
Authenticated Broadcast with a

Partially Compromised Public-Key Infrastructure

S. Dov Gordon∗ Jonathan Katz∗† Ranjit Kumaresan∗

Arkady Yerukhimovich∗

Abstract

Given a public-key infrastructure (PKI) and digital signatures, it is possible to construct
broadcast protocols tolerating any number of corrupted parties. Almost all existing protocols,
however, do not distinguish between corrupted parties (who do not follow the protocol), and
honest parties whose secret (signing) keys have been compromised (but who continue to behave
honestly). We explore conditions under which it is possible to construct broadcast protocols
that still provide the usual guarantees (i.e., validity/agreement) to the latter.

Consider a network of n parties, where an adversary has compromised the secret keys of
up to tc honest parties and, in addition, fully controls the behavior of up to ta other parties.
We show that for any fixed tc, ta there exists an efficient protocol for broadcast if and only if
2ta +min(ta, tc) < n. We also show that if tc, ta are not fixed, but are only guaranteed to satisfy
the bound above, then broadcast is impossible to achieve except for a few specific values of n;
for these “exceptional” values of n, we demonstrate a broadcast protocol. Taken together, our
results give a complete characterization of this problem.

∗Dept. of Computer Science, University of Maryland. Email: {gordon, jkatz, ranjit, arkady}@cs.umd.edu
†Work done in part while visiting IBM. Supported by NSF CNS-0447075, NSF CNS-0627306, the U.S. DoD/ARO

MURI program, and the US Army Research Laboratory and the UK Ministry of Defence under agreement number
W911NF-06-3-0001.

1 Introduction

Protocols for broadcast allow a designated player (the dealer) to distribute an input value to a set of
parties such that (1) if the dealer is honest, all honest parties output the dealer’s value (validity),
and (2) even if the dealer is dishonest, the outputs of all honest parties agree (agreement).
Broadcast protocols are fundamental for distributed computing and secure computation: they
are crucial for simulating the functionality of a broadcast channel over a point-to-point network,
and thus form a critical sub-component of various higher-level protocols.

Classical results of Pease, Shostak, and Lamport [15, 11] show that broadcast (and, equivalently,
Byzantine agreement) is achievable in a synchronous network of n parties if and only if the number
of corrupted parties t satisfies t < n/3. To go beyond this bound, some form of set-up is required.
The most commonly studied set-up assumption is the existence of a public-key infrastructure (PKI)
such that each party Pi has a public signing key pki that is known to all other parties (in addition
to the cryptographic assumption that secure digital signatures exist). In this model, broadcast is
possible for any t < n [15, 11, 3].

With few exceptions [5, 7] (see below), prior work in the PKI model treats each party as
either totally honest, or as completely corrupted and under the control of a single adversary; the
assumption is that the adversary cannot forge signatures of any honest parties. However, in many
situations (see below) it makes sense to consider a middle ground: parties who honestly follow
the protocol but whose signatures might be forged (e.g., because their signing keys have been
compromised). Most existing work treats any such party Pi as corrupt, and provides no guarantees
for Pi in this case: the output of Pi may disagree with the output of other honest parties, and validity
is not guaranteed when Pi is the dealer. Clearly, it would be preferable to ensure agreement and
validity for honest parties who have simply had the misfortune of having their signatures forged.

Here, we consider broadcast protocols providing exactly these guarantees. Specifically, say ta
parties in the network are actively corrupted; as usual, such parties may behave arbitrarily and
we assume their actions are coordinated by a single adversary A. We also allow for tc parties who
follow the protocol honestly, but whose signatures can be forged by A; this is modeled by simply
giving A their secret keys. We refer to such honest-behaving parties as compromised, and require
agreement and validity to hold even for compromised parties.

Say ta, tc satisfy the threshold condition with respect to some total number of parties n if
2ta + min(ta, tc) < n. We show:

1. For any n and any ta, tc satisfying the threshold condition with respect to n, there is an
efficient (i.e., polynomial in n) protocol achieving the notion of broadcast outlined above.

2. When the threshold condition is not satisfied, broadcast protocols meeting our notion of
security are impossible.

3. Except for a few “exceptional” values of n, there is no fixed n-party protocol that tolerates
all ta, tc satisfying the threshold condition with respect to n. (The positive result mentioned
above relies on two different protocols, depending on whether ta ≤ tc.) For the exceptional
values of n, we show protocols that do tolerate any ta, tc satisfying the threshold condition.

Taken together, our results thus provide a complete characterization of the problem.

Motivating the problem. Compromised parties are most naturally viewed as honest parties
whose secret (signing) keys have been obtained somehow by the adversary. E.g., perhaps an adver-
sary was able to hack into an honest user’s system and obtain their secret key, but subsequently

1

the honest party’s computer was re-booted and now behaves honestly. Exactly this scenario is
addressed by proactive cryptosystems [14], in a somewhat different context.

We remark, however, that our model is meaningful even if such full-scale compromise of honest
users’ secret keys is deemed unlikely. Specifically, our work provides important guarantees whenever
there is a possibility that an honest user’s signature might be forged (whether or not the adversary
learns the user’s actual secret key). Signature forgery can potentially occur due to cryptanalysis,
poor implementation of cryptographic protocols [12, 13], or side-channel attacks [9, 10, 1, 16, 2].
In all these cases, it is likely that an adversary might be able to forge signatures of a small number
of honest parties without being able to forge signatures of everyone.

Prior work. Gupta et al. [7] also consider broadcast protocols providing agreement and validity
for honest-behaving parties whose secret keys have been compromised. Our results improve upon
theirs in several respects. First, we construct protocols whenever 2ta + min(ta, tc) < n, whereas
they only show feasibility only under the weaker condition 2(ta + tc) − 1 < n. More importantly,
all the protocols presented in the work of Gupta et al. are inefficient and have message complexity
exponential in n, while our protocols have polynomial complexity in all respects. Although Gupta
et al. [7] also claim impossibility when 2ta + min(ta, tc) ≥ n, our impossibility result is stronger
in that it holds relative to a weaker adversary.1 Finally, Gupta et al. always treat ta, tc as known
and do not consider the question of designing a fixed protocol achieving broadcast for any ta, tc
satisfying the threshold condition (as we do in the third result mentioned above).

Fitzi et al. [5] consider broadcast in a model where the adversary can either corrupt a few
players and forge signatures of all parties, or corrupt more players but forge no signatures. In
our notation, their work handles the extremes ta < n/3, tc = n and ta < n/2, tc = 0. Our work
addresses all the intermediate cases, where an adversary might be able to forge signature of some
honest parties but not others.

Organization. Section 2 introduces our model and provides a formal definition of broadcast in
our setting. In Section 3 we show that for every n, ta, tc satisfying the threshold condition, there
exists an efficient broadcast protocol. We show our impossibility results in Section 4: namely,
broadcast is impossible whenever ta, tc do not satisfy the threshold condition, and (other than for
the exceptional values of n) there does not exist a single, fixed protocol achieving broadcast for all
ta, tc satisfying the threshold condition. In Section 5 and Appendix B we give positive results for
the exceptional values of n. Although dealing with these “outliers” may seem like a minor point, in
fact all the exceptional values of n are small and so are more likely to arise in practice. Furthermore,
dealing with these exceptional values is, in some sense, the most technically challenging part of our
work.

2 Model and Definitions

We consider the standard setting in which n players communicate in synchronous rounds via au-
thenticated channels in a fully connected, point-to-point network. (See below for further discussion
regarding the assumption of authenticated channels.) We assume a public-key infrastructure (PKI),
established as follows: each party Pi runs a key-generation algorithm Gen (specified by the protocol)

1In [7], the adversary is assumed to have access to the random coins used by the compromised parties when
running the protocol, whereas we do not make this assumption.

2

to obtain public key pki along with the corresponding secret key ski. Then all parties begin running
the protocol holding the same vector of public keys (pk1, . . . , pkn), and with each Pi holding ski.

A party that is actively corrupted (or “Byzantine”) may behave arbitrarily. All other parties
are called honest, though we further divide the set of honest parties into those who have been
compromised and those who have not been compromised, as discussed below. We view the set of
actively corrupted players as being under the control of a single adversary A coordinating their
actions. We always assume such parties are rushing, and may wait to see the messages sent by
honest parties in a given round before deciding on their own messages to send in that round.
Actively corrupted parties may choose their public keys arbitrarily and even dependent on the
public keys of honest parties. We continue to assume, however, that all honest parties hold the
same vector of public keys.

Some honest players may be compromised ; if Pi is compromised then the adversary A is given
that Pi’s secret key ski. We stress that compromised players follow the protocol as instructed: the
only difference is that A is now able to forge signatures on their behalf. On the other hand, we
assume A is unable to forge signatures of any honest players who have not been compromised.

We assume authenticated point-to-point channels between all honest parties, even those who
have been compromised. In other words, although the adversary can forge the signature of an
honest party Pi who has been corrupted, it cannot falsely inject a point-to-point message on Pi’s
behalf. In practice, authenticated channels would be guaranteed using pairwise symmetric keys
(that are less easily compromised or cryptanalyzed than signing keys), or could also be ensured
via physical means in small-scale networks. Note that without the assumption of authenticated
channels, no meaningful results are possible.

Definition 1 A protocol for parties P = {P1, . . . , Pn}, where a distinguished dealer D ∈ P holds
an initial input M , achieves broadcast if the following hold:

Agreement All honest parties output the same value.

Validity If the dealer is honest, then all honest parties output M .

We stress that “honest” in the above includes those honest parties who have been compromised.

Although the above definition refers to an arbitrary input M for the dealer, we will assume for
simplicity that the dealer’s input is just a single bit. Broadcast for arbitrary length messages can
be obtained from binary broadcast using standard techniques.

An adversary A is called a (ta, tc)-adversary if A actively corrupts up to ta parties and addi-
tionally compromises up to tc of the honest parties. In a network of n players, we call A a threshold
adversary if A chooses ta, tc subject to the restriction 2ta + min(ta, tc) < n; actively corrupts up
to ta parties; and compromises up to tc honest parties.

3 Broadcast for (ta, tc)-Adversaries

In this section, we prove the following result:

Theorem 1 Fix n, ta, tc with 2ta+min(ta, tc) < n. Then there exists a protocol achieving broadcast
in the presence of a (ta, tc)-adversary.

3

The case of ta ≤ tc is easy: here the stated condition implies 3ta < n and the parties can thus run
a standard (unauthenticated) broadcast protocol [15, 11] where the PKI is not used at all. (In this
case, it makes no difference whether honest players are compromised or not.) The challenge is to
design a protocol for tc < ta, and we deal with this case for the remainder of this section.

Let DS refer to the Dolev-Strong protocol [3] that achieves broadcast with a PKI, in the usual
sense (i.e., when no honest parties’ keys can be compromised), for any t < n corrupted parties;
the Dolev-Strong protocol is reviewed in Appendix A for completeness. We say that Pi calls an
execution of the DS protocol dirty if Pi receives valid signatures by the dealer on two different
messages, or never receives any valid signed messages from the dealer; i.e., if Pi detects that the
dealer is either corrupted or compromised. Pi declares the execution clean otherwise. The following
is easy to prove (the proof is omitted due to lack of space):

Lemma 1 Consider an execution of protocol DS in the presence of ta adversarial parties and tc
compromised honest parties, where ta + tc < n. Then:

1. All honest parties agree on whether an execution of DS is clean or dirty.

2. Agreement holds. (I.e., the outputs of all honest players are identical.)

3. If the dealer is honest and has not been compromised, then validity holds (i.e., all honest
parties agree on the dealer’s input) and the execution is clean. If the dealer is honest and the
execution is clean, then validity also holds.

Thus, DS fails to satisfy Definition 1 only when the dealer is honest but compromised. Our protocol
(cf. Figure 1) guarantees validity even in this case (while leaving the other cases unaffected).

Protocol 1

Inputs: Let D be the dealer, with input bit b.

Computation:

1. D sends b to all other players. Let bi be the value received by Pi from D in this step (if the
dealer sends nothing to Pi, then bi is taken to be some default value).

2. In parallel, each party Pi acts as the dealer in an execution of DS(bi) (the original dealer D
runs DS(b)). We let |CLEAN0| (resp., |CLEAN1|) denote the number of executions of DS that
are both clean and result in output 0 (resp., 1).

Output: If |CLEAN0| ≥ |CLEAN1| then all parties output 0; otherwise, all parties output 1.

Figure 1: A broadcast protocol for tc < ta and 2ta + tc < n.

Theorem 2 Let A be a (ta, tc)-adversary with tc < ta and 2ta + tc < n. Then Protocol 1 achieves
broadcast in the presence of A.

Proof We prove agreement and validity. Note that n > ta + tc, so Lemma 1 applies.

Agreement: By Lemma 1, the output of each honest player is the same in every execution of DS
in step 2, and all honest parties agree on whether any given execution of DS is clean or dirty. So
all honest players agree on |CLEAN0| and |CLEAN1|, and agreement follows.

4

Validity: Assume the dealer is honest (whether compromised or not). Letting th denote the
number of honest and non-compromised players, we see that th + ta + tc = n > 2ta + tc and so
th > ta. Thus, there are th honest and non-compromised dealers in step 2 of Protocol 1, and
(since D is honest) each of these runs DS(b) where b is the initial input of D. By Lemma 1, all
honest players output b in (at least) these th executions, and each of these th executions is clean.
Furthermore, there can be at most ta clean executions resulting in output 1− b, as only adversarial
players will possibly run DS(1 − b) in step 2. The majority value output by the honest players is
therefore always equal to the original dealer’s input b.

4 Impossibility Results

In this section we show two different impossibility results. First, we show that there is no protocol
achieving broadcast in the presence of a (ta, tc)-adversary when n ≤ 2ta + min(ta, tc), thus proving
that Theorem 1 is tight. We then consider the case when ta, tc are not fixed, but instead all that is
guaranteed is that 2ta + min(ta, tc) < n. (In the previous section, unauthenticated broadcast was
used to handle the case ta ≤ tc and Protocol 1 assumed tc < ta. Here we seek a single protocol
that handles both cases.) We show that in this setting, broadcast is impossible for almost all n.

4.1 The Three-Player Case

We first present a key lemma that will be useful for the proofs of both results described above. For
this, define a general adversary A as follows:

Definition 2 Let S be a set of pairs {(S1
a, S1

c), (S2
a, S2

c), . . .} where Si
a, S

i
c ⊂ {P1, . . . , Pn}. An S-

adversary can choose any i, and actively corrupt any subset of the players in Si
a and additionally

compromise the secret keys of any subset of the players in Si
c.

We restrict our attention to the case of three parties (named A, B, and C) and S defined as follows:

S =

({A}, ∅)

({B}, {A})
({C}, {A})

 . (1)

Lemma 2 In the presence of an S-adversary, for S defined as above, there does not exist a protocol
achieving broadcast for dealer A.

Proof Suppose, towards a contradiction, that there exists a protocol Π for computing broadcast
in the presence of an S-adversary when A is the dealer. Let ΠA,ΠB,ΠC denote the code specified
by Π for players A,B, and C, respectively.

Consider an experiment in which four machines are arranged in a rectangle (see Figure 2). The
top left and top right nodes will run ΠB and ΠC , respectively. The bottom left node will run ΠA

using input 1, and the bottom right node will run ΠA using input 0. Public and secret keys for
A,B, and C are generated honestly, and both executions of ΠA use the same keys.

Claim 1 In the experiment of Figure 2, ΠB outputs 1.

5

ΠA(1) ΠA(0)

ΠB ΠC

Figure 2: A mental experiment involving a four-node network.

Proof Consider an execution in the real network of three players, in the case where A holds
input 1 and the adversary corrupts C and compromises the secret key of A. The adversary then
simulates the right edge of the rectangle from Figure 2 while interacting with the (real) honest
players A and B (running the code for ΠA(1) and ΠB, respectively). That is, every time the
corrupted player C receives a message from B the adversary forwards this message to its internal
copy of ΠC , and every time C receives a message from A the adversary forwards this message to its
internal copy of ΠA(0). Similarly, any message sent by ΠC to ΠB is forwarded to the real player B,
and any message sent by ΠA(0) to ΠA(1) is forwarded to the real player A. (Messages between ΠC

and ΠA(0) are forwarded internally.) This defines a legal S-adversary. If Π is a secure protocol,
validity must hold and so B in the real network (and hence ΠB in the mental experiment) must
output 1.

Claim 2 In the experiment of Figure 2, ΠC outputs 0.

The proof is the same as above.

Claim 3 In the experiment of Figure 2, ΠB and ΠC output the same value.

Proof Consider an execution in the real network of three players when the adversary corrupts A
(and does not further compromise anyone). The adversary then simulates the bottom edge of the
rectangle when interacting with the real players B and C, in the obvious way. Since this defines
a legal S-adversary, security of Π implies that agreement must hold between B and C in the real
network and so the outputs of ΠB and ΠC must agree in the mental experiment.

The three claims are contradictory, and so we conclude that no secure protocol Π exists.

We remark that the entire proof works, unchanged, even if we relax our definition of broadcast
and allow agreement/validity to fail with negligible probability.

4.2 Impossibility of Broadcast for 2ta + min(ta, tc) ≥ n

Theorem 3 Fix n, ta, tc with 2ta +min(ta, tc) ≥ n. There is no protocol achieving broadcast in the
presence of a (ta, tc)-adversary.

Proof We prove the theorem by demonstrating that a broadcast protocol Π secure in the presence
of a (ta, tc)-adversary with 2ta + min(ta, tc) ≥ n, yields a protocol Π′ for 3-player broadcast in the
presence of an S-adversary for S as defined in the previous section. Using Lemma 2, this shows
that such a protocol Π cannot exist. In fact, we show this even assuming the dealer is fixed in
advance.

6

Assume that such a protocol Π exists. We construct a protocol Π′ for 3-player broadcast by
having each player simulate a subset of the players in the n-player protocol Π. The simulation
proceeds in the obvious way, by having each of the 3 players run the code of the parties they
simulate in Π. They forward any messages sent by the simulated parties to the player simulating
the destination party, who uses these as incoming messages for his simulated players. To provide a
PKI for the simulated protocol we view the keys of each of the 3 players as consisting of multiple
keys. Player A’s public key is PKA = (pk1, . . . , pka) and his secret key is SKA = (sk1, . . . , ska) for
some number of simulated players a. The players in the 3-player protocol determine their outputs
from the outputs of the players they simulate. If all players simulated by A output the same value
b in the simulated protocol, then A outputs b. Otherwise, A outputs a special value ⊥. Note that
an adversarial player can only simulate adversarial players and an honest but compromised player
can only simulate compromised players since the adversary learns all the secret keys of player A’s
simulated players when A’s key is compromised.

We let A simulate a set of at most min(ta, tc) players, including the dealer, and let B and C
each simulate at most ta players. Since 2ta + min(ta, tc) ≥ n, it is possible to do this in such a way
that each of the n original players is simulated by one of A,B, or C. We now consider each of the
three allowed types of corruption for the adversary A as per Definition 2, and demonstrate that
the corresponding corruption in the n-player protocol is also “legal”: that is, we demonstrate that
the allowed actions for A translate into adversarial actions for which the non-faulty players in Π
terminate correctly, achieving broadcast in the simulated n-player protocol. This implies a secure
3-player broadcast protocol in the presence of A.

Recall that, by assumption, Π is secure against a (ta, tc)-adversary; as long as no more than ta
players are corrupt, and no more than tc are compromised, Π satisfies the requirements of authen-
ticated broadcast. If A′ chooses the pair ({A}, ∅), all players simulated by A in Π′ are corrupt and
the players simulated by B and C are honest and non-compromised. Since, min(ta, tc) ≤ ta, this
is an allowed corruption for a (ta, tc)-adversary, and Π executes correctly implying that Π′ termi-
nates with the correct output. Next, if A′ chooses ({B}, {A}) this will result in a (ta,min(ta, tc))
corruption. Since min(ta, tc) ≤ tc, this corruption type is also permitted in Π, and Π′ executes cor-
rectly. Finally, the corruption type ({C}, {A}) is handled identically to that of ({B}, {A}). Since
we proved in Lemma 2 that no such protocol Π′ exists, this proves the theorem.

4.3 Impossibility of Broadcast in the Presence of a Threshold Adversary

We now turn to the case of the threshold adversary. Recall that in this setting the exact values of
ta and tc used by the adversary are not known; we only know that they satisfy 2ta +min(ta, tc) < n.
In what follows, we show that secure broadcast is impossible if n /∈ {2, 3, 4, 5, 6, 8, 9, 12}. For the
“exceptional” values of n, we demonstrate feasibility in Section B.

Theorem 4 Fix n > 2. If n ≤ 2 · bn−1
3 c + bn−1

2 c, then there does not exist a secure broadcast
protocol for n players in the presence of a threshold adversary. (Note that n ≤ 2 · bn−1

3 c + bn−1
2 c

for all n > 2 except n ∈ {3, 4, 5, 6, 8, 9, 12}.)

Proof Assume there exists a protocol Π for n satisfying the stated inequality. We show that
this implies a protocol Π′ for broadcast with 3 players in the presence of the adversary A from
Definition 2. By Lemma 2, we conclude that Π cannot exist. In fact, we show this even assuming
the dealer is fixed in advance.

7

We construct Π′ using a player simulation argument as in the previous section. Let A simulate a
set of at most bn−1

2 c players, and including the dealer. B and C each simulate at most bn−1
3 c players

and at least one player. By the stated inequality, it is possible to do this in such a way that A, B,
and C simulate all n players. We now show that the three allowed types of corruption for A (in
the 3-party network) are also allowed corruption patterns for the n-player threshold adversary A′

If A corrupts A, this corresponds to corruption of bn−1
2 c players in Π (and no compromised

players). Since 2bn−1
2 c < n, this is a legal corruption pattern for a threshold adversary and Π

should remain secure. If A corrupts B and compromises A, this corresponds to ta = bn−1
3 c players

and tc = bn−1
2 c players in Π. Since 2bn−1

3 c + min{bn−1
3 c, bn−1

2 c} = 3bn−1
3 c < n, this is again a

legal corruption pattern for a threshold adversary and Π should remain secure. The case when C
is corrupted and A is compromised is exactly analogous.

5 Handling the Exceptional Values of n

We refer to {2, 3, 4, 5, 6, 8, 9, 12} as the set of exceptional values for n. (These are the only positive,
integer values of n for which 4 does not apply.) We show for any exceptional value of n a broadcast
protocol that is secure against any threshold adversary. Designing protocols in this setting is more
difficult than in the setting of Section 3, since the honest parties are no longer assumed to “know”
whether ta ≤ tc.

Our protocol, which we refer to as authLSP, is an authenticated version of the exponential
protocol of Lamport et al. [11]; see Figure 3. Although the message complexity of this protocol is
exponential in the number of players, the maximum number of players considered here is 12 so this
is not a serious problem (at least in theory). However, we also provide a more efficient protocol
based on the protocol of Dolev-Strong [3] in Appendix B, under the assumption that there is at
least one honest and uncompromised player.

We say a message M is valid if it has the form (v, sP1 , . . . , sPi), where all Pj ’s are distinct, the
string sPj is a valid signature on (v, sP1 , . . . , sPj−1) relative to the verification key of Pj , and one of
the sPj is the signature of the dealer. (We note that authLSP is defined recursively, and the criteria
for deciding if a message is valid is defined with respect to the dealer of the local execution.) We
also assume implicitly that each message has a tag identifying which execution it belongs to. These
tags (together with uncompromised signatures) will prevent malicious players from substituting
the messages of one execution for those of another execution. We refer to v as the content of
such a message. When we say that an execution of authLSP satisfies agreement or validity (cf.
Definition 1), we mean that the output is a valid message whose content satisfies these properties.
We note that in the protocol authLSP, it is possible for honest players to have invalid input. In
this case, we change the definition of validity slightly to require that all honest players (including
the dealer) output messages with content 0. Finally, we let th = n − tc − ta denote the number
of honest and uncompromised parties. One useful observation about threshold adversaries that we
will repeatedly use is that when ta > bn−1

3 c, it follows that th > ta.
The next two lemmas follow readily from the results of [11]; we do not prove them here.

Lemma 3 If n > 3m and m ≥ ta, authLSP(m) achieves validity and agreement.

Lemma 4 If the dealer D is honest, and n > 2ta+m, authLSP(m) achieves validity and agreement.

We now prove several additional lemmas about Protocol authLSP.

8

Protocol authLSP(m)

Inputs: The protocol is parameterized by an integer m. Let D be the dealer with input M of the
form M = (v, sP1 , . . . , sPi

) with 0 ≤ i ≤ n (M is not necessarily valid).

Case 1: m = 0
1. If the content of M is not in {0, 1}, D sets M = 0.a D sends Md = (M,SignskD

(M)) to all
other players and outputs Md.

2. Letting Mi denote the message received by Pi, Pi ouputs Mi.

Case 2: m > 0
1. If the content of M is not in {0, 1}, D sets M = 0. D sends Md = (M,SignskD

(M)) to all
other players and outputs Md.

2. Let P ′ = P \ {D}. For Pi ∈ P ′, let Mi denote the message received by Pi from D. Pi plays
the dealer in authLSP(m− 1) for the rest of the players in P ′, using message Mi as its input.

3. Each Pi locally does the following: for each Pj ∈ P ′, let Mj be the output of Pi when Pj

played the dealer in authLSP(m− 1) in step 2. For each Mj , Pi sets value bj as follows:

bj =
{

the content of Mj if Mj is valid
⊥ otherwise

(We stress that the above also includes the output of Pi when he was dealer in step 2.) Pi

computes b∗ = majority(bj). If there is no value in strict majority, Pi outputs 0.

4. Pi outputs the first valid message Mj (lexicographically) with content b∗.

aAs mentioned in the text, we assume the dealer also includes the appropriate tag identifying which
execution M belongs to. We do not mention this again going forward.

Figure 3: Protocol authLSP.

Lemma 5 If the dealer is honest and uncompromised, Protocol authLSP(m) guarantees validity
and agreement for all values of m.

Proof Let D be the dealer with input that has content bd. (Recall that if bd /∈ {0, 1}, then D
switches his input for valid input with content bd = 0.) It follows from the protocol description
that D outputs a valid message with content bd. Furthermore, when an honest player is dealer in
the recursive call in step 2, it has input and output with content bd. Therefore, when honest Pi

computes majority(bj) in step 3 of authLSP, it sets the value bi = bd. On the other hand, since D
is honest and uncompromised, the adversary cannot produce a valid message with content 1 − bd

(recall that for a message to be valid, it must contain the signature of the dealer). It follows then
that bj 6= 1− bd for all values used to compute majority in step 3. Validity and agreement follow.

Lemma 6 If the dealer is honest and compromised, and th > ta, then Protocol authLSP(m)
achieves validity and agreement for all values of m.

Proof It is easy to see that the lemma holds for m = 0. Let us assume the lemma holds for
authLSP(m − 1), and consider authLSP(m). If an honest and uncompromised player is the dealer
in step 2 of authLSP(m) (i.e. in the recursive call to authLSP(m − 1)), then by Lemma 5 this run

9

achieves validity and agreement. If an honest but compromised player is the dealer in step 2, then it
still holds in the recursive execution that th > ta, since the dealer is not counted in th, and all other
players participate in the execution of authLSP(m− 1); by the induction hypothesis this execution
achieves validity and agreement on output bd as well. It follows that in step 3 of authLSP(m), for
each honest player Pi, at least n − ta − 1 of the bj values equal bd and at most ta of the bj values
equal (1− bd). Since n− ta − 1 ≥ th > ta, bd is the majority value for each honest player, and the
lemma follows.

We now prove the following theorem:

Theorem 4 For any value n ∈ {2, 3, 4, 5, 6, 8, 9, 12} there exists a protocol for n players that
achieves broadcast in the presence of a threshold adversary.

Proof The case n = 2 is trivial. When n = 3, it follows from our constraints that ta ≤ 1 and
tc = 0, so we can run any authenticated byzantine agreement protocol. When n = 4, it follows from
our constraints that ta ≤ 1, and therefore that n > 3ta, so we can ignore the PKI and run a protocol
that is secure without authentication. The remainder of the proof deals with n ∈ {5, 6, 8, 9, 12}.

Lemma 7 For n ∈ {5, 6, 8}, authLSP(bn−1
3 c+ 1) achieves broadcast in the presence of a threshold

adversary.

Proof We prove the lemma by considering all possible types of dealers. We let bd denote the
input bit of the dealer D.

D is honest and not compromised: This case follows from lemma 5

D is honest and compromised: We break this case up into the following two scenarios:

ta ≤ bn−1
3 c: For n ∈ {5, 6, 8}, we have n > 2bn−1

3 c+bn−1
3 c+1 ≥ 2ta +m, where the first inequality

holds because of our assumption on n, and the second because of our assumption on ta. Applying
lemma 4 we get validity and agreement as claimed.

ta > bn−1
3 c: Since we assume a threshold adversary, in this case we have th > ta (cf. section 2).

Applying lemma 6, agreement and validity follow.

D is malicious: Since we assume a threshold adversary, we have that n > 2ta. We note that the
malicious dealer is excluded from each of the executions of authLSP(bn−1

3 c) in step 2, and therefore,
of the n − 1 players that participate in those executions, only ta − 1 are malicious. The reader
can verify that for n ∈ {5, 6, 8}, n − 1 > 3bn−1

3 c, and that bn−1
3 c ≥ ta − 1 (recalling that ta < n

2).
Applying lemma 3, we have agreement in each execution of authLSP(bn−1

3 c) in step 2. Agreement
in authLSP(bn−1

3 c+ 1) follows when the players compute their output in steps 3 and 4.

Lemma 8 For n ∈ {9, 12}, Protocol authLSP(bn−1
3 c + 2) achieves broadcast in the presence of a

threshold adversary.

Proof We prove the lemma by considering all possible types of dealers.

D is honest and uncompromised: This case follows from lemma 5.

D is honest and compromised: We break this case up into the following two scenarios:

10

ta ≤ bn−1
3 c: For n ∈ {9, 12}, we have n > 2bn−1

3 c+ bn−1
3 c+ 2 ≥ 2ta + m, where the first inequality

holds by our assumption on n, and the second inequality holds by our assumption on ta. Applying
lemma 4 we get validity and agreement as claimed.

ta > bn−1
3 c: Because we assume a threshold adversary, we have th > ta (cf. section 2). Applying

lemma 6, agreement and validity follow.

D is malicious: We consider the recursive execution of authLSP(bn−1
3 c+ 1) in step 2, and prove

agreement for each of the n−1 dealers. When the dealer in step 2 is honest and uncompromised, by
lemma 5 we have agreement in his execution. If the dealer is honest and compromised we consider
two further possibilities. If ta ≤ bn−1

3 c, then among the n−1 players participating in this recursive
execution, of which at most ta − 1 are malicious, we have

n− 1 > 3bn− 1
3

c − 1 = 2
(
bn− 1

3
c − 1

)
+

(
bn− 1

3
c+ 1

)
≥ 2 (ta − 1) +

(
bn− 1

3
c+ 1

)
By lemma 4, agreement follows. On the other hand, if the dealer is honest and compromised
and ta > bn−1

3 c, then th > ta, and by lemma 6 agreement follows. Finally, if the dealer in
step 2 is malicious, we consider what happens in the next recursive step, namely when the play-
ers execute authLSP(bn−1

3 c). Now two malicious dealers have been excluded: both the dealer in
authLSP(bn−1

3 c + 2) and the dealer in authLSP(bn−1
3 c + 1). Noting that the maximum number of

malicious players is 4 when n = 9 and 5 when n = 12 (because we have a threshold adversary), it
follows that among the remaining n − 2 players, n − 2 > 3(bn−1

3 c), and bn−1
3 c ≥ ta − 2. Applying

lemma 3, we have agreement for all dealer types in authLSP(bn−1
3 c), and agreement follows for all

malicious dealers in the executions of authLSP(bn−1
3 c+ 1). Since we have proven agreement for all

dealer types in authLSP(bn−1
3 c+ 1), we have agreement in the execution of authLSP(bn−1

3 c+ 2) as
well.

This concludes the proof of Theorem 4.

Note: The views and conclusions contained in this document are those of the authors and should not be interpreted

as representing the official policies, either expressed or implied, of the US Army Research Laboratory, the US Gov-

ernment, the UK Ministry of Defense, or the UK Government. The US and UK Governments are authorized to

reproduce and distribute reprints for Government purposes, notwithstanding any copyright notation herein.

References

[1] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi. The EM side-channel(s). In CHES
’02: Revised Papers from the 4th International Workshop on Cryptographic Hardware and
Embedded Systems, pages 29–45, London, UK, 2003. Springer-Verlag.

[2] D. Brumley and D. Boneh. Remote timing attacks are practical. Computer Networks,
48(5):701–716, 2005.

[3] D. Dolev and H. R. Strong. Authenticated algorithms for Byzantine agreement. SIAM J.
Comput., 12(4):656–666, 1983.

[4] A. Dornan. New viruses search for strong encryption keys. PlanetIT Systems Management
News, March, 1999.

11

[5] M. Fitzi, T. Holenstein, and J. Wullschleger. Multi-party computation with hybrid security.
In EUROCRYPT, pages 419–438, 2004.

[6] O. Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cambridge Uni-
versity Press, New York, NY, USA, 2004.

[7] A. Gupta, P. Gopal, P. Bansal, and K. Srinathan. Authenticated Byzantine generals strike
again. Cryptology ePrint Archive, Report 2008/287, 2008. http://eprint.iacr.org/2008/297.

[8] J. Katz and Y. Lindell. Introduction to Modern Cryptography (Chapman & Hall/Crc Cryptog-
raphy and Network Security Series). Chapman & Hall/CRC, 2007.

[9] P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other
systems. In Advances in Cryptology — Crypto ’96, pages 104–113. Springer-Verlag, 1996.

[10] P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Advances in Cryptology —
Crypto ’99, pages 388–397. Springer-Verlag, 1999.

[11] L. Lamport, R. E. Shostak, and M. C. Pease. The byzantine generals problem. ACM Trans.
Program. Lang. Syst., 4(3):382–401, 1982.

[12] Ms00-008: Incorrect registry setting may allow cryptography key compromise. Microsoft Help
and Support. http://support.microsoft.com/kb/259496.

[13] P. Nguyen. Can we trust cryptographic software? Cryptographic flaws in GNU privacy guard
v1.2.3. In Eurocrypt 2004.

[14] R. Ostrovsky and M. Yung. How to withstand mobile virus attacks. In ACM Symposium on
Principles of Distributed Computing (PODC), pages 51–59, 1991.

[15] M. C. Pease, R. E. Shostak, and L. Lamport. Reaching agreement in the presence of faults.
J. ACM, 27(2):228–234, 1980.

[16] J. Quisquater and F. Koene. Side channel attacks: State of the art. Ecrypt Network of
Excellence, 2002. http://www.crypto.ruhr-uni-bochum.de/en sclounge.html.

[17] J.-J. Quisquater and D. Samyde. Electromagnetic analysis (EMA): Measures and counter-
measures for smart cards. In E-SMART ’01: Proceedings of the International Conference on
Research in Smart Cards, pages 200–210, London, UK, 2001. Springer-Verlag.

12

A The Dolev-Strong Protocol

DS

Inputs: Let D be the dealer with input bd ∈ {0, 1}∗ and secret key skD.
1. (Round r = 0) D sends (bd,SignskD

(bd)) to every player.

2. In round r = 1 to n:

1. Every player Pi checks every incoming message and discards any that are not (·, r)-valid
or that already contain Pi’s signature. Pi orders the remaining messages lexicographi-
cally.

• If the content, v, of all remaining messages is identical, Pi appends its signature to
the first message (thus forming a (v, r + 1)-valid message) and sends the result to
all players.

• If there exist 2 messages with different content, Pi appends its signature to the first
2 such messages and sends the result to all players.

2. Termination:

1. If Pi ever received valid messages with different content, then it outputs a default value.
2. If Pi only received valid messages for one value v, then it outputs v.
3. If Pi never received a valid message for either v ∈ {0, 1} then it outputs a default value.

Figure 4: The Dolev-Strong protocol for broadcast.

For completeness, we present a modified version of the Dolev-Strong [3] protocol for authenti-
cated broadcast. (See Figure 4.) A message M is called (v, i)-valid if it was received in round i
and has the form (v, sP1 , . . . , sPi), where P1 = D, all Pj ’s are distinct, and for every j = 1, . . . , i
the string sPj is a valid signature on (v, sP1 , . . . , sPj−1) relative to the verification key of Pj . We
refer to v as the content of a valid message. If the dealer is honest and uncompromised, there will
only be (v, ?)-valid messages for a single value v, in which case the players consider the execution
clean. Otherwise, the execution is called dirty. We note that the protocol differs from the original
Dolev-Strong [3] protocol only in round complexity. We require n + 1 rounds to ensure that all
players agree whether the run was dirty; here we require that there is at least one honest and
uncompromised player.

B A More Efficient Protocol When th > 0.

We refer to {2, 3, 4, 5, 6, 8, 9, 12} as the set of exceptional values for n. We show for any exceptional
value of n a broadcast protocol that is secure against any threshold adversary. A full proof of
the above was given in Section 5, but it was based on the exponential algorithm of Lamport et
al. [11] rather than the more efficient protocol of Dolev-Strong [3]. In this section, we deal with the
“easier” case where there is guaranteed to be at least one honest, non-compromised party2 (i.e.,
ta + tc < n). This assumption allows us to provide a protocol that is based on the more efficient
construction of Dolev-Strong (cf. Appendix A), similar to the protocol we presented in Section 3.

2The difficulty that arises when ta+tc = n is that the compromised players may not agree on whether an execution
of DS is clean or dirty (since Lemma 1 no longer holds). This is not a problem in Section 3 because, there, whenever
ta + tc < n, the players run an unauthenticated broadcast protocol that does not use a PKI.

13

As in Section 3, our protocol begins with the dealer sending its input (here referred to as bd) to
each player; each player then runs DS(bd). However, because we no longer know whether ta ≤ tc,
the following problem arises: when the dealer is honest but compromised and ta ≤ tc, we cannot
be sure that the value output in the majority of clean runs is bd. It is possible that th < ta, and
(recalling that the adversary can force all executions of DS by compromised players to be dirty) it
is feasible for the adversary to force the majority of clean runs to have output 1− bd.

To address this, we design our protocol to carefully look at the number of clean runs and use
this information in a particular way when determining the output. Specifically, notice that if there
are many dirty runs d (specifically, d > 2n/3) then the honest parties can conclude that ta < n/3:
this follows because 2n/3 < d ≤ ta + tc, so if ta ≥ n/3 then we would have 2ta + min{ta, tc} ≥ n,
exceeding the assumed threshold. Thus, when many dirty runs are detected the parties can switch
to running a protocol that does not use the PKI at all. On the other hand, when there are few
dirty runs (roughly less than n/3), intuitively the parties can safely trust the majority output of
the clean runs.

The above leaves a “gap” in which there are too few dirty runs to conclude that n > 3ta, and
too many to trust the majority output of the clean runs. This is only problematic if the number of
clean runs resulting in bd is close to the number of clean runs resulting in 1−bd, and this balance will
allow us to extract one last piece of information. Such a balance can occur in only two ways. The
first is when a Byzantine dealer gives bd to some non-faulty players and 1− bd to others, splitting
the clean runs almost evenly between them. In this case we only need to worry about agreement
since the dealer is Byzantine. The more difficult case involves a compromised dealer, since then
correctness is also required. Here the key is to note that all clean runs with honest dealers result in
output bd; thus, to achieve the assumed balance, almost all the Byzantine players must run cleanly
with output 1−bd. If most of the Byzantine players give clean executions, it follows that the dealers
in dirty executions are honest (but compromised), and we can rely on them to correct the majority
value back to bd. The protocol is described fully in Figure 5.

Theorem 5 For n ∈ {2, 3, 4, 5, 6, 8, 9, 12}, Protocol 2 achieves broadcast in the presence of a thresh-
old adversary A under the additional assumption that ta + tc < n.

Proof One can verify that, for n as in the theorem, n > bn−1
2 c+ 2bn−1

3 c. We use this property
throughout the proof.

The value bn−1
3 c serves as a sort of breakpoint for the parameter ta: if ta ≤ bn−1

3 c, then (because
A is a threshold adversary) we have n > 3bn−1

3 c ≥ 3ta; when ta > bn−1
3 c then it holds that tc < ta.

These are exactly the two cases handled (independently) in Protocol 1. The difficulty here is to
identify which of these scenarios is the “right” one. We prove the correctness of our protocol in the
following three lemmas.

Lemma 9 If D is honest and uncompromised then validity and agreement hold.

Proof When the dealer is honest and uncompromised, then in step 2 the dealer’s execution of
DS is clean and results in output bd (cf. Lemma 1). Thus, all honest players terminate with output
bd in step 3.

Lemma 10 If D is honest but compromised then validity and agreement hold.

14

Protocol 2

Inputs: Let D be the dealer, with input b.

Computation:

1. D sends bd to all other players.

2. Let bi be the value received by Pi from D in step 1. (A missing value is taken as some
default value.) In parallel, each Pi ∈ P acts as the dealer in an execution of DS(bi) (the
original dealer D runs DS(bd)).

3. For b ∈ {0, 1}, let CLEANb denote the set of players whose execution of DS resulted in an
output of b. Let CLEAN = CLEAN0 ∪CLEAN1, and let DIRTY = P \CLEAN. If there exists a
b for which D ∈ CLEANb, then all players output b and terminate.

4. If |CLEAN| > 2bn−1
3 c then output 0 if |CLEAN0| ≥ |CLEAN1|, and output 1 otherwise.

5. If |CLEAN| < bn−1
3 c + 2, then run any (unauthenticated) broadcast protocol for n > 3ta

that does not use a PKI, and terminate with the indicated output.

6. If there exists a b for which |CLEANb| > bn−1
3 c, then output b and terminate.

7. Otherwise, we have bn−1
3 c + 2 ≤ |CLEAN| ≤ 2bn−1

3 c. Each player Pj ∈ DIRTY sends bj to
players in CLEAN. Each player Pi ∈ CLEANb sets value b′i as follows:

b′i =
{

b if at most bn−1
3 c − |CLEAN1−b| players in DIRTY sent 1− b to Pi

? otherwise .

8. Each player Pi ∈ CLEAN runs DS(b′i). For each Pi whose run is dirty, we add Pi to DIRTY
and remove Pi from CLEAN. If the sets CLEAN and DIRTY were changed in this step, go back
to step 4.

9. Let cb denote the number of players in CLEANb that gave a clean run on b in step 8 and c?
b

denote the number of players in CLEANb that gave a clean run on ? in step 8.

1. If |CLEAN0| + c?
1 > bn−1

3 c and |CLEAN1| + c?
0 > bn−1

3 c, output a default value and
terminate.

2. Else if there exists a b for which |CLEANb|+ c?
1−b > bn−1

3 c, output b and terminate.

10. Run any (unauthenticated) protocol for n > 3ta that ignores the PKI and terminate with
the indicated output.

Figure 5: Broadcast against a threshold adversary, assuming ta + tc < n.

Proof We consider separately the cases ta > bn−1
3 c and ta ≤ bn−1

3 c.

Case 1: ta > bn−1
3 c. By definition of a threshold adversary it follows that tc < ta. Letting th

denote the number of honest and non-compromised players, we have ta + tc + th = n > 2ta + tc and
so th > ta > bn−1

3 c or th ≥ bn−1
3 c + 2. Agreement and validity are immediate when the protocol

terminates in step 3. If the protocol terminates at step 4, the majority answer is correct since
th > ta (by Lemma 1, only corrupt players will give clean runs with output 1 − bd, and all non-
compromised honest players give clean runs with output bd). Termination in step 5 cannot happen,
since th ≥ bn−1

3 c + 2 and all non-compromised honest players give clean runs (i.e., |CLEAN| ≥
bn−1

3 c + 2). Finally, since the dealer is honest, all the non-compromised honest players will be in
CLEANbd

and so |CLEANbd
| > bn−1

3 c. It follows that termination is guaranteed by the end of step 6,
and the majority value in that step is correct since th > ta.

15

Case 2: ta ≤ bn−1
3 c. Validity and agreement hold when the protocol terminates in step 4 since at

most ta corrupted players will give clean runs with output 1− bd, and ta ≤ bn−1
3 c. The same holds

for termination in step 5, since n > 3bn−1
3 c ≥ 3ta. Termination after step 6 with output b implies

that at least one honest player Pi gave a clean run on b (since ta ≤ bn−1
3 c). Since the dealer is

honest, it follows that b = bd. It remains to prove that termination in steps 9 or 10 always yields
the correct output.

We next show that for b 6= bd, the value of |CLEANb|+ c?
1−b is never greater than bn−1

3 c.

Claim 4 When the dealer is honest, no honest players in CLEANbd
run DS(?) in step 8.

Proof When the dealer is honest and begins with input bd, all the players in CLEAN1−bd
are

corrupt. Since ta ≤ bn−1
3 c, the number of corrupt players in DIRTY is at most bn−1

3 c−|CLEAN1−bd
|.

In step 7, therefore, the honest players in CLEANbd
never get more than bn−1

3 c− |CLEAN1−bd
| votes

for 1− bd.

Since honest players do not contribute to c?
bd

, all the players contributing to c?
bd

must be corrupt.
Hence |CLEAN1−bd

|+ c?
bd
≤ ta ≤ bn−1

3 c. Therefore, termination in step 9 yields the correct answer.
Finally if we end up running step 10 (i.e., the protocol for n > 3ta), we still obtain the correct
output bd since n > 3bn−1

3 c ≥ 3ta.
This completes the proof of Lemma 10.

Lemma 11 When D is corrupt, agreement holds.

Proof We consider separately the cases ta > bn−1
3 c and ta ≤ bn−1

3 c.

Case 1: ta > bn−1
3 c. Again letting th represent the number of honest and non-compromised

players, recall that in this case th > ta, implying th ≥ bn−1
3 c + 2. Agreement on termination after

step 3 is obvious. Agreement in steps 4 or 6 follows from Lemma 1, since all honest players agree
on whether a given run of DS was clean or dirty. We do not terminate in step 5 when ta > bn−1

3 c,
since all honest players give clean runs resulting in |CLEAN| ≥ th ≥ bn−1

3 c+ 2.
Once the protocol proceeds past step 4, termination is possible either in step 9 or in step 10.

Recall that the properties of DS ensure that all honest players agree on the sets CLEAN0,CLEAN1,
and on the values c0, c1, c

?
0, c

?
1. Therefore agreement follows if we terminate at the end of step 9

rather than in step 10; we now prove that this is the case. By way of contradiction, suppose we do
not terminate in step 9. We have |CLEAN0|+ c?

1 ≤ bn−1
3 c and |CLEAN1|+ c?

0 ≤ bn−1
3 c. Therefore,

|CLEAN| + c?
0 + c?

1 ≤ 2bn−1
3 c. We now examine what happens for all possible values of c?

0 and c?
1.

There are three sub-cases to consider.

Sub-case 1: c?
0 = c?

1 = 0. We prove that this case never happens. We know that th ≥ bn−1
3 c + 2

and that |CLEAN0|, |CLEAN1| ≤ bn−1
3 c (because we did not terminate in step 6). Therefore, both

CLEAN0 and CLEAN1 contain at least one non-compromised honest player. Since c?
0 = 0, some

honest player in CLEAN0 did not output ? in step 8. By claim 5 (below), we have that all honest
players in CLEAN1 output ? in step 8. This implies that c?

1 6= 0, yielding a contradiction.

Claim 5 If there exists a non-compromised honest player Pi ∈ CLEANb that sets b′i = b, then all
the honest players Pj ∈ CLEAN1−b set b′j = ?.

16

Proof Consider an honest player Pi ∈ CLEANb, that sets b′i = b. Let DIRTY contain α corrupt
players and β honest but compromised players. Let βb be the number of honest but compromised
players who received bit b from D in the first round. Now β1−b ≤ bn−1

3 c− |CLEAN1−b|. Otherwise,
it is easy to see that Pi would have set b′i = ?. We claim that βb > bn−1

3 c − |CLEANb|. Suppose
that is not true, then we have β = β0 + β1 ≤ 2bn−1

3 c − |CLEAN|, i.e. β + |CLEAN| ≤ 2bn−1
3 c. Since

n = α+β + |CLEAN| , we have n ≤ α+2bn−1
3 c ≤ ta +2bn−1

3 c. This is a contradiction since, we are
given that n > 2bn−1

3 c+ bn−1
2 c ≥ 2bn−1

3 c+ ta. Hence we have proved that βb > bn−1
3 c − |CLEANb|

and thus all the honest players Pj ∈ CLEAN1−b will set b′j = ?.

Sub-case 2: c?
0, c

?
1 > 0. We prove that this case never happens for the values of n dealt with by our

protocol (i.e., whenever n > bn−1
2 c+2bn−1

3 c). Recall that we assumed |CLEAN|+ c?
0 + c?

1 ≤ 2bn−1
3 c.

In this case we have |CLEAN| ≤ 2bn−1
3 c − 2. Note that |CLEAN| ≥ bn−1

3 c + 2 or we would have
terminated in step 5. This is only true for bn−1

3 c ≥ 4 and no n ∈ {2, 3, 4, 5, 6, 8, 9, 12} satisfies
bn−1

3 c ≥ 4.

Sub-case 3: ∃b such that c?
1−b > 0, c?

b = 0. Recall that we assumed |CLEAN| + c?
0 + c?

1 ≤ 2bn−1
3 c.

Therefore, |CLEAN| ≤ 2bn−1
3 c − 1. Since |CLEAN| ≥ bn−1

3 c + 2, we have that bn−1
3 c ≥ 3. We

already argued that bn−1
3 c < 4 for the values of n for which we claim correctness. We are left

with bn−1
3 c = 3, which implies that n = 12 and so |CLEAN| = 5. Since ta > bn−1

3 c = 3 and
12 > 2ta + min(ta, tc) ≥ 2ta, the allowed values of ta are 4 and 5. However when ta = 5 > bn−1

3 c,
it follows that th ≥ ta + 1 = 6. This is impossible when |CLEAN| = 5, since all non-compromised
honest players give clean runs. Hence we are left with ta = 4. In this case, th ≥ 5, and therefore,
all players in CLEAN0,CLEAN1 are honest and uncompromised (since |CLEAN| = 5). Note that
|CLEAN0|, |CLEAN1| ≤ bn−1

3 c = 3, otherwise, the protocol would have terminated at the end of
step 6. Since |CLEAN| = 5 we can conclude that both CLEAN0 and CLEAN1 are non-empty. Since
CLEAN0 and CLEAN1 are non-empty and contain only non-compromised honest players, we claim
that c?

1−b = |CLEAN1−b|. This is because c?
b = 0, implying that a non-compromised honest player

Pi ∈ CLEANb set b′i = b, and by Claim 5, all honest players Pj ∈ CLEAN1−b set b′j = ?. Hence,
|CLEANb| + c?

1−b = |CLEANb| + |CLEAN1−b| = |CLEAN| = 5 > bn−1
3 c, and the protocol terminates

in step 9.2.
This completes the analysis of Case 1.

Case 2: ta ≤ bn−1
3 c: If ta ≤ bn−1

3 c, then n > 3bn−1
3 c > 3ta. Agreement is guaranteed when

the protocol terminates in steps 4 and 6 due to the properties of DS, and in step 5 since n >
3ta. Now suppose the protocol terminates at step 9. Note that we have agreement on the sets
CLEAN0,CLEAN1 and on the values c0, c

?
0, c1, c

?
1 due to DS. Since all decisions for termination in

this step are made using the values |CLEAN0|, |CLEAN1|, c0, c
?
0, c1, c

?
1, we have agreement. Finally,

if we terminate in step 10, we are guaranteed agreement since n > 3bn−1
3 c > 3ta.

17

