
How to Construct Identity-Based Signatures without the Key
Escrow Problem?

Tsz Hon Yuen, Willy Susilo, and Yi Mu

University of Wollongong, Australia
{thy738, wsusilo, ymu}@uow.edu.au

Abstract. The inherent key escrow problem is one of the main reasons for the slow adoption
of identity-based cryptography. The existing solution for mitigating the key escrow problem
is by adopting multiple Private Key Generators (PKGs). Recently, there was a proposal that
attempted to reduce the trust of the PKG by allowing a malicious PKG to be caught if he reveals
the user’s identity-based secret key illegally. Nonetheless, the proposal does not consider that
the PKG can simply decrypt the ciphertext instead of revealing the secret key itself (in the case
of identity-based encryption schemes).

The aim of this paper is to present an escrow-free identity-based signature (IBS) scheme, in
which the malicious PKG will be caught if it releases a signature on behalf of the user but
signed by itself. We present a formal model to capture such a scheme and provide a concrete
construction.

1 Introduction

The notion of identity-based cryptography was put forth by Shamir [18]. This notion was
proposed to simplify the authentication of a public key by merely using an identity string as
the public key. From the verifier’s or the encryptor’s point of view, only the identity of the
other party is required. Hence, there is no necessity to ensure the validity of the public key. Due
to this nice property, a series of identity-based schemes have been proposed, including identity-
based signatures [18], identity-based encryption [7], hierarchical identity-based cryptography
[13] and so forth. For identity-based signatures (IBS), there exists a comprehensive discussion
conducted by Bellare et al. [4]. Galindo et al. [11] further extended the discussion to IBS with
various additional properties, which has more practical applications.

In these identity-based cryptosystems, there is a trusted party called the private key gen-
erator (PKG) who generates the secret key for each user identity. As the PKG generates and
holds the secret key for all users, a complete trust must be placed on the PKG. Nonetheless,
this may not be desirable in a real world scenario, where a malicious PKG can sell users’
keys, sign messages or decrypt ciphertexts on behalf of users without being confronted in a
court of law. This is known as the key escrow problem. This problem seems to be inherent
in identity-based cryptosystems. Boneh and Franklin [7] proposed that employing multiple
PKGs is a possible solution to the key escrow problem. The master secret key is jointly com-
puted by a number of PKGs, such that no single PKG has the knowledge of it. However, this
approach requires an extra infrastructure and communication cost between users and different
PKGs. A user needs to run the key extraction protocol with different PKGs by proving his
identity to them. Furthermore, maintaining multiple independent PKGs for a commercially
used infrastructure is a daunting task.

? This is the full version of the EuroPKI 2009 paper: T. H. Yuen, W. Susilo and Y. Mu, “How to Construct
Identity-Based Signatures without the Key Escrow Problem”

2 Tsz Hon Yuen, Willy Susilo, and Yi Mu

Some cryptosystems have been proposed to solve the the key escrow problem. They use
a “combination” of identity-based cryptography and the traditional public key cryptography,
such as the certificateless cryptosystems [1], the certificate-based cryptosystems [12] and the
self-certificated cryptosystems [14], in a non-trivial way. In these systems, a user possesses a
user public key and a user secret key, together with his identity-based secret key computed
by the PKG. The user secret key protects the user from the key escrow problem. The PKG
acts like a certificate authority (CA) who authenticates the user public key using his master
secret key. Unfortunately, these cryptosystems are no longer identity-based - the encryptor or
the verifier has to know the user public key in addition to the user identity. Therefore these
schemes lost the original advantages of identity-based cryptography.

Girault [14] defined three level of trust to the PKG:

– Level 1: The PKG can compute users’ secret keys and, therefore, can impersonate any
user without being detected. Identity-based signature schemes are the examples.

– Level 2: The PKG cannot compute users’ secret keys. However, the PKG can still imper-
sonate any user without being detected. Certificateless signature schemes are the examples.

– Level 3: The PKG cannot compute users’ secret keys, and the PKG cannot impersonate
any user without being detected. Certificate-based signature schemes and self-certificated
signature schemes are the examples.

The current schemes achieving level 2 or level 3 of trust are no longer identity-based. It is
an open problem to construct an identity-based signatures with level 2 or level 3 of trust,
without publishing the user public key.

Schemes Public Information Level of Trust

Identity-based Signatures [18] ID Level 1

Certificateless Sigatures [1] ID, upk,W Level 2

Certificate-based Signatures [17] ID, upk Level 3

Self-certificated Signatures [14] ID, upk Level 3

Our Scheme in §6 ID Level 3
Table 1. Comparison of the public information known by the verifier and the level of trust to the PKG. ID is
the identity, upk is the user public key, and W is the commitment of the user secret key using the public key
of the PKG.

Recently, Goyal [15] proposed the concept of accountable authority identity-based encryp-
tion (A-IBE) to reduce the trust in the PKG and it was further strengthened by [2, 16]. In
[15], the PKG helps the user to compute his identity-based secret key without knowing it. If
the PKG computes another set of secret key by himself and reveals it to other parties, this key
will be different from the user’s original secret key with a high probability. Therefore the PKG
can be caught when revealing the secret key and the user’s original secret key is the evidence.
However, the malicious PKG is still able to sell a signed message or decrypted ciphertext
instead, without being detected. This is clearly an issue that is not yet addressed in Goyal’s
model [15]. Goyal et al. [16] further proposed the concept of black-box A-IBE. In black-box
A-IBE, if a PKG sells a decoder box which can decrypt ciphertexts with non-negligible prob-
ability, he will be caught in a trace algorithm. It is an open problem to construct a similar
blaming mechanism in the IBS setting.

How to Construct IBS without the Key Escrow Problem 3

Our Contributions. In this paper, we introduce the concept of escrow-free identity-based
signatures to reduce the trust in the PKG. In this model, each signer has his own public key
and secret key. The PKG generates the identity-based secret key for the signer with respect
to the user public key (à la Goyal’s approach [15]). Then, the signer uses both secret keys
to sign a message. Therefore, the signer is protected against a malicious PKG. To verify the
signature, it only requires the signer’s identity and the message. This is the main difference
between certificate-based signatures (CBS), certificateless signatures (CLS), self-certificated
signatures (SCS) and our model. Their verification protocols require the signer’s public key
to verify. Hence, our model mimics closely the original IBS in this regard, and solves the key
escrow problem at the same time.

Our scheme achieves level 3 of trust to the PKG, which is the best in the model proposed
by Girault [14]. Theoretically, the escrow-free IBS is more efficient than CBS, CLS and SCS
since the user public key is not involved and is not sent to the verifier. In this paper, we
give the first construction of the escrow-free IBS. When comparing with the multiple PKGs
solution by Boneh and Franklin [7], our scheme interacts with at most two authorities. While
Boneh and Franklin’s scheme interacts with a large number of authorities, the communication
complexity of the their scheme is higher.

We then extend the escrow-free IBS to have an extra property called user public key
anonymity. In CBS, CLS and SCS, user public keys are needed to verify a signature. Since
the escrow-free IBS only use the identity to verify a signature, it is possible for the signature
to be anonymous with respect to the user public key. We provide an additional security model
to capture the user public key anonymity property and present a secure construction with
anonymity.

2 Backgrounds

We briefly review the pairings and some candidate hard problems that will be used later. Let
G,GT be cyclic groups of prime order p, writing the group action multiplicatively. Let g be a
generator of G. A map ê : G×G→ GT is called a pairings if, for all g ∈ G and a, b ∈ Zp, we
have ê(ga, gb) = ê(g, g)ab, and if g is a generator of G, then ê(g, g) generates GT .

DL Problem. The Discrete Logarithm problem is that, given g, y ∈ G, to output x = logg y.
We say that the (ε, t)-DL assumption holds in G if no t-time algorithm has the non-negligible
probability ε in solving the DL problem.

DBDH Problem [7]. The decisional Bilinear Diffie-Hellman problem is that, given g, ga, gb,
gc ∈ G and T ∈ GT for unknown a, b, c ∈ Z∗p, to decide if T = ê(g, g)abc. We say that the
(ε, t)-DBDH assumption holds in G if no t-time algorithm has the non-negligible probability
ε over half in solving the DBDH problem.

q-SDH Problem [6]. The q-Strong Diffie-Hellman problem is that, given g, gα, . . ., gα
q ∈ G

for unknown α ∈ Z∗p, to output a pair (g
1

α+c , c) where c ∈ Z∗p. We say that the (ε, t, q)-SDH
assumption holds in G if no t-time algorithm has the non-negligible probability ε in solving
the q-SDH problem.

4 Tsz Hon Yuen, Willy Susilo, and Yi Mu

3 Security Model for Escrow-free Identity-based Signatures

3.1 Syntax

An escrow-free identity-based signature scheme has six polynomial-time algorithms, namely
Setup, UserKeyGen, Extract, Sign, Verify, Blame.

1. Setup: On input a security parameter 1k, it generates the system parameter param, the
master secret key msk and the master public key mpk.

2. UserKeyGen: On input the system parameter param, the user generates the user secret key
usk and the user public key upk.

3. Extract: This is an interactive algorithm between the PKG and the user. The common
input are param, upk and an identity ID. The PKG’s algorithm Extractp private input is
msk. The user’s algorithm Extractu private input is usk. The interaction includes the user
giving the PKG a joining proof Pf which shows the user’s participation with respect to
upk1. Finally the user obtains the identity-based secret key skID.

4. Sign: On input param, usk, skID and a message m, the user with identity ID generates a
signature σ.

5. Verify: On input param, mpk, ID, m and σ, it returns 1 or 0 for accept or reject, respectively.
6. Blame: This is an interactive algorithm between the PKG, the user and the judge. The

common input are param, mpk, ID, upk, m and σ. The user’s algorithm Blameu with
private input usk sends a blame request ϕ to a judge. The judge’s algorithm Blamej
outputs “PKG” if:
– ϕ shows that σ is related to upk, and
– the PKG’s algorithm Blamep, with private input msk, fails to provide a public key
upk′, a joining proof Pf and a transcript ρ, such that:
• upk′ is related to σ,
• Pf shows the user’s participation with respect to upk′, and
• ρ is the transcript of the extract algorithm with upk′.

Otherwise, the judge outputs “upk”.

3.2 Joining Proof

The joining proof Pf can be either an online proof or a proof in the real world. For the online
proof, it can consist of a certificate issued by some authority with respect to upk, and a proof
of knowledge with respect to upk. For the real world proof, it can be the user’s signature on
an application form, or the photocopy of the user’s documentation.

The joining proof Pf is needed to protect both the PKG and the user in the Blame
protocol. If there is no such proof:

– a malicious PKG can generate skID using any upk generated by himself and an honest
user cannot show that upk is not his public key;

– a malicious user can claim that the upk used in skID is not his public key and frame an
honest PKG.

The joining proof can be viewed as an authentication of user public key, which is sepa-
rated from the identity-based secret key issuing. Similar concepts can be found in “anonymous
1 The joining proof will be defined in section 3.2

How to Construct IBS without the Key Escrow Problem 5

identity-based key issuing” [19], where the duties of authentication and key issuing are sep-
arated to local registration authorities (LRA) and the PKG. Recently, Chow [10] proposed
a new system architecture to realize “anonymous key issuing”, by employing non-colluding
identity-certifying authority (ICA) and PKG. However, these two systems only authenticate
the user identity. If we modify the LRA or ICA to authenticate user public key as well, it can
be used as a joining proof.

3.3 Correctness

Let skID ← Extract(param, upk, ID) and (usk, upk) ← UserKeyGen(param). Then We define
the verification correctness as follows:

Verify(param,mpk, ID,m,Sign(param, usk, skID,m)) = 1.

We also define the blaming correctness as follows:

Blame(param,mpk, ID, upk,m,Sign(param, usk, skID,m)) = upk.

3.4 Unforgeability

The security model for unforgeability captures the attack from the outsider to forge a signature
when the PKG is honest. The adversary can obtain signatures of an honest user and can get the
identity-based secret key of any identity except the challenge identity. We have the following
game for unforgeability:

1. The simulator S gives param, mpk and upk′ to the adversary A.
2. A is allowed to query the following oracles adaptively:

– Key Extraction Oracle KEO(upk, ID): A runs the Extractu protocol to query the oracle.
Finally the oracle returns an identity-based secret key skID with respect to ID and upk.

– Signing Oracle SO(m, ID): it returns a valid signature σ for the message m and the
identity ID with respect to upk′.

3. A returns a signature σ∗ for a message m∗ and an identity ID∗.

A wins the game if Verify(param, mpk, ID∗, m∗, σ∗) = 1, such that there was no query
that SO(m∗, ID∗) and there was no query that KEO(·, ID∗).

Definition 1. An escrow-free IBS scheme is (ε, t, qe, qs)-secure against unforgeability if there
is no t time adversary winning the above game with probability at least ε with qe and qs queries
to KEO and SO respectively.

3.5 PKG Non-frameability

The security model for PKG non-frameability captures the attack from a malicious user
having an identity-based secret key that wants to frame an honest PKG. If the attacker
without any identity-based secret key wants to frame an honest PKG, he must firstly forge
a valid signature. Since this scenario has been captured in the model of unforgeability, we
only consider the case that a malicious user, who already obtains an identity-based secret key,
wants to frame an honest PKG. We have the following game for PKG non-frameability:

6 Tsz Hon Yuen, Willy Susilo, and Yi Mu

1. The simulator S gives param and mpk to the adversary A.
2. A is allowed to adaptively query the Key Extraction Oracle KEO(upk, ID): A runs the

Extractu protocol to query the oracle. Finally the oracle returns an identity-based secret
key skID with respect to ID and upk. S saves the transcript ρ in this query and also the
user’s joining proof Pf .

3. A returns a signature σ∗ for a message m∗ and an identity ID∗, such that he can blame
the PKG by the Blameu protocol with a public key upk∗ and a blame request ϕ∗.

A wins the game if Verify(param, mpk, ID∗, m∗, σ∗) = 1, Blamej(param, mpk, ID∗, upk∗,
m∗, σ∗, ϕ∗) = PKG, and there was a query in the form of KEO(·, ID∗).

Definition 2. An escrow-free IBS scheme is (ε, t, qe)-secure against PKG non-frameability if
there is no t time adversary winning the above game with probability at least ε with qe queries
to KEO.

3.6 User Non-frameability

The security model for user non-frameability captures the attack from a malicious PKG that
wants to frame an honest user. We have the following game for user non-frameability:

1. The simulator S gives param to the adversary A. A gives a master public key mpk to S.
S gives a user public key upk∗ and a joining proof Pf∗ to A.

2. A is allowed to query the following oracles adaptively:

– User Join Oracle JO(ID): it acts as the Extractu protocol with input (upk∗, Pf∗) and
interacts with A (running Extractp) for the identity ID. Finally the oracle obtains a
identity-based secret key skID and A obtains a transcript ρ.

– Signing Oracle SO(m, ID): it returns a valid signature σ for the message m with
respect to the identity ID and the user public key upk∗.

3. A returns a signature σ∗ for a message m∗ and an identity ID∗.

A wins the game if Verify(param, mpk, ID∗, m∗, σ∗) = 1 and Blame(param, mpk, ID∗, upk,
m∗, σ∗) = upk for all upk. The latter equation is always satisfied by A running Blamep and
giving (upk∗, Pf∗, ρ∗) to the judge (where ρ∗ is the output of JO(ID∗)). We require that
there was no query that SO(m∗, ID∗).

Definition 3. An escrow-free IBS scheme is (ε, t, qj, qs)-secure against user non-frameability
if there is no t time adversary winning the above game with probability at least ε with qj and
qs queries to JO and SO respectively.

4 Generic Construction

We present a generic construction of escrow-free IBS from standard signatures. This is similar
to the construction of certificate-based IBS in [4].

How to Construct IBS without the Key Escrow Problem 7

4.1 Our Scheme

Suppose there is a standard digital signature scheme SS = (SKg,Sign,Vf) which is unforge-
able against chosen message attack (UF-CMA), we construct our escrow-free IBS scheme as
follows:

Setup: On input the security parameter 1k, it outputs (mpk,msk) ← SKg(1k). The system
parameter param is just the security parameter 1k.

UserKeyGen: On input param, the user obtains (upk, usk)← SKg(1k).

Extract: The PKG algorithm Extractp has input (param, upk, ID,msk). The user algorithm
Extractu has input (param, upk, ID, usk). The user computes s ← Signusk(ID) and sends
(s, ID, upk, Pf) to the PKG. The PKG checks if 1 ← Vfupk(ID, s) and Pf is a joining
proof. If they are correct, then the PKG computes the identity-based secret key skID ←
Signmsk(ID||upk). The PKG saves the join transcript ρ = (s, ID, upk, Pf) and then sends skID

to the user.

Sign: On input param, usk, skID and a message m, the user computes σ1 ← Signusk(m||ID).
The user outputs the signature σ = (σ1, upk, skID).

Verify: On input param,mpk, ID,m and σ = (σ1, upk, skID), it returns 1 if 1← Vfupk(m||ID, σ1)
and 1← Vfmpk(ID||upk, skID).

Blame: On common input param, mpk, ID, upk, m and σ = (σ1, upk, skID), the user asks the
judge to blame the PKG. The judge asks the PKG to provide a transcript ρ = (s, ID, upk, Pf).
If 1 ← Vfupk(ID, s) and Pf is a valid joining proof, the judge outputs upk. Otherwise, the
judge outputs PKG.

Remarks. Although the user public key is part of the signature, the scheme is still considered
as IBS. Similar approach is proposed by Shamir [18] and discussed in [4, 11].

4.2 Security Proofs

The correctness of the scheme is straightforward. We state the security of the above construc-
tion in the following theorems.

Theorem 1. The scheme is unforgeable if SS is a UF-CMA secure signature scheme.

Proof. Assume there is a (ε, t, qe, qs)-adversary A. We will construct another PPT B that
uses A to forge a signature of SS with probability at least ε and in time at most t.

Setup. B runs the SS simulator twice and obtains two public keys pk1 and pk2. B gives A the
master public key mpk = pk1 and the honest user public key upk′ = pk2.

Oracles Simulation. B simulates the oracles as follow:

(Key Extraction oracle.) On input (upk, ID, s, Pf) from the Extractu protocol, B first check if
Pf is a valid joining proof for upk and 1 ← Vfupk(ID, s). If they are correct, B queries the
signing oracle of SS for pk1 with input (ID||upk). B forwards the result to A.

8 Tsz Hon Yuen, Willy Susilo, and Yi Mu

(Signing oracle.) On input (m, ID), B queries the signing oracle of SS for pk1 with input
(ID||pk2) and obtains sk. B queries the signing oracle of SS for pk2 with input m||ID and
obtains σ1. B returns (σ1, pk2, sk).

Output. Finally A outputs a signature σ∗ = (σ∗1, upk∗, sk∗) for a message m∗ and an identity
ID∗.

– If upk∗ 6= pk2, then B returns sk∗ to the SS simulator. It is the forgery for the message
ID∗||upk∗ with respect to the public key pk1.

– If upk∗ = pk2, then B returns σ∗1 to the SS simulator. It is the forgery for the message
m∗||ID∗ with respect to the public key pk2. ut

Theorem 2. The scheme is PKG non-frameable if SS is a UF-CMA secure signature scheme.

Proof. Assume there is a (ε, t, qs)-adversary A. We will construct another PPT B that uses
A to forge a signature of SS with probability at least ε and in time at most t.

Setup. B runs the SS simulator and obtains a public key pk. B gives A the master public key
mpk = pk.

Oracles Simulation. The simulation of the key extraction oracle is the same as that of theorem
1.

Output. Finally A outputs a signature σ∗ = (σ∗1, upk∗, sk∗) for a message m∗ and an identity
ID∗. A blames the PKG with a public key upk∗.

– If (upk, ID, ·, ·) was not successfully queried in the key extraction oracle, B returns sk∗

as the forgery for the message ID∗||upk∗ with respect to the public key mpk.
– Otherwise, B tries to reply to the judge with the transcript ρ = (s′, ID∗, upk∗, Pf) with

respect to the blame from A. A wins the game if either Pf is not a valid joining proof or
s′ is not a valid signature. However it is not possible since the transcript is checked during
the oracle query. ut

Theorem 3. The scheme is user non-frameable if SS is a UF-CMA secure signature scheme.

Proof. Assume there is a (ε, t, qj , qs)-adversary A. We will construct another PPT B that
uses A to forge a signature of SS with probability at least ε and in time at most t.

Setup. B gives param = 1k to A. A gives the master public key mpk and the target identity
ID∗ to B. B runs the SS simulator with 1k and obtains a public key pk. B obtains a joining
proof Pf∗ for pk from an honest CA. B gives A the user public key upk∗ = pk and Pf∗.

Oracles Simulation. B simulates the oracles as follow:

(Join oracle.) On input ID, B queries the signing oracle of SS with input (ID) to obtain s. B
sends ρ = (s, ID, upk∗, Pf∗) to A. A stores the transcript ρ. A finally replies B with skID.

(Signing oracle.) On input (m, ID), B first runs as the join oracle with input ID. Finally B
obtains skID. Then B queries the signing oracle of SS with input m||ID and obtains σ1. B
returns (σ1, upk∗, skID).

Output. Finally A outputs a signature σ∗ = (σ∗1, upk∗, sk∗) for a message m∗ and an identity
ID∗. A blames the user with a public key upk∗ and a transcript ρ∗. B returns σ∗1 as the forgery
of the SS signature for the message (m∗||ID∗). ut

How to Construct IBS without the Key Escrow Problem 9

5 User Public Key Anonymity

In the previous section, we propose a generic construction of escrow-free IBS. However, the
user public key is included in the ciphertext. Therefore it is similar to the certificate-based
signatures to some extent. In some applications, it may not be desirable to let the verifier
knowing the user public key (not the identity only). For example, assume a student has a
long-term user public key. He may apply for an identity-based secret key for his student ID
from the university. He may also apply for an identity-based secret key for his email address
from the internet service provider. When a user uses the escrow-free IBS, he may not want
the signatures for two different identities to be linked to the same user public key.

In order to construct an escrow-free IBS scheme which is fully identity-based, we require
that the ciphertext contains no information about the user public key. We call this additional
property as “user public key anonymity” 2. In this section, we define the additional security
model for the user public key anonymity.

5.1 Security Model for Anonymity

The security model for user public key anonymity captures the attack that wants to distinguish
if a signature is signed by an honest user with a user public key upk. The attacker is given the
master secret key, but cannot query any join oracle. In order words, the attacker can retrieve
the master secret key from the real PKG, but not the join transcript from the real PKG. The
users joining the real PKG will have anonymity even if the master secret key is stolen. We
have the following game for anonymity:

1. The simulator S gives param, a master public key mpk, a master secret key msk, two user
public keys upk0, upk1 and two corresponding certificates cert0, cert1 to the adversary A.

2. A is allowed to query the oracle adaptively: Signing Oracle SO(m, ID, b): it returns a
valid signature σ for the message m and the identity ID with respect to upkb.

3. A sends a message m∗ and an identity ID∗ to B. B picks a random bit b′ and computes
σ∗ ← Sign(param, uskb′ , skID∗ , m), where skID∗ is the identity-based secret key computed
using (msk, upkb′ , ID∗) and uskb′ is the user secret key for upkb′ . B sends σ∗ to A.

4. A is allowed to query the above oracles adaptively.
5. A returns a bit b∗.

A wins the game if b′ = b∗. We require that there was no query that SO(m∗, ID∗, ·). The
advantage of A is the probability of A winning the above game over 1/2.

Definition 4. An identity-based signature scheme is (ε, t, qs)-secure against anonymity if
there is no t time adversary winning the above game with probability at least ε with qs queries
to SO.

Remark. The security model for key-privacy or anonymity in traditional public key encryption
was proposed by Bellare et al. [3]. In this section, we follow their notion of “indistinguishability
of keys under chosen-ciphertext attacks” and adopt the indistinguishability game into our IBS
setting.

The main difference between Bellare et al.’s model and our model is that the challenge
user secret keys and the user public keys are not chosen by the adversary in our model. It is
2 An escrow-free IBS scheme can either has the “user public key anonymity” property or not.

10 Tsz Hon Yuen, Willy Susilo, and Yi Mu

because our Blame algorithm requires that the PKG is able to show that “the upk is related
to the signature σ” if σ is signed by the corresponding usk. If both the msk, usk0 and usk1

are known to the adversary, he can generate the join transcript by himself and checks if upk0

or upk1 is related to the challenge signature σ∗. It will break the anonymity. Therefore in
our anonymity model, the adversary is not given usk0 and usk1. The adversary is given the
signing oracle for usk0 and usk1 instead.

6 Construction with User Public Key Anonymity

In this section, we provide a concrete construction with user public key anonymity. Our
construction for escrow-free IBS is based on the signature schemes from Boneh and Boyen [6]
and Boneh et al. [8]. We also use the “signatures of knowledge” (SoK) notion from Chase and
Lysyanskaya [9].

6.1 Intuition

We use the signature scheme from Boneh and Boyen [6] as the identity-based secret key.
Suppose the master secret key is α and the master public key is gα. For a user with secret
key x and public key y = gx, his identity-based secret key is A where

Aα+IDvx = u,

and g, u, v are a generator of G.
For the signing protocol, the part of the signature useful for the blame protocol is derived

from Boneh et al. [8]. Denote this part as S and we have

S = ê(v,H2(m))x,

where m is the message. The the signing protocol becomes:

SoK{(A, x) : Aα+IDvx = u ∧ S = ê(v,H2(m))x}(m).

6.2 Our Scheme

We give the detailed construction of the escrow-free IBS with anonymity.

Setup: The algorithm first chooses a random prime p of bit size Θ(k). Let G, GT be a bilinear
group of order p and a pairing ê : G × G → GT . It also chooses generators g, u, v ∈ G. It
picks collision resistant hash functions H1 : {0, 1}∗ → Z∗p for hashing the identity string, and
H2 : {0, 1}∗ → G for hashing the message. It also chooses generators g0, g1, g2 ∈ G used for
the signature of knowledge. The system parameter param is (ê, G, GT , p, g, u, v, g0, g1, g2,
H1, H2).

The PKG randomly selects his master secret key α ∈ Z∗p. He computes the master public
key ga = gα.

UserKeyGen: The user randomly selects his user secret key x ∈ Z∗p. He computes y = gx as his
user public key.

How to Construct IBS without the Key Escrow Problem 11

Extract: The user calculates v′ = vx. He also computes a non-interactive zero-knowledge
(NIZK) proof 3 Σ of x with respect to v′ and v (We omit the details of the NIZK proof for
discrete logarithm for simplicity). He sends v′, ID, y, a joining proof Pf and the NIZK proof
Σ to the PKG. The PKG checks the validity of Pf,Σ. If so, the PKG computes:

A = (uv′−1)
1
α+i ,

where i = H1(ID) and returns A to the user. The PKG stores the transcript ρ = (v′, Σ, ID,
y, Pf).

Sign: The user signs a message m with the user secret key x and the identity-based secret key
A. He computes the signature of knowledge (SoK):

SoK{(A, x) : Aα+ivx = u ∧ S = ê(v,H2(m))x}(m)

The SoK is specified as follows. The user randomly chooses s, r, r2 ∈ Z∗p, R1 ∈ G and
computes:

t0 = gs0, t1 = Ags1, t2 = vxgs2, τ0 = gr0, τ1 = R1g
r
1,

τ2 = vr2gr2, τ3 = [ê(g1, gagi) · ê(g2, g)]r, τ4 = ê(g2, H2(m))r.

The user computes c = H3(t0, t1, t2, τ0, . . . , τ4,m,mpk, ID) and:

z0 = r − cs, Z1 = R1A
−c, z2 = r2 − cx.

The signature is σ = (t0, t1, t2, c, z0, Z1, z2, S).

Verify: Upon input a signature σ for a message m and an identity ID, it computes:

i = H1(ID), t3 = ê(t1, gagi) · ê(t2, g) · ê(u, g)−1, t4 = ê(t2, H2(m)) · S−1,

τ0 = gz00 t
c
0, τ1 = Z1g

z0
1 t

c
1, τ2 = vz2gz02 t

c
2,

τ3 = [ê(g1, gagi) · ê(g2, g)]z0 · tc3, τ4 = ê(g2, H2(m))z0 · tc4.

It outputs 1 if c = H3(t0, t1, t2, τ0, . . . , τ4,m,mpk, ID). Otherwise, it outputs 0.

Blame: On common input the master public key mpk, an identity ID, a message m, a signature
σ, a user public key y, the user with user secret key x first computes ϕ = vx. The user sends
ϕ to the judge as the blame request.

The judge checks if σ = (t0, t1, t2, c, z0, Z1, z2, S) is a valid signature and:

ê(v, y) = ê(ϕ, g) ∧ ê(ϕ,H2(m)) 6= S.

If they are not equal, the judge returns “upk”.
Otherwise, the judge requests the PKG to provide a transcript ρ = (v′, Σ, ID, y′, Pf ′). If

Pf ′ is a valid joining proof for y′ and

ê(v, y′) = ê(v′, g) ∧ ê(v′, H2(m)) = S.

If they are equal, the judge returns “upk”. Otherwise, the judge returns “PKG”.
3 Although v′ can be used to prove the knowledge of x via pairing, we need the extractor of the NIZK proof

to obtain x in the security proof.

12 Tsz Hon Yuen, Willy Susilo, and Yi Mu

6.3 Security Proofs

The correctness of the signature scheme is straightforward.
We first prove that the SoK protocol above is a secure signature of knowledge. We use the

game-based definition (SimExt-secure) in [9]. Chase and Lysyanskaya [9] proved the equiva-
lence of the game-based definition and the UC framework definition.

Lemma 1. The SoK protocol above is a SimExt-secure signature of knowledge of a witness
(A, x).

Proof. The correctness of the signature of knowledge scheme is straightforward.
For simulatability, after the simulator randomly picks A and x to compute t0, t1, t2, S, he

picks a challenge c ∈ Z∗p and also z0, z2 ∈ Z∗p, Z1 ∈ G. Then compute:

t3 = ê(t1, gagi) · ê(t2, g) · ê(u, g)−1, t4 = ê(t2, H2(m)) · S−1,

τ0 = gz00 t
c
0, τ1 = Z1g

z0
1 t

c
1, τ2 = vz2gz02 t

c
2,

τ3 = [ê(g1, gagi) · ê(g2, g)]z0 · tc3, τ4 = ê(g2, H2(m))z0 · tc4.

Therefore the transcript above is simulatable.
For extraction, we now show that there exists an extractor for A and x. Assume there are

two transcripts with the same commitment (t0, t1, t2, τ0, . . . , τ4) and different challenges c, c′

and responses (z0, Z1, z2), (z′0, Z
′
1, z
′
2). Let:

s̃ =
z′0 − z0
c− c′

, Ã = (Z ′1/Z1)
1

c−c′ , x̃ =
z′2 − z2
c− c′

.

Then, we have

t0 = gs̃0, t1 = Ãgs̃1, t2 = vx̃gs̃2.

From τ3 and τ4, we have the following relations:

ê(gz01 t
c
1, gag

i) · ê(gz02 t
c
2, g) · ê(u, g)−c = ê(gz

′
0

1 t
c′
1 , gag

i) · ê(gz
′
0

2 t
c′
2 , g) · ê(u, g)−c

′

ê(g−s̃1 t1, gag
i) · ê(g−s̃2 t2, g) = ê(u, g)

ê(Ã, gagi) · ê(vx̃, g) = ê(u, g),

ê(g2, H2(m))z0 · [ê(t2, H2(m)) · S−1]c = ê(g2, H2(m))z
′
0 · [ê(t2, H2(m)) · S−1]c

′

ê(g2, H2(m))s̃ = ê(t2, H2(m)) · S−1

S = ê(vx̃, H2(m)).

Therefore we extract (Ã, x̃) that satisfy the required relations. ut

Theorem 4. The scheme is (ε, t, qe, qs)-unforgeable if the (ε′, t′, q)-SDH assumption holds in
G in the random oracle model, with:

t ≤ t′ +Θ((qe + qs)δ + qsτ), q = qe + 1, ε′ ≥ (
ε

Cqhqe
− 1
p

)2

where qh is the number of query to the H1 oracle, δ and τ are the time for computing expo-
nentiation in G and pairing respectively.

How to Construct IBS without the Key Escrow Problem 13

Proof. Assume there is a (ε, t, qe, qs)-adversary A. We will construct another PPT B that
makes use of A to solve the q-SDH problem in G with probability at least ε′ and in time at
most t′. B is given a q-SDH problem instance (ḡ, ḡa, . . . , ḡa

q
).

Setup. B randomly selects id1, . . . , idq−1. Let f(a) =
∏q−1
k=1(a + idk). B computes g = ḡf(a)

and ga = ḡaf(a) using the q-SDH problem instance. B randomly picks µ, ν ∈ Z∗p and computes
u = gµ, v = gν . B honestly generates the rest of the system parameter.

Oracles Simulation. B simulates the oracles as follow:
(H oracle.) To respond to the queries B maintains a list of tuples called the H list

i for i = 1, 2, 3.
Initially the lists are all empty. B first selects a random j ∈ {1, . . . , qh1 + qe}. Let ctr be the
current size of the H list

1 . If the Hi query already appears on the H list
i , then B responses with

the same answer. If the query is new, then:

– H1(IDi): If ctr = j − 1, B picks a random di ∈ Zp. If ctr 6= j − 1, B picks a new idk not
used before and sets di = idk. Then B adds the tuple 〈ctr + 1, IDi, di〉 to the H list

1 and
responds to A with H1(IDi) = di.

– H2(mi): B just picks a random string Si in the corresponding domain and adds the tuple
〈mi, Si〉 to the H list

2 . It responds to A with H2(mi) = Si.
– H3(Ti): B just picks a random ci ∈ Zp and adds the tuple 〈Ti, ci〉 to the H list

3 , where
Ti = (t0, t1, t2, τ0, . . . , τ4,m,mpk, ID). It responds to A with H3(Ti) = ci.

(Key Extraction oracle.) A sends (v′, IDi, yi, Pf,Σ) according to the Extract protocol. If Pf
or Σ is not valid, B returns ⊥. Otherwise, B use the extractor of the NIZK protocol to obtain
xi = logg yi. Then B first looks through list H list

1 .

– If IDi is not on the list, then B queries H1(IDi) and obtains di.
– Else B looks for 〈·, IDi, di〉 ∈ H list

1 and returns di.

If di 6= idk for all k ∈ {1, . . . , q − 1}, B declares failure and exits. Otherwise, B computes

A = (uv′)
1

a+idk = ḡ
f(a)(µ−νxi)

a+idk .

B returns the identity-based secret key A to the adversary.

(Signing oracle.) B runs the simulator of the signature of knowledge as in lemma 1 to obtain
a valid signature σ. B patches the corresponding value c to the oracle H2. B returns σ to A.

Output. Finally A outputs a signature σ for ID∗. B looks for 〈i, ID∗, d∗〉 ∈ H list
1 . If i 6= j, B

declares failure and exits. Otherwise, B rewinds and obtains another signature σ′. Similar to
lemma 1, B can extract Ã, x̃. Since ID∗ is not queried to the key extraction oracle,

Ã = g
µ−νx̃
a+d∗ = ḡ

f(a)(µ−νx̃)
a+d∗ = ḡ

∑q−2
k=0 Cka

k+
C−1
a+d∗

where C−1, C0, . . . , C1−2 can be computed. Notice that C−1 6= 0 if d∗ 6= idk for all k ∈
{1, . . . , q − 1}. Then B computes:

A∗ = (Ãḡ
∑q−2
k=0−Cka

k
)1/C−1 ,

and returned (A∗, d∗) as the solution to the q-SDH problem.

Probability and Time Analysis. We consider the two events that B could fail:

14 Tsz Hon Yuen, Willy Susilo, and Yi Mu

– Event Ei: For the i-th query to the KEO, di 6= idk for all k ∈ {1, . . . , q − 1}.
– Event E∗: d∗ = idk for some k ∈ {1, . . . , q − 1}.

Notice that the event ¬E∗ implies ∪qei=1¬Ei, since the model requires that the challenge identity
has never been submitted to KEO. Therefore the probability of B fails is at most Pr[E∗] =
1/(qh1 + qe). By the reset lemma [5], the probability that B solves the q-SDH problem is
ε′ ≥ (ε/(qh1 + qe)− 1/p)2.

For each key extraction oracle query, B runs O(1) exponentiation in G. For each signing
oracle query, B runs O(1) exponentiation in G and O(1) pairing computation. ut

Theorem 5. The scheme is (ε, t, qe)-PKG non-frameable if the (ε′, t′, q)-SDH assumption
holds in G in the random oracle model, with:

t ≤ t′ +Θ(qeδ), q = qe + 1, ε′ ≥ (
ε

Cqhqe
− 1
p

)2

where qh is the number of query to the H1 oracle, δ is the time for computing exponentiation
in G, respectively.

Proof. Assume there is a (ε, t, qe)-adversary A. We will construct another PPT B that makes
use of A to solve the q-SDH problem in G with probability at least ε′ and in time at most t′.
B is given a q-SDH problem instance (ḡ, ḡa, . . . , ḡa

q
).

Setup. B randomly selects i1, . . . , iq−1. Let f(a) =
∏q−1
k=1(a + ik). B computes g = ḡf(a) and

ga = ḡaf(a) using the q-SDH problem instance. B randomly picks µ ∈ Z∗p and computes u = gµ.
B honestly generates the rest of the system parameter param.

Oracles Simulation. B simulates the H oracle and the key extraction oracle as in theorem 4.

Output. Finally A outputs a signature σ for a message m∗ and an identity ID∗. If A wins
without querying KEO(·, ID∗), he can also win as in the unforgeability game. Then B can
calculate the solution to the q-SDH problem as in the proof of the theorem 4. We now focus
on the case that A has queried KEO(·, ID∗).

Denote i∗ = H1(ID∗). A also returns upk∗ = gx
∗

and ϕ∗ = vx
∗

to blame the PKG. B
rewinds and obtains another signature σ′. Similar to lemma 1, B can extract Aσ, xσ. Denote
upkσ = gxσ . Let A has queried KEO(upke, ID∗) before. We consider the following cases:

– upk∗ = upkσ. As the claim protocol outputs “PKG”, it means that ê(vx
∗
, H2(m∗)) 6= S.

However by lemma 1, we have S = ê(v,H2(m∗))xσ which is a contradiction to x∗ = xσ.
– upke = upkσ 6= upk∗. B retrieves the transcript (v′e, ID

∗, upke, Pfe, Σe) and sends Σe (the
proof of knowledge of logg upke and logv v′e) and Pfe to the judge. A cannot win the game
unless he can break the proof of knowledge protocol.

– upke 6= upkσ. We have Aa+i
∗

e vxe = Aa+i
∗

σ vxσ . Then it means A wins by forging a new
identity-based secret key using a different user secret key. Assume there exist an adversary
A1 wins a game that produces a new pair (Aσ, xσ) for the identity i∗ only. In this game
the adversary A1 firstly sends the challenge identity i∗ to B1. B1 sets g = ḡ, v = gν ,
Ae = gω and u = g(a+i∗)ω+νxe for some random ν, ω ∈R Z∗p. B1 gives the master public
key and the pair (Ae, xe) to A1. Finally A1 returns a new pair (Aσ, xσ). Then finally B
can compute g1/(a+i∗) = (Ae/Aσ)1/ν(xσ−xe), which is the solution to the SDH problem.

How to Construct IBS without the Key Escrow Problem 15

The probability and the running time of the algorithms are similar to that of theorem 4. ut

Theorem 6. The scheme is (ε, t, qj , qs)-user non-frameable if the (ε′, t′)-DL assumption holds
in G in the random oracle model, where:

t ≤ t′ +Θ((qj + qs)ν + qsτ), ε′ ≥ (ε− 1
p

)2

where ν and τ are the time for computing exponentiation in G and pairing respectively.

Proof. Assume there is a (ε, t, qj , qs)-adversary A. We will construct another PPT B that
makes use of A to solve the DL problem in G with probability at least ε′ and in time at most
t′. B is given a DL problem instance (g, ȳ).

Setup. B generates the public parameters for verifyingΣ, randomly chooses generators g0, g1, g2 ∈
G and computes v = gν for some random ν ∈R Zp. B honestly generates the rest of param
and sends it to the adversary A.
A gives a master public key mpk to B. B sets the user public key upk∗ = ȳ and generates

a joining proof Pf∗ for upk∗. B gives upk∗ and Pf∗ to A.

Oracles Simulation. B simulates the oracles as follow:
(H oracle.) H1, H2 and H3 are simulated as normal random oracles.

(User Join oracle.) Upon input ID, B runs the simulator of the proof of knowledge to obtains
a valid Σ. B sends (v′ = ȳν , ID, upk∗, Pf∗, Σ) to A. A returns skID.

(Signing oracle.) B runs the simulator of the signature of knowledge as in lemma 1 to obtain
a valid signature σ. B returns σ to A. B fails and exits if the challenge c is already set in the
H2 query.

Output. Finally A outputs a signature σ. B rewinds and obtains another signature σ′. Similar
to lemma 1, B can extract x̃ and returns it as the solution to the DL problem.

The probability and the time analysis are straightforward. ut

Theorem 7. The scheme is (ε, t, qs)-anonymous if the (ε′, t′)-DBDH assumption holds in the
random oracle model, with:

t ≤ t′ +Θ(qs(δ + τ)), ε′ ≥ (
ε

qh
− 1
p

)2

where qh is the number of query to the H2 oracle, δ and τ are the time for computing expo-
nentiation in G and pairing respectively.

Proof. Assume there is a (ε, t, qs)-adversary A. We will construct another PPT B that makes
use of A to solve the DBDH problem with probability at least ε′ and in time at most t′. B is
given a DBDH problem instance (g, ga, gb, gc, T).

Setup. B randomly selects x0, x1 ∈ Zp. He computes upk0 = gax0 and upk1 = gax1 . B sets
v = gb. B honestly generates the rest of param.

Oracles Simulation. B simulates the oracles as follow:

16 Tsz Hon Yuen, Willy Susilo, and Yi Mu

(H oracle.) To respond to the queries B maintains a list of tuples called the H list
i for i = 1, 2, 3.

Initially the lists are all empty. B first selects a random j ∈ {1, . . . , qH2 + qs}. Let ctr be the
current size of the H list

2 . If the Hi query already appears on the H list
i , then B responses with

the same answer. If the query is new, then:

– H1(IDi): B just picks a random string idi in the corresponding domain and adds the tuple
〈IDi, idi〉 to the H list

1 . It responds to A with H1(IDi) = idi.
– H2(mi): If ctr 6= j − 1, B picks a random Si ∈ G. If ctr = j − 1, B sets Si = gc. Then B

adds the tuple 〈ctr + 1,mi, Si〉 to the H list
2 and responds to A with H2(mi) = Si.

– H3(Ti): B just picks a random ci ∈ Zp and adds the tuple 〈Ti, ci〉 to the H list
3 , where

Ti = (t0, t1, t2, τ0, . . . , τ4,m,mpk, ID). It responds to A with H3(Ti) = ci.

(Signing oracle.) B runs the simulator of the signature of knowledge as in lemma 1 to obtain
a valid signature σ. In the process, B has to query H2(mi) by himself. Finally B patches the
corresponding value c to the oracle H3. B fails and exits if c is already set. B returns σ to A.

Challenge. A sends a message m∗ and an identity ID∗. If H2(m∗) 6= gc, then B declares failure
and exits. Otherwise, B picks a random bit b′ and calculates S∗ = T xb . B runs the simulator
of the signature of knowledge as in lemma 1 to obtain a valid signature σ using S∗. B sends
σ∗ to A.

Output. Finally A outputs a bit b∗. If b∗ = b′, then B outputs T = ê(g, g)abc as the answer to
the DBDH problem. Otherwise, B outputs T 6= ê(g, g)abc.

Probability and Time Analysis. The probability of B exits in the challenge phase is 1 −
1/qh2 + qs. By the reset lemma [5], the probability is ε′ ≥ (ε/qh2 + qs − 1/p)2.

For each signing oracle query, B runs O(1) exponentiation in G and O(1) pairing compu-
tation. ut

7 Comparison

In this section, we provide a comparison of our scheme against the existing schemes. Denote
(s, P) as a pair of secret key and public key computed by the user. Denote (d, I) as a pair of
identity-based secret key and identity computed by the PKG. Let (α, β) be a pair of secret
key and public key of the PKG. Let c be the secret key of a certificate authority. Let Siga(b)
be a signature of message b using the secret key a. Let Coma(b) be a commitment of the value
a using the public parameter b. We compare the public information that a verifier needs to
know (except β), the secret keys used by the signer and the witness to link the identity with
the public key. We use W to represent a witness which is different from the above parameters.

Notice that the certificateless signatures, the certificate-based signatures and the self-
certificated signatures aim to resolve the key escrow problem. Nonetheless, these schemes
are no longer identity-based since the user public key P has been introduced into the public
information. On the contrary, our scheme in section 6 is the only scheme that solves this
problem while staying at the framework of identity-based cryptography in a strict sense.
However the price we have to pay is to include a joining proof involved in the extraction
protocol.

On the other hand, our generic construction in section 4 provides a more efficient solution
than our scheme in section 6. The signature of the escrow-free IBS in section 4 only consists

How to Construct IBS without the Key Escrow Problem 17

Schemes Public Information Secret Key Witness

IBS [18] I d -
IBS + Cert I, P,W s, d W = Sigc(I, P)

Certificateless Sig [1] I, P,W s, d W = Coms(β)
Certificate-based Sig [17] I, P s, d d = Sigα(I, P)
Self-Certificated Sig [14] I, P s P = d = Sigα(I)

Our Scheme in §4 I, P, d s d = Sigα(I, P)
Our Scheme in §6 I s, d d = Sigα(I, P)
Table 2. Comparison of our scheme against the existing schemes.

of two standard signatures and a user public key. The computational cost of signing is the
same as signing one standard signature; the computational cost of verifying is the same as
verifying two standard signatures. It is as efficient as the generic IBS scheme in [4].

8 Conclusion

In this paper, we introduced the concept of escrow-free identity-based signatures to solve
the key escrow problem in identity-based signature. We proposed an extra user public key
anonymity property to escrow-free identity-based signatures and proposed a concrete con-
struction. Our construction solves the open problem of key escrow in identity-based signa-
tures, without requiring multiple PKGs. Our scheme is the first to achieve level 3 of trust of
the PKG in Girault’s model [14], in the identity-based setting.

Acknowledgements

We thank David Galindo and the anonymous reviewers of EuroPKI 2009 for helpful comments
and suggestions.

References

1. S. S. Al-Riyami and K. G. Paterson. Certificateless public key cryptography. In ASIACRYPT 2003,
volume 2894 of LNCS, pages 452–473. Springer, 2003.

2. M. H. Au, Q. Huang, J. K. Liu, W. Susilo, D. S. Wong, and G. Yang. Traceable and retrievable identity-
based encryption. In ACNS 2008, volume 5037 of LNCS, pages 94–110, 2008.

3. M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval. Key-privacy in public-key encryption. In ASI-
ACRYPT 2001, volume 2248 of LNCS, pages 566–582. Springer, 2001.

4. M. Bellare, C. Namprempre, and G. Neven. Security proofs for identity-based identification and signature
schemes. In EUROCRYPT 2004, volume 3027 of LNCS, pages 268–286. Springer, 2004.

5. M. Bellare and A. Palacio. GQ and schnorr identification schemes: Proofs of security against impersonation
under active and concurrent attacks. In CRYPTO 2002, volume 2442 of LNCS, pages 162–177. Springer,
2002.

6. D. Boneh and X. Boyen. Short signatures without random oracles. In EUROCRYPT 2004, volume 3027
of LNCS, pages 56–73. Springer, 2004.

7. D. Boneh and M. K. Franklin. Identity-based encryption from the weil pairing. In CRYPTO 2001, volume
2139 of LNCS, pages 213–229. Springer, 2001.

8. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing. In ASIACRYPT 2001,
volume 2248 of LNCS, pages 514–532. Springer, 2001.

9. M. Chase and A. Lysyanskaya. On signatures of knowledge. In CRYPTO 2006, volume 4117 of LNCS,
pages 78–96. Springer, 2006.

10. S. S. M. Chow. Removing escrow from identity-based encryption. In PKC 2009, volume 5443 of LNCS,
pages 256–276. Springer, 2009.

18 Tsz Hon Yuen, Willy Susilo, and Yi Mu

11. D. Galindo, J. Herranz, and E. Kiltz. On the generic construction of identity-based signatures with
additional properties. In ASIACRYPT 2006, volume 4284 of LNCS, pages 178–193. Springer, 2006.

12. C. Gentry. Certificate-based encryption and the certificate revocation problem. In EUROCRYPT 2003,
volume 2656 of LNCS, pages 272–293. Springer, 2003.

13. C. Gentry and A. Silverberg. Hierarchical ID-based cryptography. In ASIACRYPT 2002, volume 2501 of
LNCS, pages 548–566. Springer, 2002.

14. M. Girault. Self-certified public keys. In EUROCRYPT ’91, volume 547 of LNCS, pages 490–497. Springer,
1991.

15. V. Goyal. Reducing trust in the PKG in Identity Based Cryptosystems. In CRYPTO 2007, volume 4622
of LNCS, pages 430–447. Springer, 2007.

16. V. Goyal, S. Lu, A. Sahai, and B. Waters. Black-box accountable authority identity-based encryption. In
CCS 2008, pages 427–436. ACM, 2008.

17. B. G. Kang, J. H. Park, and S. G. Hahn. A certificate-based signature scheme. In CT-RSA 2004, volume
2964 of LNCS, pages 99–111. Springer, 2004.

18. A. Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO ’84, volume 196 of LNCS,
pages 47–53. Springer, 1984.

19. A. F. Sui, S. S. M. Chow, L. C. K. Hui, S.-M. Yiu, K. P. Chow, W. W. Tsang, C. F. Chong, K. K. H. Pun,
and H. W. Chan. Separable and anonymous identity-based key issuing. In ICPADS 2005, pages 275–279.
IEEE Computer Society, 2005.

