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Abstract In this paper, we extend the Brezing-Weng method by parameterizing the
discriminant D by a polynomial D(z) and give a construction of families of pairing-
friendly elliptic curves with various discriminants. For £ = 5, 8, 9, 15, 16, 20, 24 and
28, our method gives smaller p value than the ones in previous results.
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1 Introduction

Many researchers have been interested in the pairing based cryptography. Elliptic
curves suitable for the pairing based cryptography have to satisfy special properties
which most randomly generated curves will not have. Let E be an elliptic curve defined
over a finite field Fy with a prime or prime power integer ¢ and the order of E(Fq)
equal to ¢ + 1 —t = hr, where t is the trace of the Frobenius automorphism and r
the largest prime number dividing the order of E(F4). The embedding degree is the
smallest positive integer k£ such that r divides qk — 1, that is, r divides qk — 1 but does
not divide qi — 1 for all 0 < i < k. The parameter p, which is the ratio of the size of
q to the the size of r, is defined by logq/logr. A pairing-friendly elliptic curve is an
elliptic curve with small embedding degree and large prime divisor.

The Complex Multiplication method(CM method) is a useful method that con-
structs elliptic curves. The CM method needs integral solutions of the following dio-
phantine equation:

Dy2 =4q — t2,
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which is called the CM equation.
Consequently, to construct pairing-friendly elliptic curves using the CM method,
one needs the following conditions for the triple (¢, 7, q):

1 g is prime or prime power and r prime.

2 hr = q+ 1 —t for some small integer h.

3 r divides q’c — 1 but does not divide qi —1lforall 0<i<k.
4 Dy2 =4q — t2 for some integer y.

Note that condition 3 can be restated as follows:
r| P(t—1) and r J §;(t—1)

for all 0 < i < k, where @ (z) is the kth cyclotomic polynomial [1,9].

There are many well-known strategies for constructing pairing-friendly elliptic curves:
Miyaji, Nakabayashi and Takano developed the MNT method [15]. Cocks and Pinch
[6] presented their general method of constructing curves of arbitrary embedding de-
gree. Barreto, Lynn and Scott [1] described a simple algebraic construction for certain
pairing-friendly families of elliptic curves with low discriminant. This idea was gener-
alized and extended by the work of Brezing and Weng [3]. Freeman [8] presented a
general method of constructing families of elliptic curves with prescribed embedding
degree and prime order.

Among them, we are interested in Brezing-Weng method(BW method). Brezing
and Weng parameterize integer triple (¢,7,¢) by polynomial triple (t(z),r(z),q(x)).
Now, we write down a definition of polynomial type, which is similar to the above
conditions.

Definition 1 [9] Let ¢t(z), r(z) and g(x) be polynomials with rational coefficients. For
a given positive integer k and positive square free integer D, we say that the triple
(t(x),r(x),q(z)) represents a family of elliptic curves with embedding degree k and
discriminant D if the following conditions are satisfied:

1. g(x) represents prime or prime power integers.

r(x) has a large prime divisor for some x € Z.

h(z)r(z) = q(z) + 1 — t(x) for some h(z) in Q[x].

r(x) divides @y (x).

Dy?(z) = 4¢(x) — t*(z) has infinitely many integral solutions.

ANl

In this paper, we extend the BW method by parameterizing discriminant D as
polynomial D(z), that is, we replace Dy?(z) = 4¢(z) — t?(x) in Definition 1 by

D(z)y*(z) = 4q(x) — t*(2).

Up to now, the maximum of CM discriminant that we can handle well is about 1014
[17]. Thus degree of the square free part of D(z) has to be sufficiently small. By making
the square free part of D(z) a linear monomial, we give a new construction of families
of pairing-friendly elliptic curves with the discriminant D(x) of which the degree of
the square free part is small as well as various discriminants. This construction gives
smaller p value than ones in [9, Table 8.2]. Moreover, in the case that the square free
part of D(x) is not equal to z, we also found families with smaller p value than ones
in [9, Table 8.2].

This paper is organized as follows, In Section 2, we introduce the BW method. In
Section 3, we describe the main idea and the algorithm. In Section 4 and Appendix,
we give explicit results.



Table 1

CM equation

BW method  Dy(z)? = 4q(z) — t(x)?
Our method  D(2)y(z)? = 4q(x) — t(z)?

2 Brezing and Weng’s Method

We now introduce the BW method. It is based on the Cocks-Pinch’s method(CP
method) [6]. They use the parametrization of r, ¢, and ¢ by polynomials r(z), ¢(z)
and t(x) respectively. The basic idea of this method is as follows. ¢;, and v/—D are
considered as elements in Q[z]/(r(x)), that is, they are regarded as some polynomials
modulo 7(z) and then set ¢(z) the polynomial which represents 1+ (; in Q[z]/r(z). To
do it, 7(z) must be chosen an irreducible polynomial in Q[z] such that it defines the

field K = Q[z]/(r(z)) with {x, vV—D € K.
Construction 1 (Brezing and Weng’s method : BW-method)

1. Fix D, k € N.

2. Choose an irreducible polynomial 7(x) such that ¢, v—D € K, where ¢}, is a primitive
kth root of unity and K = Q[z]/(r(z)).

Choose t(z) mapping to 1+ ¢ in K.

Choose b(z) mapping to v—D in K.

Compute y(x) = (t(z) — 2)b(z)/D in K.

Compute ¢(z) = (t(z)? + Dy(x)?)/4 € Q[z].

If ¢(x) and r(z) represent prime integers for some z, by the CM method, construct an
elliptic curve over F_ () with an order r(x) subgroup.

No ok~

This method gives elliptic curves with 1 < p < 2, where the parameter p is defined
by the ratio deg q(z)/ degr(z). This method gives goodp values in the case when D =1
and 3(p is sufficiently close to 1). Freeman, Scott and Teske gave also the families in the
case D equal to 2. In these cases, they let K = Q((;,v/—D) and r(z) be a cyclotomic
polynomial which means the field K is a cyclotomic field. There are some advantages in
this setting. The main point is that the ring of algebraic integers of the cyclotomic field
Q(C) is Z[Cg). Since i, and /—D are algebraic and ¢}, is corresponding to a polynomial
x, we can choose t(z) and b(z) as polynomials with integer coefficients. Thus for any
integer z, t(x) always represents an integer. Moreover, the following conjecture tells us
that @y (z) represents prime integers for infinitely many integers x.

Conjecture 1 [13] There are infinitely many =z € Z such that f(z) is prime if the
following conditions are satisfied :

1. The leading coefficient of f is positive.
2. The polynomial f is irreducible.
3. The set of integers {f(n)|n € Z and n > 0} has no common divisor larger than 1.

Lemma 1 & (z) represents prime integers for infinitely many integers x.

Proof If k is equal to 1, it is clear. Suppose that k is larger than 1.
Recall that
o —1=T] s4(x).

dlk



Since @1(z) =z — 1, P (x) divides

k
—1 _ _
z N Y

r—1

Thus @, (1) divides k and &y, (k) divides k¥~ + k¥=2 4 ... + 1. Since ged(k, k¥~ +
o+ 1) =1, ged(Pr(1), Px(l) =1. 0

3 The main idea

Construction 2 (main idea)

For fixed k € N, choose an irreducible polynomial (z) such that ¢, € K = Q[z]/(r(x)).
Choose t(z) € Q[z] mapping to 1 + (; € K.

Choose b(z) € Q[z] mapping to an element in K* and let D(z) = —b(x)? in K.
Compute y(x) = (t(z) — 2)/b(x) in K.

Compute g(z) = (t(x)? + D(z)y(z)?)/4 in Q[z].

If the the leading coefficient of D(x) is negative and the power of leading term is odd,
then set t(z) := t(—z), r(z) := r(—=z), q¢(z) := q(—=z) and D(z) := D(—x).

7. If g(x) and r(z) represent prime integers, then (¢(x), r(z), g(x)) represents a family
of elliptic curves with embedding degree k and discriminant D(z).

o s~ w -

In construction 2, we have to choose D(x) carefully, because the maximum CM
discriminants that we can currently handle is about 1014[17]. The currently accepted
minimum bits of r(z) for implements is 160.

Suppose that D(z) represents a positive square free integer and ¢(x) represents
an integer and r(z) represents an 160-bit prime number and ¢(z) represents also a
prime integer for some & € Z. Then r(z) is larger than 210, Since degr(x) > ¢(k),
the minimum bits of z is asymptotically greater than 160/¢(k). In order that D(z) is
less than 1014 (& 24?), the maximum bits of z is asymptotically 42/ deg D(z). Thus the
degree of D(z) has to be asymptotically less than ¢(k)/4.

D(x) must represent positive integers for some positive integer z. Since (j € K =
Qlz]/(r(x)), the power of the leading term of r(z) is always even. Since ¢(z) = (t(x)?+
D(z)y(x)?)/4, the sign of the leading coefficient of ¢(x) is positive or the same of
D(z)’s. Thus if the leading coefficient of D(z) is negative and the power of leading
term is odd then (t(—x), r(—x), g¢(—=x)) forms a family with a discriminant D(—z).

In Step 5,

deg q(z) = max{2degt(z), degD(x)+ 2degy(zx)}.
Since the degrees of t(z), D(z), y(z) are less than the degree of r(z),

_ deg q(z) _ 3degr(x) _
deg r(x) deg r(x)

But, in our computation, there are sufficiently many cases that p values are close to 1.
Finally, we check whether ¢(z) represents a prime number for some z € Z by
Conjecturel.
Now, we introduce some methods to apply Construction 2.



Table 2
k p(x)  square root of p(z) r(x)
1 mod 2 x gk+1)/2 Py (x)
2mod4 -z gF/241)/2 D (z)

4mod8 2z aBRFN/S _ (kD)8 g (g

3.1 The square free part of D(z) is of the form ax.

Let (t(z), r(x), q(z)) represent a family of pairing-friendly with a discriminant D(z)
of which the square free part is equal to z. If r(az?) has a large prime divisor for
some x and q(az?) represents infinitely many primes then (t(az?), r(az?), q(az?))
represents a family with a discriminant a. If r(z) is especially @ (z) then there are
some advantages.

The following lemma gives the sufficient condition of the irreducibility of r(az?).

Lemma 2 [22, Lemma 4.4] Suppose that &y, (ax?) splits into the different irreducible
polynomials over Q, where a is a square free integer. Then

k if k is odd

o divides {k/2 if k is even.

Specially, if k is odd and « is congruent to 1 modulo 4, then the converse is true.

Proof Suppose that &y, (axz) splits into different irreducible polynomials over Q. By
lemma [10, Lemma 12], az? — ¢}, has a solution in Q(Ck)- Let k be odd. Then (j is a
square in Q(¢g). So « is also a square in Q((y) i.e. Q(v/@) C Q(¢x). By Conductor-
Discriminant Formula [21], the field discriminant of Q(y/«) divides k and so a = 1 mod
4. Thus « divides k. Conversely if & = 1 mod 4 and « divides k, « is a square in Q(().
Since ¢}, is also a square, az® — (j, has a solution in Q(¢k)- By lemma [10, Lemma 12],
@, (az?) is reducible over Q. Let k be even. ax? — ¢ has also a solution in Q(Cap)-
Since (i, is a square in Q(og), @ is also a square in Q({3;). By Conductor-Discriminant
Formula, 4« divides 2k. a

First, we set r(x) = & (z) and K = Q[z]/(r(z)) = Q({x). Then (}, is corresponding
to a polynomial z. So we can choose ¢(z) equal to z' +1 for some i with ged(i, k) = 1.
By Proposition 2, r(x) represents prime integers for infinitely many integers z. In the
Construction 2, in order that a square free part of D(z) is of the form az, ax has to
be a square element in K. If k is not a multiple of 4, x is a square in K. If k = 4 mod
8, 2x is a square in K. The Table 2 gives square roots of z, —z or 2z modulo r(z).

The following is an algorithm to find families of paring-friendly curves with D(x)
of which the square free part of the form axz when r(z) is a cyclotomic polynomial.



Algorithm 3

Input keN, k#0 mod 8.
Output pairing-friendly families with embedding degree k.
1.[initialize] Set r(z) «— Py (z).
Fori=1,...k—1set t(z) — z' +1.
2.[make D(z)]  Set bg(z) < a square root in Table 2 and by (z) < a divisor

3.[make family]

4 [check g(z)]

5.[conclude]

of (t(z) —2) - bo(z) ™t in Qx].

Set D(z) «— —xbi(z)? if k is odd, D(z) — xby(z)? if
k=2 mod 4, D(z) — —2xby (x)? if k = 4 mod 8 in Q[z].
Compute

y(z) — mod r(x).

Compute g(z) = (t(z)? + D(z)y(x)?)/4 in Q[z].

If kis odd or K = 4 mod 8, set t(z) «— t(—z), r(z) «—
r(=x), q(x) — gq(—2), D(z) — D(-x).

Set j «— 1, g — ¢(1). While ged(g, ¢(j)) # 1 and j < 1000
set j —j+1, g — ged(g,9(4))-

If g # 1 go to step 2. (t(z),r(z), ¢(x)) is a pairing friendly
families with embedding degree k and discriminant D(x).

By this method, we find pairing friendly families with embedding degree 20 and

28, and update the table in [9].

Remark 1 If bi(x) is an element in the ring of algebraic integers Z[(x]* of K, its inverse
is also in Z[(]*. Thus 4g(x) has integer coefficients and such a g(x) will represent
integers for some integer z in high provability. But to lower the degree of ¢(z), we
chose by (z) as divisors of t(x) — 2. The reason is that b; (z) can be chosen throughout

several ways, since t(z) — 2 = 2' — 1 is always factored for i > 1.

In first strategy, we cannot treat the case that k is congruent to 0 modulo 8, because
we did not find a square element of the form az. We use the method in [12] to overcome

it. It is the idea to change the representative of elements in the field K as follows.
Second, let 8 =ag + a1l + ...+ ak_lg;:_l € Q(¢x). Let

05 = ayp + agrCp + askCi + ... agxCy

1=1
2 k-1
a2 + ag2(k + a3zl + - . . ag2(y

0" = a13 + a3y + azzCp + ... ak3C’;§_1

SN
(V)
Il

k—1



Table 4
k p d(z p1 D degr(z)
5 1.500 T 1.750 | any odd 8
8 1.750 T - - -
9 1.667 T 1.833 | any odd 12
15 || 1.625 T 1.750 | any even 32
16 || 1.875 x - - -
20 || 1.875 T - - -
1.875 | 2z - - -
24 || 1.875 T - - -
28 || 1.750 | 2=z 1.917 | 6 mod 8 24

k : an embedding degree
d(z) : a square free part of D(x)
p1 : each ones of the case “variable D” in Table 8.2 of [9]

Then the matrix

a12
a22

a32

0 ar9

a3
a3

as3

a3

a1k
a2k

a3z

Ak

changes the basis representation of elements from Q(62) to Q((y). If the determinant
of A is not 0, Q(HQ) is equal to Q({) and a irreducible polynomial of 62 is equal to

r(z)

(z—(6")
pEAt(Q(C))
H (x — a1z — aQQC]i - a32<]3i — ... al&g]ikfl)i)
ged(i,k)#1
1<i<k—1

In Q(#?), the representation of ¢; and a square root of z is

Ck: — A_l

o = O

-1
a square root of z «— A

ak—1

If step 1, step2 in Algorithm 3 are modified as above, then we can apply the Algorithm
4 to the case k is congruent to 0 modulo 8. But if ¢(k) is large, then denominators of
coeflicients of ¢(z) is very large, so it is very difficult that g(z) represents primes.

By using this method, we found families of pairing-friendly curves with embedding

degree 5, 8, 9, 15, 16, 20 and 24, and improve the table in [9](See Table 4).



3.2 Large discriminants

We choose a polynomial b(z) as an element in the ring of algebraic integers Z[(y]* and
set D(x) = —b(z)%. If we choose a polynomial b(x) arbitrarily, even we choose b(z)
with integer coefficients, its inverse does not have integer coefficients. Then ¢(x) has
rational coefficients generally. In this case, it is disadvantageous that ¢(z) represents
primes. But if we choose b(z) € Z[(], its inverse is also in Z[(x]*. Thus 4q(z) has
integer coefficients and such a g(z) will represent integers for some integer x in high
provability. By the Dirichlet unit theorem, the rank of the unit group Z[(;]* is equal
to ¢(k)/2 — 1.

The unit group of Z[()
ZIGk)" = Zuor 27 = (@) @ (b1 (2)) @ - @ (br ().

b(z) = z°b () - b (x), 0<ig<k—1

Here, we compute the generators of the unit group by PARI GP and they are easily
computed. There are infinitely many choices of b(z). Since the rank of Z[(x]* is ¢(k)/2—
1,the rank increases as k increases. We compute families of pairing-friendly elliptic
curves when 3 < k < 50 and choose b(z) the product of the generators of Z[(x]",

b(z) = 2"b (x) - bir(z), 0<ig<k—1, —1<i;<1, j=1,2,---,r

For sufficiently larger k’s with 1 < k < 50, we find families with good p values, but
the degree of a square free part of D(z) is very large. Thus these are not available.

Ezample 1 When k = 14, we get a family with p = 1.167 (In [9, Table 8.2], p = 1.833.).

r(@) = du(x) =2’ — P+t — P+ 2 2+ 1
ZG) = (@) @ (@ — ) @ (2 — 1).

tx) = —22 +1

b(z) = 22b1(z) tho(x) t=2® — 2t 427 -2 - 1
D(z) =2 -2 -2

a(z) = (1/4)(z" — 42 +1).

The ratio of the degree of r(x) to the degree of D(z) is small. If the square free part
of D(x) is less than 10'* and r(z) has large prime factor (asymptotically 160-bits)
and ¢(z) are primes for some integer x, then we make a pairing-friendly curve but we
cannot find such integers.

4 Finding the curves
In the section, we give actual curves from the families with p values in Table 4. The

Example 2—10 described pairing-friendly families and elliptic curves over F, ) for some
integer i, defined by equations of the form

q(i

E:Y?’=X’+aX+b, a, b€ Fyy



Ezample 2 k=5, p=1.500, 0 = (3 — ¢ — (5, D(z) = =

t(x) = 1/55(—4z” + 312% — 86z + 154)
r(z) = a* — 112° + 462% — 96z + 121
q(z) = 1/12100(162° — 1992° + 10052 — 36502° + 1170022 — 23239z + 23716)

1 = 195593505304

D(i) = 886 - 14858

t(i) = —544202573943129272111411681648890

r(1) = 3025 - 483829495596487495971654441173599811162281

= 1463584224179374675314254684550139428765900025

q(i) = 74039110372741036110595689827548994519051195571787209728370532879
j = 64752591869714152811256730172279880579448403321515657295993909314
a=1
b = 5959785262309905716335502267891611785505952511975514779028837188

Remark 2 r(i) does not divide g(i) + 1 — ¢(2) but r(4) /3025 divide because coefficients
of g(z) are rational numbers.

The other examples are provided in Appendix.

5 Conclusion

We have extended the BW-method by parameterizing the discriminant D as a poly-
nomial D(z), and by making the square free part of D(z) a linear monomial, we have
given a new construction of families of pairing-friendly elliptic curves with various dis-
criminants. This method has updated results for & is equal to 5, 8, 9, 15, 16, 20, 24,
and 28 in [9]
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