
A Secure and Efficient Authenticated Diffie–Hellman Protocol

Augustin P. Sarr1, Philippe Elbaz–Vincent2, and Jean–Claude Bajard3

1Netheos R&D
2Institut Fourier – CNRS, Université Grenoble 1

1,3LIRMM – CNRS, Université Montpellier 2
1I3M – CNRS, Université Montpellier 2

August 26, 2009

Abstract. The Exponential Challenge Response (XRC) and Dual Exponential Challenge
Response (DCR) signature schemes are the building blocks of the HMQV protocol. We pro-
pose a complementary analysis of these schemes; on the basis of this analysis we show how
impersonation and man in the middle attacks can be mounted against the HMQV protocol,
when some session specific information leakages happen. We define the Full Exponential
Challenge Response (FXRC) and Full Dual Exponential Challenge Response (FDCR) sig-
nature schemes; using these schemes we propose the Fully Hashed MQV protocol (with
security arguments), which preserves the remarkable performance of the (H)MQV protocol
and resists the attacks we present.

1 Introduction

Implicitly authenticated key exchange protocols have gained wide acceptance; in addition to
providing implicit authentication, these protocols are usually more efficient than the explicitly
authenticated ones. The HMQV protocol [11], inspired by the famous MQV protocol [13, 1, 2,
9, 10, 19, 8], was proposed with security arguments in the Canetti–Krawczyk model [5]. HMQV
was designed in accord with the principle that “a good security system is not one that denies the
possibility of failures but rather one designed to confine the adverse effects of such failures to the
possible minimum” [11]. Session secret leakages may happen; in that case the exposed session
may be compromised, but this should have no effect on the security of any other unexposed
session.

In this paper, we propose a complementary analysis of the Exponential Challenge Response
(XCR) and Dual Exponential Challenge Response (DCR) signature schemes. On the basis of
this analysis we show how impersonation and man in the middle attacks can be done against
HMQV when some session specific information leakages happen. We propose the Full Expo-
nential Challenge Response (FXRC) and Full Dual Exponential Challenge Response (FDCR)
signature schemes. With these schemes we define the Fully Hashed MQV protocol (with security
arguments), which resists the attacks we present and preserves the remarkable performance of
the (H)MQV protocol.

This paper is organized as follows. In section 2 we analyze some aspects of the XCR and
DCR signatures schemes; we show how session specific information leakages can be used for
impersonation and man in the middle attacks against (H)MQV. In section 3 we define a Canetti–
Krawczyk type security model [5, 12] for (H)MQV type protocols. In section 4, we propose the
FXCR and FDCR signature schemes; and using these schemes we propose the FHMQV protocol.
Section 5 deals with security arguments for the FHMQV protocol; in section 6 we present the
FHMQV–C protocol (the ‘C’ stands for key confirmation) , which provides additional security
attributes, namely key confirmation and perfect forward secrecy. We conclude in section 7.

The following notations are used in this paper: G is a multiplicatively written cyclic group
of prime order q generated by G, |q| is the bit length of q. The identity element in G is denoted
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1̄, and G∗ is the set of non–identity elements in G; all public keys are supposed to belong to
G∗. For a group element X ∈ G, the lowercase x denotes the discrete logarithm of X in base
G. The identity of an entity with public key A (and private key a) is denoted Â (Â is supposed
to contain A, or sufficient information to learn A); For two identities Â 6= B̂, we suppose that
there is no substring of Â which equals B̂, and conversely. H is a λ–bit hash function where λ
is the length of the desired session key, and H̄ is a l–bit hash function where l = (⌊log2 q⌋+ 1)/2
(see [11] for a discussion on the value of l); the concatenation of n strings s1, . . . , sn is denoted
(s1, . . . , sn). The symbol “∈R” stands for “chosen uniformly at random in.” The Computational
Diffie–Hellman (CDH) assumption is supposed to hold in G, i.e. given U = Gu and V = Gv

with U, V ∈R G
∗, computing CDH(U, V ) = Guv is infeasible.

2 Complementary Analysis of the HMQV design

We show in this section how session specific information leakages, can be used for impersonation
and man in the middle attacks against HMQV. In our description of HMQV, the ephemeral
public keys are tested for membership in G∗; while public key validation is voluntarily omitted in
[11], the HMQV protocol is known to be insecure if public keys are not correctly validated [17, 16].

2.1 Exploiting Secret Leakage in the XCR and DCR Signature Schemes

Definition 1 (Exponential Challenge–Response signature [11]). Let B̂ be an entity with valid
public key B ∈ G∗, and Â a verifier. B̂’s signature on message m and challenge X provided by
Â (X = Gx, x ∈R ℤ

∗
q is chosen and kept secret by Â) is Sig

B̂
(m,X) = (Y,XsB ), where Y = Gy,

y ∈R ℤ
∗
q is chosen by B̂, and sB = y+ H̄(Y,m)b. The verifier Â accepts a pair (Y, σB) provided

by B̂ as a valid signature if Y ∈ G∗ and (Y Be)x = σB , where e = H̄(Y,m).

In this scheme, the information sB “allows” an attacker to generate valid signatures. Indeed,
given the sB, “corresponding” to some messagem and some Y , one can generate a valid signature
for any message–challenge pair (m,X1) (X1 is a new challenge and the message is unchanged).
In the (H)MQV1 protocol, the identity of the entity B̂ stands for Â’s message to B̂, and thus does
not change from one session (between Â and B̂) to another; hence this can be exploited when sB
leakage happens. This is the basic idea we formalize and use hereafter for impersonation and
man in the middle attacks.

Proposition 1. Let B̂ be an entity, with public key B ∈ G∗, signing a message–challenge pair
(m,X). If we learn the β most significant bits of sB, then we can generate valid signatures with
respect to B̂’s public key, on any message–challenge pair (m,X1) (the message is unchanged);

this requires O
(

2
|q|−β

2
)

time complexity and O
(

2
|q|−β

2
)

space complexity.

Proof. From Shank’s baby step/giant step lemma [24], given σB = XsB , σB,X ∈ 〈G〉, and

the β most significant bits of sB, we can compute sB in O
(

2
|q|−β

2
)

time complexity and O
(

2
|q|−β

2
)

space complexity. Hence given a message–challenge (m,X1), we replay Y (since Y is chosen by
the signer) and output (Y,XsB1 ) as signature with respect to B̂’s public key. The output signature
is valid, thus Proposition 1 holds.

Shanks method is deterministic, but requires a large storage; using the Pollard’s Kangaroo

method [23, 24] one can obtain sB with negligible storage, in probabilistic run time O
(

2
|q|−β

2
)

.

Definition 2 (Dual XCR signature [11]). Let Â and B̂ be two entities with valid public keys
A,B ∈ G; and m1,m2 two messages. The Dual XCR (DCR) signature of Â and B̂ on m1,m2 is

DSig
Â,B̂

(m1,m2,X, Y ) = G(x+da)(y+eb),

where X = Gx ∈R G
∗ is chosen by Â (resp. Y = Gy ∈R G

∗ is chosen by B̂), d = H̄(X,m1), and
e = H̄(Y,m2).

1When regarded through XCR schemes, the XCR variant corresponding to MQV does not use the message in
the computation of sB (sB = y + Ȳ b, with Ȳ = 2l + (Ẏ mod 2l) where Ẏ is the integer representation of Y ), and
thus can be analyzed as if it takes a constant message.
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Once Â and B̂ have exchanged their respective message–challenge pairs (m1,X) and (m2, Y ),
they can both compute the same DCR signature σA = (Y Be)x+da = (XAd)y+eb = σB . Notice
that the DCR signature of Â and B̂ on messages m1,m2 is an XCR of Â on message m1 and
challenge Y Be.

Proposition 2. Let Â and B̂ be two entities, with public keys A,B ∈ G∗, signing the messages
m1, m2, with challenges X,Y . If we learn the β most significant bits of sA = x + da (d =
H̄(X,m1)), then for any message m′2, and any challenge Y ′ from B̂, we can compute a valid DCR

of Â and B̂ on messages m1,m
′
2 and challenges X,Y ′; this requires O

(

2
|q|−β

2
)

time complexity

and O
(

2
|q|−β

2
)

space complexity.

Proof. Since, the DCR signature of Â and B̂ on (m1,m
′
2), is also a XCR signature of Â on

challenge Y ′Be and message m1, Proposition 1 implies the result.

To meet the two–and–half exponentiations per party performance in the DCR scheme, sA
(and sB) have to be computed an the exponentiation (Y Be)sA has to be done, and then sA
(or sB) leakage may happen independently of the ephemeral private keys.

2.2 Exploiting Session Specific Secret Leakages in the HMQV Protocol

A HMQV key exchange between two entities Â and B̂ is done as in Protocol 1; if any verification
fails, the execution aborts.

Protocol 1 HMQV key exchange

I) Â chooses x ∈R ℤ
∗
q, computes X = Gx and sends (Â, B̂,X) to B̂.

II) B̂ does the following things:
a) Verify that X ∈ G∗.
b) Choose y ∈R ℤ

∗
q and compute Y = Gy.

c) Send (B̂, Â, Y ) to Â.
d) Compute d = H̄(X, B̂), e = H̄(Y, Â), sB = (y + eb) mod q, σB = (XAd)sB , and K =
H(σB).

III) Â does the following things:
a) Verify that Y ∈ G∗.
b) Compute d = H̄(X, B̂), e = H̄(Y, Â), sA = (x + da) mod q, σA = (Y Be)sA , and K =
H(σA).

IV) The shared session key is K.

Roughly speaking, the secret shared between Â and B̂ is a DCR signature with messages
fixed to Â and B̂. In [11], the XCR scheme is presented as a new variant of the following
Schnorr’s identification scheme: (i) B̂ chooses y ∈R ℤ

∗
q and sends Y = Gy to Â; (ii) Â chooses

e ∈R ℤ
∗
q and sends e to B̂; (iii) B̂ computes s = y+ eb and sends s to Â; the verifier Â accepts s

as a valid signature if Y ∈ G∗ and Gs = Y Be. There is however a subtlety: in Schnorr’s scheme
the random element e, used by B̂ when computing s, is always provided by the verifier Â; while
in the XCR and DCR schemes, when Â’s message m1 is fixed (to B̂ as in all sessions between Â
and B̂) the value of e, used when computing sB, depends only on the ephemeral key Y provided
by (the signer) B̂. This is precisely what makes replay attacks possible against the XCR and
DCR schemes, and the HMQV protocol, when sA or sB leakage happens.

2.2.1 Impersonation Attack using Session Specific Secret Leakage

We show here how sA (or sB) leakage can be used for impersonation attack2. The following
definition gives a broader view of the points needed for impersonation attack; these points are
recalled to make the analysis reading easier.

2This attack is also reported in [3] (Appendix C); but we submitted (on February 9th, 2009) at WCC 2009
(http://wcc2009.org/) a paper (paper #1569187679) which describes this attack, therefore before [3] was pub-
lished at http://eprint.iacr.org/2009/079 (on February 12th, 2009).
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Definition 3 (Point for impersonation attack, i–point). Let Â and B̂ be two entities with
respective public keys A, B ∈ G∗. A group element R ∈ G∗ is said to be a HMQV i–point for Â

to B̂ if there exists some k ∈ ℤ
∗
q such that R = GkA−H̄(R,B̂); k is said to be the decomposition.

Proposition 3. Let G = 〈G〉 be a group with prime order q, Â and B̂ two entities with respective
public keys A, B ∈ G∗. There exists at least q − (2l + 1) HMQV i–points for Â to B̂.

Proof. Let G be the image of G through (R
H̄
−→ R̄ = H̄(R, B̂)). Since H̄ is a l–bit hash function,

the cardinal of G is ⩽ 2l. For every Ȳ ∈ G there is at most one element R0 ∈ G such that
R̄0 = Ȳ and R0A

R̄0 = 1̄; since the existence of another element R′0 ∈ G, which satisfies R̄′0 = Ȳ

and R′0A
R̄′0 = 1̄, would imply R0A

Ȳ = R′0A
Ȳ i.e. R′0 = R0.

Let R0 be the set of such R0 points. The cardinal of R0 is at most 2l. Every element
R ∈ G∗ \ R0 is a HMQV i–point for Â to B̂. Indeed for a such element R, RAR̄ 6= 1̄ and since

R and A are in G∗, there exists some k ∈ ℤ
∗
q such that RAR̄ = Gk, or equivalently R = GkA−R̄.

Hence there is at least q − (2l + 1) HMQV i–points for Â to B̂.

The following proposition links the decomposition of an i–point to impersonation attack. No-
tice that the important aspect is knowing the decomposition of an i–point.

Proposition 4. Let Â and B̂ be two entities with respective public keys A, B ∈ G∗. Given a
HMQV i–point for Â to B̂ X ′ and its decomposition k, we can impersonate Â to B̂ with no
more computations than needed by a HMQV execution.

Algorithm 2 HMQV impersonation of Â to B̂

Require: A HMQV i–point for Â to B̂ X ′ and its decomposition k.
1) Send (Â, B̂, X ′) to B̂.
2) Intercept (B̂, Â, Y ) and do the following things:

a) Verify that Y ∈ G∗.

b) Compute σA =
(

Y Be
)k

where e = H̄(Y, Â), and K = H(σA).

3) Use K as session key with B̂.

Proof of Proposition 4. Consider Algorithm 2. This algorithm does not need more computations
than a HMQV execution. Since X ′ is a valid public key, B̂’s verification at step IIa of Protocol 1
does not fail. Hence B̂ sends (B̂, Â, Y ) at step IIc of Protocol 1. The value of σB that B̂ uses
at step IId of Protocol 1 is

σB =
(

X ′AH(X′,B̂))sB =
(

GkA−H(X′,B̂)AH(X′,B̂))sB =
(

GsB
)k

=
(

Y Be
)k

, where e = H̄(Y, Â).

This is the value we compute at step 2b in Algorithm 2. Thus the session key we obtain at 2b)
is that B̂ obtains at step IId of HMQV.

A naive approach for decomposed i–point for Â to B̂ search consists in choosing u ∈ {0, 1}l

and computing the 2l points Rku = GkA−u, for k = 1, . . . , 2l. If the hash function H̄ is supposed
random Pr(H̄(Rku, B̂) = u) = 1/2l. The number of successes (Rku : H̄(Rku, B̂) = u) in these
computations is a binomial random variable with parameters (2l, 1/2l); hence these computations

lead to a decomposed i–point with a probability of success Prs = 1− (1− 1/2l)2l ≈ 1 − e−1 ≈
0.63 > 1/2 for l sufficiently large.

In the following proposition, we link partial sA (resp. sB) leakage to impersonation attack
against Â (resp. B̂).

Proposition 5. Let Â be an entity executing the HMQV protocol with some peer B̂. If we learn
the β most significant bits of sA, defined at step IIIb of Protocol 1, then: (a) we can recover the
session key shared between Â and B̂; (b) we can indefinitely impersonate Â to B̂; this requires

O
(

2
|q|−β

2
)

time complexity and O
(

2
|q|−β

2
)

space complexity.
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Proof. The claim a) is immediate from Shank’s baby step/giant step lemma and the definition
of the session key. If we know sA, then we know a HMQV i–point for Â to B̂ and its decom-

position (XAH̄(X,B̂) = GsA i.e. X = GsAA−H̄(X,B̂)); hence Proposition 4 implies the claim
b).

Remark 1. (i) For the the MQV(–C) protocol, if we (partly) learn sA for some session between
Â and B̂, we can not only impersonate Â to B̂ (as in HMQV(–C)), but also to any other entity. A
weaker form of this attack was proposed in [14]. (ii) To meet the two–and–half exponentiations
per party performance, which partly makes the attractiveness of the (H)MQV protocol, sA has
to be computed, and the exponentiation (Y Be)sA has to be done, and then sA leakage may
happen (through side channel attacks for instance), independently of the ephemeral private key
x. As shown hereafter, sA leakage does not probably imply Â’s static private key discloser; while
it is not difficult to see that both sA and x leakages on the same session imply Â’s static key
discloser. (iii) The leakage of consecutive middle part bits of sA is not discussed, but with tools
from [7], the analysis we propose applies in this case with minor modifications.

Proposition 6. Any algorithm A which given sA, X, A and B̂, finds Â’s ephemeral private key
x or the static one a in CA time complexity, allows to solve two instances of the DLP in G∗ in
CA+CDLP time complexity, where CDLP is the complexity of solving one instance of the DLP.

Proof. Suppose an algorithm A which given sA, X, A, and B̂ finds the ephemeral private key x

or the static one a; and let X ′, A′ ∈R G
∗, and S′ = X ′A′H̄(X′,B̂). We suppose S′ 6= 1̄ (otherwise,

solving the DLP for X ′ suffices to find logGA
′). We find logG S

′ within CDLP time complexity,
and use the algorithm A to find logGX

′ (or logGA
′); and the remaining logarithm is found from

the relation relation logG S
′ = logGX

′ + H̄(X ′, B̂) logGA
′.

Hence sA leakage implies (but is not equivalent to) session key reveal, and does probably
imply neither static key reveal nor ephemeral key reveal; while it is not difficult to see that both
sA leakage and ephemeral key reveal on the same session imply the session owner’s static key
discloser.

2.2.2 Man in the Middle Attack using Session Specific Secret Leakages

We show here how a man in the middle attack can be mounted, using session specific information
leakages. If in addition to sA, we learn sB in a HMQV execution between Â and B̂, we can mount

a man in the middle attack as in Algorithm 3. To make the description easier, we denote s
(l)
A and

s
(l)
B the sA and sB that we learn in previous runs of HMQV, X(l) and Y (l) are Â and B̂’s outgoing

ephemeral public keys in the sessions in which sA and sB leakages happened respectively. Notice

that it is not required that s
(l)
A and s

(l)
B (partial) leakages happen in matching sessions.

Algorithm 3 Man in the middle attack

1) Send (Â, B̂, X(l)) to B̂.
2) Intercept B̂’s response to Â (B̂, Â, Y ) and send (B̂, Â, Y (l)) to Â.
3) Intercept Â’s response to B̂, (Â, B̂, X).

4) Compute KA = H((XAdA)s
(l)
B ), where dA = H(X, B̂).

5) Compute KB = H((Y BeB)s
(l)
A ), where eB = H(Y, Â).

6) Use the key KB to communicate with B̂ on behalf of Â.
7) Use the key KA to communicate with Â on behalf of B̂.

Roughly speaking, in Algorithm 3, we simultaneously impersonate Â to B̂, and B̂ to Â.
In B̂’s belief, Â initiates a session with him, with Â’s ephemeral public key being X(l); and in
Â’s believe, B̂ initiates a session with him, with B̂’s ephemeral public key being Y (l). Hence the

session key that Â derives is KA = H((Y (l)BeA)x+dAa) = H((XAdA)s
(l)
B ), where eA = H(Y (l), Â)

and dA = H(X, B̂). This is the KA we compute in step 4. Similarly, the session key that B̂

derives is KB = H((Y BeB )s
(l)
A ) where eB = H(Y, Â). In Algorithm 3 communications are
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initiated by the attacker, but the attack remains possible when communications are initiated
by Â (or B̂).

3 Security Model

We define a security model, inspired by the (extended) Canetti–Krawczyk model [5, 12], for
(H)MQV type protocols. We aim to a better capture of session specific information leakages.
While both sA and x (resp. sB and y) leakages on the same session imply the session owner’s
private key disclosure, resistance to sA leakage is a desirable security attribute. We propose a
security model which takes into account this possible information leakage.

Rationale of the model. Security arguments validity depends on allowed information leakages.
The extended Canetti–Krawczyk (eCK) model [12] does not consider separately session state
reveal; the ephemeral key of a session is required to contain all session specific information.
When this requirement is fully satisfied, it becomes difficult to simulate consistently information
leakages; in practice, the ephemeral key is not always defined to contain all session specific
information (for instance in [26] the ephemeral key does not contain the ephemeral Diffie–
Hellman exponent).

The derivation of a session key generally involves some intermediate results, on which leakages
may happen; these intermediate results cannot always be computed, given only the session’s
ephemeral private key. Hence leakages on these intermediate results are not necessarily captured
through ephemeral key reveal. In [6], it is shown that the NAXOS protocol [12] (proven secure
in the eCK model) cannot meet its security goals if session state reveal is allowed; this suggests
that ephemeral key reveal (as used in [12]) is not sufficient to capture session specific information
leakages. One can see also that in the CMQV protocol [26] (proven secure in the eCK model),
the leakage of sA in a session between Â and B̂, allows an attacker to impersonate indefinitely
Â to B̂.

In the Canetti–Krawczyk (CK) model [5], session state reveal is allowed. However, it is
not always clear, which information in a session can be revealed. Moreover, the ephemeral
information that can be available in a session depend on the reached step in the session’s tree
of computations. Hence to capture precisely the leakage of ephemeral information, computed
in a session, one has to consider the session’s tree of computations. Elsewhere, there are some
attacks which are captured in the eCK model, but not in the CK model [12] (key compromise
impersonation attack for instance).

Since security is affected by allowed information leakages; it becomes important to define
precisely information leakages In the model we propose, the eCK model is completed with
a precise definition of session state reveal; we aim to capture both session state reveal and
ephemeral key reveal. It is however difficult to simulate simultaneously and consistently, both
ephemeral key reveal and session state(s) reveal. This is the reason why the model we propose
follows two stages. In the first, the leakages of the intermediate results in the tree of computations
are analyzed; and in the second the leakage of ephemeral private keys is analyzed.

Session. We suppose n ⩽ P(|q|) (for some polynomial P) parties P̂i,i=1,...,n modeled as proba-
bilistic polynomial time machines, and a certification authority (CA) trusted by all parties. All
public keys are supposed to belong to G∗, this corresponds to the fact that the CA is (only)
required to verify that public keys are valid ones. Each party has a static public key together
with a certificate binding his identity to his public key.

A session is an instance of the protocol run at a party. A session at Â (with peer B̂) can be
created with parameter (Â, B̂) or (B̂, Â, Y ); Â is viewed as initiator if the creation (or activation)
parameter is (Â, B̂), otherwise as responder. At session activation, a session state is created to
contain the information specific to that session. Each session is identified with a quadruple
(Â, B̂,X, ⋆), where Â is the session holder, B̂ is the peer, X is the outgoing message, and ⋆
is the incoming message Y if it exists, otherwise a special symbol meaning that an incoming
message is not received yet; in that case when Â receives the ephemeral public key Y, the session
identifier is updated to (Â, B̂,X, Y ). Two sessions (B̂, Â, Y,X) and (Â, B̂,X, Y ) are said to be
matching. Notice that the session matching (B̂, Â, Y,X) can be any session (Â, B̂,X, ⋆); since
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X and Y are chosen uniformly at random in G∗, a session cannot have (except with negligible
probability) more than one matching session.

Since each protocol is singular about (session internal) computations that lead to the session
key, session specific information leakage analyze has to consider the results of these computations.
Hence, (regarding) the tree of (session internal) computations that lead to the session key may
help in identifying session specific information leakages that can happen in practice.

Y Â B̂ a x

W = Y BH̄(Y,Â) sA = x+H̄(X, B̂)a

Z =W sA

K = H(Z)

Figure 1: Tree of computations in a HMQV session.

Adversary. The adversary (denoted A) is a probabilistic polynomial time machine. It is a
common assumption that an adversary is able to eavesdrop, modify, delete any message sent in
a cryptographic protocol, or inject its own messages. This is captured through the assumption
that outgoing messages are submitted to A for delivery (A decides about messages delivery);
A is also supposed to control session activations at each party P̂i via the Send(P̂i, P̂j) and
Send(P̂j , P̂i, Y ) queries. To capture information leakages that can happen, the adversary is
allowed queries from one of the following sets. At the beginning of its run, the adversary adopts
one of the sets of queries; it can then perform queries from the selected set (and only those
queries).
In Set 1, the following queries are allowed.
◦ StaticKeyReveal(party) to obtain the static private key of a party.
◦ SessionKeyReveal(session) to obtain the derived key in a session.
◦ SecretExponentReveal(session) to obtain the exponent s = x+ da (or y + eb).
◦ SecretGroupElementReveal(session) to obtain the secret Z = (Y Be)x+da.
◦ EstablishParty(party) to register a static public key on behalf of a party; from there, the party is

supposed totally controlled by A. A party against whom this query is not issued is said honest.
We allow a reveal query on any intermediate node which computation requires a secret infor-
mation. The Y Be and H̄ evaluations are not considered, since these computations require no
secret information (recall that messages are submitted to A for delivery, public keys are then
known to A); the node da is not considered, since no secret is required to compute d, and a is
already considered. (The ephemeral private key x is considered in Set 2; we cannot simulate
simultaneously both sA reveal and ephemeral private key reveal.)
In Set 2, the allowed queries are the following; definitions remain unchanged for queries belong-
ing also to Set 1.
◦ StaticKeyReveal(party).
◦ SessionKeyReveal(session).
◦ EphemeralKeyReveal(session) to obtain the ephemeral private key used by the session owner.
◦ EstablishParty(party).

One can notice that the SecretExponentReveal query is stronger than SecretGroupElemen-
tReveal, which is stronger than the SessionKeyReveal query; SecretExponentReveal and Epheme-
ralKeyReveal queries on the same session imply the session owner’s static private key discloser.

Remark 2. We implicitly assume that the considered protocol has a tree of computations
“matching” that of the (H)MQV protocol; otherwise some queries (SecretExponentReveal for
instance) may become meaningless. Nevertheless, the analysis paradigm is applicable to other
protocols. For that, the Set 2 remains unchanged (and if there exists nodes which computations
require only the ephemeral DH exponent as secret information, the ephemeral key is defined
to contain the information computed in these nodes); in Set 1, the StaticKeyReveal, Session-
KeyReveal, and EstablishParty queries remain considered, and for any node which computation
requires a secret information, and which does not require only the ephemeral DH exponent as
secret information, a corresponding reveal query is allowed, and when the query is about an

7



information which is already considered, the node is skipped. Although there may be many
trees of computations, it seems reasonable to consider only the most efficient one(s).

To make clear the motivation for the finely grained definition of information reveals, consider
the the Station–to–station protocol [8] (chap. 4, pp. 194, Algorithm 4.50). In this protocol, the
initiator’s signature (step 3.6) is not computed unless the responder provides a valid signature;
while the shared secret Z is computed once the peer’s ephemeral public key is validated (step
3.2). Hence an ephemeral key reveal query can be done on the initiator’s session, once the
incoming ephemeral key is validated; but one may legitimately require that reveal queries on
information used in the initiator’s signature computation cannot be done, before a valid (peer’s)
signature is provided to the initiator. When the reveal query on session state (or ephemeral key)
is defined to provide all ephemeral information (as in the CK or eCK models), such (legitimate)
differentiations cannot be done. The finely grained definition of information leakages addresses
such timing issues.

Definition 4. Let sid be the identifier of a completed session at an honest party Â, with some
honest peer B̂, and sid∗ the matching session’s identifier.
• The session sid is said to be ck–fresh, if none of the following conditions hold:

a) A issues a SecretExponentReveal query on sid or sid∗ (if sid∗ exists);
b) A issues a SecretGroupElementReveal query on sid or sid∗ (if sid∗ exists);
c) A issues a SessionKeyReveal query on sid or sid∗ (if sid∗ exists);
d) sid∗ does not exist and A makes a StaticKeyReveal query on B̂.
• And sid is said to be eck–fresh, if none of the following conditions hold:

a) A issues a SessionKeyReveal query on sid or sid∗ (if sid∗ exists);
b) A issues a StaticKeyReveal query on Â and an EphemeralKeyReveal query on sid;
c) sid∗ exists andAmakes a StaticKeyReveal query on B̂ and an EphemeralKeyReveal query on sid∗;
d) sid∗ does not exist and A makes a StaticKeyReveal query on B̂.

With these definitions of freshness, we define a secure Diffie–Hellman protocol.

Definition 5. Let Π be a Diffie–Hellman key agreement protocol, such that if two honest parties
complete matching sessions, then they both compute the same session key.
• The protocol Π is said to be ck–secure in G, if no polynomially bounded adversary (performing

queries from the Set 1) can distinguish a ck–fresh session key, from a random value chosen
under the distribution of session keys, with probability (taken over the random coins of
the adversary and the choice of static and ephemeral public keys in G) significantly greater
than 1/2.
• Π is said to be eck–secure in G, if no polynomially bounded adversary (performing queries

from the Set 1) can distinguish an eck–fresh session key, from a random value chosen under
the distribution of session keys, with probability significantly greater than 1/2.
• And Π is said to be secure in G, if it is both ck–secure and eck–secure in G.

4 A New Authenticated Diffie–Hellman Protocol

In this section, we define the Full Exponential Challenge Response (FXCR) and Full Dual expo-
nential Challenge Response (FDCR) schemes, which confine to the minimum the consequences
of sA leakage; and we provide security arguments for these schemes. With these schemes, we
define the Fully Hashed MQV (FHMQV) protocol, which preserves the performance of the
(H)MQV protocol, in addition to resistance to the attacks we present in section 2.

4.1 Full Exponential Challenge Response Signature scheme

Definition 6 (FXCR signature scheme). Let B̂ be an entity with public key B ∈ G∗, and Â
a verifier. B̂’s signature on message m and challenge X provided by Â (X = Gx, x ∈R ℤ

∗
q is

chosen and kept secret by Â) is FSig
B̂

(m,X) = (Y,XsB ), where Y = Gy, y ∈R ℤ
∗
q is chosen

by B̂, and sB = y + H̄(Y,X,m)b; the verifier Â accepts the pair (Y, σB) as a valid signature

if Y ∈ G∗ and (Y BH̄(Y,X,m))x = σB .
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The FXCR scheme delivers all the security attributes of the XCR scheme; in addition the
“replay attack” we present in section 2 does not hold anymore. Indeed, suppose an attacker
who has learned sB

(l) = y(l) + H̄(Y (l),X(l),m)b. When he is provided with a new challenge X
(chosen at random) and the same message m, except with negligible probability X 6= X(l)

(and H̄(Y (l),X(l),m) 6= H̄(Y (l),X,m)). Hence, to replay Y (l) on the message–challenge pair
(m,X), the attacker has to find sB = y(l) + H̄(Y (l),X,m)b; it is not difficult to see that if he
can compute sB from sB

(l), then he can find b from sB. Proposition 6 shows that this cannot
probably happen.

Definition 7 (FXCR signature scheme security). The FXCR scheme is said to be secure in
G, if given a public key B, a challenge X0 (B,X0 ∈R G

∗), and hashing and signing oracles,
no probabilistic polynomial time attacker, performing queries adaptively, can output with non
negligible success probability a triple (m0, Y0, σ0) such that:
• (Y0, σ0) is a valid signature with respect to the public key B, and the message–challenge pair

(m0,X0);
• (Y0, σ0) was not obtained from the signing oracle with a query on (m0,X0) (freshness).

Using the “oracle replay” technique [21, 22] (and following the approach of [11]), we show that the
FXCR scheme is secure in the sense of definition 7. Recall that a function F with parameter ζ is
said to be negligible, if for every polynomial P, and every sufficiently large ζ, F(ζ) < (|P(ζ)|)−1;
otherwise F is said non–negligible.

Proposition 7. Under the CDH assumption in G and the RO model, the FXCR signature
scheme is secure in the sense of definition 7.

Proof. Suppose a probabilistic polynomial time attacker A, which given B,X0 ∈R G
∗ succeeds

with non–negligible probability in forging a fresh and valid signature, with respect to the public
key B and challenge X0. Let Qh and Qs be respectively the number of queries that A asks to the
hashing and signing oracles. Using A we build a polynomial time CDH solver S which succeeds
with non–negligible probability. The solver S provides A with random coins, and simulates the
digest and signature queries. The interactions between S and A are detailed in Figure 4.

Figure 4 CDH solver from A

Run of A:
a) At A’s digest query on (Y,X,m), S responds as follows:
• if a value is already assigned to H̄(Y,X,m), S returns the value of H̄(Y,X,m);
• otherwise S responds with e ∈R {0, 1}

l , and sets H̄(Y,X,m) = e.
b) At A’s signature query on (m,X), S responds as follows:
• S chooses sB ∈R ℤ

∗
q, e ∈R {0, 1}

l, sets Y = GsBB−e and H̄(Y,X,m) = e. If H̄(Y,X,m)
was previously defined, S aborts;
• S responds with (Y,XsB , sB) (notice that the forger is given sB in addition to XsB).

c) At A’s halt, S verifies that A’s output (Y0,X0,m0, σ0) (if any) satisfies the following
conditions. If one of these conditions is not satisfied S aborts.
• Y0 ∈ G

∗ and H̄(Y0,X0,m0) was queried from H̄.
• The signature (Y0, σ0) was not returned by B̂ on query (m0,X0).

Repeat: S executes a new run of A, using the same input and coins; and answering to all
digest queries before H̄(Y0,X0,m0) with same values as in the previous run. The new query
of H̄(Y0,X0,m0) and subsequent queries to H̄ are answered with new random values.
Output: If A outputs a second signature on (Y0,X0,m0, σ0) satisfying conditions of step c,

with a hash value H̄(Y0,X0,m0)2 = e
(2)
0 6= e

(1)
0 = H̄(Y0,X0,m0)1, then S outputs

(σ
(1)
0 /σ

(2)
0 )(e

(1)
0 −e

(2)
0 )−1

as a guess for CDH(B,X0).

Under the RO model, the distribution of simulated signatures is indistinguishable from the dis-
tribution of real signatures generated by B̂, except the deviation that happens when H̄(Y,X,m)
was queried before. Since the number of queries to the oracles is less than (Qh +Qs), and Y is
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chosen uniformly at random in G, this deviation happens with probability less than (Qh+Qs)/q,
which is negligible. Hence this simulation is perfect, except with negligible probability. More-
over the probability of outputting a valid forgery without querying H̄(Y0,X0,m0) is 2−l. Thus
under this simulation, A outputs with non–negligible probability a valid and fresh forgery

(Y0,X0,m0, σ
(1)
0 ); we denote H̄(Y0,X0,m0) by e

(1)
0 .

From the forking lemma [21, 22], the repeat experiment outputs with non–negligible prob-

ability a valid and fresh signature (Y0,X0,m0, σ
(2)
0 ) with a digest e

(2)
0 , which with probability

1− 2−l, is different from e
(1)
0 . Then the computation

(

σ
(1)
0

σ
(2)
0

)

(

e
(1)
0 −e

(2)
0

)−1

=

(
(

Y0B
e

(1)
0
)

x0

(

Y0B
e

(2)
0
)

x0

)

(

e
(1)
0 −e

(2)
0

)−1

= Bx0

gives CDH(B,X0). Recall that such a polynomial CDH solver, succeeding with non–negligible
probability, can be transformed into an efficient CDH solver [15].

Note: The protocol that follows naturally from the FXCR signature scheme is the following;
however because of lack of space, the analysis of this protocol will be done in a forthcoming
paper.
A) Â chooses x ∈R ℤ

∗
q, and sends (Â, B̂,X = Gx) to B̂.

B) B̂ chooses y ∈R ℤ
∗
q, and sends (B̂, Â, Y = Gy) to Â.

C) Â (resp. B̂) verifies that Y (resp. X) ∈ G∗, and computes the shared session key KA =
H((Y Be)a, Bx+da, Â, B̂,X, Y ) = H(Ay+eb, (XAd)b, Â, B̂,X, Y ) = KB , where d = H̄(X,Y, Â, B̂)
and e = H̄(Y,X, Â, B̂).

4.2 Full Dual Exponential Challenge Response Signature scheme

Definition 8 (FDCR signature scheme). Let Â and B̂ be two entities with public keys A,B ∈
G∗, and m1,m2 two messages. The FDCR signature of Â and B̂ on messages m1,m2 is

FDSig
Â,B̂

(m1,m2,X, Y ) = G(x+da)(y+eb) = (XAd)y+eb = (Y Be)x+da,

whereX = Gx ∈R G
∗ is chosen by Â (resp. Y = Gy ∈R G

∗ is chosen by B̂), d = H̄(X,Y,m1,m2),
and e = H̄(Y,X,m1,m2).

In the FDCR scheme, as in the DCR scheme, once Â and B̂ have provided their respective
message–challenge pairs, they can both compute the same signature; however contrary to the
DCR and XCR schemes, the FDCR signature of Â and B̂ on messages m1,m2 and challenges
X,Y , is not a FXCR signature of Â on m1 and Y Be.

Definition 9 (Security of the FDCR scheme). Let A = Ga, B,X0 ∈R G
∗ (A 6= B). The FDCR

scheme is said to be secure in G, if given a,A,B,X0, and a message m10 , and hashing and signing
oracles, no probabilistic polynomial time attacker (performing queries adaptively), can output
with non negligible success probability a triple (m20 , Y0, σ0) such that:
• (m10 ,m20 ,X0, Y0, σ0) is a valid FDCR signature with respect to the public keys A,B.
• (Y0, σ0) was not obtained from the signing oracle with a query on (m′1,X

′) such thatX0 = X ′

and (m′1,m
′
2) = (m10 ,m20), where (m10 ,m20) denotes the concatenation of m10 and m20 ,

m′2 is the message returned at signature query on (m′1,X
′) (freshness).

Remark 3. Since we suppose that if Â 6= Â′, no substring of Â equals Â′ (and conversely), if
Â 6= Â′ or B̂ 6= B̂′ then (Â, B̂) cannot equals (Â′, B̂′).

Proposition 8. Under the CDH assumption in G and the RO model, the FDCR signature
scheme is secure in the sense of definition 9.
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Proof. Suppose an attacker A, which given a,A,B,X0,m10 (A 6= B) outputs with non–negligible
success probability a valid and fresh signature forgery (m20 , Y0, σ0). Using A we build a poly-
nomial time machine S which succeeds with non–negligible probability in forging a FXCR sig-
nature. The forger S provides A with random coins, a,A,B,X0,m10 , and simulates the role of
B̂.

i) At A’s digest query on (X,Y,m1,m2), S responds as follows:
• if a value is already assigned to H̄(X,Y,m1,m2), S returns the value of H̄(X,Y,m1,m2);
• otherwise S responds with d ∈R {0, 1}

l, and sets H̄(X,Y,m1,m2) = d.
ii) At signature query on (m1,X), S responds as follows.
• S chooses3 m2 ∈ {0, 1}

∗, sB ∈R ℤ
∗
q, d, e ∈R {0, 1}

l , computes Y = GsBB−e, and sets

H̄(X,Y,m1,m2) = d, H̄(Y,X,m1,m2) = e; if H̄(X,Y,m1,m2) or H̄(Y,X,m1,m2) was
defined in a previous query, S aborts.
• S provides A with the signature ((m2, Y ), (XAd)

sB , sB) (sB is returned, with the sig-
nature).

The simulation of B̂’s role is perfect, except with negligible probability. The deviation
happens when the same message–challenge pair (m2, Y ) is chosen twice in two signature queries
on the same pair (m1,X). Since Y is chosen uniformly at random in G, this happens with
negligible probability. Then if A succeeds with non–negligible probability in forging a valid and
fresh signature σ0, it succeeds also with non–negligible probability under this simulation. And
since S knows a, using A, it can output with non–negligible success probability

σ0(Y0B
e)−da = (Y0B

e)x0+da(Y0B
e)−da = (Y0B

e)x0 = X0
y0+eb.

This is valid FXCR forgery on message (m10 ,m20) (the concatenation of m10 and m20) and
challenge X0 with respect to the public key B; contradicting Proposition 7.

4.3 The Fully Hashed MQV Protocol.

We can now derive the Fully Hashed MQV (FHMQV) protocol, which provides all security
attributes of the (H)MQV protocol, in addition to resistance to sA (and sB) leakage.

Protocol 5 FHMQV key exchange

I) Â chooses x ∈R ℤ
∗
q, computes X = Gx and sends (Â, B̂,X) to B̂.

II) B̂ does the following things:
a) Verify that X ∈ G∗.
b) Choose y ∈R ℤ

∗
q and compute Y = Gy.

c) Send (B̂, Â, Y ) to Â.
d) Compute d = H̄(X,Y, Â, B̂), e = H̄(Y,X, Â, B̂), sB = (y + eb) mod q, σB = (XAd)sB ,

and K = H(σB , Â, B̂,X, Y ).
III) Â does the following things:

a) Verify that Y ∈ G∗.
b) Compute d = H̄(X,Y, Â, B̂), e = H̄(Y,X, Â, B̂), sA = (x+ da) mod q, σA = (Y Be)sA ,

and K = H(σA, Â, B̂,X, Y ).
IV) The shared session key is K.

5 Security Analysis of the FHMQV Protocol

We suppose n ⩽ P(|q|) (for some polynomial P) parties modeled as probabilistic polynomial
time machines. In accord with our security model, the following queries are allowed.
• Send(Â, B̂) which makes Â perform the step I of Protocol 5.
• Send(Â, B̂, X) which makes B̂ perform the step II of Protocol 5.

3Notice that the proof remains valid even if the message m2 is provided by A at signature query.
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• Send(Â, B̂,X, Y ) which makes Â update the session identifier (Â, B̂,X, ⋆) (if any) to (Â, B̂,X, Y ),
and perform the step III of Protocol 5; if Â does not hold a session with identifier (Â, B̂,X, ⋆),
the call is ignored.

Proposition 9. Under the CDH assumption in G, and the RO model, the FHMQV protocol is
ck–secure.

5.1 Proof of Proposition 9 (ck–security)

It is immediate from the definition of the FHMQV protocol that, if two honest parties complete
matching sessions, then they both compute the same session key. Suppose an adversary A
which succeeds, with probability significantly greater than 1/2, in distinguishing a session key
of a ck–fresh session (that we designate by (Â, B̂, X0, Y0) or test session) from random a value
chosen under the distribution of session keys. A can only distinguish a ck–fresh session key from
a random value in one of the following ways.
Guessing attack: A guesses correctly the test session key.
Key replication attack: A succeeds in making two non–matching sessions have the same
session key, it can then query a session key reveal on one of the two sessions and use the other
as test session.
Forging attack: A computes σ0 = FDSig

Â,B̂
(Â, B̂,X0, Y0) and queries the random oracle H

with (σ0, Â, B̂,X0, Y0).

Under the RO model, the probability of guessing correctly the output of the hash function
is 2−k; and non–matching sessions cannot have (except with negligible probability) the same
session key. It thus remains that if A succeeds with probability significantly greater than 1/2
in distinguishing a ck–fresh session key, from a random value chosen under the distribution of
session keys, then it succeeds with non–negligible probability in forging attack. We thus suppose
that A interacts in an n parties environment, and ends its run with non–negligible probability
with an output (sid, σ0), where sid is a ck–fresh session identifier, and σ0 a guess of the sid
session signature.

Let E denote the event “A succeeds in forging the session signature of some ck–fresh ses-
sion sid.” The event E divides in: (a) E.1: “A succeeds in forging the session signature of some
ck–fresh session sid, which matching session exits”, and (b) E.2: “A succeeds in forging the
session signature of some ck–fresh session sid, without matching session.” Since the session sid
is required to be ck–fresh, in accord with definition 4, the StaticKeyReveal query on both Â and
B̂ is allowed in E.1. In E.2 the StaticKeyReveal query is allowed on Â (but not on B̂). Now
since A succeeds with non–negligible probability, either E.1 or E.2 occurs with non–negligible
probability. Hence, to prove Proposition 9, it suffices to show that neither E.1 nor E.2 can
happen with non–negligible probability.

5.1.1 Analysis of E.1

Suppose that E.1 occurs with non–negligible probability. Using A, we build a polynomial
time CDH solver which succeeds with non–negligible probability. The solver S takes as input
X0, Y0 ∈R G

∗ and interacts with A as described below.

1) S simulates A’s environment, with n parties P̂1, . . . , P̂n; recall that A is supposed polyno-
mial, we thus suppose that each party is activated at most m times, m ⩽ P(|q|) for some
polynomial P.

2) S chooses i, j ∈R {1, . . . , n}, i 6= j (the case i = j, reflection attack, is analyzed in subsec-
tion 5.1.3), and t ∈R {1, . . . ,m} (with the choice of (i, j, t), S is guessing the test session,
and peers in that session). We refer to P̂i as Â and P̂j as B̂. S assigns to each P̂k a random
static key pair (pk, Pk = Gpk), and answers to A queries as follows; H̄ queries are simulated
in the usual way (see the proof of Proposition 8).

3) At A’s Send(P̂l, P̂m) query, S chooses x ∈R ℤ
∗
q, computes X = Gx, creates a session state

with identifier (P̂l, P̂m,X, ⋆), and provides A with the outgoing message (P̂l, P̂m,X).
4) At A’s Send(P̂m, P̂l, Y ) S chooses x ∈R ℤ

∗
q, computes X = Gx, creates a session state with

identifier (P̂l, P̂m,X, Y ), provides A with the outgoing message (P̂l, P̂m,X); and completes
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the session with identifier (P̂l, P̂m,X, Y ) as responder (step IId of Protocol 5).
5) AtA’s Send(P̂l, P̂m,X, Y ) query, S updates the session identifier (P̂l, P̂m,X, ⋆) to (P̂l, P̂m,X, Y );

and completes the session with identifier (P̂l, P̂m,X, Y ) as initiator (step IIIb of Protocol 5).
(Notice that S can compute the session FDCR signature of any session different from the
t–th session at Â — and its matching session.)

6) When A activates the t–th session at Â, if Â’s peer in that session is B̂, S provides A with
the outgoing message (Â, B̂,X0); otherwise, S aborts.

7) When A activates the session matching t–th session at Â, S provides A with (B̂, Â, Y0).
8) At A’s digest query on (σ, P̂l, P̂m,X, Y ), S responds as follows:
• If there exists a completed session with identifier sid = (P̂l, P̂m,X, Y ) or sid = (P̂m, P̂l, Y,X)
and with initiator P̂l, and if σ is the sid session’s FDCR signature, S returns the sid session
key.
• Else, if the same query was made previously, S returns the previously returned value.
• Else S responds with π ∈R {0, 1}

λ, and sets H(σ, P̂l, P̂m,X, Y ) = π.
9) If A issues a StaticKeyReveal, SecretExponentReveal, SecretGroupElementReveal, Session-

KeyReveal, or EstablishParty query, S answers faithfully.
10) In any of the following situations, S aborts.
• A halts with a test session different from the t–th session at Â.
• A issues a SecretExponentReveal, a SecretGroupElementReveal, or a SessionKeyReveal
query on the t–th session at Â or its matching session.
• A issues an EstablishParty query on Â or B̂.

11) If Â provides a guess σ0 of the signature of the t–th session at Â, S outputs (σ0)(X0A
d)
−eb
Y −da0

as a guess for CDH(X0, Y0). Otherwise S aborts.

Fact. If A succeeds with non–negligible probability in E.1, S outputs with non–negligible proba-
bility CDH(X0, Y0).

Proof. The simulation of A’s environment is perfect except with negligible probability; when A
activates the t–th session at Â, the X0 provided to A is chosen uniformly at random in G∗, its
distribution is the same as that of the real X. The same argument holds for Y0. The probability
of guessing correctly the test session is (n2m)−1; and if E.1 happens and S guesses correctly
the test session, S does not abort. Thus S succeeds with probability (n2m)−1Pr(E.1) where
negligible terms are ignored. In addition, when A outputs a correct guess for the test session,
S outputs

(σ0)(X0A
d)
−ea
Y −da0 = (X0A

d)y0+ae(X0A
d)
−ea
Y −da0 = Y x0+da

0 Y −da0 = CDH(X0, Y0).

Moreover if A is polynomial, S is also polynomial. This shows that E.1 cannot happen with
non–negligible probability.

5.1.2 Analysis of E.2

If E.2 occurs with non–negligible probability, using A, we build a polynomial time machine,
which forges a valid FDCR signature, with non–negligible success probability. For that, we use
the same simulation as in the analysis of E.1, with the following modifications.
• S takes as input a ∈R ℤ

∗
q, and X0, B ∈R G

∗.

• Â’s key pair is set to (a,Ga), and B̂’s public key to B (B̂’s private key is unknown to S).
• At A’s Send(P̂l, B̂,X) query, S answers as follows:

– S chooses sB ∈R ℤ
∗
q, d, e ∈R {0, 1}

l, and sets Y = GsBB−e, H̄(X,Y, P̂l, B̂) = d, and

H̄(Y,X, P̂l, B̂) = e; if Y was previously used as outgoing ephemeral key in a session held
by B̂ with peer P̂l, S aborts.

– S creates a session state with identifier (B̂, P̂l, Y,X), and provides A with the message
(B̂, P̂l, Y ).

– S completes the session (B̂, P̂l, Y,X) as responder.
• At A’s Send(B̂, P̂l) query:
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– S chooses sB ∈R ℤ
∗
q, d, e ∈R {0, 1}

l, and sets4 Y = GsBB−e, H̄(⋆, Y, B̂, P̂l) = d,

H̄(Y, ⋆, B̂, P̂l) = e; if Y was previously used as outgoing ephemeral key in a session
at B̂ with peer P̂l, S aborts.

– S creates a session state with identifier (B̂, P̂l, Y, ⋆), and provides A with the message
(B̂, P̂l, Y ).

• If A activates at B̂ a session matching the t–th session at Â, S aborts.
• If A issues a StaticKeyReveal query on B̂, S aborts.
• If Â halts with the t–th session at Â, (Â, B̂,X0, Y0) as test session, and with a guess σ0 of

the session’s signature, S outputs the triple ((Â, B̂), Y0, σ0) as FDCR signature on messages
Â, B̂, and challenges X0, Y0 with respect to public keys A,B. Otherwise S aborts.

The simulation of A’s environment is perfect, except with negligible probability. The deviation
happens when the same Y is chosen twice as ephemeral key in sessions at B̂ with the same
peer P̂l, this happens with probability less than m/q, which is negligible. Hence, under this
simulation, A succeeds with non–negligible probability in E.2. And when A outputs a correct
forgery, and S guesses correctly the test session, S outputs a valid FDCR forgery on messages Â,
B̂, and challenges X0, Y0, with respect to the public keys A and B; contradicting Proposition 8.

Hence neither E.1 nor E.2, can happen with non–negligible probability; this shows the Propo-
sition 9.

5.1.3 Resistance to Reflection Attacks

We show here that the FHMQV protocol provides resistance to reflection attacks (for ck–fresh
sessions). A session with identifier sid = (Â, Â,X, Y ) is said to be ck–fresh if none of these
conditions hold:
• A issues a SecretExponentReveal query on sid or sid∗ (if sid∗ exists);
• A issues a SecretGroupElementReveal query on sid or sid∗ (if sid∗ exists);
• A issues a SessionKeyReveal query on sid or sid∗ (if sid∗ exists);
• sid∗ does not exist and A makes a StaticKeyReveal query on Â.

Guessing and key replication attacks cannot succeed, except with negligible probability. It
suffices to show that no polynomially bounded adversary can compute, with non–negligible
success probability, the session signature of a ck–fresh session (Â, Â,X0, Y0).

Let F be the event “A succeeds in forging the session signature of some ck–fresh session
(Â, Â,X0, Y0).” The event F divides in F.1: “A succeeds in forging the session signature of some
ck–fresh session (Â, Â,X0, Y0), which matching session exists”, and F.2: “A succeeds in forging
the session signature of some ck–fresh session (Â, Â,X0, Y0) without matching session.” It thus
suffices to show that neither F.1 nor F.2 can happen with non–negligible probability.

Analysis of F.1. If F.1 happens with non–negligible probability, usingA, we build a polynomial
time CDH solver which succeeds with non–negligible probability. For that, we use the same
simulation as in the analysis of E.1, except the following differences.
• S takes as input a,X0, Y0; a ∈R ℤ

∗
q, X0, Y0 ∈R G

∗.

• B̂’s key pair and identity are set to that of Â.

A’s simulated environment remains perfect except with negligible probability; and if A succeeds
with non–negligible probability, in event F.1, then under this simulation it outputs with non–
negligible probability a valid signature forgery σ0 on the session (Â, Â,X0, Y0). And then S
outputs with non–negligible probability CDH(X0, Y0) from σ0, a, d, and e. This shows that un-
der the CDH assumption and RO model, F.1 cannot happen, except with negligible probability.

Analysis of F.2. If F.2 happens with non–negligible probability, usingA, we build a polynomial
time machine, which given A = Ga outputs with non–negligible probability G(a2). Such a
“squaring” CDH solver can in turn be used as a general CHD solver, which succeeds with
non–negligible probability [15].

4To simulate consistently the ephemeral exponent leakage on B̂, S has to assign values to H̄ query with a par-
tially unknown input, namely the incoming ephemeral key is unknown. For these queries, random values are taken
in {0, 1}l as H̄(Y, ⋆, B̂, P̂l) and H̄(⋆, Y, B̂, P̂l); and when S is later queried H̄(Y,X, B̂, P̂l) (resp. H̄(X,Y, B̂, P̂l),
it responds with H̄(Y, ⋆, B̂, P̂l) (resp. H̄(⋆, Y, B̂, P̂l)).
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We simulate A’s environment as in the analysis of E.1, except the following differences.
• S takes as input A ∈R G

∗ (recall that Â = B̂).
• Â’s public key is set to A; Â’s roles are simulated in the same way as that of B̂ in the

analysis E.2.
• When A activates the t–th session at Â, S chooses x0 ∈R ℤ

∗
q, and provides A with the

message (Â, Â,X0 = Gx0); and if A activates at B̂ a session matching t–th session at Â,
S aborts.
• If A issues a static key reveal on Â, S aborts.

The simulation of A’s environment remains perfect, except with negligible probability; and if
A succeeds with non–negligible probability in F.2, then under this simulation, it outputs with
non–negligible probability a valid forgery σ0 of the test session’s FDCR signature. And then
since S knows x0 it can output with non–negligible probability

(

(σ0)(Y0A
e)−x0

)d−1

=
(

(Y0A
e)x0+da(Y0A

e)−x0
)d−1

=
(

(Y0A
e)da

)d−1

= (Y0A
e)a = Ay0+ea.

Hence, given a public key A, S outputs with non–negligible probability a valid and fresh FXCR
signature, on message (Â, B̂) (concatenation of Â and B̂), and challenge A (the challenge equals
the public key) with respect to the public key A. Using the “oracle replay” technique (as in
the proof of Proposition 7), S yields a polynomial machine, which given A = Ga, outputs with
non–negligible probability Aa = G(a2); contradicting the CDH assumption.

5.2 Ephemeral Private Keys Leakage Resilience (eck–security)

The arguments for this security attribute do not derive from the analysis in section 4. The
reason is that we cannot simulate simultaneously and consistently both SecretExponentReveal
and EphemeralKeyReveal.

5.2.1 Hashed Full Dual Challenge Response scheme

Definition 10 (Hashed FDCR (HFDCR) signature scheme). Let Â, B̂ be two entities with
public keys A,B ∈R G

∗. The HFDCR signature of Â and B̂ on messages (m1,m2) is

HFDCRA,B(X,Y,m1,m2) = H(σ,m1,m2,X, Y ),

where σ is the FDCR signature of Â and B̂ on messages m1,m2, and challenges X,Y .

Definition 11 (Security of the HFDCR signature scheme). Let Â, B̂ be two entities with public
keys A,B ∈R G

∗. The HFDCR scheme is said to be secure, if given A,B, and x0, y0 ∈R ℤ
∗
q,

no probabilistic polynomial time attacker, performing queries adaptively, can output with non
negligible success probability a triple (m10 ,m20 , π0) such that: HFDCRA,B(X0, Y0,m10 ,m20) =
π0, and π0 was not obtained from the signing oracle with a query on a quadruple (X ′, Y ′,m′1,m

′
2)

such that X0 = X ′, Y0 = Y ′, and (m10 ,m20) = (m′1,m
′
2).

For the HFDRC scheme security arguments, we need the Gap Diffie–Hellman (GDH) assumption.

Definition 12 ([20]). Let G = 〈G〉 be a cyclic group. An algorithm is said to be a Decisional
Diffie–Hellman Oracle (DDO) for G, if on input G,X = Gx, Y = Gy, Z ∈ G, it outputs 1 if and
only if Z = Gxy. The Gap Diffie–Hellman (GDH) assumption is said to hold in G, if given a
DDO for G, there exists no polynomially bounded algorithm which solves the CDH problem in
G, with non–negligible success probability.

We now prove the security of the HFDCR scheme, under the GDH assumption and the RO
model.

Proposition 10. Under the GDH assumption in G, and the RO model, the HFDCR scheme
is secure in the sense of definition 11.

Proof. Suppose a polynomially bounded attacker A, which given a DDO, A,B ∈R G
∗, and

x0, y0 ∈R ℤ
∗
q, outputs with non–negligible success probability a valid and fresh HFDCRA,B

signature on some messages (m10 ,m20) with respect to challenges X0 = Gx0, Y = Gy0 .
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Non–matching HFDCR signature queries cannot have the same signature value, except with
negligible probability. And guessing the output of the hash function cannot be done with
non–negligible success probability. We can thus suppose that A succeeds with non–negligible
probability in forging attack. Using A and a DDO, we build a polynomial time CDH solver S
which succeeds with non–negligible probability. The solver S provides A with random coins and
simulates the signature queries; it takes as input A,B ∈R G

∗, x0, y0 ∈R ℤ
∗
q , and outputs with

non–negligible probability CDH(A,B).

1) At A’s H̄ digest query on (X,Y,m1,m2), S does the following things:
• If a value is already assigned to H̄(X,Y,m1,m2), S provides A with the value of H̄(X,Y,
m1,m2).
• Else S chooses d ∈R {0, 1}

l, sets H̄(X,Y,m1,m2) = d, and provides A with d.
2) At A’s signature query on (X,Y,m1,m2), S responds as follows:
• If a value is already assigned to HFDCRA,B(X,Y,m1,m2), then S returns the value of
HFDCRA,B(X,Y,m1,m2); else S takes π ∈R {0, 1}

λ, sets HFDCRA,B(X,Y,m1,m2) = π,
and provides A with π.
• If no value is assigned to H̄(X,Y,m1,m2) (resp. H̄(Y,X,m1,m2)), S chooses d ∈R {0, 1}

l

and sets H̄(X,Y,m1,m2) = d (resp. H̄(Y,X,m1,m2) = d).
3) At A’s digest query on (σ,m1,m2,X, Y ), S does the following things:
• If a value is assigned to HFDCRA,B(X,Y,m1,m2), and if σ = CDH(XAd, Y Be), where
d = H̄(X,Y,m1,m2), e = H̄(Y,X,m1,m2) (if a value is already assigned toHFDCRA,B(X,Y,
m1,m2), d and e are defined, and the verification is done with the DDO), S returns the value
of HFDCRA,B(X,Y,m1,m2).
• Else, (i) if the same query was made previously, S returns the previously returned value;
(ii) else S chooses π ∈R {0, 1}

λ, sets H(σ,m1,m2,X, Y ) = π, and provides A with π.
• If no value is assigned to H̄(X,Y,m1,m2) (resp. H̄(Y,X,m1,m2)), S chooses d ∈R {0, 1}

l

and sets H̄(X,Y,m1,m2) = d (resp. H̄(Y,X,m1,m2) = d); and if σ = CDH(XAd, Y Be)
(this is verified with the DDO), S sets HFDCRA,B(X,Y,m1,m2) = π.

4) If A halts with a forgery π0,X0, Y0,m10 ,m20 , S verifies that the digests value π0 was queried
from the random oracle, as H(σ0,m10 ,m20 ,X0, Y0) for some σ0, and that σ0 = CDH(X0A

d,
Y0B

e), where d = H̄(X0, Y0,m10 ,m20), and e = H̄(Y0,X0,m10 ,m20) (if π0 was queried from
the hashing oracle, then H̄(X0, Y0,m10 ,m20) and H̄(Y0,X0,m10 ,m20) are defined).

Under the RO model, A’s simulated environment is perfect except with negligible probability;
hence if A succeeds with non–negligible probability in forging a HFDRC signature, then it
succeeds under this simulation with the same probability, except a negligible difference. Since S
knows x0, y0, and A succeeds with non–negligible probability, S can output with non–negligible
probability

((

(σ0)(Y0B
e)−x0

)d−1

A−y0
)e−1

=
((

(Y0B
e)x0+da(Y0B

e)−x0
)d−1

A−y0
)e−1

=
((

(Y0B
e)da

)d−1

A−y0
)e−1

=
(

(Y0B
e)aA−y0

)e−1

=
(

Ay0+ebA−y0
)e−1

= CDH(A,B);

contradiction the GDH assumption.

5.2.2 Application to FHMQV

With the HFDCR, we can now prove that the FHMQV protocol is eck–secure; showing that the
FHMQV protocol is secure in the sense of definition 5.

Proposition 11. Under the GDH assumption in G, and the RO model, the FHMQV protocol
is eck–secure.

Proof of Proposition 11. Suppose an adversary A which succeeds with probability signifi-
cantly greater that 1/2 in distinguishing an eck–fresh session key from a random value chosen
under the distribution of session keys. Since guessing and key replication attacks cannot succeed
with non–negligible probability, A succeeds with non–negligible probability in forging attack.
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Let E’ be the event “A succeeds in forging an eck–fresh session (FDCR) signature.” E’
divides in E’.1: “A succeeds in forging the session signature of some eck–fresh session sid, which
matching session exists”, and E’.2: “A succeeds in forging the session signature of some eck–fresh
session sid, without matching session.” It thus suffices to show that neither E’.1 nor E’.2 can
happen with non–negligible probability.

Analysis of E’.1. Since the test session sid is required to be eck–fresh and sid∗ exists,
the strongest queries that A can perform are:(i) StaticKeyReveal queries on both Â and B̂;
(ii) EphemeralKeyReveal queries on both sid and sid∗; (iii) a StaticKeyReveal query on Â and
an EphemeralKeyReveal query on sid∗; (iv) an EphemeralKeyReveal query on sid and a Stat-
icKeyReveal query on B̂. And from any polynomial time machine which succeeds in E’.1, and
performs weaker queries than those above, one can build a polynomial time machine, which
succeeds with same probability and performs one of the above queries. It thus suffices to show
that none of the events
E’.1.1: “E’.1∧A performs StaticKeyReveal queries on both Â and B̂”,
E’.1.2: “E’.1∧A performs EphemeralKeyReveal queries on both sid and sid∗”,
E’.1.3: “E’.1∧A performs a StaticKeyReveal query on Â and an EphemeralKeyReveal query on sid∗”,
E’.1.4: “E’.1∧A performs an EphemeralKeyReveal query on sid and a StaticKeyReveal query on B̂”,
occur with non–negligible probability.

Analysis of E’.1.1. Suppose that E’.1.1 happens with non–negligible probability; using A,
we build a polynomial time CDH solver which succeeds with non–negligible probability. For
that we use the same simulation as in the analysis of E.1 with the following modifications (recall
that the allowed queries are that from Set 2):
• IfA issues a SessionKeyReveal, EphemeralKeyReveal, or an StaticKeyReveal query, S answers

faithfully.
• In any of the following situations, S aborts.

– A halts with a test session different from the t–th session at Â.
– A issues a SessionKeyReveal query on the t–th session at Â or its matching session.
– A issues an EphemeralKeyReveal on the t–th session at Â or its matching session.
– A issues an EstablishParty query on Â or B̂.

The simulated environment remains perfect, except with negligible probability. The probability
of guessing correctly the test session is (n2m)−1. If A succeeds with non–negligible probabil-
ity in E’.1.1, then under this simulation A outputs a valid forgery of the t–th session at Â with
non–negligible probability. Hence S outputs CDH(X0, Y0) (from A’s forgery and a, b, d, e) with
non–negligible probability.

Analysis of E’.1.2.
We reuse the simulation of the analysis of E.1, with the following modifications:
• S takes as input x0, y0 ∈R ℤ

∗
q, and A,B ∈R G

∗.

• Â and B̂’s public keys are set to A and B (the private keys are unknown to S).
• At A’s Send(P̂m, P̂l, Y ) query, with P̂l = Â or B̂, S responds as follows.

– S chooses x ∈R ℤ
∗
q, computesX = Gx, creates a session state with identifier (P̂l, P̂m,X, Y ),

provides A with the outgoing message (P̂l, P̂m,X).
– S chooses π ∈R {0, 1}

λ, d, e ∈R {0, 1}
l and sets HFDCRPm,Pl(Y,X, P̂m, P̂l) = π,

H̄(Y,X, P̂m, P̂l) = d, and H̄(X,Y, P̂m, P̂l) = e.
• At Send(P̂l, P̂m,X, Y ) query, with P̂l = Â or B̂, S answers as follows:

– S updates the session identifier (P̂l, P̂m,X, ⋆) (if any) to (P̂l, P̂m,X, Y ).
– If a value is not assigned to HFDCRPl,Pm(X,Y, P̂l, P̂m), S chooses π ∈R {0, 1}

λ and
sets HFDCRPl,Pm(X,Y, P̂l, P̂m) = π; if a value is not assigned to H̄(X,Y, P̂l, P̂m) (resp.
H̄(Y,X, P̂l, P̂m)), S chooses d ∈R {0, 1}

l and sets H̄(X,Y, P̂l, P̂m) = d (resp. H̄(Y,X, P̂l,
P̂m) = d).

• When A activates the t–th session at Â, if Â’s peer in that session is not B̂, S aborts;
otherwise S provides A with the outgoing message (Â, B̂,X0 = Gx0).
• WhenA activates the session matching t–th session at Â, S providesA with (B̂, Â, Y0 = Gy0).
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• At A’s digest query on (σ, P̂l, P̂m,X, Y ), with P̂l = Â or B̂, or P̂m = Â or B̂, S does the
following things:
– If a value is assigned to HFDCRPl,Pm(X,Y, P̂l, P̂m), and if σ = CDH(XP dl , Y P

e
m),

where d = H̄(X,Y, P̂l, P̂m), e = H̄(Y,X, P̂l, P̂m) (if HFDCRPl,Pm(X,Y, P̂l, P̂m) is al-
ready defined, the values of d and e are already assigned), S returns the value of
HFDCRPl,Pm(X,Y, P̂l, P̂m).

– Else, (i) if the same query was made previously, S returns the previously returned value;
(ii) else S chooses π ∈R {0, 1}

λ, sets H(σ, P̂l, P̂m,X, Y ) = π, and provides A with π.
– If a value is not assigned to H̄(X,Y, P̂l, P̂m) (resp. H̄(Y,X, P̂l, P̂m)), S chooses d ∈R
{0, 1}λ and sets H̄(X,Y, P̂l, P̂m) (resp. H̄(Y,X, P̂l, P̂m)) = d; and if σ = CDH(XP dl ,
Y P em) (this is verified with the DDO), S sets HFDCRPl,Pm(X,Y, P̂l, P̂m) = π.

• If A issues an EphemeralKeyReveal query on the t–th session at Â or its matching session,
S answers faithfully.
• In the following situations S aborts.

– A halts with a test session different from the t–th session at Â.
– A issues a StaticKeyReveal query on Â or B̂.
– A issues an EstablishParty query on Â or B̂.

The simulated environment remains perfect, except with negligible probability, and the probabil-
ity of guessing correctly the test session is (n2m)−1. IfA succeeds with a FDCR signature σ0, and
S guesses correctly the test session, S outputs a valid HFDCR forgery π0 = H(σ0, Â, B̂,X0, Y0),
contradicting Proposition 10.

Analysis of E’.1.3 and E’.1.4. Since Â and B̂ roles are symmetrical in E’.1.3 and E’.1.4,
it suffices to show that E’.1.3 cannot happen with non–negligible probability. For that, the
simulation used in the analysis of E.1, is modified as follows:
• S takes as input X0, B ∈R G

∗.
• B̂’s public key is set to B (the private key is unknown to S), and Â’s key pair is (a =
pi, G

a), pi ∈R ℤ
∗
q.

• At A’s Send(P̂m, B̂,X) query, S responds as follows:
– S chooses y ∈R ℤ

∗
q, computes Y = Gy, creates a session state with identifier (B̂, P̂m, Y,X),

and provides A with outgoing message (B̂, P̂m, Y ).
– S chooses π ∈R {0, 1}

λ, d, e ∈R {0, 1}
l, and sets HFDCRPm,B(X,Y, P̂m, B̂) = π,

H̄(X,Y, P̂m, B̂) = d, and H̄(Y,X, P̂m, B̂) = e.
• At Send(B̂, P̂m, Y,X) query:

– S updates the session identifier (B̂, P̂m, Y, ⋆) to (B̂, P̂m, Y,X).
– If no value is assigned to HFDCRB,Pm(Y,X, B̂, P̂m), S chooses π ∈R {0, 1}

λ and sets
HFDCRB,Pm(Y,X, B̂, P̂m) = π; and if no value is assigned to H̄(Y,X, B̂, P̂m) (resp.
H̄(X,Y, B̂, P̂m)), S chooses d ∈R {0, 1}

l and sets H̄(Y,X, B̂, P̂m) = d (resp. H̄(X,Y, B̂,
P̂m) = d).

• At A’s digest query on (σ, P̂l, P̂m,X, Y ), with P̂l = B̂, or P̂m = B̂, S responds as follows:
– If a value is assigned toHFDCRPl,Pm(X,Y, P̂l, P̂m), and if σ = CDH(XP dl , Y P

e
m), where

d = H̄(X,Y, P̂l, P̂m), e = H̄(Y,X, P̂l, P̂m), S returns the value of HFDCRPl,Pm(X,Y, P̂l,
P̂m);

– Else, (i) if the same query was made previously, S returns the previously returned value;
(ii) else S chooses π ∈R {0, 1}

λ, sets H(σ, P̂l, P̂m,X, Y ) = π, and provides A with π;
– If a value is not assigned to H̄(X,Y, P̂l, P̂m) (resp. H̄(Y,X, P̂l, P̂m)), S chooses d ∈R
{0, 1}λ and sets H̄(X,Y, P̂l, P̂m) = d (resp. H̄(Y,X, P̂l, P̂m) = d); and if σ = CDH(XP dl ,
Y P em), S sets HFDCRPl,Pm(X,Y, P̂l, P̂m) = π.

• When A activates the t–th session at Â, if Â’s peer in that session is not B̂, S aborts;
otherwise, S provides A with the outgoing message (Â, B̂,X0).
• When A activates the session matching t–th session at Â, S chooses y0 ∈R ℤ

∗
q, and provides

A with (B̂, Â, Y0 = Gy0).
• If A issues an EphemeralKeyReveal query on the session matching the t–th session at Â,
S answers faithfully.
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• In the following situations S aborts.
– A halts with a test session different from the t–th session at Â.
– A issues a StaticKeyReveal query on B̂.
– A issues an EphemeralKeyReveal query on the t–th session at Â.
– A issues an EstablishParty query on Â or B̂.

The simulation remains perfect, except with negligible probability; if A succeeds with non–
negligible probability in event E’.1.3, S outputs with non–negligible probability CDH(X0, B),
from A’s forgery (and a, y0, d, and e); contradicting the GDH assumption.

Under the GDH assumption and the RO model, none of the events E’.1.1, E’.1.2, E’.1.3, or
E’.1.4 can happen with non–negligible probability, this shows that E’.1 cannot happen, except
with negligible probability.

Analysis of E’.2 (sketch). The strongest query that A can perform in E’.2 are: a Static-
KeyReveal query on Â or an EphemeralKeyReveal query on sid (but not both). It thus suffices to
show that neither E’.2.1: “E’.2 ∧ A performs a StaticKeyReveal query on Â” nor E’.2.2: “E’.2 ∧ A
performs an EphemeralKeyReveal query on sid” can happen with non–negligible probability.

To show that E’.2.1 cannot happen with non–negligible probability, the simulation used in
the analysis of E’.1.3 can be modified such that if A activates a session matching the t–th
session at Â, S aborts. Since A succeeds with non–negligible probability, using A, S outputs
with non–negligible probability (Y0B

e)x0 from A forgery and a. Hence, from the forking lemma,
using S, we can build a polynomial machine S ′ which given X0, B, outputs with non–negligible
probability CDH(X0, B). This shows that under the RO model and the GDH assumption,
E’.2.1 cannot happen with non–negligible probability.

For the analysis of E’.2.2, the simulation used in the analysis of E’.1.2 can be modified to
take as input x0, A,B, and aborts when A activates a session matching the t–th session at Â.
If A succeeds in E’.2.2 (and then under this simulation), using A’s forgery, S outputs (Y0B

e)a;
and from the forking lemma, S can be transformed into an efficient machine which given A,B
outputs with non–negligible probability CDH(A,B), contradicting the GDH assumption.

Reflection Attacks Resilience (sketch). With arguments similar to that of subsection 5.1.3,
one can show that reflection attacks cannot hold against eck–fresh sessions. Indeed, if Â = B̂, and
if the session matching the test session exists, A is not allowed to perform both StaticKeyReveal
on Â, and EphemeralKeyReveal on the test session or its matching session. And if the session
matching the test session does not exist, StaticKeyReveal on Â is not allowed. Moreover, the
analysis of E’.1.1 applies also if Â = B̂. And a polynomial time successful attacker in E’.1.2
when Â = B̂, yields a polynomial machine which given A = Ga outputs G(a2). Hence under
these restrictions on allowed queries, and with minor modifications in the analysis of E’.1.1 and
E’.1.2, one can show that under the RO model and the GDH assumption, the FHMQV protocol
provides resistance to reflection attacks for eck–fresh sessions.

5.3 Main Differences between FHMQV and HMQV Security Arguments

We summarize the most important differences between the HMQV and FHMQV security argu-
ments.
Building blocks and adversary model. The design of FHMQV relies on the FXCR and
FDCR signature schemes. While in the XCR scheme as in the FXCR scheme, both sA and x
leakages in the same session imply Â’s private key discloser. In the FXCR scheme, an adversary
who has learned sA is unable to forge A’s signature. The FHMQV adversary model allows sA
leakage. The impersonation and man in the middle attacks we present in section 2 do not hold
against FHMQV.

Key replication attacks resilience. At session key derivation in FHMQV, ephemeral keys
and peers identities are hashed with the session’s FDCR signature (K = H(σ, Â, B̂,X, Y )).
Since non matching sessions cannot have (except with negligible probability) the same ephemeral
keys, and non matching digest queries cannot have (except with negligible probability) the same
digest value, the analysis of key replication attacks is immediate for the FHMQV protocol.

Ephemeral private keys leakage resilience. To show this security attribute for FHMQV,
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we define the Hashed FDCR signature scheme; for the HMQV protocol, it is used a hashed
variant of the XCR, namely the HCR signature scheme [11]. While both HFDCR and HCR
security arguments rely on the GDH assumption, for the HFDCR scheme the Knowledge of
Exponent Assumption (KEA1) [4] is not needed, whereas it is required for the HCR scheme.

6 The FHMQV–C Protocol

As shown in [11], no two message key agreement protocol can meet the perfect forward secrecy
security attribute; key confirmation security attribute (for both peers) cannot be achieved also.
Nevertheless these security attributes may be desirable; for that the FHMQV protocol can be
added with a third message, yielding the FHMQV–C protocol, we describe in Protocol 6; KDF1

and KDF2 are key derivation functions, and MAC a message authentication code [8].

Protocol 6 FHMQV–C key exchange

I) Â chooses x ∈R ℤ
∗
q, computes X = Gx, and sends (Â, B̂,X) to B̂.

II) B̂ does the following things:
a) Verify that X ∈ G∗.
b) Choose y ∈R ℤ

∗
q, compute Y = Gy, d = H̄(X,Y, Â, B̂), and e = H̄(Y,X, Â, B̂).

c) Compute sB = (y + eb) mod q, σB = (XAd)sB .
d) Compute and K1 = KDF1(σB , Â, B̂,X, Y ) and tB =MACK1(B̂, Y ).
e) Send (B̂, Â, Y, tB) to Â.

III) Â does the following things:
a) Verify that Y ∈ G∗, compute d = H̄(X,Y, Â, B̂), and e = H̄(Y,X, Â, B̂).
b) Compute sA = (x+ da) mod q, σA = (Y Be)sA .
c) Compute K1 = KDF (σA, Â, B̂,X, Y ), t′B =MACK1(B̂, Y ), and verify that t′B = tB.
d) Compute tA =MACK1(Â,X), and send tA to B̂.
e) Compute K2 = KDF2(σB , Â, B̂,X, Y )

IV) B̂ computes t′A =MACK1(Â,X), verifies that t′A = tA, and computes
K2 = KDF2(σB , Â, B̂,X, Y ).

V) The shared session key is K2.

When a party Â completes a FHMQV–C session with some honest peer B̂, and with in-
coming ephemeral key Y , he is guaranteed that Y was chosen and authenticated by B̂, and
that B̂ can compute the session key he derives. The FHMQV–C protocol provides also perfect
forward secrecy, the compromise of Â’s static private key, does not compromise the session keys
established in previous runs. This can be shown when the analysis of FHMQV is completed
with the session–key expiration notion [5].

7 Concluding Remarks

We propose a complementary analysis of the Exponential Challenge Response and Dual Ex-
ponential Challenge Response signature schemes, which are the building blocks of the HMQV
protocol. On the basis of this analyze, we show how impersonation and man in the middle at-
tacks can be done against the HMQV protocol, when some session specific information leakages
happen. The attacks we present apply (with some modifications) to the (C)MQV [13, 26], and
ECKE–1N [27] protocols.

We propose the Full Exponential Challenge Response (FXCR) and Full Dual Exponential
Challenge Response (FDCR) signature schemes, with security arguments. Using these schemes,
we define the Fully Hashed MQV (FHMQV) protocol, which preserves the efficiency and security
attributes of the (H)MQV protocol, in addition to resistance to the ephemeral information sA
(and sB) leakage. Similar works can be done for the CMQV and ECKE–1N protocols.

We define a Canetti–Krawczyk type security model, based on session’s tree of computations,
which allows a fine granularity analysis of session specific information leakages. We aim with this
approach to capture both ephemeral key reveal and session state reveal. The FHMQV protocol is
shown secure in this model. The FHMQV protocol can be added with a third message, yielding
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the FHMQV–C protocol, which provides all the security attributes of the FHMQV protocol,
added with key confirmation and perfect forward secrecy.

In a forthcoming stage, we will be interested in the analysis of relations between the security
model we propose and the Canetti–Krawczyk and extended Canetti–Krawczyk security models.
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