
On-line Non-transferable Signatures Revisited

Jacob C. N. Schuldt and Kanta Matsuura

Institute of Industrial Science, University of Tokyo,
4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.

{schuldt, kanta}@iis.u-tokyo.ac.jp

Abstract. We propose a new general approach to the construction of on-line non-transferable
signatures introduced by Liskov and Micali. Our approach is based on an extension of designated
verifier proofs which provides interaction simulatability as opposed to transcript simulatability.
We then propose a concrete on-line non-transferable scheme which is proved secure in the stan-
dard model. Our scheme allows a less restrictive and more practical operation, is more efficient,
and meets a stronger notion of security than the previous approach by Liskov and Micali.

Keywords: non-transferable signatures, standard model, provable security.

1 Introduction

An ordinary signature scheme allows anyone to verify the validity of a signature using the
public key of the signer. While this property is useful in many scenarios, it might not always
be desirable. For example, a signer who signs a sensitive message might prefer to be able to
control who can verify the validity of his signature. Chaum et al. [11] addressed this with their
proposal of undeniable signatures in which a verifier is required to interact with the signer to
verify a signature. A signer furthermore has the possibility of proving a signature invalid, and
hence in a dispute, a signer will be able to either confirm or disavow a purported signature.

However, in some scenarios, a signer might become unavailable or might refuse to cooperate
with a verifier. To address this, Chaum [10] introduced designated confirmer signatures in
which a third party, the confirmer, can interact with a verifier to confirm or disavow a signature
on behalf of the signer. Furthermore, the confirmer can, in the case of a dispute, extract
a publicly verifiable signature (of the signer) from a valid designated confirmer signature.
Since their introduction, a number of undeniable schemes [9, 17, 16, 27, 23, 24] and designated
confirmer schemes [29, 5, 19, 18, 40] have been proposed.

An alternative approach was proposed by Jakobsson et al. [22] who introduced designated
verifier signatures in which only a specific verifier chosen by the signer will be convinced about
the validity of a signature. This concept was extended by Steinfeld et al. [35] who introduced
universal designated verifier signatures which allow any user (i.e. not only the signer) to con-
vert a publicly verifiable signature into a designated verifier signature for a chosen verifier.
However, these schemes do not provide a mechanism to determine the validity of a (con-
verted) signature in a dispute. In fact, most of the proposed concrete schemes (e.g. [26, 36,
25]) enable the designated verifier to construct signatures which are perfectly indistinguish-
able from signatures constructed by the signer. Hence, non-repudiation cannot be enforced
in these schemes. Lastly, Baek et al. [1] proposed another approach to universal designated
verifier signatures. In their approach, any user can convert a publicly verifiable signature from
a signer into a signature which cannot be verified independently. However, the user perform-
ing the conversion will be able to prove to any verifier, using an interactive protocol, that
the converted signature was indeed obtained from a valid signature from the signer. Unlike

the above mentioned schemes, this does not require the verifier to hold a public/private key
pair, but still cannot provide non-repudiation since there is no mechanism for proving that a
converted signature does not correspond to a valid signature from the signer.

Off-line and On-line non-transferability. All of the above mentioned schemes guarantee that
once a verifier has verified a signature and is convinced about its validity, he cannot transfer
this conviction to a third party. This is achieved by ensuring that a verifier is able to simulate
a transcript of the interaction with the signer/confirmer, and a scheme providing this property
is said to be off-line non-transferable. However, Liskov and Micali [28] pointed out that almost
all1 previous schemes relying on interactive protocols to provide off-line non-transferability
are vulnerable to on-line attacks, i.e. an attacker who is present while the verifier interacts
with a signer/confirmer might be able to determine the validity of a signature by influencing
messages sent by the verifier. A scheme preventing these types of attacks is said to be on-
line non-transferable and is constructed by enabling the verifier to interactively simulate the
interaction with a signer/confirmer. To preserve soundness of the scheme, only the verifier
should be able to simulate a proof, and to facilitate this, it is assumed the verifier holds a
public/private key pair. We note that to maintain security, it is required that the verifier knows
the private key corresponding to his public key. Assuming that verifiers are not colluding with
the attacker at the time of key registration, this can be achieved by letting the verifiers prove
knowledge of their secret key when registering their public key. We believe this assumption
is reasonable if the verifier and attacker are separate entities (note that if they are not, the
attacker can trivially learn the validity of a signature simply by interacting with the signer
as the verifier). We refer the reader to [28] for a discussion of this.

For undeniable signature schemes employing non-interactive proofs simulatable by the
verifier, off-line non-transferability trivially implies on-line non-transferability. A few prac-
tical schemes with this property have been proposed in the random oracle model [23, 21],
and recently Phong et al. [33] proposed a scheme secure in the standard model using the
proof systems by Groth and Sahai [20]. Note that an undeniable signature scheme with non-
interactive proofs is different from a designated verifier signature scheme in that a signature
is independent of the verifier(s) and that the signer is able to disavow a signature. However,
as ordinary undeniable signature schemes, these schemes rely on the signer to be on-line and
cooperative in case of a dispute, since no confirmer is involved.

Furthermore, Monnerat and Vaudenay [30] proposed an undeniable signature scheme
which uses 2-move confirm and disavow protocols and requires verifiers to hold a pub-
lic/private key pair. Their scheme is proved secure in the random oracle model. While the
used definition of non-transferability in [30] only guarantees transcript simulatability (i.e. de-
fines off-line non-transferability), the concrete scheme allows a verifier to use his private key
to simulate proofs interactively, and hence the scheme provides on-line non-transferability.
However, like in the above schemes, there is no confirmer to ensure non-repudiation if the
signer becomes off-line or refuses to cooperate.

Lastly, Liskov and Micali [28] proposed a generic construction of an on-line non-transfer-
able scheme based on an ind-cpa secure public key encryption scheme and a uf-cma secure
signature scheme. The scheme implements the functionality of a designated confirmer scheme
and is proved secure in the standard model. Although the scheme provides a combination of
functionality and security properties not provided by any previous scheme, it unfortunately

1 The scheme by Monnerat and Vaudnay [30] mentioned below is an exception.

2

has a number of disadvantages. Firstly, to preserve the on-line non-transferability, a signer
has to be willing to issue “fake” signatures to anyone requesting them. This is essential
since a verifier will not be able to simulate a verification interaction without the ability
to ask the signer for fake signatures. However, this drawback clearly limits the practical
applicability of the scheme. Secondly, there is no explicit confirm protocol for the confirmer
(except extraction of a publicly verifiable signature), and the confirmer can only disavow a
signature through a protocol which is off-line and on-line transferable. Furthermore, unless
identity-based encryption is used, a signer will have to engage in a setup process with a
confirmer before signatures can be constructed. Lastly, the used unforgeability definition does
not consider the possibility of corrupted confirmers.

Our contribution. We propose a new general approach to the construction of on-line non-
transferable signatures with confirmers. Our approach is based on an extension of designated
verifier proofs which are interaction simulatable i.e. a verifier is able to simulate the interaction
of a proof to a third party (as opposed to just being able to simulate a transcript of the
interaction). When combined with a core signature scheme, this property will guarantee on-
line non-transferability (the core signature scheme implements the basic functionality of a
designated confirmer signature scheme, see Section 4 for a formal definition).

Based on this, we propose a concrete scheme which is proved secure in the standard
model2. The security of the scheme can be reduced to the computational Diffie-Hellman
problem and the decisional linear problem. Compared to the approach taken by Liskov and
Micali, our scheme has several advantages. Firstly, our scheme is proved secure in a stronger
security model which does not allow a verifier to access the signer when simulating a proof
of validity, and which requires that both signer and confirmer protocols are on-line non-
transferable. Furthermore, our security model requires unforgeability to hold in the presence
of corrupted confirmers, and guarantees that an adversary cannot impersonate either the
signer or confirmer i.e. the adversary cannot make a verifier accept a validity proof, even
for a valid signature, without holding the private key of the signer or confirmer. The latter
security property has recently become a security requirement for undeniable signatures and
designated confirmer signatures (see [24] and [40]). Lastly, our scheme does not require any
setup protocol between a signer and confirmer before signatures can be generated, and our
scheme employs efficient 3-move proof protocols and short signatures. In comparison, the
approach by Liskov and Micali requires signatures consisting of more than 3k encryptions,
where k is a (relatively large) security parameter, and these will be transferred to the verifier
in a 4-move sign/verification protocol. Like the scheme by Liskov and Micali, our scheme is
secure under concurrent attacks.

2 Preliminaries

The decisional linear problem. This decisional problem was introduced by Boneh et al. in [2],
and is defined for a group G of order p as follows: Given u, v, h, ua, vb, hc ∈ G for randomly
chosen values a, b ∈ Zp, decide if a+b = c or c is a random element of Zp. In [2], the decisional
linear problem is shown to be computationally infeasible in the generic bilinear group model.
2 We note that our concrete core signature scheme is constructed using somewhat similar techniques to the

recently proposed undeniable signature schemes in [33], but emphasize that our construction was done
independently. Furthermore, our construction supports confirmers whereas [33] does not, and unforgeability
is reduced to the CDH problem whereas [33] requires the arguably non-standard q-SDH problem.

3

Sigma protocols. We use a description similar to [6]. A sigma protocol for a binary relation
R is a 3-move protocol between a prover and a verifier. Both prover and verifier receive a
common input x, but the prover receives a witness y such that (x, y) ∈ R as an additional
private input. In the first move of the protocol, the prover sends a “commitment” message
a, in the second move, the verifier sends a random “challenge” message c, and in the final
move, the prover sends a “response” message z. Given the response message, the verifier either
accepts or rejects the proof. A sigma protocol is required to have two security properties:

– Special honest verifier zero-knowledge: There exists a simulation algorithm SimΣ that given
input x and a challenge message c, outputs an accepting transcript (a, c, z)← SimΣ(x, c).
We require that the simulated (a, c, z) is perfectly indistinguishable from the transcript
of a real interaction, conditioned on the event that the verifier chooses c as his challenge
message.

– Special soundness: There exists an algorithm WExtΣ that, given two accepting transcripts,
(a, c, z) and (a, c′, z′), for input x which have the same commitment message a but different
challenge messages c 6= c′, can extract a witness y such that (x, y) ∈ R.

Trapdoor commitment schemes. We use a similar description to [15], but require perfect hiding
and a perfect trapdoor property. A trapdoor commitment scheme T = {G, Comm, TdComm, TdOpen}
is given by a generation algorithm G which, given a security parameter 1n, returns public pa-
rameters par and a trapdoor td; a deterministic commitment algorithm Comm which, given par,
a value w ∈ W and randomness r ∈ R, returns a commitment com on w (an opening of com
is simply (w, r), and a verifier checks that com = Comm(par, w, r)); a trapdoor commitment
algorithm TdComm that, given par, returns a commitment com′ and auxiliary information aux
such that the trapdoor opening algorithm TdOpen, given aux, any value w′ and the trapdoor
td, returns r′ such that com′ = Comm(par, w′, r′). We require a trapdoor commitment scheme
to have the following security properties:

– Computational binding: For (par, td) ← G(1k), the probability that any computationally
bounded adversary given par can compute (w, r, w′, r′) such that w 6= w′ and Comm(pk, w, r) =
Comm(pk, w′, r), is negligible in the security parameter 1n.

– Perfect hiding: For (par, td) ← G(1n), random r, r′ ← R, and for any w,w′ ∈ W, the
commitments Comm(par, w, r) and Comm(par, w′, r′) are distributed identically.

– (Perfect) trapdoor property: For (par, td)← G(1k), random w,w′ ←W, an honestly com-
puted commitment com ← Comm(par, w, r) where r ← R, and a commitment computed
using the trapdoor (com′, aux) ← TdComm(par) and r′ ← TdOpen(aux,w′, td), the values
(com, (w, r)) and (com′, (w′, r′)) are distributed identically.

3 Designated Verifier Proofs

Designated verifier proofs were originally introduced by Jakobsson, Sako and Impagliazzo [22],
but were not formally defined. Kudla and Paterson [23] formalized non-interactive designated
verifier proofs and used these for the construction of a designated verifier signature scheme.
In the following, we will define interactive designated verifier proofs and an extended set of
security notions for these.

Informally, the aim of a proof system is to enable a prover to convince a verifier that an
element e belongs to a language L. However, to make the proof systems applicable to the
scenario in which we intend to use them, we will make some assumptions about L. First of

4

all, we assume that a language is parameterized by a pair of public keys, and we use the
notation L(pkP ′ , pkP ′′) to mean the language parameterized by (pkP ′ , pkP ′′). A proof system
is then defined for a family of languages L consisting of the languages obtained by using
different public keys in the parameterization. To prove that e ∈ L(pkP ′ , pkP ′′) it is assumed
that the prover holds the private key corresponding to either pkP ′ or pkP ′′ . Secondly, we will
assume that elements of L(pkP ′ , pkP ′′) can be sampled using a seed s and the private key skP ′

corresponding to pkP ′ . This will be written e
s,skP ′← L(pkP ′ , pkP ′′) and we refer to (pkP ′ , skP ′)

as the primary key pair and to (pkP ′′ , skP ′′) as the secondary key pair3.
With the above assumptions, we define a designated verifier (DV) proof system P to

consist of the following algorithms:

– Setup: This algorithm outputs a set of public parameters par which includes a description
of a family of languages L and an element space E .

– KeyGen′P , KeyGen′′P , KeyGenV : These algorithms output a primary, a secondary and a
verifier public/private key pair (pkP ′ , skP ′), (pkP ′′ , skP ′′) and (pkV , skV), respectively.

– Π: A protocol for proving that an element e ∈ E belongs to a language L(pkP ′ , pkP ′′) ∈ L.
The protocol implicitly defines a pair of interactive algorithms (P,V) run by the prover and
verifier, respectively. Both algorithms take, as common input, the public keys (pkP ′ , pkP ′′ , pkV)
where pkV is the public key of the verifier, a prover index iP ∈ {1, 2} identifying the prover
key pair held by the prover, and the element e.
• P takes, as additional input, the private prover key indicated by iP i.e. skP ′ if iP = 1

and skP ′′ if iP = 2. P interacts with V but has no local output.
• V takes no additional input besides the common input. After completion of the inter-

action with P, V outputs either accept or reject.

By Π{A↔ B} we mean that the algorithms A and B interact (i.e. exchange messages) following
the Π protocol. Hence, an honest run of the protocol using private prover key skP ′′ will be
denoted Π{P(PK, iP , e, skP ′′) ↔ V(PK, iP , e)} where PK = (pkP ′ , pkP ′′ , pkV) and iP = 2.
Furthermore, we will let z ←2 Π{A ↔ B} denote the output of B upon completion of the
protocol, and we write sk ←iP (skP ′ , skP ′′) to denote that sk ← skP ′ if iP = 1 and sk ← skP ′′

if iP = 2.

Correctness. We require that a DV proof system is correct i.e. for all par ← Setup, all
(pkP ′ , skP ′) ← KeyGen′P , all (pkP ′′ , skP ′′) ← KeyGen′′P , all iP ∈ {1, 2} and corresponding
sk ←iP (skP ′ , skP ′′), all (pkV , skV) ← KeyGenV and all e ∈ L(pkP ′ , pkP ′′), the interaction
z ←2 Π{P(PK, iP , e, sk)↔ V(PK, iP , e)}, where PK = (pkP ′ , pkP ′′ , pkV), yields z = accept.

3.1 Security

The security notions for DV proof systems are interaction simulatability and soundness which
we will define in the following. Note that we adopt multi-user security definitions in which
an adversary can interact with oracles regarding a language indexed by any combination of
primary and secondary keys. This property is crucial when using the DV proof systems to
construct on-line non-transferable schemes which we require to be secure even when multiple
signers use the same confirmer. Security models only considering a fixed signer and confirmer

3 When using a proof system to construct an on-line non-transferable signature scheme, the primary and
secondary key pair will correspond to a signer and confirmer key pair, respectively (see Section 4).

5

key pair might lead to schemes which are insecure in this scenario, as illustrated in [5] for
designated confirmer signatures. Our multi-user security definitions will furthermore ensure
security if signers use multiple confirmers. Lastly, note that in both security definitions, the
adversary is allowed to run multiple instances of the prove protocol concurrently.

Interaction simulatability. A DV proof system P is interaction simulatable if there exists an
algorithm Psim, taking input (PK, iP , e, skV) where PK = (pkP ′ , pkP ′′ , pkV) and e ∈ E is not
necessarily in L(pkP ′ , pkP ′′), such that any polynomially bounded adversary A has negligible
advantage in the experiment Expint−simP,A (n) defined in Figure 1 i.e.

|Pr[Expint-sim
P,A (n) = 1]− 1/2| < ε(n)

where ε is a negligible function of the security parameter n. In the experiment, the function
l(n) represents the number of users in the scheme which is assumed to be polynomial in
n. Furthermore, A has access to the oracles O = {Corrupt ,EGen,Prove} which are defined
below. QP ′ and QP ′′ represent lists of corrupted primary and secondary key pairs, respectively,
and will be updated in corrupt queries.

– Corrupt: given (i, P ′), (j, P ′′) or (k, V), this oracle adds i to QP ′ or j to QP ′′ if the query
is one of the first two types. Then the oracle returns skiP ′ , sk

j
P ′′ or skkV , depending on the

query type.

– EGen: given a seed s and indices (i, j), this oracle returns an element e
s,ski

P ′← L(pkiP ′ , pk
j
P ′′).

– Prove: given e ∈ E , indices (i, j, k) and a prover index iP , this oracle interacts with A by
setting PK ← (pkiP ′ , pk

j
P ′′ , pk

k
V), setting sk ←iP (skiP ′ , sk

j
P ′′), and running P(PK, iP , e, sk)

if e ∈ L(pkiP ′ , pk
j
P ′′). If e 6∈ L(pkiP ′ , pk

j
P ′′), the oracle returns ⊥.

It is required that the challenge prover keys are uncompromised i.e. i∗ 6∈ QP ′ and j∗ 6∈ QP ′′ ,
and A is not allowed to submit the challenge element e∗ to the Prove oracle in the experiment.
Note that A can obtain simulated proofs for e ∈ E by running Psim(PK, iP , e, skV) himself
for any public keys PK = (pkiP ′ , pk

j
P ′′ , pk

k
V), since he is allowed to corrupt any private verifier

key skV .

Soundness. For a proof system P, soundness is defined via the experiment ExpsoundnessP,A (n)
shown in Figure 1 where QP ′ , QP ′′ and QV are lists of corrupted primary, secondary and
verifier key pairs, respectively. In the experiment, the adversary has access to the oracles
O = {Corrupt ,EGen,Prove,Sim} which are defined as follows:

– Corrupt, EGen, Prove: defined as above in the interaction simulatability experiment, ex-
cept that the Corrupt oracle now maintains the additional list QV of corrupted verifiers.

– Sim: given e ∈ E , indices (i, j, k) and a prover index iP , this oracle interacts with A by
constructing PK ← (pkiP ′ , pk

j
P ′′ , pk

k
V) and running Psim(PK, iP , e, sk

j
V).

A proof system is sound if for any computationally bounded adversary A we have that

Pr[Expsoundness
P,A (n) = 1] < ε(n)

Note that this soundness definition not only captures that a prover should not be able to
make a verifier accept a proof for an element e 6∈ L(pkP ′ , pkP ′′), but also requires that a
prover not knowing the relevant private key (skP ′ if iP = 1 or skP ′′ if iP = 2) cannot make a
verifier accept, even for elements e ∈ L(pkP ′ , pkP ′′). The latter security property is referred
to as security against impersonation attacks, and has recently been defined for undeniable
signatures [24] and designated confirmer signatures [40].

6

Expint-sim
P,A (n)

QP ′ ← ∅, QP ′′ ← ∅
par ← Setup(1n)
For i = 1, . . . , l(n)

(pkiP ′ , sk
i
P ′)← KeyGen′P (par)

(pkiP ′′ , sk
i
P ′′)← KeyGen′′P (par)

(pkiV , sk
i
V)← KeyGenV (par)

(i∗, j∗, k∗, i∗P , s
∗, stA)← AO(par, pk1

P ′ , . . . , pk
l
V)

PK∗ ← (pki
∗
P ′ , pk

j∗

P ′′ , pk
k∗
V)

sk∗ ←iP {sk
i∗
P ′ , sk

j∗

P ′′}
b← {0, 1}
If b = 0

e∗
s∗,ski∗

P ′← L(pki
∗
P ′ , pk

j∗

P ′′)
b′ ←2 Π{P(PK∗, i∗P , e

∗, sk∗)↔ AO(stA, e
∗)}

else

e∗
$← E

b′ ←2 Π{Psim(PK∗, i∗P , e
∗, skk

∗
V)↔ AO(stA, e

∗)}
If b = b′ return 1
else return 0

Expsoundness
P,A (n)

QP ′ ← ∅, QP ′′ ← ∅, QV ← ∅
par ← Setup(1n)
For i = 1, . . . , l(n)

(pkiP ′ , sk
i
P ′)← KeyGen′P (par)

(pkiP ′′ , sk
i
P ′′)← KeyGen′′P (par)

(pkiV , sk
i
V)← KeyGenV (par)

(i∗, j∗, k∗, i∗P , e
∗, stA)← AO(par, pk1

P ′ , . . . , pk
l
V)

PK∗ ← (pki
∗
P ′ , pk

j∗

P ′′ , pk
k∗
V)

z ←2 Π{AO(stA)↔ V(PK∗, i∗P , e
∗)}

If z = accept ∧ k∗ 6∈ QV ∧
`
e∗ 6∈ L(pki

∗
P ′ , pk

j∗

P ′′)∨
(iP = 1 ∧ i∗ 6∈ QP ′) ∨ (i∗P = 2 ∧ j∗ 6∈ QP ′′)

´
return 1

else return 0

Fig. 1. Interaction simulatability and soundness experiments

4 On-line Non-transferable Signatures

An on-line non-transferable signature scheme is defined in a similar way to a designated
confirmer signature (DCS) scheme, and involves a signer S, a verifier V and a confirmer
C. However, we consider a scheme to consist of two parts: a core signature scheme and a
set of DV proof systems. This logical separation is inspired by the construction of designated
verifier signatures by Kudla and Paterson [23], and will be useful when establishing the general
security results in Section 5. A core signature scheme is given by the following algorithms:

– Setup: Returns a set of public parameters par, including a public/private key space for
signers (PKS ,SKS) and confirmers (PKC ,SKC).

– KeyGenS , KeyGenC : Given input par, these algorithms generate a public/private key pair
for a signer (pkS , skS) and a confirmer (pkC , skC), respectively.

– Sign: Given input par, a message m, a private signer key skS and a public confirmer key
pkC , this algorithm outputs a signature σ on m.

– ExtractC : Given input par, a message m, a public signer key pkS , a secret confirmer key
skC and a signature σ ∈ {Sign(par,m, skS , pkC)}, where skS is the private key corre-
sponding to pkS , this algorithm outputs an extracted signature σ′ on m under pkS .

– Verify: Given input par, a message m, a public signer key pkS and a purported extracted
signature σ′, this algorithm outputs either accept or reject.

For given public signer and confirmer keys pkS and pkC , the Sign algorithm of the core signa-
ture scheme defines a language consisting of valid message/signature pairs i.e. L(pkS , pkC) =
{(m,σ) : σ ← Sign(par,m, skS , pkC)} where skS is the private key corresponding to pkS . The
complement language L(pkS , pkC) consists of the message/signature pairs (m,σ) for which
σ is not a valid signature on m under pkS and pkC . In the following, we will consider the
families of languages L = {L(pkS , pkC) : pkS ∈ PKS , pkC ∈ PKC} and L = {L(pkS , pkC) :
pkS ∈ PKS , pkC ∈ PKC}.

7

An on-line non-transferable signature scheme defines DV proof systems P and P for L and
L i.e. for proving validity and invalidity of signatures. Note that the primary and secondary
keys of P and P correspond to the signer and confirmer keys for the core signature scheme,
respectively. It is assumed that P and P use the same type of verifier keys and share a common
KeyGenV algorithm, and that any public parameters required by the proof systems are output
together with the public parameters par of the core signature scheme.

Let Π = (P, V) and Π = (P, V) denote the proof protocols for P and P. The DV proof
systems implement the following algorithm and protocols:

– KeyGenV : This algorithm outputs a public/private verifier key pair (pkV , skV).
– ConfirmS , ConfirmC : Both protocols correspond to running Π, but iP = 1 for ConfirmS

and iP = 2 for ConfirmC . The prover (the signer or the confirmer) runs P with private
input sk ←iP (skS , skC), and the verifier runs the corresponding algorithm V. The common
input is (PK, iP , (m,σ)) where PK = (pkS , pkC , pkV).

– DisavowS , DisavowC : Similar to the above, both protocols correspond to running Π. The
common and private inputs are as in the confirm protocols.

With the above algorithms and protocols, an on-line non-transferable signature scheme is
defined to be the set:

S = {Setup, KeyGenS , KeyGenC , KeyGenV , Sign,
ConfirmS , ConfirmC , DisavowS , DisavowC , ExtractC , Verify}

Note that the above description requires that both the signer and confirmer can confirm and
disavow a signature. However, this might not be needed in many practical scenarios, and, in
comparison, many DCS schemes (e.g. [29, 5, 19, 18]) are defined for a restricted functionality in
which only the confirmer can disavow a signature. In the above description, this corresponds
to using a proof system P which only supports proofs where iP = 2. Some schemes (e.g. [38]
and Liskov and Micali’s scheme) furthermore restrict the functionality by only requiring that
the signer proves validity of a signature at the time of signing i.e. ConfirmS and Sign are
combined into a single interactive protocol ConfirmedSign in which the verifier obtains a
signature and will be convinced about its validity, and the signer is not required to be able to
prove validity of a signature at a later stage. For the general results presented in Section 5, we
will consider all three types of schemes, but we will restrict the last type to schemes in which
a signer can generate a signature independently of the verifier i.e. ConfirmedSign consists
of two stages: signature generation performed only by the signer, followed by an interactive
proof of validity. However, we allow a signer to make use of the randomness from the signature
generation stage as an additional private input in the interactive proof of validity. For such
schemes, the language L is defined using a modified ConfirmedSign which only executes the
signature generation stage and terminates.

The security definitions in Section 3.1 and Section 4.1 can easily be modified to model the
security of these schemes by restricting the type of oracle queries an adversary can make.

4.1 Security of Core Signature Scheme

Unforgeability. For a core signature scheme S, unforgeability is defined via the experiment
Expuf-cma

S,A (n) shown in Figure 2, where QS denotes the set of compromised signers and Qσ
denotes the set of tuples (i, j,m, σ) where σ was returned by the signing oracle on a request
for a signature on m under (pkiS , pk

j
C). In the experiment A has access to the following oracles:

8

Expuf-cma
S,A (n)

QS ← ∅, Qσ ← ∅
par ← Setup(1n)
For i = 1, . . . , l(n)

(pkiS , sk
i
S)← KeyGenS(par)

(pkiC , sk
i
C)← KeyGenC(par)

(pkiV , sk
i
V)← KeyGenV (par)

(i∗, j∗,m∗, σ∗)/(i′,m′, σ′)← AO(par, pk1
S , . . . , pk

l
V)

// forgery of ordinary signature
If i∗ 6∈ QS ∧ (i∗, j∗,m∗, σ∗) 6∈ Qσ∧

(m∗, σ∗) ∈ L(pki
∗
S , pk

j∗

C)
return 1

// forgery of extracted signature

z ← Verify(pki
′
S ,m

′, σ′)
If i′ 6∈ QS ∧ (i′,−,m′,−) 6∈ Qσ ∧ z = accept

return 1
else return 0

Expinv-cma
S,A (n)

QS ← ∅, QC ← ∅
par ← Setup(1n)
For i = 1, . . . , l(n)

(pkiS , sk
i
S)← KeyGenS(par)

(pkiC , sk
i
V)← KeyGenC(par)

(pkiV , sk
i
V)← KeyGenV (par)

(i∗, j∗,m∗, stA)← AO(par, pk1
S , . . . , pk

l
V)

b
$← {0, 1}

If b = 0 σ∗
$← Sσ

else σ∗ ← Sign(par,m∗, ski
∗
S , pk

j∗

C)
b′ ← AO(stA, σ

∗)
If b = b′

return 1
else return 0

Fig. 2. Unforgeability and invisibility experiments

– Corrupt : Given (i, S), (j, C) or (k, V), this oracle adds i to QS in the first case, and returns
skiS , skjC or skkV , depending on the input.

– Sign: Given a signer index i, a confirmer index j and a message m, this oracle computes
σ ← Sign(par, pkjC , sk

i
S ,m), adds (i, j,m, σ) to Qσ and returns σ.

– ConfirmS ,ConfirmC : Given indices i, j, k, a prover index iP , a message m and a signature
σ, this oracle returns ⊥ if (m,σ) 6∈ L(pkiS , pk

j
C). Otherwise, the oracle interacts with A

by setting PK ← (pkiS , pk
j
C , pk

k
V), sk ←iP (skiS , sk

j
C) and running P(PK, iP , (m,σ), sk).

– DisavowS ,DisavowC : Given indices i, j, k, a prover index iP , a message m and a signature
σ, this oracle returns ⊥ if (m,σ) ∈ L(pkiS , pk

j
C). Otherwise, the oracle interacts with A

by setting PK ← (pkiS , pk
j
C , pk

k
V), sk ←iP (skiS , sk

j
C) and running P(PK, iP , (m,σ), sk).

Since A is allowed to corrupt all confirmers and verifiers while trying to construct a forgery,
he can extract signatures and run simulated versions of the confirm and disavow protocols by
himself, and it is not needed to provide A with oracles for these tasks. A scheme is said to be
unforgeable if

Pr[Expuf-cma
S,A (n) = 1] < ε(n).

Note that an extracted signature is not tied to a confirmer, and hence, for a forgery of an
extracted signature, it is required that A did not submit the sign query (i∗, j,m∗) for any
confirmer index j.

A scheme which is secure against adversaries not making any confirm or disavow queries
is said to be unforgeable against passive adversaries. In case a scheme combines Sign and
ConfirmS in a single protocol ConfirmedSign, we use a modified version of ConfirmedSign
which only generates a signature and halts, when considering passive adversaries. When dis-
tinction is required, we refer to non-passive adversaries as active adversaries.

Invisibility. For a core signature scheme S, invisibility is defined via the experiment Expinv-cma
S,A (n)

shown in Figure 2, where QS and QC are the sets of compromised signers and confirmers, re-
spectively, and Sσ is the signature space. In the experiment, A has access to the same oracles
as in the unforgeability game, but is also given access to an additional extraction oracle:

9

– Extract : Given indices i, j and a message/signature pair (m,σ) ∈ L(pkiS , pk
j
C), the oracle

returns the extracted signature σ′ ← Extract(pkiS , sk
j
C ,m, σ). If (m,σ) 6∈ L(pkiS , pk

j
C),

the oracle returns ⊥.

Furthermore, A is not allowed to compromise the challenge signer or prover (i.e. it is required
that i∗ 6∈ QS , j∗ 6∈ QC), or submit the received challenge signature σ∗ to the Confirm, Disavow
or Extract oracles. A scheme is invisible if

|Pr[Expinv-cma
S,A (n) = 1]− 1/2| < ε(n)

Invisibility against passive adversaries is defined in a similar way to unforgeability against
passive adversaries.

4.2 Security of Combined Scheme

Ideally, when combining a secure (i.e. unforgeable and invisible) core signature scheme with a
set of secure (i.e. interaction simulatable and sound) proof systems, the proof systems would
maintain their security properties. However, this is not obvious since a potential adversary
will have access to additional information such as extracted signatures and proofs of elements
not belonging to a language.

To address this concern, we define an extension of the previously given security notions for
a proof system P. We now assume that the language L is defined by a core signature scheme
and that a corresponding proof system P for L with a prove protocol Π = (P, V) is defined.
For this proof system we consider the oracles Prove and Sim which are defined in a similar
way to the oracles Prove and Sim in the soundness experiment, but for L. We additionally
consider the oracle Extract defined as in the invisibility experiment.

Definition 1 A proof system P is said to be interaction simulatable (sound) against an
adversary with full oracle access, if the proof system is secure according to the definition
in Section 3.1 while the adversary has access to the additional oracles {Prove,Sim,Extract}.

In the interaction simulatability experiment, the adversary is not allowed to submit the chal-
lenge element to the Prove or Extract oracle. (Note that the definition is also applicable when
P implements the disavow protocol.)

We say that an on-line non-transferable signature scheme is secure if it consists of an
unforgeable and invisible core signature scheme, and the confirm and disavow protocols are
implemented with DV proof systems which are interaction simulatable and sound against
adversaries with full oracle access. Note that this interpretation of on-line non-transferability
is stronger than that of Liskov and Micali [28] in that both the confirm and disavow protocols
are required to be interaction simulatable and a verifier is required to be able to simulate a
proof without access to the signer.

5 Construction of DV Proof Systems

Our approach to the construction of DV proof systems is inspired by the original approach
by Jakobsson et al. [22] and is both simple and intuitive. The approach is furthermore closely
related to the construction of efficient zero-knowledge proofs in the auxiliary string model
[15]. The proof systems are based on sigma protocols which are modified using a trapdoor
commitment scheme to make them usable in a designated verifier setting. More specifically,
a prover and a verifier interact as follows.

10

1. The prover chooses a random value w from the challenge space of the sigma protocol,
computes com ← Comm(par, w, r) for random r, and sends com together with the first
message a of the sigma protocol to the verifier.

2. The verifier then sends a random challenge c to the prover.
3. The prover uses c + w as a challenge instead of c and sends the opening (w, r) together

with the last message z of the sigma protocol to the verifier. The verifier checks that w
is in the challenge space for the sigma protocol, checks that com = Comm(par, w, r), and
accepts if (a, c+ w, z) is an accepting transcript of the sigma protocol.

It is assumed that the commitment scheme allows commitments to all possible challenge values
of the sigma protocol. The parameters and trapdoor (par, td) of the commitment scheme will
be used as the public/private key pair (pkV , skV) of the verifier. Hence, using skV , the verifier
will be able to use a predetermined challenge value in the above interaction, and will thus
have the ability to simulate the proof interactively.

However, this is not sufficient for proving our constructions secure. Essentially the problem
is that an adversary can request to interact with Psim in the soundness experiment, choosing
any element as input (even elements e 6∈ L(pkS , pkC)). This type of query can be difficult
to handle for a simulator not knowing the trapdoor of the commitment scheme, whereas
a simulator knowing the trapdoor might not gain sufficient information from an adversary
breaking the security of the proof system.

To overcome this problem, we introduce a stronger binding property for the used com-
mitment scheme. Specifically, we require that for any computationally bounded algorithm A,
the probability

Pr[(par, td)← G(1k); (w, r, w′, r′)← AOc,Oo(par) : w 6= w′∧Comm(par, w, r) = Comm(par, w′, r′)]

is negligible in the security parameter n when A has access to a commit and an open oracle,
Oc and Oo, which behave as follows: upon request, Oc computes (com, aux)← TdComm, stores
aux and returns com to A. Given a commitment com returned by Oc and a value w, Oo
retrieves aux and returns r ← TdOpen(aux,w, td) i.e. com = Comm(par, w, r). The adversary
is only allowed to query Oo with a commitment com obtained from Oc, and is not allowed to
make more than one query to Oo for a given commitment com.

Informally, this enhanced security notion requires that the commitment scheme is binding
even though the adversary is allowed to choose how a polynomial number of commitments
should be opened, after seeing these commitments. We say that a trapdoor commitment
scheme is binding under selective trapdoor openings if it satisfies the above property. Com-
mitment schemes providing this type of security will play an important role in our security
proofs.

It is fairly easy to show that Pedersen’s commitment scheme [32] is binding under selective
trapdoor openings assuming the one more discrete logarithm problem is hard. However, to
obtain a commitment scheme which can be shown secure only assuming the ordinary discrete
logarithm problem is hard, we can make use of the following “double trapdoor” extension
also used to strengthen signatures [37] and improve on-line/off-line signatures [4, 8]:

– G: Given 1n, pick a group G of prime order p such that 2n < p < 2n+1, and furthermore
pick a generator g ← G and random x1, x2 ← Zp. Compute h1 ← gx1 and h2 ← gx2 , and
set the public parameters to par ← (G, g, h1, h2) and the trapdoor to td← (x1, x2).

– Comm: Given a value w ∈ Zp, pick random r1, r2 ← Zp and compute a commitment to w
as com← gwhr11 h

r2
2 . (The opening of com is (w, r1, r2).)

11

– TdComm: Pick random r ← Zp and set com← gr and aux← r.
– TdOpen: Given com, a corresponding aux, the trapdoor td = (x1, x2) and a value w, pick

random r1 ← Zp, compute r2 ← (aux− w − x1r1)/x2, and return the opening (w, r1, r2)

Theorem 2 Assume the discrete logarithm problem is hard in G. Then the above commitment
scheme is binding under selective trapdoor openings.

The proof of this theorem is relatively straight forward, and we omit the details here.

5.1 Security

By making a few assumptions about the core signature scheme and how the DV proof systems
are constructed, we can obtain some general security results which will greatly simplify the
security proofs of our concrete constructions. More specifically, let S be a core signature
scheme. We assume that, given a public confirmer key pkC of S, it is infeasible to compute
the corresponding private key, even with access to a signature validity oracle which, given a
public/private signer key pair (pkS , skS), a message m and a signature σ, returns 1 if σ is
a valid signature on m under (pkS , pkC), and returns 0 otherwise. Note that this oracle is
trivial to implement if the validity of a signature can be determined knowing only skS , and
in this case, the assumption is equivalent to assuming that a private confirmer key cannot
be computed from the corresponding public key. However, for schemes in which knowledge of
the randomness used to construct a signature is required for the signer to prove validity, skS
alone might not be sufficient to determine the validity of a signature, and the validity oracle
might provide non-trivial information4. We will refer to this property as extended key security
for confirmers.

We will furthermore make some assumptions about how the DV proof systems are con-
structed. Let L be the family of languages of valid signatures indexed by a public signer and
confirmer key, and assume that Σ′ and Σ′′ are sigma protocols with the following properties:

– Given common input (pkS , pkC ,m, σ), both Σ′ and Σ′′ prove the validity of (m,σ) under
(pkS , pkC).

– The private prover input in Σ′ is a value x such that (x,m, σ) can be used to construct a
selective forgery on any message m′.

– The private prover input in Σ′′ is the private confirmer key skC .

It is assumed that Σ′ and Σ′′ have special soundness i.e. the private prover input specified
above can be extracted from two transcripts with the same commitment message but different
challenge messages, and Σ′ and Σ′′ are furthermore assumed to be special honest verifier zero-
knowledge. Then let DV-Σ′ and DV-Σ′′ be the protocols obtained from modifying Σ′ and Σ′′

as described in the previous section, using a trapdoor commitment scheme T which is binding
under selective trapdoor openings, is perfectly hiding and has a perfect trapdoor property5.
Finally, let P be a proof system for the family of languages L using a proof protocol Π that
executes DV-Σ′ if iP = 1 and executes DV-Σ′′ if iP = 2. Similarly, let P be a proof system
for L, constructed using the sigma protocols Σ′ and Σ

′′ with similar properties to Σ′ and
4 Note that since it is required that a confirmer can prove the validity of a signature without any special

knowledge besides his private key, it follows that skC alone is sufficient to determine validity of a signature.
5 We assume that given the same security parameter 1n as the core signature scheme, the trapdoor commit-

ment scheme will generate (par, td) that allows commitments to values in the challenge space of Σ′ and
Σ′′.

12

Σ′′, except that they prove the invalidity of a signature. Then the following results can be
obtained.

Theorem 3 Assume that S is invisible against passive adversaries. Then P (P) constructed
above is an interaction simulatable DV proof system for L (L).

Theorem 4 Assume that S is unforgeable against passive adversaries and provides extended
key security for confirmers. Then P (P) constructed above is a sound DV proof system for L
(L).

The proofs of the above theorems can be found in Appendices A and B, respectively. Note
that although the proofs of the above theorems consider the most general type of on-line non-
transferable signature schemes, it is easy to verify that the proofs are applicable for schemes
which implement a more limited functionality as discussed in Section 4. Especially note that
the simulator in the proofs is not assumed to be able to determine validity of a signature
using skS alone, and is not required to interact in ordinary proofs with iP = 1 for signatures
not constructed by the simulator himself, making it easy to verify that the proofs are valid
for the third type of scheme discussed in Section 4.

The above theorems show that the constructed DV proof systems are secure when con-
sidering the proof systems themselves, but do not guarantee security when the adversary has
access to additional information provided by a combined scheme as discussed in Section 4.2.
However, Theorem 3 can easily be extended to the following results.

Theorem 5 Assume that S is invisible against passive adversaries. Then P and P con-
structed above are interaction simulatable against adversaries with full oracle access.

Likewise, it is possible to extend Theorem 4, but to handle extract queries correctly, an
additional assumption is needed. More specifically, we assume there exists an algorithm
SimExtract that given the private signer key skS and a valid signature (m,σ) ∈ L(pkS , pkC),
computes an extracted signature σ̂ ← SimExtract(pkS , pkC , skS , (m,σ)) such that σ̂ = σ′ ←
Extract(pkS , pkC , skC , (m,σ)) i.e. extracted signatures can be computed knowing skS6. With
this assumption, the following theorem can be obtained.

Theorem 6 Assume that S is unforgeable against passive adversaries and provides extended
key security for confirmers, and the above assumption holds about S. Then P and P are sound
against adversaries with full oracle access.

Given the proofs of Theorem 3 and 4, the proofs of the above theorems are relatively easy
extensions (using the additional assumption for Theorem 6), and are omitted here.

The techniques used in the proof for Theorem 3 and 4 can furthermore be used to extend
the security for the core signature scheme. As above, this extension is fairly simple, and the
proofs of the following theorems will be omitted.

Theorem 7 Assume that S is unforgeable against passive adversaries, and that P and P con-
structed above implement the Confirm and Disavow protocols. Then S is unforgeable against
active adversaries.
6 Note that this assumption does not necessarily mean that the validity of a signature can be determined

using skS , since a valid extracted signature might also be obtained from an invalid original signature when
extraction is done using skS .

13

Theorem 8 Assume that S is unforgeable and invisible against passive adversaries, and that
P and P constructed above implement the Confirm and Disavow protocols. Then S is invisible
against active adversaries.

Like Theorems 3 and 4, it is fairly easy to verify that similar results to Theorems 5, 6, 7 and
8 hold for schemes implementing a restricted functionality.

With the above theorems, the task of constructing an on-line non-transferable signature
scheme has been reduced to the simpler task of constructing a passively secure core signature
schemes in which validity and invalidity of a signature can be proved using sigma protocols
with the above stated properties.

6 Concrete On-line Non-transferable Scheme

Our concrete on-line non-transferable signature scheme is based on an adaptation of Waters’
signatures [39] combined with the technique by Boneh, Shen and Waters [3]. The scheme
belongs to the third type of scheme discussed in Section 4 in that only the confirmer is able
to disavow a signature, and Sign and ConfirmS are implemented in a single ConfirmedSign
protocol.

In our description of the confirm and disavow protocols, we will make use of the notation
Σ{(x, y) : gx = h ∧ uy = j ∧ vx+y = k} to denote a sigma protocol in which the prover gets
the private prover input (x, y) and proves to a verifier that the equalities gx = h, uy = j
and uxvy = k hold for group elements g, u, h, j ∈ G and v, k ∈ G′ (G and G′ might be
different groups of the same order). It is well known that such sigma protocols can be obtained
by combining multiple instances of Schnorr’s protocol for proving knowledge of a discrete
logarithm [7]. Furthermore, we will make use of a sigma protocol of the form Σ{(x, y) : ux =
g ∧ vy = g ∧ axby 6= c}. Such a protocol can be implemented using a similar technique to
the protocol for proving in-equality of discrete logarithms by Camenish and Shoup [6] i.e. a
prover and verifier interact as follows:

– The signer picks random r, computes C ← (axby/c)r and sends C to the verifier.
– The signer and verifier then interact in the protocol Σ{(α, β, γ) : uαg−γ = 1 ∧ vβg−γ =

1 ∧ aα bβc−γ = C} where α = xr, β = yr and γ = r.

The value C can be sent together with the first message of the sigma protocol in the second
step to obtain a 3-move protocol. To see that the above protocol is special honest verifier
zero-knowledge and has special soundness, similar arguments to [6] can be used, and we
refer the reader to [6] for the details. Lastly we assume that a trapdoor commitment scheme
T = (G, Comm, TdComm, TdOpen) is given7, and we let DV-Σ denote the sigma protocol Σ
modified as described in Section 5 using T .

Our concrete on-line non-transferable signature scheme S is defined as follows:

– Setup: Choose bilinear groups (G,GT) of prime order p, a bilinear map e : G×G→ GT

and generator g of G. Furthermore, choose a collision resistant hash function family H =
{Hk : {0, 1}∗ → Zp} indexed by a key k ∈ K. Return par = (G,GT , e, p, g,H).

7 The commitment scheme presented in Section 5 satisfies all needed requirements, but to simplify the pre-
sentation we use a generic description.

14

– KeyGenS(par) : Pick α ← Zp, set g1 ← gα, and pick g2, h ← G. Furthermore, pick
u0, . . . , un ← Zp, set Ui ← gui , and define F (m) = U0

∏n
i=1 U

mi
i where mi is the ith

bit of m8. Finally pick a hash key k ∈ K and return pkS = (k, g1, g2, h, U0, . . . , Un) and
skS = (gα2 , u0, . . . , un).

– KeyGenC(par) : Pick x, y ← Zp and set u← gx
−1

and v ← gy
−1

. Return pkC = (u, v) and
skC = (x, y).

– KeyGenV (par): Compute (par, td)← T .G(1n) and return (pkV , skV) = (par, td).
– ConfirmedSign : Firstly, given input (par, pkS , skS , pkC ,m), where pkC = (u, v) and
skS = (gα2 , u0, . . . , un), the signer constructs a signature by picking a, b, s← Zp, computing
t ← Hk(pkC ||ua||vb||m) and M = gths, and setting σ = (ua, vb, gα2F (M)a+b, s). The
signature σ is then sent to the verifier.
The signer and verifier then interact in the following protocol with (par, pkS , pkC , pkV ,m, σ)
as common input and the random choices (a, b) as private input to the signer.

DV-Σ{(a, b) : ua = σ1 ∧ vb = σ2 ∧ e(g, F (M))a+b = e(g, σ3)/e(g1, g2)}

where M is computed as in the above.
– Extract(par, skC ,m, σ) : Let σ = (σ1, σ2, σ3, s) and skC = (x, y). Return the extracted

signature σ′ = (pkC , σ1, σ2, σ
x
1σ

y
2 , σ3, s).

– Verify(par, pkS ,m, σ′) : Let pkS = (k, g1, g2, h, U0, . . . , Un) and σ′ = (pkC , σ1, σ2, σ
′
3, σ3, s),

and return accept if e(g, σ3) = e(g1, g2)e(σ′3, F (M)) whereM = gths and t = Hk(pkC ||σ1||σ2||m).
– ConfirmC : Given (par, pkS , pkC , pkV ,m, σ) as common input, where pkS = (k, g1, g2, h, U0, . . . , Un),

the confirmer uses private input skC = (x, y) and interacts with the verifier in the protocol

DV-Σ{(x, y) : ux = g ∧ vy = g ∧ e(σ1, F (M))xe(σ2, F (M))y = e(g, σ3)/e(g1, g2)}

where M = gths and t = Hk(pkC ||σ1||σ2||m).
– DisavowC : Given common and private input as in ConfirmC , the confirmer interacts with

the verifier in the protocol

DV-Σ{(x, y) : ux = g ∧ vy = g ∧ e(σ1, F (M))xe(σ2, F (M))y 6= e(g, σ3)/e(g1, g2)}

where M = gths and t = Hk(pkC ||σ1||σ2||m).

The following theorem reduces the unforgeability against passive adversaries of the above
scheme to the unforgeability of Waters’ signature scheme [39]. We refer the reader to [39] for
a full description of this well known signature scheme.

Theorem 9 Assume that the Waters’ signature scheme [39] is unforgeable, H is a collision
resistant hash function family, and the discrete logarithm problem is computationally hard in
G. Then the above on-line non-transferable signature scheme S is unforgeable against passive
adversaries.

Note that in [39], Waters’ signatures are proved unforgeable assuming the computational
Diffie-Hellman problem is hard, and that collision resistant hash functions can be constructed
using this assumption as well [14]. The proof of the above theorem follows a similar strategy
to [3], and will be given in the full version of the paper.

8 We assume that the description of elements in G is less than n bits long.

15

Theorem 10 Assume that the above on-line non-transferable signature scheme S is unforge-
able against passive adversaries, and that the decisional linear problem is computationally
hard in G. Then S is invisible against passive adversaries.

The proof of the above theorem can be found in Appendix C.
From the above description, it is easy to see that the proof systems used to implement

the confirm and disavow protocols are constructed as described in Section 5 and that the
underlying sigma protocols satisfy the given requirements. However, before Theorem 4 can be
applied, we need to verify that the scheme provides extended basic key security for confirmers.
To see this, note that given the private signer key sk = (gα2 , u0, . . . , un), only the discrete
logarithm x = logu g of the private confirmer key is needed to check validity of a signature9,
but an adversary recovering the full private confirmer key will have to compute y = logv g
as well. Hence, it is easy to reduce such an adversary to an algorithm computing discrete
logarithms in G. Furthermore, since knowledge of skS is sufficient to compute an extracted
signature from a valid ordinary signature10, the requirements for Theorem 6 are satisfied as
well. Hence, Theorems 3, 4, 5, 6, 7 and 8 are all applicable, and we conclude that the above
scheme is a secure on-line non-transferable signature scheme.

7 Conclusion

We have presented a new approach to the construction of on-line non-transferable signature
schemes based on an extension of designated verifier proofs. Furthermore, we have proposed
a concrete scheme that is provably secure in the standard model, is more efficient and meets
a more natural and higher level of security than the proposal by Liskov and Micali.

8 Acknowledgement

The authors would like to thank Kenny Paterson for insightful comments and helpful sugges-
tions.

References

1. Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo. Universal designated verifier signature proof (or
how to efficiently prove knowledge of a signature). In Roy [34], pages 644–661.

2. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In CRYPTO 2004, volume 3152
of LNCS, pages 41–55. Springer, 2004.

3. Dan Boneh, Emily Shen, and Brent Waters. Strongly unforgeable signatures based on computational
Diffie-Hellman. In Public Key Cryptography, volume 3958 of LNCS, pages 229–240. Springer, 2006.

4. Emmanuel Bresson, Dario Catalano, and Rosario Gennaro. Improved on-line/off-line threshold signatures.
In Public Key Cryptography, volume 4450 of LNCS, pages 217–232. Springer, 2007.

5. Jan Camenisch and Markus Michels. Confirmer signature schemes secure against adaptive adversaries. In
EUROCRYPT, pages 243–258. Springer, 2000.

6. Jan Camenisch and Victor Shoup. Practical verifiable encryption and decryption of discrete logarithms.
In CRYPTO, volume 2729 of LNCS, pages 126–144. Springer, 2003.

9 Given m and (σ1, σ2, σ3, s), check that e(σx1 , v)e(g, σ2) = e((σ3/g
α
2)(u0+

P
i uiMi)

−1
, v) where M = gths and

t = Hk(pkC ||σ1||σ2||m).
10 More specifically, SimExtract is constructed as follows: Given skS = (gα2 , u0, . . . , un), m and a valid

(σ1, σ2, σ3, s), compute σ′3 = (σ3/g
α
2)(u0+

P
i uiMi)

−1
where M = gths and t = Hk(pkC ||σ1||σ2||m), and

return σ′ = (σ1, σ2, σ
′
3, σ3, s).

16

7. Jan Camenisch and Markus Stadler. Proof systems for general statements about discrete logarithms.
Technical Report 260, Institute for Theoretical Computer Science, ETH Zurich, March 1997.

8. Dario Catalano, Mario Di Raimondo, Dario Fiore, and Rosario Gennaro. Off-line/on-line signatures:
Theoretical aspects and experimental results. In Public Key Cryptography, volume 4939 of LNCS, pages
101–120. Springer, 2008.

9. David Chaum. Zero-knowledge undeniable signatures. In EUROCRYPT, pages 458–464. Springer, 1990.

10. David Chaum. Designated confirmer signatures. In EUROCRYPT, pages 86–91. Springer, 1994.

11. David Chaum and Hans Van Antwerpen. Undeniable signatures. In CRYPTO, volume 435 of LNCS, pages
212–216. Springer, 1989.

12. Ronald Cramer, editor. Advances in Cryptology - EUROCRYPT 2005, Proceedings, volume 3494 of LNCS.
Springer, 2005.

13. Ronald Cramer, editor. Public Key Cryptography - PKC 2008, Proceedings, volume 4939 of LNCS. Springer,
2008.

14. I. Damg̊ard. Collision free hash functions and public key signature schemes. In EUROCRYPT, pages
203–216. Springer, 1987.

15. Ivan Damg̊ard. Efficient concurrent zero-knowledge in the auxiliary string model. In EUROCRYPT, pages
418–430. Springer, 2000.

16. Steven D. Galbraith and Wenbo Mao. Invisibility and anonymity of undeniable and confirmer signatures.
In CT-RSA, volume 2612 of LNCS, pages 80–97. Springer, 2003.

17. Steven D. Galbraith, Wenbo Mao, and Kenneth G. Paterson. RSA-based undeniable signatures for general
moduli. In CT-RSA, volume 2271 of LNCS, pages 200–217. Springer, 2002.

18. Craig Gentry, David Molnar, and Zulfikar Ramzan. Efficient designated confirmer signatures without
random oracles or general zero-knowledge proofs. In Roy [34], pages 662–681.

19. Shafi Goldwasser and Erez Waisbard. Transformation of digital signature schemes into designated con-
firmer signature schemes. In TCC, volume 2951 of LNCS, pages 77–100. Springer, 2004.

20. Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. Cryptology ePrint
Archive, Report 2007/155, 2007. http://eprint.iacr.org/.

21. Xinyi Huang, Yi Mu, Willy Susilo, and Wei Wu. Provably secure pairing-based convertible undeniable
signature with short signature length. In Pairing, volume 4575 of LNCS, pages 367–391. Springer, 2007.

22. Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. Designated verifier proofs and their applications.
In EUROCRYPT, pages 143–154. Springer, 1996.

23. Caroline Kudla and Kenneth G. Paterson. Non-interactive designated verifier proofs and undeniable
signatures. In IMA Int. Conf., volume 3796 of LNCS, pages 136–154. Springer, 2005.

24. Kaoru Kurosawa and Swee-Huay Heng. 3-move undeniable signature scheme. In Cramer [12], pages
181–197.

25. Fabien Laguillaumie, Benôıt Libert, and Jean-Jacques Quisquater. Universal designated verifier signatures
without random oracles or non-black box assumptions. In SCN, volume 4116 of LNCS, pages 63–77.
Springer, 2006.

26. Fabien Laguillaumie and Damien Vergnaud. Designated verifier signatures: Anonymity and efficient con-
struction from any bilinear map. In SCN, volume 3352 of LNCS, pages 105–119. Springer, 2004.

27. Benôıt Libert and Jean-Jacques Quisquater. Identity based undeniable signatures. In CT-RSA, volume
2964 of LNCS, pages 112–125. Springer, 2004.

28. Moses Liskov and Silvio Micali. Online-untransferable signatures. In Cramer [13], pages 248–267.

29. Markus Michels and Markus Stadler. Generic constructions for secure and efficient confirmer signature
schemes. In EUROCRYPT, pages 406–421, 1998.

30. Jean Monnerat and Serge Vaudenay. Short 2-move undeniable signatures. In VIETCRYPT, volume 4341
of LNCS, pages 19–36. Springer, 2006.

31. Tatsuaki Okamoto. Designated confirmer signatures and public-key encryption are equivalent. In
CRYPTO, volume 839 of LNCS, pages 61–74. Springer, 1994.

32. Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In
CRYPTO, volume 576 of LNCS, pages 129–140. Springer, 1991.

33. Le Trieu Phong, Kaoru Kurosawa, and Wakaha Ogata. New rsa-based (selectively) convertible undeniable
signature schemes. In AFRICACRYPT, volume 5580 of LNCS, pages 116–134. Springer, 2009.

34. Bimal Roy, editor. Advances in Cryptology - ASIACRYPT 2005, Proceedings, volume 3788 of LNCS.
Springer, 2005.

35. Ron Steinfeld, Laurence Bull, Huaxiong Wang, and Josef Pieprzyk. Universal designated-verifier signa-
tures. In ASIACRYPT, volume 2894 of LNCS, pages 523–542. Springer, 2003.

17

36. Ron Steinfeld, Huaxiong Wang, and Josef Pieprzyk. Efficient extension of standard schnorr/rsa signatures
into universal designated-verifier signatures. In Public Key Cryptography, volume 2947 of LNCS, pages
86–100. Springer, 2004.

37. Isamu Teranishi, Takuro Oyama, and Wakaha Ogata. General conversion for obtaining strongly existen-
tially unforgeable signatures. In INDOCRYPT, volume 4329 of LNCS, pages 191–205. Springer, 2006.

38. Guilin Wang, Joonsang Baek, Duncan S. Wong, and Feng Bao. On the generic and efficient constructions
of secure designated confirmer signatures. In Public Key Cryptography, volume 4450 of LNCS, pages 43–60.
Springer, 2007.

39. Brent Waters. Efficient identity-based encryption without random oracles. In Cramer [12], pages 114–127.
40. Douglas Wikström. Designated confirmer signatures revisited. In TCC, volume 4392 of LNCS, pages

342–361. Springer, 2007.

A Proof of Theorem 3

Proof. Since the proof for P is almost identical to the proof for P, only the latter is given
here. Furthermore, to simplify notation, we assume that Σ′ and Σ′′ share the same challenge
space.

The algorithm Psim(PK, iP , skV , e), where PK = (pkS , pkC , pkV), iP ∈ {1, 2} and e =
(m,σ), is constructed as follows:

1. Pick a random challenge c and set (a, c, z) ← SimΣ′((pkS , pkC , pkV , e), c) if iP = 1 and
(a, c, z) ← SimΣ′′((pkS , pkC , pkV , e), c) if iP = 2. Compute a commitment (com, aux) ←
TdComm(pkV), and send (a, com) as the first message.

2. Upon receiving a challenge c′, compute w′ = c − c′ and r′ = TdOpen(aux,w′, skV), and
send (w′, r′, z) as a response.

It is easy to verify that the above algorithm will cause an honest verifier to accept.
We will now show that the interaction of a simulated proof is indistinguishable from the

interaction of a real proof. This will play a key role in the following proofs.

Lemma 11 Assume the commitment scheme T has a perfect trapdoor property, and that Σ′

and Σ′′ are special honest verifier zero-knowledge. Then the interactions of P and Psim are
perfectly indistinguishable.

Proof. Consider the experiment Expint-sim
P,A defined in Figure 1. Let Expint-sim′

P,A be an experiment
similar to Expint-sim

P,A but with the change that the challenge element is generated honestly if
b = 1 instead of being picked at random from the element space i.e. e∗ ← E in line 16 is

replaced with e∗
s,ski← L(pkiP ′ , pk

j
P ′′). Furthermore, let Expint-sim′-b

P,A be the experiment in which
the challenge bit b is chosen. We will now show that the view of a distinguisherA in experiment
Expint-sim′-0

P,A is distributed identically to the view of A in experiment Expint-sim′-1
P,A . This is done

by considering the following sequence of games.

Game0 This game is identical to the experiment Expint-sim′-0
A,P .

Game1 In this game, we change how the commitment in P is computed and opened when
interacting with A in the proof of validity for the challenge element e∗. Firstly, a random
value c∗ from the challenge space of the sigma protocols Σ′ and Σ′′ is picked in the
beginning of the experiment. Then, in the first message of P, a commitment (com′, aux)←
TdComm(pkk

∗
V) is sent to A instead of an honestly computed commitment. When A sends a

challenge c′, the trapdoor skk
∗
V is used to compute r′ ← TdOpen(aux, c∗−c′, skk∗V), and the

opening (c∗ − c′, r′) is sent to A in the last message. Since c∗ − c′ is distributed uniformly

18

in the challenge space, and the commitment scheme provides a perfect trapdoor property,
the values (com′, (c∗−c′, r′)) must be distributed identically to the corresponding values in
Game0, and hence, the view of A must be distributed identically to the view in Game0.

Game2 In this game, we change how the messages of the underlying sigma protocols are com-
puted when interacting with A in the proof of validity for the challenge element e∗. Before
interacting with A, the simulated transcript (a, c∗, z)← SimΣ′((pki

∗
S , pk

j∗

C , pk
k∗
V , e

∗), c∗) if
i∗P = 1 or (a, c∗, z) ← SimΣ′′((pki

∗
S , pk

j∗

C , pk
k∗
V , e

∗), c∗) if i∗P = 2 is computed. Then the
messages (a, z) is used in the interaction with A instead of honestly following Σ′ or Σ′′.
Since both Σ′ and Σ′′ are assumed to be special honest verifier zero-knowledge, (a, z) are
perfectly indistinguishable from messages in a real interaction using challenge message c∗,
and the view of Amust be distributed identically to the view in Game1. However, Game2

is identical to Expint-sim′-1
A,P , and since the above yields that the view of A is distributed

identically in Game0 and Game2, we conclude that the interactions of P and Psim are
perfectly indistinguishable. ut

With the above lemma, it becomes easy proving the DV proof system interaction simulat-
able assuming the core signature scheme is invisible against passive attacks, since, intuitively,
an adversary can only win by distinguishing an element of L(pkS , pkC) from a random element
of E .

We construct an invisibility adversary Binv from an interaction simulatability adversary
A as follows. Firstly, Binv is given public parameters par and a list of public keys PK as a
part of an invisibility experiment, and runs A with input (par, PK). While A is running, Binv
answers Corrupt queries by forwarding these to his own corrupt oracle. EGen queries (i, j, s)
are answered by forwarding the submitted seed s and (i, j) to Binv’s own Sign oracle and
returning the obtained signature/message pair (s, σ). Prove queries are answered as follows.

– Given input the indices i, j, k, a prover index iP and an element e = (m,σ), Binv submits
(i, j,m, σ) to his Extract oracle. If the oracle returns ⊥, Binv returns ⊥ to A. Otherwise,
σ must be a valid signature on m under pkiS and pkjC . Binv then obtains skkV through
his Corrupt oracle and interacts with A by running Psim((pkiS , pk

j
C , pk

k
V), iP , e, skkV). As

shown in the above lemma, this interaction is perfectly indistinguishable from running P,
and will not affect the success probability of A since e = (s, σ) corresponds to a valid
signature.

At some point A outputs a challenge seed s∗ and indices i∗, j∗, k∗, and Binv forwards (i∗, j∗, s∗)
as his own challenge message. Binv then obtains a challenge signature σ∗, forwards e∗ = (s∗, σ∗)
as the challenge element toA, and then interacts withA by running Psim((pki

∗
S , pk

j∗

C , pk
k∗
V), i∗P , e

∗, skk
∗
V).

Note that if e∗ corresponds to a valid signature, this is perfectly indistinguishable from running
P((pki

∗
S , pk

j∗

C , pk
k∗
V), i∗P , e

∗, sk) where sk ←i∗P
(ski

∗
S , sk

j∗

C) due to Lemma 11.
After having received e∗, A can ask additional queries which Binv answers as above. When

A terminates with output b, Binv returns b.
From the above, it is clear that an adversary A with non-negligible success probability

will lead to Binv having non-negligible success probability. Hence, assuming the core signature
scheme is invisible against passive adversaries, P must be interaction simulatable. ut

B Proof of Theorem 4

Proof. Since the proof for P is almost identical to the proof for P, only the latter is given
here.

19

Assume an adversary A that breaks the soundness of the proof system P exists. Using
A, we will show how to construct algorithms that either break the binding under selective
trapdoor openings property of the commitment scheme, break the extended key security for
confirmers, or forge a signature of the core signature scheme.

Firstly, we consider a simple simulator B that interacts with A in the soundness exper-
iment. For a security parameter 1n, B generates public parameters par ← Setup(1k) and
primary, secondary and verifier key pairs (pkiS , sk

i
S)← KeyGenS , (pkjC , sk

j
C)← KeyGenC and

(pkkV), skkV)← KeyGenV for 1 ≤ i, j, k ≤ l. Then B runsA with input par and {pkiS , pkiC , pkiV }i,j,k=1...l.
Since B knows all private keys, Corrupt, EGen, Prove and Sim queries can be answered

as in the ordinary soundness experiment. Eventually, A outputs a challenge element e∗ =
(m∗, σ∗), indices i∗, j∗, k∗ and a prover index i∗P . B then interacts with A by running the algo-
rithm V((pki

∗
P , pk

j∗

C , pk
k∗
V), i∗P , e

∗). Since A is a assumed to be a successful adversary, the result-
ing verifier output will be accept with non-negligible probability. B then rewinds A, and using
the same random tape, replays the interaction withA but providesA with a different challenge
when running V((pki

∗
P , pk

j∗

C , pk
k∗
V), i∗P , e

∗) to obtain two transcripts, ((a, com), c, (z, w, r)) and
((a, com), c′, (z′, w′, r′)). It is not obvious that two accepting transcripts can be obtained like
this. However, as shown in [15], this can be achieved with non-negligible probability assuming
A succeeds with non-negligible probability. We refer the reader to [15] for the details of this
observation.

Let compS and compC be the events that A compromises pki
∗
S and pkj

∗

C , respectively. We
will now consider the following four scenarios:

w 6= w′ w = w′ ∧ i∗P = 1 ∧ ¬compS
w = w′ ∧ (i∗P = 1 ∧ compS ∨ i∗P = 2 ∧ compC) w = w′ ∧ i∗P = 2 ∧ ¬compC

Note that the above scenarios cover the entire probability space, and that a successful adver-
sary will have to be successful in one of these scenarios. In the following we will show variants
B1, B2 and B3 of B that will successfully break one of the security assumptions in each of the
different scenarios.

Scenario w 6= w′. In this scenario, B1 runs a binding under selective trapdoor openings
experiment for the trapdoor commitment scheme, and receives a set of trapdoor parameters
partd which includes a security parameter 1n. B1 then generates signature parameters par ←
Setup(1k), selects a special index k′ ∈ {1, . . . , l} and sets pkk

′
V ← partd. Since KeyGenV

corresponds to running G(1k) for the trapdoor commitment scheme, pkk
′
V will be a valid verifier

key. For 1 ≤ i, j, k ≤ l k 6= k′, B1 generates keys (pkiS , sk
i
S), (pkjC , sk

j
C) and (pkkV , sk

k
V) in a

similar way to B and runs A with input par and {pkiS , pk
j
C , pk

k
V }i,j,k=1...l. Since B1 holds all

key pairs (pkiS , sk
i
S) and (pkjC , sk

j
C), EGen and Prove queries made by A can be answered in

a similar way to B. Corrupt and Sim queries are answered as follows:

– Corrupt queries: If A submits the query (k, V) where k = k′, B1 aborts. Otherwise the
relevant private key is returned in a similar way to B.

– Sim queries: For input (i, j, k, iP , e) where k 6= k′, B1 runs Psim((pkiP , pk
j
C , pk

k
V), iP , e, skkV).

Otherwise, B1 responds as follows:
- Firstly, B1 queries its commitment oracleOc and obtains a commitment com, randomly

picks a challenge c, and then runs (a, c, z)← SimΣ′((pkiS , pk
j
C , pk

k
V , e), c) if iP = 1 and

(a, c, z) ← SimΣ′((pkiS , pk
j
C , pk

k
V , e), c) if iP = 2. B1 then returns (a, com) as the first

message to A.

20

- Upon receiving a challenge c′, B1 sets w = c − c′ and submits the commitment com
and the value w to his opening oracle Oo, and receives randomness r. B1 then sends
the response (w, r, z) to A.

It is easy to verify that the above corresponds to a valid interaction with Psim, the only
difference being B1 using his oracles to open the commitment in the correct way instead
of using the private verifier key.

Eventually, A outputs a challenge element e∗ = (m∗, σ∗), indices i∗, j∗, k∗ and a prover index
i∗P . If k∗ 6= k′, B1 aborts. Otherwise, B1 interacts with A by running V((pki

∗
S , pk

j∗

C , pk
k∗
V), iP , e),

rewinds and replaysA with a different challenge to obtain two transcripts ((a, com), c, (z, w, r))
and ((a, com), c′, (z′, w′, r′)) in a similar way to B.

In this scenario, it is assumed that w 6= w′. Furthermore, since the commitment com is
the same in both transcripts, this means that ((w, r), (w′, r′)) is a valid attack against the
binding property of the commitment scheme, and B1 submits this in the binding experiment.

Note that a successful A is not allowed to compromise skk
∗
V , and with probability 1/l, B1

will choose k′ = k∗. In this case, B1 will not abort, will provide A with a perfect simulation,
and will break the binding property of the commitment scheme with non-negligible probability
assuming A is successful with non-negligible probability.

Scenario w = w′ ∧ (i∗P = 1∧ compS ∨ i∗P = 2∧ compC). In this scenario, we will show that it is
not possible for A to be successful. Consider the unmodified algorithm B given above which
obtains two transcripts ((a, com), c, (z, w, r)) and ((a, com), c′, (z′, w′, r′)). Since we assume
A will compromise the private key indicated by i∗P (i.e. skS if i∗P = 1 and skC if i∗P = 2),
we must have e 6∈ L(pki

∗
S , pk

j∗

C) for A to be successful. However since w = w′ and c 6= c′,
(a, c + w, z) and (a, c′ + w′, z′) must be two transcripts with the same first message a and
different challenges c + w 6= c′ + w′ for one of the underlying sigma protocol Σ′ and Σ′′.
Hence, B can extract a witness for e ∈ L(pki

∗
S , pk

j∗

C), contradicting the assumption that A is
successful.

Scenario w = w′ ∧ i∗P = 1 ∧ ¬compS. In this scenario, B2 runs an unforgeability experiment,
receives public parameters par and a set of public keys {pkiS , pk

j
C , pk

k
V }i,j,k=1...l, and forwards

these as input to A. B2 forwards Corrupt and EGen queries from A to his own Corrupt
and Sign oracles, respectively, and returns the answers to A. If A makes a Prove query
(i, j, k, iP , e), B2 firstly obtains skjC by submitting (j, C) to his Corrupt oracle, checks that
e ∈ L(pkiS , pk

j
C), and returns ⊥ to A if this is not the case (note that the validity of a signature

e = (m,σ) can be checked with the private confirmer key). If iP = 2, B2 interacts with A by
running P((pkiS , pk

j
C , pk

k
V), iP , e, sk

j
C). If iP = 1, B2 responds as follows

– Firstly, B2 obtains skkV by submitting (k, V) to his Corrupt oracle, and then interacts with
A by running Psim((pkiP , pk

j
C , pk

k
V), iP , e, skkV). Note that since e is valid, this is perfectly

indistinguishable from running P((pkiS , pk
j
C , pk

k
V), iP , e, skiS) due to Lemma 11, and will

not affect the success probability of A.

Lastly, if A makes a Sim query (i, j, k, iP , e), B2 obtains skkV by submitting (k, V) to his
Corrupt oracle, and interacts with A by running Psim((pkiP , pk

j
C , pk

k
V), iP , e, skkV).

Eventually, A outputs a challenge element e∗ = (m∗, σ∗), indices i∗, j∗, k∗ and a prover in-
dex i∗P . B2 interacts withA by running V((pki

∗
S , pk

j∗

C , pk
k∗
V), i∗P , e), rewinds and replaysA with a

21

different challenge to obtain two transcripts ((a, com), c, (z, w, r)) and ((a, com), c′, (z′, w′, r′)),
where c 6= c′, in a similar way to B.

Since we in this scenario assume that w = w′ and that i∗P = 1, (a, c+w, z) and (a, c′+w′, z′)
must be two transcripts with the same first message a and different challenges c+w 6= c′+w′

for the underlying sigma protocol Σ′. Hence, B2 can extract the private prover input x ←
WExtΣ′((a, c+w, z), (a, c′+w′, z′)). Since it is assumed that (x, e) enables selective forgery of
the signature scheme, B2 selects a m not submitted in a sign query, constructs a signature σ∗

using (x, e), and submits σ∗ in the unforgeability experiment.
B2’s simulation for A is perfect, and since we in this scenario assume that the event compS

does not happen (i.e. A does not compromise the challenge signer key), B2 will be successful
in the unforgeability experiment if A is successful in the soundness experiment.

Scenario w = w′∧ i∗P = 2∧¬compC . In this scenario, B3 runs a key recovery experiment, and
receives public parameters par and a public confirmer key pkC . Then B3 picks a special index
j′ ∈ {1, . . . , l}, sets pkj

′

C ← pkC , and computes (pkiS , sk
i
S)← KeyGenS , (pkjC , sk

j
C)← KeyGenC

and (pkkV , sk
k
V) ← KeyGenV for 1 ≤ i, j, k ≤ l j 6= j′. Lastly, B3 runs A with input par and

{pkiS , pk
j
C , pk

k
V }i,j,k=1,...,l.

Since B3 knows all signer and verifier keys, EGen and Sim queries can be answered in a
similar way to B. Corrupt and Prove queries are answered as follows

– Corrupt queries: If A submits a query (j, C) where j = j′, B3 aborts. Otherwise, the
relevant private key is returned to A.

– Prove queries: If A submits a query (i, j, k, iP , e) where j = j′, B2 submits (pkiS , sk
i
S , e) to

his validity oracle. If e corresponds to an invalid signature, B2 returns ⊥ to A. Otherwise,
B2 interacts with A by running Psim((pkiP , pk

j
C , pk

k
V), iP , e, skkV). As argued above, since

e is valid, this is perfectly indistinguishable from running P due to Lemma 11, and will
not affect the success probability of A. For all other queries having j 6= j′, B2 knows all
relevant private keys and can answer the queries in a similar way to B.

Eventually, A outputs a challenge element e∗ = (m∗, σ∗), indices i∗, j∗, k∗ and a prover index
i∗P . If j∗ 6= j′, B2 abort. Otherwise, B2 interacts with A in the Prove protocol by running
V((pki

∗
S , pk

j∗

C , pk
k∗
V), i∗P , e

∗), rewinds and replays A with a different challenge to obtain two
transcripts ((a, com), c, (z, w, r)) and ((a, com), c′, (z′, w′, r′)), where c 6= c′, in a similar way
to B.

In this scenario we assume that w = w′ and that i∗P = 2. Hence, (a, c+ w, z) and (a, c′ +
w′, z′) must be two transcripts with the same first message a and different challenges c+w 6=
c′ + w′ for the underlying sigma protocol Σ′′, and B3 can extract the private prover input,
the private confirmer key skj

∗

C ← WExtΣ′′((a, c+w, z), (a, c′+w′, z′)), and returns skj
∗

C in the
key recovery experiment.

Note that if B2 chooses j′ = j∗ (which will happen with probability 1/l), B2’s simulation
will be perfect and B2 will recover skj

∗

C whenever A is successful in the soundness experiment.
ut

C Proof of Theorem 10

Proof. Since the verifier keys are not relevant when considering passive adversaries, we will
ignore these in the following proof for simplicity.

22

We assume that an adversary A breaking the invisibility of the scheme exists. Let forge
be the event that A submits an extract query (i, j,m, σ) where pkiS is uncorrupted, and σ is
a valid signature on m which was not obtained through a sign query (i, j,m). In the following
we will construct algorithms B1 and B2 which will break the unforgeability of the scheme and
the linear assumption in the events forge and ¬forge, respectively.

Firstly assume that the event forge happens. B1 runs an unforgeability experiment, re-
ceives public parameters par and a list of public keys {pkiS , pk

j
C}i,j=1,...,l, and forward these

as input to A. While running, A can ask Corrupt, Sign and Extract queries. B1 forwards
Corrupt and Sign queries to his own corresponding oracles, and returns the answers to A. If
A makes an Extract query (i, j,m, σ), B1 submits (j, C) to his Corrupt oracle to obtain skjC
(note that B1 can corrupt any confirmer in the unforgeability experiment), checks if (i, j,m, σ)
is a valid signature using skjC , and returns ⊥ to A if this is not the case. If (i, j,m, σ) is valid,
B1 checks if pkiS is uncorrupted and if σ was not returned as a response to a sign query
(i, j,m). If both conditions hold, B1 outputs (i, j,m, σ) and halts. Otherwise, B1 returns
σ′ ← Extract(pkiS , sk

j
C ,m, σ) to A.

At some point, A outputs a challenge (i∗, j∗,m∗). As in the invisibility experiment, B1 flips
a random coin b ← {0, 1} and returns a random σ∗ ← Sσ if b = 0. Otherwise, B1 returns σ∗

obtained by submitting (i∗, j∗,m∗) to his Sign oracle. After receiving σ∗, A can ask additional
Corrupt, Sign and Extract queries which B1 answers as above. If forge happens, it is clear
that B1 succeeds in winning in the unforgeability experiment.

Now assume that forge does not happen. B2 will attempt to solve the decisional linear
assumption i.e. B2 receives a description of a group G of order p and equipped with a pairing
e : G × G → GT , and elements u, v, h, ua, vb, hc ∈ G. B2’s goal is to decide if c = a + b.
Firstly, B2 picks a hash family H = {Hk : {0, 1}∗ → Zp}, an rg ← Zp, and sets g ← urg and
par ← (G,GT , e, p, g,H). Then B2 chooses a special signer index i′ ∈ {1, . . . , l}, picks ki′ ← K,
αi′ , ui′,0, . . . , ui′,n ← Zp and gi′,2, hi′ ← G, and sets pki

′
S ← (ki′ , gαi′ , gi′,2, hi′ , hui′,0 , . . . , hui′,n)

and ski
′
S = g

αi′
i′,2 (note that ski

′
S is only a partial private key, but is sufficient to run Sign).

Furthermore, B2 picks a special confirmer index j′ ∈ {1, . . . , l} and sets pkj
′

C ← (u, v). For
1 ≤ i ≤ l i 6= i′ and 1 ≤ j ≤ l j 6= j′, B2 generates (pkiS , sk

i
S) and (pkjC , sk

j
C) using

KeyGenS(par) and KeyGenC(par). Lastly B2 runs A with input {pkiS , pk
j
C}i,j=1,...,l.

While running, A can ask corrupt, sign and extract queries which are answered as follows.

– Corrupt : If A submits the query (i′, S) or (j′, C), B2 will abort. Otherwise, B2 simply
returns the relevant private key.

– Sign: In the kth query (ik, jk,mk), B2 returns σk ← Sign(skikS , pk
jk
C ,mk) but remember

the random choices ak, bk ← Zp and stores (ik, jk,mk, σk, ak, bk) (note that ski
′
S is sufficient

to run Sign).
– Extract : If A submits the query (i′, j′,m, σ) with the special indices (i′, j′), B2 attempts

to find a k such that (i′, j′,m, σ, ∗, ∗) = (ik, jk,mk, σk, ak, bk). Since we assume that forge
does not happen, such k will exist if (i′, j′,m, σ) is valid. In this case, B2 retrieves σk =
(σk,1, σk,2, σk,3, sk) and returns the extracted signature σ′ = (pkj

′

C , σk,1, σk,2, g
ak+bk , σk,3, sk).

Otherwise, B2 returns ⊥. For queries (i, j′,m, σ) where i 6= i′ and σ = (σ1, σ2, σ3, s), B2

computes t← Hki(pk
j′

C ||σ1||σ2||m), M ← gthsi and ua
′+b′ ← (σ3/(gαii,2))(ui,0+

Pn
k=1 ui,kMk)

−1
,

where the elements ki, hi are from pkiS , the elements gαii,2, ui,0, . . . , ui,n are from skiS , and
a′ and b′ are unknown to B2. Then B2 checks if e(ua

′+b′/σ1, v) = e(u, σ2) and returns ⊥ if
this is not the case (note that if this equation holds, we must have σ1 = ua

′
, σ2 = vb

′
and

23

σ2 = gαii,2F (M)a
′+b′ for some a′, b′ ∈ Zp). Otherwise, B2 returns the extracted signature

σ′ = (pkj
′

C , σ1, σ2, (ua
′+b′)rg , σ3, s). Lastly, for queries (i, j,m, σ) where j 6= j∗, B2 simply

returns σ′ ← Extract(skjC , pk
i
S ,m, σ).

At some stage, A outputs a challenge message (i∗, j∗,m∗). If (i∗, j∗) 6= (i′, j′), B2 aborts.
Otherwise, B2 constructs a challenge signature by picking s ← Zp and computing t ←
Hki′ (pk

j′

C ||ua||vb||m),M∗ ← gthsi′ and σ∗ ← (ua, vb, gαi′i′,2(hc)ui′,0+
Pn
k=1 ui′,kM

∗
i , s), where (ua, vb, hc)

are the elements received in the decisional linear problem. Note that if c is random, then σ∗

will be a random element in G3 × Zp, whereas if c = a+ b, σ∗ will be a valid signature on m

since (hc)ui′,0+
Pn
k=1 ui′,kM

∗
k = (hui′,0+

Pn
k=1 ui′,kM

∗
k)a+b = (Ui′,0

∏n
k=1 U

M∗k
i′,k)a+b.

B2 returns σ∗ to A who can then ask additional Corrupt, Sign and Extract queries, but is
not allowed to query σ∗ to the extraction oracle. B2 answers these queries as above. Eventually,
A outputs a bit b which B2 forwards as his own solution to the decisional linear problem.
B2’s simulation of the invisibility experiment for A is perfect if B2 guesses the correct

challenge indices (i′, j′), and from the above construction of the challenge signature, it is clear
that B2 will solve the decisional linear problem if A breaks the invisibility of the scheme. ut

24

