = 0, . . . , 216−1,

(a) Decrypt the ciphertext partially over the last round by using K and get the output
of S5 of r − 1 round.

(b) Obtain nine indices by concatenating the input of Si ∈ A of the plaintext and the
output of S5 of the decrypted ciphertext.

(c) increase by 1 the counters indicated by above indices.

4. Repeat updating counters with N text pairs.

5. Compute l2 distance between the probability distribution for each K and uniform dis-
tribution.

6. Sort out the candidate keys according to their l2 distances.

7. Perform the right key search from the top rank.

4.4 Discussion

Weakness of bit permutation Our attack is mainly based on the observation that
PRESENT has a large number of linear approximations with the same magnitude of cor-
relations. It seems that this weakness is caused by the lack of diffusion property of the
bit permutation. Even though the bit permutation is desirable for efficient hardware im-
plementation, it has a potential weakness that input bits and output bits have one-to-one
correspondence. Hence, a single-bit linear approximations of an S-box of any round can
be connected to another single-bit linear approximation of next round through the permu-
tation layer. Since the S-box of PRESENT has multiple linear approximations of which
linear masks have a single active bit, one can construct multiple single-bit linear trails over
arbitrary rounds.

Note that this weakness does not appear in the linear transformation functions of Serpent [2]
or AES [5] since any single output bit of the linear transformation is expressed as a boolean
function of at least two input bits.

Correlation and Piling Up Lemma The designers of PRESENT proved in Theorem 2 of
[3] that the maximum correlation of a linear approximation of four rounds of PRESENT is
2−6. As a result, the maximal correlation of a 28-round linear approximation was estimated
to be (2−6)7 = 2−42 by Piling Up lemma [3]. On the other hand, according to our analysis,
the capacity of the 28 round PRESENT is estimated to be around 2−65.9.

The difference between the designers’ estimation and our result is originated from the two
facts: firstly, a linear approximation in PRESENT has multiple linear trails with same am-
plitude of correlations. As mentioned before, the expected value of the squared correlation of
linear approximation is the sum of the square of correlations of all linear trails [10, 5]. Hence,
the squared correlation of a single linear trail is largely deviated from the true value. Sec-
ondly, PRESENT has a large amount of equally-correlated linear approximations. Since the
data complexity of multidimensional linear cryptanalysis is inversely proportional to the ca-
pacity of the multiple linear approximations [7], the data complexity is reduced significantly
compared to the estimate by a correlation of a single approximation.
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The χ2 and LLR method Finally, we justify the reason why the LLR method is not
used for the attack on PRESENT even if the LLR method showed a better performance
than the χ2 method in the attack on SERPENT [6]. As described in [6], the LLR method
is more advantageous compared to the χ2 method if the pre-computed profile of probability
distribution is accurate. However, the distribution of linear approximations in PRESENT
heavily depends on the key values so that the space of profile of the probability distribution
becomes too large. On the other hand, the χ2 method does not need to know the distribution
accurately. We only need to detect a large deviation from the uniform distribution. It is an
open problem whether there is a way to apply the LLR method efficiently for the attacks
against PRESENT. According to [7], the successful multidimensional attack using LLR
method could further reduce the data complexity of our attacks by a factor of around 23.

5 Experiments

We performed our attacks up to 9 rounds of PRESENT with randomly chosen 32 secret keys.
The data and time complexity required for recovering the 16 bits of round key is displayed
in Table 3. The plaintexts were randomly generated and encrypted by PRESENT. Figure

target round characteristic capacity data time

5 Ω(4) 2−2.8 211.9 231.1

6 Ω(5) 2−5.8 214.9 234.1

7 Ω(6) 2−8.4 217.5 236.7

8 Ω(7) 2−11.0 220.1 239.3

9 Ω(8) 2−13.6 222.7 241.9

Table 3. Data and time complexity required for experimental attacks

5 illustrates the average of advantage of the attacks and the required amount of data on
reduced variants of PRESENT. The dashed lines represent theoretically estimations drawn
by (2) and the solid lines are empirical results. We can see that the estimation of the full
advantage of the attack is well matched with empirical results up to 9 rounds PRESENT.
Due to the restriction of computational resources, we did not proceed our experiments
for further rounds. However, based on the experimental results, we can conclude that our
estimates of attack complexity against further rounds PRESENT are reasonable.

6 Conclusion

One of the recent trends to prove the resistance of linear cryptanalysis is to provide a lower
bound to the number of the active S-boxes involved in a linear characteristic. Even though
PRESENT provides a provable security against linear cryptanalysis according to this rule,
our attack shows that the resistance of the classical linear cryptanalysis does not always
thwart the multidimensional linear attacks. Even though a simple and regular structure of
the cipher is desirable to the hardware-oriented block ciphers, such ciphers may have a large
number of linear approximations by which a multidimensional linear attack can be applied
efficiently. It is interesting to see that our attack can be applied to some other ciphers that
have simple structures, like AES.
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Fig. 5. Empirical evaluation of linear attacks on reduced variants of PRESENT
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A The S-box and Permutation tables of PRESENT

The S-box and the permutation tables of PRESENT are given in Table 4 and Table 5,
respectively.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Table 4. S-box table of PRESENT in hexadecimal notation

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P (i) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P (i) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
P (i) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
P (i) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

Table 5. Permutation table of PRESENT

B Correlation Table of S-box of PRESENT

Given an input mask α and an output mask β where α, β ∈ F
4
2, the correlation of the linear

approximation α · x ⊕ β · S(x) = 0 of the S-box is measured as follows:

c(α, β) = 2−4(#(α · x ⊕ β · S(x) = 0) − #(α · x ⊕ β · S(x) = 1))

where the · notation stands for the standard inner product. The correlation table of the
S-box is given in Table 6.
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α\β 1 2 3 4 5 6 7 8 9 a b c d e f

1 0 0 0 0 −2−1 0 −2−1 0 0 0 0 0 −2−1 0 2−1

2 0 2−2 2−2 −2−2 −2−2 0 0 2−2 −2−2 0 2−1 0 2−1 −2−2 2−2

3 0 2−2 2−2 2−2 −2−2 −2−1 0 −2−2 2−2 −2−1 0 0 0 −2−2 −2−2

4 0 −2−2 2−2 −2−2 −2−2 0 2−1 −2−2 −2−2 0 −2−1 0 0 −2−2 2−2

5 0 −2−2 2−2 −2−2 2−2 0 0 2−2 2−2 −2−1 0 2−1 0 2−2 2−2

6 0 0 −2−1 0 0 −2−1 0 0 −2−1 0 0 2−1 0 0 0
7 0 0 2−1 2−1 0 0 0 0 −2−1 0 0 0 0 2−1 0
8 0 2−2 −2−2 0 0 −2−2 2−2 −2−2 2−2 0 0 −2−2 2−2 2−1 2−1

9 2−1 −2−2 −2−2 0 0 2−2 −2−2 −2−2 −2−2 −2−1 0 −2−2 2−2 0 0
a 0 2−1 0 2−2 2−2 2−2 −2−2 0 0 0 −2−1 2−2 2−2 −2−2 2−2

b −2−1 0 0 −2−2 −2−2 2−2 −2−2 −2−1 0 0 0 2−2 2−2 2−2 −2−2

c 0 0 0 −2−2 −2−2 −2−2 −2−2 2−1 0 0 −2−1 −2−2 2−2 2−2 −2−2

d 2−1 2−1 0 −2−2 −2−2 2−2 2−2 0 0 0 0 2−2 −2−2 2−2 −2−2

e 0 2−2 2−2 −2−1 2−1 −2−2 −2−2 −2−2 −2−2 0 0 −2−2 −2−2 0 0
f 2−1 −2−2 2−2 0 0 −2−2 −2−2 −2−2 2−2 2−1 0 2−2 2−2 0 0

Table 6. Correlation table of S-box of PRESENT: c(α, β)

C Theoretical Estimation of Advantage of the Attack

The evaluation of the theoretical estimates on the advantage of the attack and data com-
plexity against from 16 rounds to 24 rounds of PRESENT is given in Figure 6.
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Fig. 6. Theoretical estimation of advantage of the attack against various variants of PRESENT


