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Abstract. We study a problem of secure date storage on hardware that may leak information.
We introduce a new primitive, that we call leakage-resilient storage (LRS), which is an (unkeyed)
scheme for encoding messages. The security of LRS is defined with respect to a class Γ of leakage
functions.
We consider several natural choices of such Γ ’s: (1) a simple construction for the case when the
adversary can just read-off some individual bits; (2) a construction where each leakage function
can depends only on some restricted part of the memory; (3) a scheme that is secure if the
number of functions that the adversary can choose is restricted (but still it can be exponential
in the length of the encoding). This last construction implies security in the case when, the set
Γ consists of functions that are computable by Boolean circuits of a small size.
We also discuss the connection between the problem of constructing leakage-resilient storage and
a theory of the compressibility of NP-instances.

1 Introduction

Some of the most devastating attacks on cryptographic devices are those that break the actual
physical implementation of the scheme, not its mathematical abstraction. These, so-called
side-channel attacks, are based on the fact that the adversary may obtain some information
about the internal data of the device by observing its running-time [14], electromagnetic
radiation [22, 8], power consumption [15], or even sound that the device is emitting [25] (see
[23, 19] for more examples of such attacks).

1.1 Memory leakages — previous work

In the last couple of years there has been a growing interest in the design of schemes that
already on the abstract level guarantee that their physical implementation is secure against
a large well-defined class of side-channel attacks (the pioneering paper in this area was [17],
and some of the other papers in this area are: [11, 21, 6, 12, 4, 1, 18, 13, 26, 20]). The main idea
is to augment the standard security definition by allowing the adversary to learn the value
of a chosen by him leakage function g on the internal data Y used by the cryptographic
scheme. The results in this area can be categorized according to the class of leakage functions
g that the model covers. Some papers consider very restricted classes (e.g. in [11] the model
assumes that the adversary can simply read-off some wires that represent the computation),
while other ones consider more general leakages—e.g. [5, 2] allow the adversary to choose any
function g that is input-shrinking (i.e. such that |g(Y )| � |Y |).

Another popular paradigm is to assume that only computation leaks information, i.e. the
memory cells that do not take part in the computation (in a given time period) do not leak any
information. The first paper to state this assumption is [17] (where it is stated as “Axiom 1”,
page 283), and the other papers that use it are [7, 21]. The other approach [12, 4, 1, 18, 13] is
to assume that the memory may simply leak information, independently on the computation



performed. While the second approach may seem more general, it has to be noted that the first
approach permits to construct schemes where the total amount of information that leaks can
be greater than the memory size (this is possible since the memory contents in the schemes
of [7, 21] is evolving during the computation).

It may be questioned if the “only the computation leaks information” paradigm is really
relevant to the attack that the adversary can perform in real-life. In many situations memory
may actually leak information, even if it is unaccessed. First of all, in modern computer
systems it is hard to guarantee that a given part of memory really never gets accessed (for
example the memory may be refreshed or moved to cache, etc.). Some practical attacks on
unaccessed memory were also demonstrated in [24]. More recently a class of cold boot attacks
relying on the data remanence property was presented in [9].

In [17] it is argued that

“Some form of security for unaccessed memory is mandatory. For instance, if a small
amount of information leakage from a stored secret occurs at every unit of time (e.g.,
if a given bit becomes 51% predictable within a day) then a patient enough adversary
will eventually reconstruct the entire secret.”

The goal of this paper is to introduce a formal framework to reason about what “some
form of security for unaccessed memory” means, and to propose constructions secure under
as weak assumptions as possible.

1.2 Our contribution

In this paper we introduce a new primitive, that we call leakage-resilient storage, which can
be viewed as a secure storage scheme in the model where the physical memory may leak some
side-channel information. A scheme like this consists of two poly-time algorithms Encode and
Decode, where the encoding algorithm Encode takes as input a message m and produces as
output a string Y := Encode(m), and the decoding algorithm Decode is such that we always
have Decode(Encode(m)) = m (observe that these algorithms do not take as input any secret
key).

Informally speaking, in the security definition we allow the adversary to adaptively choose
a sequence of leakage functions g1, . . . , gt, and learn the values of

g1(Y ), . . . , gt(Y ).

We require that the adversary, after learning these values, should gain essentially no additional
information on m (this is formalized using a standard indistinguishability game, see Sect. 2
for details). We assume that the gi’s are elements of some fixed set Γ (that will be a parameter
in the definition). Obviously, the larger Γ is, the stronger is our definition, and we should aim
at defining Γ in such a way that it covers all the attacks that the adversary can launch in
real life. All the Γ ’s that we consider in this paper contain at least the set of functions that
read-off the individual bits of Y (i.e. functions h such that h(Y1, . . . , Yβ) = (Yi1 , . . . , Yij )).
Hence, of course, we need to require that

|g1(Y )|+ · · ·+ |gt(Y )| < |Y | (1)

(as otherwise the adversary could simply choose the gi’s in such a way that (g1(Y ), . . . , gt(Y )) =
Y ). This is essentially the input-shrinking property that, as discussed above, was already used
in the literature.
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Obviously, if we go to the extreme and simply allow the adversary to choose any (poly-
time) functions gi that satisfy (1) then there is no hope for any security, since the adversary
could always choose g1 in such a way that it simply calculates Decode(Y ) and outputs some
information about m (say: its first bit). Therefore Γ cannot contain the Decode function, and
hence, we need to restrict Γ in some way.

Note that the assumption that Γ is a restricted class of function is actually very realistic. In
practice, the leakage functions need to be computationally “simple”: while it is plausible that
the adversary can read-off the individual bits, or learn their sum, it seems very improbable that
an attack based on measuring power consumption or electromagnetic radiation can directly
give information about some more complicated functions of the secret bits.

In this paper we consider several natural choices of such Γ ’s. We start (Sect. 3.1) with
a simple construction for the case when the adversary can just read-off some the individual
bits. Then (Sect. 3.2) we describe a construction where each leakage function can depend only
on some restricted part of the memory: either because it consists of two separate blocks, or
because it is infeasible for the adversary to choose a function that depends from the memory
cells that are physically far from each other. Finally (Sect. 3.3), we construct a scheme that
is secure if the number of functions that the adversary can choose is restricted (but still it
can be exponential in |Y |). This last construction implies security in the case when the set Γ
consists of functions that are computable by Boolean circuits of a small size. We also discuss
(in Sect. 5) the connection between the problem of constructing leakage-resilient storage and
a theory of compressibility of NP-instances [10].

2 The definition

Formally, a leakage-resilient storage (LRS) scheme is a pair (Encode,Decode), where

– Encode is a randomized, efficiently computable function Encode : {0, 1}α → {0, 1}β, and
– Decode is a deterministic, efficiently computable function Decode : {0, 1}β → {0, 1}α

Security of such a scheme is defined as follows. Let t be some parameter, and let Γ be a
subset of the set of all functions g : {0, 1}β → {0, 1}∗. Consider the following game between
an adversary A and an oracle Ω.

1. The adversary chooses a pair of messages m0,m1 ∈ {0, 1}α and sends them to Ω.
2. Ω chooses a random bit b ∈ {0, 1} and sets X := Encode(mb).
3. The following is executed t times, for i = 1, . . . , t:

(a) A selects a function gi : {0, 1}β → {0, 1}ci ∈ Γ , and sends it to Ω,
(b) Ω sends gi(X) to A. We say that A retrieved ci bits from X.

4. The adversary outputs b′. We say that he won the game if b = b′.

Such an adversary is called a (Γ, c, t)-adversary if c1+· · ·+ct ≤ c. We say that (Encode,Decode)
is (Γ, c, t, ε)-secure if no (Γ, c, t)-adversary wins the game with probability greater than 0.5+ε.
Unless explicitly stated otherwise, we will assume that the adversary in computationally-
unbounded. In this case we assume that the adversary is deterministic. This can be done
without loss of generality, since the unbounded adversary can always compute the optimal
randomness. For an adversary A let GA(Y ) denote the vector of values that the adversary A
retrieves from r, i.e. GA(Y ) := (g1(Y ), . . . , gt(Y )). Note that |GA(Y )| ≤ c.
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2.1 Preliminaries

Let random variables X0, X1 be distributed over some set X and let Y be a random variable
distributed over Y. Define the statistical distance between X0 and X1 as

δ(X0;X1) =
1
2

∑
x∈X
|P (X0 = x)− P (X1 = x) |

=
∑

x:P (X0=x)>P (X1=x)

P (X0 = x)− P (X1 = x) .

If X is distributed over X then let d(X) := δ(X;UX ) denote the statistical distance of X
from a variable uniformly distributed over X . We will overload the symbols δ and d and
sometimes apply them to the probability distributions instead of the random variables. If
E is an event then δ(X0;X1|E) = δ(PX0|E ;PX1|E) and d(X|E) = d(PX|E). If Y is a random
variable then δ(X0;X1|E , Y ) =

∑
y δ(X0;X1|E ∧ (Y = y)) · P (E ∧ (Y = y)) and d(X|E , Y ) =∑

y d(PX|E∧(Y=y)) · P (E ∧ (Y = y)). It is easy to verify that δ satisfies the triangle inequality:
δ(A;B) ≤ δ(A;C) + δ(C;B).

A min-entropy of a random variable X is denoted as H∞(x) and defined as H∞(x) =
minx(− logP (X = x)).

A family {Hs}s∈S of functions hs : X → Y is called a collection of `-wise independent hash
functions if for every set {x1, . . . , x`} ⊆ X of ` elements, and a uniformly random S ∈ S we
have that (hS(x1), . . . , hS(x`)) is distributed uniformly over Y`. Several constructions of such
functions exist in the literature. For example if GF (2n) is the field with 2n elements, and for
s = (s0, . . . , s`) ∈ GF (2n)`+1 and every m ≤ n we define

Hs(x) =

(∑̀
i=0

six
i

)
1...m

(where x1...m denotes the set of m first bits of x) then {Hs} is a collection of `-wise independent
hash functions.

3 The implementations

In this section we define several families of leakage functions Γ , and show LRS schemes secure
against these Γ ’s.

3.1 Individual-bit leakages

We start with the following simple example. Let Γ↓ be the set of all functions gi of a form

gi(x1, . . . , xβ) = (xi1 , . . . , xici
).

An (Γ↓, β − 1, β − 1, 0)-secure LRS scheme for sharing messages of length α = 1 is simply an
β-out-of-β secret sharing scheme based on xor. More precisely define Encode⊕(b) as follows:
Encode1

⊕(b) := (x1, . . . , xβ), where (x1, . . . , xβ) is a random vector such that x1⊕· · ·⊕xβ = b.
Decoding is defined as: Decode1

⊕(x1, . . . , xβ) = x1⊕ · · · ⊕ xβ. The (Γ↓, β − 1, β − 1, 0)-security
of this scheme follows from the fact that the value of x1 ⊕ · · · ⊕ xβ is uniformly random if at
least one of the xi’s is unknown.
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To encode messages m = (m1, . . . ,mα) of arbitrary length encode each bit mi individually,
i.e. set

Encode⊕((m1, . . . ,mα)) = (Y1, . . . , Yα) = (Encode1
⊕(m1), . . . ,Encode1

⊕(mα)),

and
Decode⊕(Y1, . . . , Yα) = (Decode1

⊕(Y1), . . . ,Decode1
⊕(Yα))

(note that now the length of the encoding is α · β). It is easy to see that this scheme is also
(Γ↓, β − 1, β − 1, 0)-secure.

3.2 Memory divided into two parts

Suppose that the encoding is stored on some physical storage device that consists of two
separate chips, i.e. the memory x is divided into two parts x0 and x1, and each leakage
function can be applied to one of the xi’s separately. In other words, the only restriction is
that the adversary cannot choose leakage function that depend simultaneously on both x0

and x1. More precisely, suppose that β is even and let x = (x0, x1) where x0 := (x1, . . . , xβ/2),
and x1 := (x(β/2)+1, . . . , xβ). Let Γ2 be the set of all functions gi that “depend only on x0 or
x1”, i.e. they have a form

gi(x) = g′i(x
0),

or
gi(x) = g′i(x

1)

(for some g′i). This model is essentially the same as the one of the two-party Intrusion-Resilient
Secret Sharing (IRSS) of Dziembowski and Pietrzak (see [6], Sect. 2.1). The notation that is
used in [6] is different: the memory parts xi are denoted with Ti (and T0 is called a share
of Alice, and T1 is called a share of Bob) and the leakage functions are denoted with hi.
Moreover, the retrieval bound (denoted there with s) is applied to each share separately.
Instead of bounding the number t of functions that the adversary can choose, [6] bound the
number ` of times the adversary “hops” from Alice to Bob, which simply means that ` = t/2
(let us assume that t is even). The encoding procedure is called in [6] sharing of a secret, and
the decoding procedure is called reconstructing of the secret.

To construct such a scheme [6] use so called Bounded-Storage Model (BSM)-secure func-
tions. A function f : {0, 1}m×{0, 1}n → {0, 1}m is (εBSM , c)-BSM-secure if for every function
h : {0, 1}n → {0, 1}c we have

d(f(K,R)|K,h(R)) ≤ εBSM ,

where K ∈ {0, 1}m and R ∈ {0, 1}n are uniformly random. An additional property that
is usually required is that f should be computable only from a small part of the input R.
Without this property (that in fact we do not need in this paper) any randomness extractor
is a BSM-secure function (see [16, 27]).

Dziembowski and Pietrzak show how to construct a two-party IRSS scheme using such a
BSM secure function. Their Theorem 1 implies the following:

Lemma 1. Let f be an (εBSM , c)-BSM secure function. Then for every t one can construct
an LRS scheme (EncodeIRSS,DecodeIRSS) that is (Γ2, c, t, 2α+1tεBSM )-secure. The complexity
of the encoding and the decoding procedures in this LRS scheme is linear in t.
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Proof. Theorem 1 of [6] shows how to construct a (2α+1tεBSM , t, c)-secure two-party IRSS
scheme (share2,t/2, reconstruct2,t/2) from any (εBSM , c)-BSM secure function. Let EncodeIRSS(M) =
(T1, T2) = share2,t/2(M) and let DecodeIRSS(T1, T2) = reconstruct2,t/2(T1, T2). ut

The (εBSM , c)-BSM-secure functions can be constructed for any c being a constant (smaller
than 1) fraction of n. Moreover εBSM in these constructions is negligible, and can be made so
small that for a constant α the value of 2α ·εBSM is still negligible. Hence the (Γ2, c, t, ε)-secure
LRS scheme can be constructed for c being a constant fraction of β, and ε being negligible.

Locally-computable functions Instead of assuming that x is stored on two separate chips it
is enough to assume that the leakage functions g are computable u-locally (for some parameter
u), i.e. each g can be written as

g(x1, . . . , xβ) = g′(xj , . . . , xj+u),

for some g′ and j such that j + u ≤ β (in other words: g is u-local in it depends on at
most u consecutive bits of the input). Let Γ uloc denote the set of such functions. Observe
that the individual-bit leakages with each ci = 1 (Sect. 3.1)1 can be considered as special
case of the locally-computable functions (with u = 0). The practical motivation for this
assumption is that it may be infeasible for the adversary to choose leakage functions that
depend on the cells that are physically located far from each other on one memory chip. A
scheme that is (Γ uloc , c, t, ε)-secure can be trivially constructed from a (Γ2, c, t, ε)-secure scheme
(Encode2,Decode2): to encode a message m calculate (x0, x1) := Encode2(m) and output

x0||
u︷ ︸︸ ︷

0, . . . , 0 ||x1,

in other words: just separate x0 from x1 with u memory cells filled with zeros.

3.3 Functions that have small descriptions

Probably the most interesting case is when the only restriction on Γ is that it is a small set of
functions: |Γ | = 2v, where v is some parameter (that can be for example quadratic in β). One
way to look at this family is to fix some method to describe the leakage functions as binary
strings, and observe that the set of functions whose description has length v has exactly size
2v.

For technical reasons, we introduce an additional restriction that the family Γ satisfies
the following condition: if g ∈ Γ then g′ defined as

g′(x1, . . . , xβ) = g(x1, . . . , xi−1, C, xi+1, . . . , xβ)

(for some constant C ∈ {0, 1}) is also a member of Γ . Such a family Γ will be called robust.
A natural example of such a robust Γ is a set of functions computable by Boolean circuits

of a fixed size (see e.g. [28] for an introduction to the complexity of Boolean circuits). Recall
that a size of a Boolean circuit is the number r of its gates. Each gate G can be connected
1 Obviously in Sect. 3.1 without loss of generality we could consider only the functions g with output of length
ci = 1, since every g ∈ Γ↓ with output of length ci > 1 can be computed by ci functions with output of
length 1.
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with two other gates (G1, G2) (and we can assume that G is an AND gate if G1 6= G2, and
it is a NOT gate otherwise). Hence, for each gate we can have at most (r − 1)(r − 1) < r2

choices. Therefore there are at most (r2)r = r2r circuits of size r. Thus the circuits of size r
can be described using u = 2r log2 r bits.

Several natural functions can be computed by Boolean circuits of a small size (see Sect. 3
of [28]). For example every symmetric function2 can be computed by a circuit of a linear size
(in its input).

Let Γv be any robust set of functions such that |Γv| = 2v. We will now construct a
(Γv, c, t, ε)-secure LRS. Let H = {hs : {0, 1}n → {0, 1}α}s∈S be a collection of `-wise inde-
pendent hash functions. The scheme is parameterized by a value s ∈ S. For any s ∈ S let
Φs = (Encodes,Decodes), where

Encodes(m) = (r, hs(r)⊕m),

where r ∈ {0, 1}n is random. Let

Decodes((r, d)) = hs(r)⊕ d.

The following lemma states that with a good probability (over the choice of s ∈ S) the scheme
(Encodes,Decodes) is secure.

Lemma 2. Fix an arbitrary robust set Γv such that |Γv| = 2v. For a randomly chosen s
with probability at least 1 − ξ we have that Φs is (Γv, c, t, 2α · ε + 2α+k+c−n)-secure, for any
c, k, t, v, `, ε and ξ such that

ξ = 2tv−
`
2
(k−α−2 log(1/ε)−log `+2)+α+2. (2)

The proof of this lemma is more involved and we present it in Sect. 4. Let us first discuss this
lemma for more concrete values of the parameters.

Corollary 1. Fix an arbitrary robust set Γv such that |Γv| = 2v. For a randomly chosen s
with probability at least 1− ξ we have that Φs is (Γv, c, t, 2−λ)-secure, for any c, t, v, `, λ, ε and
ξ such that

ξ = 2tv−
`
2
(n−c−3λ−4α−log `−1)+α+2. (3)

Proof. Set ε := 2−α−λ−1 and let k := n−λ− 1−α− c. Take Φs from Lemma 2. We have that

2α · 2−α−λ−1 + 2α+k+c−n ≤ 2−λ−1 + 2−λ−1 ≤ 2−λ,

and
ξ = 2tv−

`
2
((n−λ−1−α−c)−α−2(α+λ+1)−log `+2)+α+2

which is equal to (3). ut

Concrete values If we want to have security against circuits of size χn (for some constant
χ > 1) then the size of Γ is equal to 22χn log(χn). If we apply it t = ωn times (for some
constant ω < 1) then tv = 2χωn2 log(χn). To be more precise set λ := 24 and α := 128, and
n = 1024. If we set χ := 10, ω := 3/25 then we can allow the adversary to retrieve at most
352 bits by setting ` = 1000000. With these settings we get ξ = 4 · 10−2516.
2 A function is symmetric if its output does not depend on the permutation of the input bits. For example

every function that just depends on the sum of the input bits is symmetric. See Sect. 3.4 of [28].
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Practical considerations The parameter s can be public. Therefore if ξ is negligible, then for
the real-life applications s can be just chosen once and for all by some trusted party. For
example, one can assume that s = H(0)||H(1)|| · · ·, where H is some hash function (this of
course can be proven secure only in the random oracle model).

Alternatively, we could just assume that s is chosen independently each time Encodes is
calculated, and becomes a part of the encoding. In other words we could define

Encode ′(m) := (s,Encodes(m)) and Decode ′(s, x) := Decodes(x).

Of course, in this way the length β of encoding gets larger, and hence if Γv is a family of
circuits whose size r is some function of β, then v becomes much larger.

4 Proof of Lemma 2

4.1 Auxiliary lemmata

The following was proven in [6].

Lemma 3 ([6]). Let A,B be random variables where A ∈ A. Then P (B = A) ≤ d(A|B) +
1/ |A|.

We will also use the following lemma (proven in [3]):

Lemma 4 ([3]). Let Y be an n-bit random variable with H∞(Y ) ≥ k. Let H = {hs}s∈S be a
collection of `-wise independent hash functions hs : {0, 1}n → {0, 1}α (for ` ≥ 2). For at least
1− 2−u fraction of s ∈ S, we have d(hs(Y )) ≤ ε for

u =
`

2
(k − α− 2 log(1/ε)− log `+ 2)− α− 2. (4)

We will also use the following lemma

Lemma 5. For every random variables X,Y and an event E we have

d(X|Y ) ≤ d(X|Y, E) + P
(
E
)
. (5)

Before showing this lemma let us first prove the following:

Lemma 6. For every random variables X,Y and events E ,H we have

d(X|H) ≤ d(X|H ∧ E) + P
(
E|H

)
. (6)

Proof. It is enough to show that

δ(PX|H;PX|H∧E) ≤ P
(
E|H

)
. (7)

After showing this we will be done, since from the triangle inequality we have

=d(X|H)︷ ︸︸ ︷
δ(PX|H;UX ) ≤

=d(X|H∧E)︷ ︸︸ ︷
δ(PX|H∧E ; UX ) +δ(PX|H;PX|H∧E),
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where UX denotes the uniform distribution over X . Let F denote the set

{x : P (X = x|H) > P (X = x|H ∧ E)} .

We have that the left-hand side of (7) is equal to

∑
x∈F

P (X = x|H)−

=
P (X=x∧E|H)

P (E|H)
≥P (X=x∧E|H)︷ ︸︸ ︷

P (X = x|H ∧ E) . (8)

≤
∑
x∈F

P (X = x|H)− P (X = x ∧ E|H) (9)

=
∑
x∈F

P (X = x|H)−
∑
x∈F

P (X = x ∧ E|H) (10)

= P (X ∈ F|H)− P ((X ∈ F) ∧ E|H) (11)

≤ P
(
E|H

)
. (12)

ut

Proof (of Lemma 5). The left-hand side of (5) is equal to∑
y

d(X|Y = y) · P (Y = y) , (13)

and the right-hand side of (5) is equal to∑
y

(
d(X|(Y = y) ∧ E) + P

(
E|Y = y

))
· P (Y = y) . (14)

To finish the proof it suffices to show that for every y we have

d(X|Y = y) ≤ d(X|(Y = y) ∧ E) + P
(
E|Y = y

)
.

This follows directly from Lemma 6, with H being the event that Y = y. ut

4.2 The proof

For the sake of the proof of Lemma 2 we will consider a game that we call a weak attack
in which hs(r) ⊕m is hidden from the adversary, and the gi’s are applied only to r. In this
game we assume that the adversary Aweak , that we call a weak adversary, at the end of
the interaction outputs some value OutAweak

, and we will say that the scheme Φs is weakly
(Γv, c, t, ε)-secure if d(hs(R)|OutAweak

) ≤ ε, for any Aweak ,3 where R is distributed uniformly
over {0, 1}n. A similar proof strategy was used already in [6].

Lemma 7. For any v, c, t, ε and s, if Φs is weakly (Γv, c, t, ε)-secure then Φs is (Γv, c, t, ε ·2α)-
secure.
3 Technically, Aweak is a (Γ ′v, c, t)-adversary, where Γ ′v ⊆ Γv contains only such functions gi, whose output

does not depend on the second part (i.e. the final α bits) of the input. Since those functions depend only on
the first n bits we will usually think of them as functions defined on {0, 1}n.
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Proof. Take some adversary A that wins the game described in Sect. 2 with some probability
0.5 + δ. We construct a weak adversary A′ such that

d(hs(R)|OutA′) = δ · 2−α. (15)

After showing this we will be done, by setting δ := ε·2α. The adversary A′ works by simulating
A. First, it chooses a random string z ∈ {0, 1}α and it starts A. Let m0,m1 be the messages
that A outputs. Then, A′ handles the requests issued by A in the following way. Recall that
each request of A is a function gi : {0, 1}n × {0, 1}α → {0, 1}ci that should be applied to
(r, hs(r) ⊕m). Each time such a request is issued, the adversary A′ constructs a request g′i
defined for every r as follows:

g′i(r) := gi(r, z).

(By the robustness of Γv we have that if gi ∈ Γv then also g′i ∈ Γv.) When the interaction is
over and A outputs b the adversary A′ outputs OutA′ := mb ⊕ z. By Lemma 3 we have

P (OutA′ = hs(R)) ≤ 2−α + d(hs(R)|OutA′). (16)

Now suppose that for some i ∈ {0, 1} the following event X i occurred: z = mi ⊕ hs(r). In
this case A′ simply simulated the execution of A against the oracle Ω with b = i. Since z is
chosen uniformly hence P

(
X 0
)

= P
(
X 1
)

= 2−α. Therefore the probability that i = b is equal
to 0.5 + δ. Moreover, in this case, OutA′ = mb ⊕ (mi ⊕ hs(r)), and therefore OutA′ = hs(r) if
and only if b = i. Hence we have

P (OutA′ = hs(r)) ≥ P
(
b = i | X 0 ∪ X 1

)
· P

(
X 0 ∪ X 1

)
= (0.5 + δ) · 2−α+1

= 2−α + δ · 2−α+1.

Combining it with (16) we get (15). ut

Before proving the lemma we show the following standard fact.

Lemma 8. For every U

Py:=GA(R) (|{r : GA(r) = y}| ≤ U) ≤ 2c−n · U. (17)

Proof. Since |GA(r)| ≤ c, hence the number of all y’s is at most equal to 2c. Therefore the
number of r’s for which there exists some y such that

|{r : GA(r) = y}| ≤ U

holds is at most 2c ·U . Hence the probability that it exists for a random r is at most 2c−n ·U .
Thus we are done. ut

Lemma 9. Suppose that the adversary Aweak performs a weak attack against Φs. Then, for
any ε > 0 and for at least 1− ξ fraction of s ∈ S we have

d(hs(R)|GAweak
(R)) ≤ ε+ 2k+c−n,

where ξ is a function of t, v, `, k, and ε defined in (2).
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Proof. Consider some fixed adversaryAweak . Let GoodAweak
denote the event that |{r : GAweak

(r) = y}| ≥
2k, where y := GAweak

(R). By Lemma 8 (with U := 2k) we get that P (GoodAweak
) ≥

1− 2k+c−n. On the other hand, we have

H∞(R|GAweak
(R),GoodAweak

) ≥ k.

Therefore, by Lemma 4 we get that

Ps (d(hs(R)|GAweak
(R),GoodAweak

) ≥ ε) ≤ 2−u, (18)

where Ps means that the probability is taken over the choice of s ∈ S, and u is defined in (4).
From Lemma 5 we get that (18) implies that

Ps (d(hs(R)|GAweak
(R)) ≥ ε+ 1− P (GoodAweak

)) ≤ 2−u,

which implies that
Ps(d(hs(R)|GAweak

(R)) ≥ ε′) ≤ 2−u, (19)

where ε′ := ε + 2k+c−n. Of course (19) holds just for a fixed adversary and to complete the
proof we need to give a bound on the value

max
Aweak

(
Ps
(
d(hs(R)|GAweak

(R)) ≥ ε′
))
. (20)

We will do it by applying a union-bound (over all Aweak ) to (19). However, since that the
total number of different adversaries Aweak is doubly-exponential in c,4 we cannot do it in a
straightforward way. Instead, we first observe that

max
Aweak

Ps
(
d(hs(R)|GAweak

(R)) ≥ ε′
)

= max
g1,...,gt

Ps
(
d(hs(R)|g1(R), . . . , gt(R)) ≥ ε′

)
, (21)

Since each gi ∈ Γv, and |Γv| = 2v we get

max
Aweak

(
Ps
(
d(hs(R)|GAweak

(R)) ≥ ε′
))
≤ (2v)t · 2−u = 2tv−u. (22)

This completes the proof. ut

Proof (of Lemma 2). Combine Lemmas 7 and 9. ut

5 Connection with the theory of compressibility of NP-instances

We believe that in general the idea to model the leakage as functions from some low complexity
class is worth investigating further, as it may lead to new applications of the circuit lower
bounds. Interestingly, this is probably the first scenario ever considered in cryptography in
which the computing power of the adversary is smaller than the computing power of the users
(during some part of the attack). A similar observation was already made in [7] (footnote 3,
page 295).

4 This is because after retrieving ci bits in the ith round the adversary can choose 2v different functions gi+1,
hence in every round there are 2v·2ci

.
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It may also be worth exploring some interesting connections between this area and the
theory of the compressibility of NP-instances of Harnik and Naor [10]. Informally, an NP-
language L is compressible if every x ∈ {0, 1}∗ can be “compressed” to a much shorter string
compress(X) (where g is some poly-time function, and c = |compress(x)| � |x|) such that an
infinitely powerful machine M can determine if x ∈ L just by looking at compress(X). Call
this (PTIME,∞)-c-compressibility. Of course, one could generalize this concept and consider
any (P0,P1)-compressibility (where P0 and P1 are some complexity classes): in this settings
we would require that g ∈ P0, and the machine M operates in P1.

For simplicity in this section consider only the one-round LRS’s i.e.: t = 1 (cf. game in
Sect. 2). Moreover, assume that the adversary is poly-time. Informally speaking what we are
looking for, when constructing a Γ -secure LRS Φ = (Encode,Decode) is a class of problems
that are not (Γ, PTIME)-c-compressible on average. More precisely, consider the language L
of all valid encodings of some fixed message M . Of course, if this language is (Γ, PTIME)-
c-compressible with some probability ε then Φ cannot be (Γ, c, 1, ε)-secure (as otherwise the
adversary could just choose compress to be his leakage function). We leave investigating these
connections as a future research direction.

References

1. Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous hardcore bits and cryptography
against memory attacks. In Omer Reingold, editor, TCC, volume 5444 of Lecture Notes in Computer
Science, pages 474–495. Springer, 2009.

2. Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous hardcore bits and cryptography
against memory attacks. In Omer Reingold, editor, Theory of Cryptography, 6th Theory of Cryptography
Conference, TCC 2009, San Francisco, CA, USA, March 15-17, 2009. Proceedings, volume 5444 of Lecture
Notes in Computer Science, pages 474–495. Springer, 2009.

3. Boaz Barak, Ronen Shaltiel, and Eran Tromer. True random number generators secure in a changing
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