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Abstract. Designated Confirmer signatures were introduced to lineitvérification property inherent to digi-
tal signatures. In fact, the verification in these signatiseeplaced by a confirmation/denial protocol between
the designated confirmeaind some verifier. An intuitive way to obtain such signatuwressists in first gen-
erating a digital signature on the message to be signed ethamypting the result using a suitable encryption
scheme. This approach, referred to as the “encryption ajrasiire” paradigm, requires the constituents (en-
cryption and signature schemes) to meet the highest sgowtibns in order to achieve secure constructions.
In this paper, we revisit this method and establish the mergsand sufficient assumptions on the building
blocks in order to attain secure confirmer signatures. Quaystoncludes that the paradigm, used in its basic
form, cannot allow a class of encryption schemes, whichta $or the efficiency of the confirmation/denial
protocols. Next, we consider a slight variation of the payad proposed in the context of undeniable signa-
tures; we recast it in the confirmer signature framework @latith changes that yield more flexibility, and
we demonstrate its efficiency by explicitly describing itmfirmation/denial protocols when instantiated with
building blocks from a large class of signature/encrypichemes. Interestingly, the class of signatures we
consider is very popular and has been for instance used ltbdfticient designated verifier signatures.
Keywords: Designated Confirmer signatures, “Encryption of a sigr&dtparadigm, Generic construction,
Reduction/meta-reduction, Zero Knowledge.

1 Introduction

Digital signatures capture most of the properties met bpatiges in the paper world, for instance,
universal verification. However, in some applicationss thioperty is not desired or at least needs to
be controlled. Undeniable signatures were introduced 44 {dr this purpose; they proved critical in
situations where privacy or anonymity is a big concern, aghcensing software [14], electronic cash,
electronic voting and auctions. In these signatures, thification can be only attained by means of
a cooperation with the signer, called the confirmation/glepiotocols. Unfortunately, this very virtue
(verification with only the signer’s help) became its majooiticoming for many practical applications.
The flaw was later repaired in [12] by introducing the conagfpdlesignated confirmer signatutels
fact, this concept involves three entities, namely theesigrho produces the signature, the designated
confirmer who confirms or denies an alleged signature andyfitied recipient of the signature. Desig-
nated confirmer signatures, or confirmer signatures forityreman have the additional feature of being
converted, by the confirmer, to ordinary digital signatures

1.1 Related work

Since the introduction of confirmer signatures, reseascheught ways of producing them from digi-
tal signatures and other cryptographic primitives suchresyption and/or commitment schemes. We
briefly review in this paragraph, in chronological ordeg thost important such attempts:

Okamoto (1994) [34].The result proposes a construction of confirmer signatumes fligital signa-
tures, public key encryption, bit-commitment schemes asligo-random functions. The construc-
tion was used to prove equivalence between confirmer sigggmtand public key encryption with
respect to existence. Thus, efficiency was not taken intowatan the framework.



Michels and Stadler (1998) [31].This approach builds efficient confirmer signatures fronmaigres
obtained from the Fiat-Shamir paradigm and from commitmeehiemes. Thus, the resulting con-
firmer signatures can be only proven secure in the randontearamdel (ROM), inheriting this prop-
erty from the use of the Fiat-Shamir paradigm, which coust#t their major shortcoming. Actually,
it is well known, according to [40], that most discrete-lagan-based signatures obtained from the
Fiat-Shamir technique are very unlikely to preserve thesskawvel of security in the standard model.

Camenisch and Michels (2000) [10]The authors present the “encryption of a signature” ideagalo
with a security analysis of the resulting confirmer signasuin fact, they require existentially un-
forgeable signatures and indistinguishable encryptidherstrongest attack model (EUF-CMA sig-
natures and IND-CCA secure encryption) to achieve unfdoigeavisible, and transcript-simulatable
confirmer signatures. The major weakness of the construdigs in the resort, in the confirma-
tion/denial protocols, to general concurrent zero knoge(ZK) proofs of NP statements.

Goldwasser and Waisbard (2004) [26]This result manages to circumvent partially the weakness
of the above construction. In fact, from a large class oftdigiignatures, the authors propose a
transformation to confirmer signatures by encrypting threngr items under an IND-CCA secure
encryption during the confirmation protocol. They consediyeachieve an efficient confirmation,
but at the expense of the transcript-simulatability, thésibility and the length of the resulting sig-
natures. For instance, the signature contains at least ttvcnumber of the confirmation protocol’s
rounds of encryptions. Moreover, the denial protocol ofdbastruction has still recourse to general
concurrent ZK proofs of NP statements.

Gentry et al. (2005) [22].This work gives the possibility of building confirmer signegs from digital
signatures, encryption (IND-CCA) and commitment schemdthough the resulting construction
does not use random oracles, it still does not get rid comlpleif general ZK proofs since the
confirmer has to prove in concurrent ZK the knowledge of thagsion of an IND-CCA encryption
and of a string used for commitment.

Wang et al. (2007) [46].In this work, the authors present two constructions. Thé ding fixes some
flaws noticed in [22], however, it still requires concurréit proofs of NP statements. The second
construction does not require any encryption, but at theresg of the underlying security assump-
tion. In fact, it has its invisibility resting on the decis@l Diffie-Hellman assumption, which rules
out using the scheme in bilinear groups and thus benefitorg the attractive features they present
such as achieving short group elements. Moreover, the remtisin suffers also the recourse to the
ROM. Finally, these constructions as well as the constraati [22] are not anonymous, as we will
point later in this document.

Wikstr dm (2007) [48].The author in his work proposes a new model for convertiblefiooer sig-
natures along with a generic construction analyzed in teig model. The construction is similar
to the one given in [10] with the exception of consideringptopystems with labels. Although the
construction requires a weaker security notion on the osysgtem than IND-CCA, namelgt-IND-
CCA, it still resorts to general proofs of NP statements.

El Aimani (2008) [16]. This construction is a slight variation of the “encryptioh a signature”
paradigm which uses cryptosystems from the KEM/DEM paradimd requires them to be only
IND-CPA secure. The author claims that this impacts padigivthe efficiency of the confirma-
tion/denial protocols by allowing homomorphic schemesimdesign. However, such a claim lacks
justification since the only illustrations provided in thaper (or in its full version [17]) are generic
constructions from a class of pairing-based signatureghndre used with a specific cryptosystem
(ElI Gamal encryption or the linear Diffie-Hellman KEM/DEMjurthermore, one of the construc-
tions uses a cryptosystem which operates on messaggs (for some primep), thus, the resulting
signatures will be quite long because of the size contrastdsn ring cryptography and elliptic-
curve cryptography. This seems to violate the main exgectdtom appealing to elliptic curve
cryptography, namely achieve short signatures.
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Summing up the state-of-the art in confirmer signatures, @geide that the most mountainous obstacle
that faces the potentially anonymous generic construstigithout ROM, namely those derived from
variants of the “encryption of a signature” paradigm, lieshe resort to general zero knowledge (ZK)
proofs of NP statements, e.g., proving in ZK the knowledgthefdecryption of an IND-CCA encryp-
tion. In this paper, we revisit this paradigm. We basicatigiess two questions: does the paradigm, used
in its basic form [10], allow building blocks with weaker seity assumptions, for instance IND-CPA
cryptosystems and thus achieves efficient signatures imsedan [16]? The second question concerns
the alleged efficiency of the construction in [16]; how imiamit is the contribution of the IND-CPA
requirement to the efficiency of the confirmation/denialtpcols?

1.2 Our contributions

The results in this paper are twofold. First, we considemtla “encryption of a signature” paradigm
as described in [10]. We actually prove that EUF-CMA secigaaiures are a sufficient and necessary
requirement to obtain EUF-CMA secure convertible confirsignatures. Next, we show that indis-
tinguishable cryptosystems undeplaintext checking attackND-PCA) are already enough to obtain
invisible signatures under a chosen message attack (INYCNMhis contrasts the wide belief that
the cryptosystems should be IND-CCA secure. We also shotitisaassumption on the cryptosys-
tem (IND-PCA secure) is necessary to obtain invisible digmess. This rules out automatically from
the design homomorphic cryptosystems, a class of crypesgswhich proved later to be vital for the
efficiency of the confirmation/denial protocols.

Next, we consider the proposal in [16] which builds a unigéflysconvertible undeniable signature
scheme from secure digital signatures and IND-CPA secypasystems obtained from the KEM/DEM
paradigm. We propose a recast of the construction in therocosfisignature framework and we demon-
strate its efficiency by explicitly describing the confirmoatdenial protocols when instantiated from a
large class of signature/encryption schemes. Interdgtitite class of signatures we consider has been
already defined as an ingredient of an efficient construatiotlesignated verifier signatures [44]. We
conclude that our recast of [16] betters the previous coastms of confirmer signatures in terms of
both efficiency and security. In fact, it gets rid of generkltoofs of NP statements in the confirmation
and/or the denial protocols, oppositely to the constrastio [34, 10, 26, 22, 46]. Moreover, the resulting
signatures are not proven secure in the random oracle a4,idgB and they enjoy a strong invisibility
which captures both the traditional invisibility, defined[iL0], and anonymity which was later defined
in [20]. We prove for instance that the latter property is met by the constructions in [22, 46].

2 Convertible Designated Confirmer Signatures (CDCS)

Since their introduction, many definitions and security mledor CDCS have emerged. We consider
the default model adopted in most confirmer signature papd40, 26, 22, 46, 16]. This model was
primally described in [10], where the sighenencrypt technique was first formally introduced.

We refer to Appendix A for the necessary cryptographic piras that will come into use, that are,
digital signatures, public key encryption schemes, KEM¥DiEechanisms, and finally' protocols.

2.1 Syntax
A CDCS scheme consists of the following procedures:

Key generationGenerates probabilistically key paifsks, pkg) and(sk¢c, pko) for the signer and for
the confirmer respectively, consisting of the private ardphblic key.

ConfirmSignOn inputskg, pk- and a message, outputs a confirmer signature then interacts with
the signature recipient to convince him of the validity o jhst generated signature.
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Confirmation/Denial protocolThese are interactive protocols between the confirmer anetifiev.
Their common input consists of, in addition gkg andpk., the alleged signature, and the mes-
sagem in question. The confirmer uses his private kky to convince the verifier of the validity
(invalidity) of the signaturg, onm. At the end, the verifier either accepts or rejects the proof.

Selective conversiofThis is an algorithm run by the confirmer usisig-, in addition topk andpkg.
The result is eithed. or a string which can be universally verified as a valid digitgnature. Some
models, e.g. [48], require that the confirmer issues a pobtafdhe correctness of the conversion in
case of a valid signature We will see that the all the constructions that will follote confirmer
is able to provide such a proof. It is easy to see that such@ pfaorrectness is reduced, in case
of constructions from the “encryption of a signature” pdgat to a proof that a given ciphertext
decrypts to a given message. This is theoretically possibte the last assertion is an NP statement
which accepts a ZK proof system.

Selective verificationThis is an algorithm for verifying converted signaturesinfiuts the converted
signature, the message apid; and outputs eithed or 1.

2.2 Security model.

The above algorithms must be complete. Moreover the confiym$onfirmation and denial protocols
must be complete, sound and non transferable (simulatésge)10]5. In the sequel, we describe further
properties that a CDCS scheme should meet.

Security for the signer (unforgeabilitylt is defined through the following game: the adversarys
given the public parameters of the CDCS scheme, namielyand pk., in addition toskc. A is
further allowed to query the signer on polynomially many sag®es, say,. At the end, A outputs
a pair consisting of a message that has not been queried yet, and a styingd wins the game if
w is a valid confirmer signature on. We say that a CDCS scheme(ise, ¢, )-EUF-CMA secure if
there is no adversary, operating in timéhat wins the above game with probability greater than

Security for the confirmer (invisibility)nvisibility against a chosen message attack (INV1-CMA) is
defined through the following game between an attackemnd his challengeR: after A gets the
public parameters of the scheme fr@ he startdPhase lwhere he queries the signing, confirma-
tion/denial, selective conversion oracles in an adaptiag WnceA decides thaPhase 1is over, he
outputs two messages,, m; that have not been queried before to the signing oracle aneests
a challenge signature*. R picks uniformly at random a b# € {0,1}. Then,u* is generated us-
ing the signing oracle on the messagg. Next, A starts adaptively querying the previous oracles
(Phase 2, with the exception of not queryingy, m; to the signing oracle angn;, u*), i = 0,1,
to the confirmation/denial and selective conversion osadk the end,4 outputs a bity. He wins
the game ifh = V. We defined’s advantage asdv(A) = |Pr[b = ¥'] — 1|. We say that a CDCS
scheme igt, €, s, qv, gsc)-INV1-CMA secure if no adversary operating in timdssuinggs queries
to the signing oracley, queries to the confirmation/denial oracles apdqueries to the selective
conversion oracle wins the above game with advantage gt .

Anonymity of signaturesn some applications, it is required that the confirmer digres are anony-
mous, i.e., do not leak the identity (public key) of the sighiée refer to [20] for the formal definition
of anonymity of confirmer signatures under a chosen messtapk §ANO-CMA).

A stronger notion of invisibilityTo capture both anonymity and invisibility, Galbraith an@dlintro-
duced in [20] a notion, which we denote INV2-CMA, that regaithe confirmer signatures to be
indistinguishable from random elements in the signatuseespThis new notion is proven to imply
both INV1-CMA and ANO-CMA (Theorem 1 and Theorem 4 respeativof [20]).

1t is not the responsibility of the confirmer to provide predér ill-formed signatures.

2 In [48], the author points a flaw in the definition of non traasbility of [10] and proposes how to fix it (by having the
simulator rewound). In all the constructions that will fall, the property of non transferability will be met as a direc
consequence of using zero knowledge proofs.



3 The Plain “Encryption of a Signature” Paradigm

The paradigm devises a CDCS scheme by producing a digitedtsige on the message to be signed, then
encrypting the result using a suitable cryptosystem. Moeeipely, let). be a digital signature scheme
given by X' .keygen which generates a key pair (private key3=sk, public key=X'.pk), X'.sign and

X .verify. Let furthermorel” denote a cryptosystem described Bkeygen that generates the key pair
(private key =I"sk, public key=1I".pk), I'.encrypt and I .decrypt. A confirmer signature on a message
m is issued by first producing a digital signature= Y'signy. . (m) onm, then encrypting it using
I'.pk. The result isu = Iencrypty (o). It is obvious that.sk forms the (DCSC) signer’s private
key, whereas¥'.pk is his public key. To confirm (deny) a confirmer signaturethe confirmer uses
I'sk to prove the knowledge of the decryption @fwhich does (not) satisfy the equation defined by
the algorithmX'.verify. Such a proof of knowledge is possible as the considerednséaits are in NP
(co-NP), and therefore accept zero knowledge proof sysfeees[23]).

This technique was described and formally analyzed in [it@}as shown that the construction is
EUF-CMA secure if the underlying (digital) signature scleeimalso EUF-CMA secure. Moreover, it is
INV1-CMA secure if the underlying cryptosystem is IND-CCAcsire. Finally, completeness, sound-
ness and non-transferability of the involved protocolsofelfrom using ZK proofs of knowledge.

In the sequel, we prove that the condition on the underlyiggature scheme (EUF-CMA secure) is
also necessary to achieve EUF-CMA secure confirmer sigemtiurthermore, we prove that IND-PCA
secure cryptosystems are already enough, though mandatachieve INV1-CMA signatures.

Theorem 1. The above generic construction is{, ¢;)-EUF-CMA secure if and only if the underlying
digital signature scheme is, (e, ¢s)-EUF-CMA secure.

We provide the proof in Appendix B.

Invisibility. In this paragraph, we prove that IND-PCA secure cryptosystare mandatory and enough
to achieve INV1-CMA secure undeniable signatures. To pthigeassertion, we proceed as follows. We
first show that the INV1-CMA security of the resulting sigmas cannot rest on the NM-CPA security of
the underlying cryptosystem. We do this by means of an efficieeta-reductiorusing such a reduction
(the algorithm reducing NM-CPA breaking the underlyingptosystem to INV1-CMA breaking the
construction) to break the NM-CPA security of the cryptdsygs Thus, under the assumption that the
cryptosystem is NM-CPA secure, the meta reduction forbhidseixistence of such a reduction. In case
the cryptosystem is not NM-CPA secure, such a reductionbeiluseless. This result will rule out au-
tomatically all the other notions that are weaker than NMAQkamely, OW-CPA and IND-CPA. Next,
we use a similar technique to exclude the OW-CCA notion. Tdh security notion to be considered is
IND-PCA. Luckily, this notion turns out to be sufficient totain INV1-CMA secure signatures.

Note that meta-reductions have been successfully usedumber of important cryptographic re-
sults, e.g., the result in [7] which proves the impossipibt reducing factoring to the RSA problem,
or the results in [40, 38] which show that some well known aigres, which are proven secure in the
random oracle, cannot conserve the same security in theasthmodel. All those impossibility results
are partial as they apply only for certain reductions. Osulteis in a first stage also partial since it
requires the reductio®, trying to attack a certain property of a cryptosystem gilgrihe public key
I'.pk, to provide the adversary against the confirmer signatutie thve confirmer public key'.pk. We
will denote such reductions tRey-preservingeductions, inheriting the name from a wide and popular
class of reductions which supply the adversary with the sanidic key as its challenge. Such reduc-
tions were for instance used in [39] to prove a separatiowdssn factoring and IND-CCA-breaking
some factoring-based cryptosystems in the standard m@dekestriction to such a class of reductions
is not unnatural since, to our best knowledge, all the rédnststemming the security of the generic con-
structions of confirmer signatures from the security ofrth@ederlying components, feed the adversary
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with the public keys of these components (signature schenwyption scheme, commitment scheme).
Next, we use simular techniques to [39] to extend our imgilgi results to arbitrary reductions.

Lemma 1. Assume there exists a key-preserving reductibthat converts an INV1-CMA adversary
A against the above construction to an NM-CPA adversary ajdhre underlying cryptosystem. Then,
there exists a meta-reductiokt that NM-CPA breaks the cryptosystem in question.

Let us firstinterpret this result. The lemma claims that urkde assumption of the underlying cryptosys-
tem being NM-CPA secure, there exists no key-preservingatézh R that reduces NM-CPA breaking
the cryptosystem in question to INV1-CMA breaking the candion, or if there exists such an algo-
rithm, the underlying cryptosystem is not NM-CPA securestrendering such a reduction useless.

Proof. LetR be a key-preserving reduction that reduces NM-CPA breakiagryptosystem underlying
the construction to INV1-CMA breaking the constructioneifs We will construct an algorithm\t
that usesk to NM-CPA break the same cryptosystem by simulating an di@cwf the INV1-CMA
adversary4 against the construction.

Let I be the cryptosysteroV is trying to attack.M launchesR over I" with the same pub-
lic key, sayl.pk. M, acting as the INV1-CMA adversaryl against the construction, queri&s on

mo, mq Kid {0, 1}* for confirmer signatures. Then he queries the resultingggrig, 111 (correspond-
ing to the confirmer signatures ony andm, respectively) for a selective conversion. legtand o

be the output (digital) signatures emy andm; respectively. At that pointM inputsD = {og,01}

to his own challenger as a distribution probability from @fthe plaintexts will be drawn. He gets in
response a challenge encryptiph, of eitheroq or o7 underI".pk, and is asked to produce a cipher-
text 1’ whose corresponding plaintext is meaningfully relatedh® decryption ofu*. To do this, M

chooses uniformly at random a it {0,1}. Then, he queries the presumed confirmer signattire
on my for a selective conversion. If the result is different frami.e., u* is the encryption otr, then
M will output I".encrypt ., (%) (5 refers to the bit-complement of the elemep} and the relation?:
R(m,m’) = (m’ = m). Otherwise, he will outpul"encrypt . . (61—) and the same relatioR. Finally
M aborts the game (stops simulating an INV1-CMA attackerregidhe generic construction). O

Lemma 2. Assume there exists a key-preserving reducibthat converts an INV1-CMA adversary
A against the above construction to a OW-CCA adversary ag#émesunderlying cryptosystem. Then,
there exists a meta-reductiolt that OW-CCA breaks the cryptosystem in question.

As previously, this result claims that under the assumptiothe underlying cryptosystem being OW-

CCA secure, there exists no key-preserving reducRahat reduces OW-CCA breaking the cryptosys-
tem in question to INV1-CMA breaking the construction, athiére exists such an algorithm, the under-
lying cryptosystem is not OW-CCA secure, thus renderingnsueduction useless.

Proof. The proof technique is similar to the one above. ibe the key-preserving reduction that
reduces OW-CCA breaking the cryptosystem underlying tmstroction to INV1-CMA breaking the
construction itself. We will construct an algorithii that usesk to OW-CCA break the same cryp-
tosystem by simulating an execution of the INV1-CMA adveysd against the construction.

Let I" be the cryptosystenM is trying to attack M gets his challenge and is equipped with a
decryption oracle that he can query on all ciphertexts ofhce except of course on the challeng.
launchesR over I" with the same public key.pk and the same challenge Obviously all decryption
gueries made bR, which are by definition different from the challenge cifgbgt ¢, can be forwarded
to M’s own challenger. At some pointy1, acting as an INV1-CMA attacker against the construction,
will output two messagesy, m1 and gets as response a challenge signattisghich he is required to
tell to which message it corresponds. With overwhelmingbphility, 1* # ¢, in fact, the challenge
is not the encryption of a certam such thato is a valid (digital) signature on the messageg or the
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messagen;. Therefore, M queries his own challenger for the decryption,df (he can issue such a

guery since it is different from the challenge cipherteki® checks whether the result, sayis a valid

(digital) signature omng or m1. Then, he will simply output the result of this verificatidfinally, when

‘R outputs his answer, decryption of the ciphertext1 will simply forward this result to his challenger.
O

Theorem 2. The cryptosystem underlying the above construction muat least IND-PCA secure, in
case the considered reduction is key-preserving, in oml@chieve INV1-CMA secure signatures.

Proof. We proceed in this proof with elimination. Lemma 1 rules dwé hotion NM-CPA and thus the
notions IND-CPA and OW-CPA. Moreover, Lemma 2 rules out O®WACand thus OW-PCA (and also
OW-CPA). Thus, the next notion to be considered is IND-PCA. a

Remark 1.The above theorem is only valid when the considered notimnghase obtained from pairing
a security goal GOALe {OW,IND,NM} and an attack model ATKc {CPA PCA CCA}. Presence
of other notions will require an additional study, howetesmmas 1 and 2 will be always of use when
there exists a relation between these new notions and tlenad®W-CCA and NM-CPA.

To extend the result to arbitrary reductions, we use the saammiques as in [39]. Namely, we first
define the notion ofion malleability of a cryptosystem key generatmough the following two games:
In Game Q we consider an algorithmR trying to break a cryptosysterfi , w.r.t. a public keyl".pk, in
the sense of NM-CPA or OW-CCA using an adversdryhich solves a problem A, perfectly reducible
to OW-CPA breaking the cryptosystem In this gameR launchesA over his own challenge ke¥.pk
and some other parameters chosen freeljRbyVe will denote byadvy(R) the success probability
of R in such a game, where the probability is taken over the rantigras of bothR and A. We
further definesucc$m0(A) = maxg advo(R4) to be the success iBame 0of the best reduction
‘R making the best possible use of the adversdryn Game 1, we consider the same entities as in
Game Q with the exception of providin@R with, in addition to.4, a OW-CPA oracle (i.e. a decryption
oracle corresponding t&) that he can query w.r.t. any public kéypk’ # I'.pk, wherel'pk is the
challenge public key oR. Similarly, we defineadv,(R) to be the success ® in such a game, and
succ®mel(A) = maxg advo(R*) the success iGame 1of the reductioriR making the best possible
use of the adversaryl and of the decryption oracle.

Definition 1. A cryptosysteni” is said to have a non malleable key generator if
A = maz g|succ$?™e (A) — succ$me0(A)| is negligeable in the security parameter.

This definition informally means that a cryptosystem hasmmalleable key generator if NM-CPA or
OW-CCA breaking it w.r.t. a keyk is no easier when given access to a decryption oracle wiyt. a
public keypk’ # pk.

Theorem 3. If the cryptosystem underlying the above construction hasramalleable key generator,
then it must be at least IND-PCA secure in order to achievelHDMA secure confirmer signatures.

We provide the proof in Appendix C

One can give an informal explanation to the result above Baws. It is well known that con-
structions obtained from the sighenencrypt paradigm are nstrongly unforgeablel.e., a polynomial
adversary is able to produce, given a valid confirmer sigeatn a certain message, another valid con-
firmer signature on the same message without the help of gnersiindeed, given a valid confirmer
sighature on a message, an attacker can request its cordispaligital signature from the selective
conversion oracle, then he encrypts it under the cryptesysiublic key and obtains a new confirmer
signature on the same message. Therefore, any reddRtioom the invisibility of the construction to
the security of the underlying cryptosystem will need mbamnta list of records maintaining the queried
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messages along with the corresponding confirmer and dgjgabtures. Thus the insufficiency of no-
tions like IND-CPA. In [10], the authors stipulate that theam reduction would need a decryption oracle
(of the cryptosystem) in order to handle the queries madédyNV1-CMA attackerA, which makes
the invisibility of the construction rest on the IND-CCA seity of the cryptosystem. In our work, we
remark that the queries made lyare not completely uncontrolled 5. In fact, they are encryptions
of some data already releasedRy provided the digital signature scheme is strongly unfabje and
thus known to him. Therefore, a plaintext checking oracfécas to handle those queries.

Theorem 4. The above construction is,€, gs, v, gsc)-INV1-CMA secure if the underlying digital sig-
nature is(t, €, ¢;)-SEUF-CMA secure and the underlying cryptosysten is ¢sqsc(qsc + qv), € - (1 —
6/)(qsc+l1v)7 QSC(QSC + qv))-lND—PCA Secure.

The proof is provided in Appendix D.

Unfortunately, requiring the encryption scheme to be atlé#dD-PCA secure seems to impact neg-
atively the efficiency of the construction as it excludes bororphic schemes from use (a homomorphic
cryptosystem cannot be IND-PCA secure). In fact, such sesertan be (as we will show later in this
document) efficient decryption verifiable, i.e., they ad¢agfficient ZK proofs of knowledge of the de-
cryption of a given ciphertext. In the next section, we d&scan attempt to circumvent this problem.

Remark 2.There exists a simpler way to exclude homomorphic encrggdtiom the design which con-
sists in proceeding as follows:

First rule out the notions OW-CPA, IND-CPA and OW-PCA by rekirag that EIGamal’s encryption
meets all those notions (under the CDH, DDH and GDH assumpésp. ) but still cannot be used as
an ingredient in the construction. In fact, EIGamal offdrs possibility of, given a ciphertext, creating
another ciphertext for the same message (multiply the frstponent by", for somer, and the second
one byy", where(sk = z,pk = y = ¢%) is the key pair of the scheme). Now, lgt, mq,m) be a
challenge to an INV-CMA adversang. By constructiony is an EIGamal encryption of sonae which

is a digital signature on eithen, or m,. By the argument aboved can create another confirmer sig-
naturey/, that is another encryption of, and that he can query (w.rn:o for example) to the selective
conversion oracle and then answer his own challenge.

Next, conclude that the cryptosystem in constructionsvddrifrom the “encryption of a signature”
paradigm must be at least OW-CCA or NM-CPA or IND-PCA securerder to lead to secure con-
structions. Finally, conclude by the fact that a homomarm@dheme cannot be NM-CPA secure nor
OW-CCA nor IND-PCA secure

However, in order to determine the exact security neededHi®ae secure constructions from the men-
tioned paradigm, there seems no known simpler way to exast e study provided in this section.

4 Efficient KEM/DEM-based Constructions

One attempt to circumvent the problemstfong forgeabilityof constructions obtained from the plain
“encryption of a signature” paradigm can be achieved byihmthe digital signature to its encryption.
In this way, from a digital signature and a message:, an adversary cannot create a new confirmer
signature ornm by just reencryptings. In fact, o forms a digital signature om and some data, say
which uniquely defines the confirmer signatureronMoreover, this data has to be public in order to

3 Let E be a cryptosystem such thatn, m’ € M: E.encrypt(m+m') = E.encrypt(m) o E.encrypt(m’), whereM is the
message spacencrypt is the encryption algorithm and finallyando are some group laws defined Byon the message
and ciphertext spaces resp. dte the NM-CPA challenge. An adversary can simply choosedoranmessage:’ £ M,
encrypt itinc’ and finally outputo ¢’ and the relatior? = . Now, letc be a OW-CCA challenge, an adversary can choose
again a random messag¢ id M, encryptitinc¢ and then query x ¢’ to the decryption oracle. Let” be the result, the
adversary can simply output” xm/~! as the decryption af (we assume that computing inverses\itis done efficiently).
Similarly, a homomorphic scheme cannot be IND-PCA secure.



issue the confirmSign/confirmation/denial protocols. Sacldea has been implemented in [16] in the
undeniable signature framework, using the KEM/DEM paradiin fact, given a message, one first
fixes the session kel and its encapsulationy then generates a digital signatur®n the “augmented”
messagen||c, finally encryptso usingk and outputs the result as an undeniable signature.on

In this section, we propose a recast of this constructiornén@DCS framework. We also allow
more flexibility without compromising the overall securlty encrypting only one part of the signature
and leaving out the other part, provided it does not revearimation about the key nor about the
message. Moreover, we demonstrate the efficiency of thétirgsaonstruction by explicitly describing
its confirmSign/confirmation/denial protocols when the enigng components belong to a wide class
of encryption and digital signature schemes. Interesfjrigke class of digital signatures we consider has
been already used in a recent proposal [44] as an ingrediefat generic construction of designated-
verifier signatures. Finally, we conclude with a comparigath the existing generic constructions.

4.1 The construction

Let X' be a digital signature scheme given bykeygen which generates a key paiE(sk, X.pk), X' .sign
and X .verify. Let furthermorelC be a KEM given byC.keygen which generates a key paiC(pk, £ .sk),
K.encap and.decap. Finally, we consider a DEND given byD.encrypt andD.decrypt.

Without loss of generality, we consider that a digital siginac generated using’ on a message:,
can be written on the forra = (s, r) wherer reveals no information about nor about(X'.sk, X.pk).
l.e., there exists an algorithm that inputs a messaged a key paif X'.sk, X'.pk) and outputs a string
indistinguishable fromr, where the probability is taken over the message and thediegpaces consid-
ered byY'. Note that every signature scheme produces signatures giibn form, since a signature can
be always written as the concatenation of itself and of thptgrmstring (the message-key-independent
part). We assume thatbelongs to the message spacéof

Let || denote the concatenation of two strings after appendinigetditst one the special character
Letm € {0,1}* be a message not containifig}, we propose the following recast of the construction
in [17]:

Key generation. Call X'.keygen and K.keygen to generateX'.sk, 3 .pk, K.pk and K.sk respectively.
Set the signer key pair t@~.sk, X.pk) and the confirmer key pair taC.sk, K.pk).

ConfirmSign. Fix a keyk together with its encapsulatian Then compute a (digital) signatuse =
XY.signy; g (mlle) = (s,r) onmlle. Finally, outputy = (e, D.encrypt,(s),r) and prove the knowl-
edge ofs, decryption of(e, D.encrypt,(s)), which satisfies together with X.verify. This proof is
possible because the signer kndnand(s, r), and the last assertion defines an NP language which
accepts a ZK proof system.

Confirmation/Denial protocol. To confirm (deny) a purported signature = (w1, u2, 13), issued
on a certain message, the confirmer first computds = K.decapy ¢ (¢1) then callsX.verify on
(D.decrypty, (u2), ps) andm|| g usingX'.pk. According to the result, the signer issues a ZK proof of
knowledge of the decryption @f:1, o) that, together withus, passes (does not pass) the verification
algorithm X.verify. Again this proof is possible because the given assertimnsither NP or co-NP
statements and therefore accept a ZK proof system.

Selective conversionTo convert a given signature = (u1, 12, p3) issued on a certain message
the confirmer first checks its validity. In case it is valide tigner computes = K.decapy o (1)
and outputgD.decrypt,, (u2), 3) and proves that is the decapsulation ¢f;, otherwise he outputs
1.

Theorem 5. The above construction is,, ¢s)-EUF-CMA secure if the underlying digital signature
scheme ist( ¢, ¢;)-EUF-CMA secure.



Theorem 6. The proposed construction is €, gs, ¢,, gsc)-INV2-CMA secure if it uses(@, €/, g5 )-EUF-
CMA secure digital signature, an INV-OT secure DEM ané-ad;(q, +gsc), €- (1 —¢ ) 19<)-IND-CPA
secure KEM.

The proofs are similar to those provided in [17]. Note that $frong unforgeability of the underlying
signature scheme is not needed here to achieve invisiltitiact, if the adversary can come up with
another digital signature’ on a givenm/||c, there is just one way to create the corresponding confirmer
signature, namely, encrypt it usihig= K.decap(c). Therefore, the reduction is able to handle a query
requesting the confirmation/denial or selective conversibsuch a signature by just maintaining a list
of the queried messages, the issued confirmer signaturgbeindorresponding digital signatures.

4.2 Efficient Instantiations using Certain Signatures and @yptosystems

In this paragraph, we define the classes of signaturesg@ystems that yield efficient instantiations of
the construction defined earlier in this section. The clésisgital signatures we consider is very similar
to the one defined by [44] in the context of designated vesfgmatures, whereas the class of considered
cryptosystems spotlights the importance of homomorphatygaion in the framework.

Definition 2. (The class S of signatures) S is the set of all digital signatures for which there exists a
pair of algorithms,Convert and Retrieve, whereConvert inputs a public keyk, a messagen, and a
valid signatures onm (according topk) and outputs the paifs, r) such that:

1. there exists an algorithm that inputs a public key fromiiyespace and a message from the message
space, and outputs a string statistically indistinguisieatoom r.
2. there exists an algorithifGompute that on the inpupk, the message: andr, computes a description
of aone-way functionf : (G, *) — (H, oy):
— where(G, %) is a group andH is a set equipped with the binary operatiop,
- VS, 8 eG: f(S*S5") = f(S)os f(5).
and an/ € H, such thatf(s) = I.

and Retrieve is an algorithm that inputek, m and the correctly converted pafs, r) and retrieves the
signaturec onm.

The class differs from the clas€, introduced in [44], in the condition required for the onenfanction

f. Infact, in our description df, the functionf should satisfy a homomorphic property, whereas in the
classC, f should only possess an efficientprotocolfor proving knowledge of a preimage of a value in
its range. We show in Theorem 7 that signature$ @&ccept also efficient protocolsfor proving knowl-
edge of preimages, and thus belong to the clas€onversely, one can claim that signature€iare
also inS, at least from a practical point of view, since it is not knolaow to achieve efficient’ proto-
cols for proving knowledge of preimages pivithout having the latter item satisfy some homomorphic
properties. It is worth noting that similar to the clas§eand C is the class of signatures introduced
in [26], where the condition of having an efficieft protocol for proving knowledge of preimages is
weakened to having onlywitness hidingproof of knowledge. Again, although this is a weaker assump-
tion on f, all illustrations of signatures in this wider class happeme also inC andS. Our resort to
specify the homomorphic property ghwill be justified later when describing the confirmation/dén
protocols of the resulting construction. In fact, theseqgeols are parallel composition &f protocols
and therefore need a careful study as it is known that zeravledge is not close under concurrent
composition. Finally, the classencompasses most proposals that were suggested so faf- BISA3],
Schnorr [43], GHR [21], Modified EIGamal [41], Cramer-Shddp], Camenisch-Lysyanskaya-02 [8]
and most pairing-based signatures such as [6, 9, 4, 49, 47].

Theorem 7. The protocol depicted in Figure 1 is an efficiedt protocol for proving knowledge of
preimages of the functiofi described in Definition 2.
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1. The prover chooses £ G, computes and sends = I o, f(s’) to the verifier.

2. The verifier chooses - {0, 1} and sends it to the prover.

3. If ¢ = 0, the prover sends'. I
Otherwise, he sendsx s’.

4. If ¢ = 0, the verifier checks that is computed as in Step 1.
Otherwise, he (verifier) acceptsfifs  s') = ¢.

Fig. 1. Proof system for membership to the langudge f(s) = I} Common input: I andPrivate input : s

The proof will be given in Appendix E.1.

Definition 3. (The class E of cryptosystems) [E is the set of encryption schemgs obtained from the
KEM/DEM paradigm that have the following properties:

1. The message space is a group= (G, *) and the ciphertext spacgis a set equipped with a binary
operationo,.

2. Letm € M be a message andits encryption with respect to a kgk. On the common input
m, ¢ and pk, there exists an efficient zero knowledge proofrobeing the decryption of with
respect topk. The private input of the prover is either the private kkycorresponding tgk, or
the randomness used to encryptin ¢ (the randomness which is input to the KEM encapsulation
algorithm).

3. Ym,m' € M, Vpk: Iencrypty (m * m’) = I.encrypty (m) o Iencrypt,,(m’). Moreover, given
the randomness used to encryptin I".encrypt,, (m) andm’ in I".encrypt,.(m’), one can deduce
(using only the public parameters) the randomness useddg/ptn + m' in I'encrypt,, (m) o,
Iencrypt, (m’).

Examples of cryptosystems in the above class are ElGanadiygtion [18], or the cryptosystem de-
fined in [5] which uses the linear Diffie-Hellman KEM. In fattoth cryptosystems are homomorphic
and possess an efficient protocol for proving that a cipkedecrypts to a given plaintext: the proof of
equality of two discrete logarithms [13]. Palillier's [37iyptosystem cannot be viewed as an instance
of this class as it is not based on the KEM/DEM paradigm, havév Appendix E.2, we provide a
modified variant which belongs to the cldssind thus is suitable for use in the construction.

Note that with this considered class of cryptosystems, dhectve conversion is made efficient since
one can efficiently prove that a given ciphertext decrypts ¢iven message. In the sequel, we will see
that, with this class it is also easy to prove in ZK knowled§jthe decryption of a given ciphertext.

1. The prover chooses <% G, computes and sends = Tencrypt(s’) o (c, si) to the verifier

2. The verifier chooses < {0, 1} and sends it to the signer.
3. If ¢ = 0, the prover sends’ and the randomness used to encrypt ifliancrypt(s’).
Otherwise, he sends * s and proves that; is an encryption of’ * s.
4. If ¢ = 0, the verifier checks thab is computed as in Step 1.
Otherwise, he checks the proof of decryptiont of
It it fails, he rejects the proof.

Fig. 2. Proof system for membership to the langudge, si): 3m : m = I.decrypt(e, si)} Common input: (e, sk, I".pk)
andPrivate input: I".sk or randomness encrypting in (e, sx)

Theorem 8. LetI" be a OW-CPA secure cryptosystem from the above &lakst furthermore: be an
encryption of some message under some publipkeyhe protocol depicted in Figure 2 is an efficient
X protocol for proving knowledge of the decryptioncof
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The proof is similar to the one of Theorem 7. O

The confirmation/denial protocols We combine an EUF-CMA secure signature schethe S and

a cryptosystemi” € E, where the underlying KEMC and DEMD are IND-CPA and INV-OT secure
respectively, in the way described in Section 4. Namely, wa iompute an encapsulatiertogether
with its corresponding key. Then compute a signature on the message to be signed concatenated
with e. Finally converto to (s, r) using theConvert algorithm described in Definition 2 and encrypt
usingk. The resulting confirmer signature (is, D.encrypt,(s),r). We describe in Figure 3 the confir-
mation/denial protocols corresponding to the resultingstiction. Note that the confirmation protocol
can be also run by the signer who wishes to confirm the valafity just generated signature.

1. The prover and verifier, given the public input, compliges defined in Definition 2.

2. The prover chooses <= G, computes and sends = f(s")os IT'and
to = Iencrypt(s’) o. (e, sx) to the verifier
3. The verifier chooses <& {0, 1} and sends it to the prover.
4. If ¢ = 0, the prover sends’ and the randomness used to encffin I".encrypt(s’).
Otherwise, he sends * s and proves that, is an encryption of’ x s.
5. If ¢ = 0, the verifier checks that andt, are computed as in Step 1.
Otherwise, he checks the proof of decryptiornt af
It it fails, he rejects the proof.
Otherwise:
If the prover is confirming the signature, the verifier acedpff (s’ x s) = t1.
If the prover is denying the given signature, the verifieregts the proof iff (s” x s) # ¢1.

Fig. 3. Proof system for membership (non membership) to the largydg, sk, 7): 3s : s = I.decrypt(e,si) A
X .verify(Retrieve(s, r), m|le) = (#£)1} Common input: (e, sk, r, X.pk, I.pk) andPrivate input: I".sk or randomness en-
cryptings in (e, sx)

Remark 3.The prover in Figure 3 is either the confirmer of the signatare;, ) who can run the above
protocols with the knowledge of his private key, or the sigmko wishes to confirm the validity of a just
generated signature (during the ConfirmSign protocol)abt, fwith the knowledge of the randomness
used to encryps in (e, si), where(s,r) is the converted pair obtained from = X'sign(m|le), the
signer can issue the above confirmation protocol thanksetprtbperties satisfied hy.

Theorem 9. The confirmation protocol (run either by the signer on a jusherated signature or by
the confirmer on any signature) described in Figure 3 i§ @rotocol if the underlying cryptosystem is
OW-CPA secure.

Theorem 10. The denial protocol described in Figure 3 isdaprotocol if the underlying cryptosystem
is IND-CPA-secure.

The proofs of both theorems are given in Appendices E.3 ahddSpectively.

4.3 Comparisons and possible extentions

Signthenencrypt variants. The construction presented in this section improves thim paradigm

[10] as it weakens the assumption on the underlying crygtesy from being IND-CCA secure to only
being IND-CPA secure. This impacts positively the efficien the construction from many sides. In
fact, the resulting signature is shorter and its generatamt is smaller, since IND-CPA cryptosystems
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are simpler and allow faster encryption and shorter cighéstthan IND-CCA ones. An illustration is
given by ElGamal’s encryption and its IND-CCA variant, ndyn@ramer-Shoup’s encryption where the
ciphertexts are at least twice longer than EIGamal’s ciightés. Also, there is a multiplicative factor of at
least two in favor of EIGamal’s encryption/decryption cddbreover, the confirmation/denial protocols
are rendered more efficient by the allowance of homomorpltasystems as shown in 4.2. Such cryp-
tosystems were not possible to use before, since a homoinagireme can never attain the IND-CCA
security. Besides, even when the IND-CCA cryptosystem @syqgieion verifiable, e.g., Cramer-Shoup
or the IND-CCA variant of Paillier's encryption [11], theviolved protocols are much more expensive
than the ones corresponding to their IND-CPA variant: irecafsElGamal, this protocol amounts to a
proof of equality of two discrete logarithms, and in case wf modified variant of Paillier (Appendix
E.2), this protocol comes to a proof of knowledge offéfth root. The construction achieves also better
performances than the proposal of [26], where the confirigaeagture comprisek commitments andk
IND-CCA encryptions, wheré is the number of rounds used in the confirmation protocol. ddwer,
the denial protocol presented in [26] suffers the resortrtmfs of general NP statements (where the
considered encryption is IND-CCA). Finally, the resultisignatures are not invisible.

Commitment-based constructionQur construction does not use ROM, unlike the constructiiofi3l,
46]. Moreover, it enjoys the strongest notion of invisityil(INV2-CMA) which captures both invisibil-
ity as defined in [10], and anonymity as defined in [20]. As rmrgd in subsection 2.2, anonymity can
be an important requirement for confirmer signatures in ssatgngs. Unfortunately, many of the effi-
cient generic constructions are not anonymous. In factstcoctions like [31, 22, 46] have a confirmer
signature containing a commitment on the message to bedsmme a valid digital signature on this
commitment. Therefore, such constructions leak alwaystaopéhe signing key, namely the public key
of the underlying digital signature. More precisely, an ity attackerA, will get two public keys
and a confirmer signature on a given message and has to tkéythender which the confirmer signature
was created. To answer such a challendewill simply check the validity of the digital signature on
the commitment (both are part of the confirmer signatureh wagard to one public key (the confirmer
signature public key includes the public key of the undedydigital signature). The result of such a
verification is sufficient fot4 to conclude in case the two confirmer public keys do not sheeame
public key for the digital signature scheme.

The upshot is, our recast of the construction [16] achiewdls iImaximal security (strong invisibility)
without random oracles, and efficiency in terms of the sigreatength, generation, confirmation/denial
and conversion cost. Furthermore, the construction neadilends talirected signature§29] or unde-
niable confirmer signaturef82] by simply having the confirmer share his private key wite signer.
Furthermore, one can extend the analysis provided in tlpemt the other constructions instantiat-
ing the “encryption of a signature” paradigm, e.g., [26,48]fact, both constructions are not strongly
unforgeable, thus the necessity of CCAAfCCA security. To circumvent this problem, one can use
similarly a cryptosystem derived from the hybrid encryptjaradigm, and produce a signature on the
message concatenated with the encapsulation. Hence stiilérmg constructions will thrive on CPA or
A-CPA security while conserving the same security, and thillsaghieve better performances as we
described above (short signature, small cost and manyigahbittstantiations).

5 Conclusion

We provided the first thorough analysis of the “encryptiora@ignature” paradigm. In fact, we set the
necessary and sufficient assumptions on the building blioaksler to achieve unforgeable and invisible
designated confirmer signatures under a chosen messagk. &text, we improved and reshaped a
recent result [16] in the confirmer signature framework. &ter, we demonstrated the efficiency of our
recast by explicitly giving the confirmation/denial probbof the resulting signatures when instantiated
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with building blocks from a large class of signatures/cogystems. The next direction of research might
be to check the minimality of the assumptions, in light of pihevious study, required for the security of
the proposed framework or of the constructions that use doment schemes.
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A Preliminaries

A.1 Digital signatures

A signature schemé’ comprises three algorithms, namely the key generatiorrighgo keygen, the
signing algorithirsign, and the verification algorithiwverify. The standard security notion for a signature
scheme is existential unforgeability under chosen messtigeks (EUF-CMA), which was introduced
in [25]. Informally, this notion refers to the hardness dfie; a signing oracle, producing a valid pair
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of message and corresponding signature such that the meksaagnot been queried to the signing
oracle. There exists also the stronger notion, SEUF-CMIfst existential unforgeability under chosen
message attack), which allows the adversary to producegeripon a previously queried message,
however the corresponding signature must not be obtaied the signing oracle.

A.2 Public key encryption schemes

A public key encryption (PKE) scheme consists of the key gaien algorithmkeygen, the encryp-
tion algorithmencrypt and the decryption algorithrfecrypt. The typicalsecurity goalsa cryptosystem
should attain are: one-wayness (OW) which correspondsittieutty of recovering the plaintext from

a ciphertext, indistinguishability (IND) which refers tioet hardness of distinguishing ciphertexts based
on the messages they encrypt, and finally non-MalleabihylY which corresponds to the hardness of
deriving from a given ciphertext another ciphertext sucit the underlying plaintexts are meaningfully
related. Conversely, the typicattack model@n adversary against an encryption scheme is allowed to
are: Chosen Plaintext Attack (CPA) where the adversary oarypt any message of his choice. This
is inevitable in public key settings, Plaintext Checkindatk (PCA) in which the adversary is allowed
to query an oracle on pairsn(, ¢) and gets answers whether is really encrypted ire or not, and fi-
nally Chosen Ciphertext Attack (CCA) where the adversargllisved to query a decryption oracle.
Pairing the mentioned goals with these attack models yipide security notions GOAL-ATK for
GOAL € {OW,IND,NM} and ATK € {CPA PCA CCA}. We refer to [2] for the formal definitions of
these notions as well as for the relations they satisfy.

A.3 Key/Data encapsulation mechanisms (KEM/DEMS)

A KEM comprises three algorithms: the key generation atharikeygen, the encapsulation algorithm
encap and the decapsulation algorithdecap. The typical security goals that a KEM should satisfy
are similar to the ones defined for encryption schemes. &ilpilwhen conjoined with the three attack
models CPA, PCA and CCA, they yield nine security notions sehdefinitions follow word-for-word
from the definitions of the encryption schemes notions. A DEBImply a secret key encryption scheme
given by the same algorithms forming a cryptosystem (PKEMs could be efficiently combined with
DEMs to build secure encryption schemes. This paradigmllisccthe Hybrid encryption paradigm and
we refer to [27] for the necessary and sufficient conditiomghe KEMs and the DEMs in order to obtain
a certain level of security for the resulting hybrid encigptscheme. For instance, to obtain an IND-
CPA secure cryptosystem, it suffices to combine an IND-CRAeKEM and anndistinguishable
under a one time attack (IND-ODEM. Finally, we need to define a further notion for DEMs:

Definition 4. A DEM is said to beénvisible under a one time attack (INV-OT)no polynomial adver-
sary A wins the following game (running in three phases) with nogligeable probability.Phase 1.
The challenger runs the algorithf®.keygen to obtain a keyD.sk. Challenge. The adversary outputs
eventually a message*. The challenger picks uniformly at random a bifrom {0, 1}. If b = 0, he
encryptsm*, in e*, underD.sk. Otherwise, he chooses a string uniformly at random fronttpkertext
spacePhase 2. A outputs a bit’, representing his guess &f being the encryption ofi* and wins the
game ifb = b'. We defined’s advantage asdv(A4) = | Pr[b = V] — 1|, where the probability is taken
over the random choices of the adversatyand the challenger.

A.4 X protocols

A X protocol is an argument of knowledge which is complete, damd Zero Knowledge (ZK), which
is close under parallel composition if the number of rourgdsdnstant or logarithmic in the security
parameters. We refer to [23] for more information.
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B Proof of Theorem 1

Proof. The If direction has been already proved in [10]. We prove tiwawther direction. Letm*, o)

be an existential forgery against the digital signatureestd One can derive a forgery against the con-
firmer sighature by simply encrypting the signatuteusing the public key of the confirmer. Simulation
of the attacker’'s environment is easy; the reduc®EUF-CMA attacker against the confirmer sig-
nature) will forward the appropriate parameters (thoseceoning the underlying digital signature) to
the EUF-CMA attacker against the underlying signature sehedenotedd. For a signature query on

a messagen, R will first request his challenger for a confirmer signaturéhat he decrypts using the
universal trapdoorR has access to such a trapdoor according to the EUF-CMA $ggarne described

in 2.2) ino. o forms the result output tal. O

C Proof of Theorem 3

The proof is similar to a combination of Lemma 1 and Theorem [39]

Proof. We first note that the purpose &fame Qis to include all the key-preserving reductions which
feed the adversaryl with the same challenge public key in addition to some otlzeameters. Next
we remark that the advantage of the meta-reducfidnin the proof of Lemma 1 (Lemma 2) is the
same as the advantage of any key-preserving redu®ioaducing NM-CPA (OW-CCA) breaking a
cryptosystem/” to breaking the invisibility of a given confirmer signatufer instance, this applies to
the reduction making the best use of an invisibility adversé against the construction. Therefore we
have:
succ$2m0(A) < succ(NM — CPA[I)

wheresucc(N M —C PA[I']) is the success of breakirgin the NP-CPA sense. We also havec$m0(A) <
succ(OW — CCAII).

Next, we prove that for angrbitrary reductionR that NM-CPA (OW-CCA) breaks a cryptosystem
I', given access to an invisibility adversadyagainst the construction (of a confirmer signature using
I"), we have

adv(R) < succ®mel(A)

In fact, assume thak breaks the NM-CPA (OW-CCA) security. We construct an altoni M that
plays Game 1with respect to perfect oracle fot and succeeds in breaking the NM-CPA (OW-CCA)
security ofI” with similar success probability. Algorithov gets a challenge w.r.t. a public ke and
launchesR over the same challenge and the same public kefy. ¢hlls A on pk, then M will call his
own oracle forA. Otherwise, ifR calls.4 on pk’ # pk, M will invoke his own decryption oracle for
pk’ (OW-CPA oracle) to first decrypt the confirmer signature dmhtcheck whether the result is a valid
digital signature on the message in question. The outpieo¥erification algorithm is sufficient fok1
to answer such queries. Finally, whBnoutputs the result td1, the latter will output the same result to
his own challenger.

Now, letR be an arbitrary reduction from NM-CPA (OW-CCA) breaking gptosystem/”, with a
non malleable key generator, to INV1-CMA breaking the cargion. We have

adv(R) < succ®mel(4)
< succ$mO(A) + A
<succ(NM — CPA[I'])(succ(OW — CCA[T'])) + A

sinceA is negligeable, then under the assumptiof'dfeing NM-CPA (OW-CCA) secure, the advantage
of R is also negligeable. O
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D Proof of Theorem 4

Proof. Let A be an attacker that (e, ¢s, v, ¢sc)-INV1-CMA breaks the invisibility of the above con-
firmer signature, believed to b, ¢, ¢s)-EUF-CMA secure. We will construct an algorith® that
IND-PCA breaks the underlying cryptosystem as follows.

Phase 1

Key generation. R will get the public parameters of the target cryptosystesmfhis challenger, that
are.pk , I'.encrypt and I".decrypt. Then, he will choose an appropriate signature sch&hwgth
parameters..pk, X .sk, X.sign and X .verify.

ConfirmSign queries. For a signature query on a messageR first computes a (digital) signatuse
onm using his secret key'.sk. Then, he encrypts and outputs the result td. Besides;R issues
a ZK proof of knowledge of that satisfies the equation defined byverify. Such a proof is pos-
sible for R to provide since he knows the randomness used to enargpid the relation between
I'encrypt(o) ando defines an NP language and thus accepts a zero knowledgegysiefm ac-
cording to [24]. Finally;R will maintain a listL of the queries (messages), the corresponding digital
signatures and finally the signatures he issued.

Selective conversion querie§or a putative confirmer signatugeon m, R will look up the list L.
We note that each record df comprises three components : (1) the queried messgagR) o;
corresponding to a digital signature ew; (3) I"encrypty.,(ci) = pi, Which corresponds to the
confirmer signature issued an;. If no record having as first component the messagappears in
L, thenR will output L. Otherwise, let be the number of records having as first component the
messagen. R will invoke the plaintext checking oracle (PCA) furnisheg fiis own challenger on
(o4, 1), for 1 < i < t, whereo; corresponds to the second component of such records. |fGe P
oracle identifieg: as a valid encryption of some, 1 < i < t, thenR will return o;, otherwise he
will return L. This simulation differs from the real one when the signajuis valid and was not
obtained from the signing oracle. Since the only ways toteraavalid confirmer signature which
was not issued b{R is either to encrypt a digital signature obtained from thieveosion oracle or
to come up with a new fresh pair of message and corresponijngtsare(m, ©1). R can handle the
first case using his PCA oracle and list of recofdsn the second case, we can distinguish two sub-
cases: eithem has not been queried to the signing oracle in which case ihé/payu.) corresponds
to an existential forgery on the confirmer signature schentethus to an existential forgery on
the underlying digital scheme according to Theorem kpdras been queried to the signing oracle
but I".decrypt(p) is not an output of the selective conversion oracle, whiahesponds to a strong
existential forgery on the underlying digital signaturdiefefore, the probability that this scenario
does not happen is at leddt— ¢')?%< because the underlying digital signature schemnie, s, ¢;)-
SEUF-CMA secure by assumption.

Verification (Confirmation/denial) queries R will proceed exactly as in the selective conversion with
the exception of simulating the denial protocol insteadedfiming L, or the confirmation protocol
instead of returning the converted digital signatudRecan issue such proofs without knowing the
private key of the cryptosystem using the rewinding techei(See [35] for an illustration) because
the protocols are zero knowledge and thus simulatable,ing ukesignated verifier proofs [28] in a
registrated key model. Analogously, the probability th#atloes not query a valid signature he has
not obtained from the signing oracle is at legist- ¢')?-.

Challenge.Eventually,.4 he will output two challenging messageg, andm;. R will then compute
two signaturesry and oy on mgy andm; respectively, which he gives to his own challenggrwill
receive then the challenge, as the encryption of eithet, or o1, which he will forward toA.

Phase 2.4 will continue issuing queries to the signing, confirmatéewial and selective conversion
oracles andR can answer as previously. Note that in this phatés not allowed to query the signing
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oracle for a signature omg, m; or the selective conversion, confirmation/denial oracle(nn, 11*),

i = 0,1. Also, R is not allowed to query his PCA oracle ¢n*,0;), i = 0, 1. If during the selective
conversion or confirmation/denial queries madebyR is compelled to query his PCA oracle on
(u*,04), i = 0,1, he will simply output L in case of a selective conversion query or simulate the
denial protocol in case of a verification query. This diffén@m the real scenario when* is a valid
confirmer signature on some messaget {mg,m;}, which corresponds to an existential forgery on
the underlying signature scheme (vill be a valid digital signature om;, s = 0,1 and on a message
m ¢ {mg, m1}). Again, this happens with probability at ma&t<*a.

Final output. When.A outputs his answer € {0, 1}, R will forward this answer to his own challenger.
ThereforeR will IND-PCA break the underlying cryptosystem with advage at least- (1 —¢’) (v +ase)|

in time at most + ¢.qsc(qv + gsc) after at mosy;.(¢sc + ¢») queries to the PCA oracle. O

E Efficient Instantiations using Certain Signatures and Cryptosystems

E.1 Proof of Theorem 7

We first remark that the functiofiused in the definition of the claSsnduces a group law il = f(G)
for the operatior,. Moreover, we havéy = f(1g) andvs € G: f(s)~! = f(s71).

Proof. For completeness, it is clear that if both parties follow ginetocol, the prover will always be
able to provide a proof that the verifier will accept.
For soundness, we show that the prover can cheat with a pliopabmost2~! in one round. In fact,
suppose that the prover can answer both challenges for the sammitment;. Let sy ands; be the
responses of the prover to the challenemnd 1 respectively in Step 3. Since the verifier accepts the
proof, we havet; = f(so)os I = f(s1). Thus,f(s1)os f(s0) ! = f(s1%s5 ") = I. Hence, the prover
would know a preimage of. We conclude that a cheating prover can cheat with at m@stprovided
f is one-way and the verifier is honest (chooses the bit ¢ unifofrom {0, 1}). Repeating the protocol
[ times leads to a soundness error which is at raokt

To prove that the proof is ZK, we provide the following simtola

1. Generate uniformly a random hite i {0,1}. If ¢ = 0, chooses’ € G and sends$; = f(s') = I,
otherwise, choose’ € G and sends; = f(s”) to the verifier.

2. Getc from the verifier. Ifc = ¢ if ¢ = 0, the simulator sends bagk, otherwise, it sends”. If
c # ,itgoes to Step 1.

The prover’s first message is always the functfoapplied to a random valu€¢’ € G, and so is the first
message of the simulator. Sinceis chosen uniformly at random frog0, 1}, the probability that the
simulator rewinds the verifier is:

1-Pric=d]=1—(Prle=0,/ =0]+Prle=1,d =1]) =1 - (%p—i— %(1 -p)=1-
wherep = Pr[c = 0]. Therefore, the expected number of rewinds is 2 and as a qoesee, the
simulator runs in expected linear time. Finally, the disttion of the answers of the prover and of the
simulator is again the same. We conclude that the protoceKidt also remains ZK if it is runl times
in parallel, wherd is either constant or logarithmic in the security paramdtefact, the simulator of
the parallel composition of the protocol will be the paraiemposition of the above simulator. Thus,
the expected running time of the new simulato/igprobability of not rewinding the verifier i8~"),
which is either constant or polynomial in the security pagten O
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E.2 A variant of the Palillier encryption in the KEM/DEM frame work

The Palillier encryption [37] operates on messagéesnn wherelN is a safe RSA modulus. Encryption
of a message: is done by picking a random € Z3, and then computing the ciphertext= V(14
mN) mod N2. We propose the following KEM/DEM-based variant. To en¢rgpnessagen € Zy;,
first pick a randonk € Zy, encrypt it inc using Paillier's encryption and then output £ + m) as
the encryption ofn. Decryption is done by first “decapsulating’to recoverk, and then subtracting
from the second component of the ciphertext.

The new cryptosystem is iR since the product. of two arbitrary ciphertexts is the ciphertext
corresponding to the sum of their underlying plaintexts. d&éne the producst,. in Z]XV2 x Zy to be
(a,b) o¢ (¢,d) = (ac mod N2,b+ d mod N). Moreover, ifry andr; are the randomness used in two
arbitrary ciphertextg, andc;, thenrgr, is the randomness used to encrypt the sum of the plaintexts
corresponding teg andc; resp incg o ¢y .

Moreover, the new cryptosystem is IND-CPA secure providexd driginal one is also IND-CPA
secure. In fact, led be an IND-CPA adversary against the new cryptosystem. Wd bad IND-CPA
adversaryR against the original cryptosystem as follows. Wh&outputs his two challenge messages
mo andmy. R will choose a randonky €r Zy, then computé; = mg + ko — m1 and finally output
ko andk; to his challengerR will get ¢*, as the encryption of eithdy or k1, that he will forward taA
along withkg + mq (equal tok; +m; by construction). The output of is sufficient forR to conclude.

We discuss now the security of the underlying KEM and DEM. €&oning the KEM, we need to
prove that it is IND-CPA secure. i.e., prove that given someapsulatiorr, it is difficult to distinguish
decap(c) from a random element in the corresponding space. Notehatdrresponding space is given
by the security parameter and not by a specific modiNudoreover, we know that given an encap-
sulatione, which corresponds to an encryption of some, elenkert Z using Paillier's encryption,
it is hard to distinguishk from a random element i# y if the Decisional Composite Residuosity As-
sumption (corresponding to distinguishingth residues from random element</r- see [37]) holds.
Therefore, one way to extend this indistinguishability engents in the ciphertext space (given only
by the security parametéN |, i.e., the bit length of the modulu¥’), one can use the recent technique,
used in the area of undeniable signatures by [36] (Sectibyy Which consists in using “close enough”
moduli, i.e., moduli with common high leading bits, say ab8wi (It is known how to generate moduli
N with about|N|/2 leading bits [1]). In this way, the ciphertext space is alibetsame (in the view
of a polynomial attacker) for all the considered moduli aneréfore indistinguishability of some ele-
ment w.r.t. some modulus will induce indistinguishabilfor w.r.t. the other moduli. Finally the DEM
used in the above cryptosystem is obviously INV-OT securdatt, by constructiork is random and
since the DEM encryption function is one-to-one, then sdésresultm + k. Therefore, ciphertexts
obtained from the DEM are statistically indistinguishafstem random elements i . We extend this
indistinguishability to the ciphertext space by the sangeiarent of the “close enough” moduli.

E.3 Proof of Theorem 9

Proof. The confirmation protocol depicted in Figure 3 is a paraltehposition of the proofs depicted
in Figures 1 and 2. Therefore completeness and soundnéss fs a direct consequence of the com-
pleteness and soundness of the underlying proofs (see [23])

To prove that the protocol is ZK. We provide the following silator (for one execution):

1. Generate’ € {0,1}. If ¢ =0, chooses’ € G and sendg; = f(s")osI andty = I".encrypt(s’)o,
(e, si), otherwise, choose’ € G and sends$; = f(s”) andty = I".encrypt(s”) to the verifier.

2. Getc from the verifier. Ifc = ¢: if ¢ = 0, the simulator sends bagk and the randomness used to
encryptl.encrypt(s’), otherwise, it sends” and simulates the proof f being an encryption of”
(this proof is simulatable since it is by assumption ZK): K ¢/, it goes to Step 1.
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The prover's first message is an encryption of a random wdluer G, in addition tof(s”), and so is
the simulator’s first message. Therefore the distributimfithe prover and of the simulator are the same
in the first round of the proof. Moreover, the expected nundfeewinds is two Pr(c # ¢) = %),
making the simulator run in an expected linear time. Theribistion of the prover's messages in the
third round are also similar to those of the simulator. Wechatte that the confirmation protocol is
ZK. Parallel execution of the protocol will remain also ZKtlife number of executionisis constant or

logarithmic in the security parameter (see the above proof) O

E.4 Proof of Theorem 10

Proof. With the standard techniques, we prove that the denial pobttepicted in Figure 3 is complete
and sound with error probability~! (I is the number of rounds) provided the verifier is honest aed th
cryptosystem is one way. Similarly, we provide the follog/simulator to prove the ZK property.

1. Generate’ € {0,1}.1f ¢ = 0,chooses’ € G and sendg; = f(s')osI andt, = I'.encrypt(s’)o,
(e, s), otherwise, choose’ €r G and arandont; € f(G) andty = I'encrypt(s”).

2. Getc from the verifier. Ifc = ¢: if ¢ = 0, the simulator sends bagk and the randomness used to
encryptl.encrypt(s’), otherwise, it sends” and simulates the proof #f being an encryption of”
(this proof is simulatable since it is by assumption zeroKedge). Ifc # ¢/, it goes to Step 1.

The prover's first message is an encryption of some randoneyéland the elemerty = f(s”*s71)o;

I. The simulator’s first message is an encryption of a randdoevé, and in casé = 0 the element

ty = f(s" * s71) os I, whereas in the cage= 1, it is the element,; €y f(G) (independent of").
Distinguishing these two cases it at least as hard as bigg@k@IND-CPA security of the underlying
cryptosystem. In fact, if the verifier is able to distinguitklese two cases, it can be easily used to break
the cryptosystem in the IND-CPA sense. Therefore, undesigsiemption of the IND-CPA security of the
cryptosystem, the simulator’'s and prover’s first messagegillitions are indistinguishable. Moreover,
the simulator runs in expected linear time, since the nurabeswinds is2. Moreover, the distributions
of the prover’s and the simulator's messages in the lastdrane again, by the same argument, indistin-
guishable under the IND-CPA security of the cryptosystemally, with the same argument as above,
parallel execution of the protocol remains also ZK if the fn@mof executions is constant or logarithmic
in the security parameter. O
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