
Improving Cut-and-Choose in Verifiable Encryption and Fair
Exchange Protocols using Trusted Computing Technology∗

Stephen R. Tate
Department of Computer Science

Univ. of North Carolina at Greensboro
Greensboro, NC 27402

srtate@uncg.edu

Roopa Vishwanathan
Dept. of Computer Science and Engineering

University of North Texas
Denton, TX 76203

rv0029@unt.edu

August 30, 2009

Abstract

Cut-and-choose is used in interactive zero-knowledge protocols in which a prover answers a series
of random challenges that establish with high probability that the prover is honestly following the de-
fined protocol. In this paper, we examine one such protocol and explore the consequences of replacing
the statistical trust gained from cut-and-choose with a level of trust that depends on the use of secure,
trusted hardware. As a result, previous interactive protocols with multiple rounds can be improved to
non-interactive protocols with computational requirements equivalent to a single round of the original
protocol. Surprisingly, we accomplish this goal by using hardware that is not designed for our applica-
tions, but rather simply provides a generic operation that we call “certified randomness,” which produces
a one-way image of a random value along with an encrypted version that is signed by the hardware to
indicate that these values are properly produced. It is important to stress that while we use this operation
to improve cut-and-choose protocols, the trusted operation does not depend in any way on the particular
protocol or even data used in the protocol: it operates only with random data that it generates. This
functionality can be achieved with minor extensions to the standard Trusted Platform Modules (TPMs)
that are being used in many current systems.

We demonstrate our technique through application to cut-and-choose protocols for verifiable group
encryption and optimistic fair exchange. In both cases we can remove or drastically reduce the amount
of interaction required, as well as decrease the computational requirements significantly.

∗An abbreviated, preliminary version of this work appeared in the Proceedings of the 23rd Annual IFIP WG 11.3 Working
Conference on Data and Applications Security (DBSec’09).

1

1 Introduction

In this paper, we explore the question of how much power trusted hardware adds in designing cyrptographic
protocols, looking specifically at certain zero-knowledge proofs. Zero-knowledge proofs were first intro-
duced by Goldwasser et al. [21] and have applications in a wide range of cryptographic protocols that require
authentication of one party to another. A zero-knowledge proof is a protocol in which a prover P provides
some information I to a verifier V , and then engages in a protocol to convince V that I satisfies some
property Q(I) that would be difficult for V to compute on its own. For example, I might be an encrypted
value and the property Q(I) refers to a simple property of the corresponding plaintext. Zero-knowledge
proofs are used in higher-level protocols such as fair exchange [1], identification protocols [17], and group
signatures [4]. Interactive zero-knowledge proof systems often employ a paradigm called “cut-and-choose”
in which the prover answers a series of random challenges given by the verifier. For each challenge, the
verifier has at most a 50% chance of getting cheated. With sufficiently many challenges, the chances of
a dishonest prover answering all of them correctly, and the verifier getting cheated on all of them is neg-
ligible. This requires several rounds of communication between the prover and verifier, and increases the
communication costs, thereby decreasing the efficiency of the protocol. Several protocols for the verifiable
encryption problem use such zero-knowledge proofs, and this is the core problem that we examine in this
paper.

Verifiable encryption is a protocol that actively involves two parties, a prover and a verifier, and passively
involves one or more additional parties. In its simplest version, with a single trusted third party T , the prover
P encrypts a secret value s that is supposed to satisfy some specific property (e.g., a signature on some
message) with the public key of the trusted third party PKT , and sends the encrypted value EPKT

(s) to
the verifier V . The protocol is such that V is convinced that the received ciphertext will decrypt to a value
s which satisfies the necessary property, but other than this fact V is not able to discover any additional
information about the value s. In a typical application, a honest prover will later reveal the secret, and the
trusted party is only involved if the protocol does not complete and V needs to recover the secret without
the assistance of P . Verifiable encryption has been used to construct solutions for fair exchange [1, 2],
escrow schemes [35], signature sharing schemes [19] and publicly verifiable secret sharing [40]. In this
paper we solve a generalized, more powerful version known as verifiable group encryption, in which there
are multiple semi-trusted parties (“recovery agents” or “proxies”) and authorized subsets of agents. The
secret is encoded such that it can be recovered only by an authorized subset of recovery agents working
together. Publicly verifiable secret sharing (PVSS) introduced by Stadler [40] operates in the same way. In
PVSS, there is a “dealer” who makes shares of a secret value under the keys of n participants P1, · · · , Pn
and distributes the shares such that any coalition of k participants can recover the secret. It also has the
property that anybody can verify that the secret shares are correctly distributed. This is just a restatement of
the verifiable group encryption problem.

The problem we address in this paper is actually a cross between this verifiable group encryption prob-
lem and the verifiable escrow problem of Asokan et al. [1]. The difference between verifiable encryption
and verifiable escrow is that verifiable escrow attaches an arbitrary “condition” (sometimes called a label),
given as a binary string, to an encryption such that the same condition must be supplied to the trusted third
party when requesting a decryption. As described by Asokan et al., verifiable encryption and verifiable es-
crow are equivalent in the sense that a solution to either one can be used in a straightforward way to create a
solution for the other. Our solutions all take a condition, so are escrow schemes, but parties can use a simple
constant condition (such as a string of zeroes) can be used if the condition is not needed.

One of the more important applications of verifiable encryption is the fair exchange problem: Two par-

2

ties A and B have values that they would like to exchange (e.g., A has a credit card number and B has
a downloadable song), and after executing a fair exchange protocol either both parties receive the value
they are entitled to, or neither does. Fair exchange is the central problem in various online transactions,
and with e-commerce transactions growing at an ever increasing rate with operations such as online credit
card transactions, online stock trading, and e-checks becoming more common than ever, a large number
of businesses depend on these transactions being executed fairly. Not just financial transactions, but med-
ical data and software too are exchanged over the Internet. In light of this, ensuring fair exchange in an
online transaction becomes increasingly important. There are a number of protocols that are based on fair
exchange, each addressing a different kind of transaction, including credit card transactions and e-payment
protocols [31, 32, 33], and non-repudiation in exchange of digital signatures [41]. In Section 2 we briefly
review some of the work in this area.

In this paper we consider the use of security hardware to replace the cut-and-choose proofs used in some
protocols for verifiable escrow/encryption and fair exchange, with hardware similar to that specified by the
Trusted Computing Group (TCG). The TCG is an industry consortium of over 100 companies that has devel-
oped specifications for various security technologies, including a hardware chip called the Trusted Platform
Module (TPM) [24]. TPMs have become common in laptops, business-oriented desktops, and tablet PCs,
including those by IBM, Dell, Lenovo, HP, and Toshiba, as well as in some server-class systems such as the
Dell R300. TPMs are designed to be very cheap (under $5 each), and are intended to be easily embedded
on the motherboard of a standard system. While major CPU and chipset manufacturers have designed addi-
tional trusted computing components (e.g., the Intel LaGrande project), in this paper we simply require the
TPM chip. Primarily, the TPM is used for measurement of system parameters (BIOS, hardware elements,
operating system, software applications, among others) to provide a measured and protected execution envi-
ronment, which assures the integrity and trustworthiness of the platform. To support trustworthy reporting of
these measurements to outside parties, TPMs sign measurements with “Attestation Identity Keys” (AIKs):
keys that cannot exist in usable form outside the TPM, are only used inside the TPM to sign values produced
inside the TPM chip itself, and are certified by a designated certification authority known as a PrivacyCA
which vouches for the fact that the certified key is indeed a legitimate AIK which can be used only internally
to a TPM. The exact process of establishing that a key is an internal-use only AIK relies on a chain of trust
from the manufacturer of the TPM, and is beyond the scope of this paper to describe — interested readers
are referred to the TPM documentation for details [24]. In addition to operations with measurements and
AIKs, TPMs provide a variety of other capabilities, including the ability to generate random numbers (or
at least cryptographically secure pseudo-random numbers), support for common cryptographic algorithms
including RSA (for encryption and digital signatures), SHA-1 (for generating hashes), and HMAC (hashed
message authentication code), as well as more specialized operations such as a privacy-oriented authentica-
tion technique known as direct anonymous attestation [7]. In addition to specifying functionality, the Trusted
Computing Group has defined a Common Criteria protection profile [23] so that devices can be validated by
third parties in order to increase trust in the device.

In this paper we show how to use the capabilities of a TPM to improve upon existing verifiable encryp-
tion protocols and protocols (specifically fair exchange) that build upon verifiable encryption. We note that
verifiable secret sharing uses the same idea as verifiable group encryption and our protocol can be seen as
an improvement to verifiable secret sharing as well.

1.1 Our Contribution

We investigate ways in which limited trusted hardware, such as TPMs, can be used to generate certain non-
interactive zero knowledge proofs and thus improve protocols that use these cut-and-choose constructions.

3

Interestingly, we show that a significant benefit can be gained from constructions that we design around two
proposed very generic TPM commands: TPM MakeRandomSecret and TPM EncryptShare. These
are simple extensions to the current TPM specification that involve generating a (pseudo)-random number
and signing a set of values with an AIK. Using these two commands, we can bring down the communi-
cation costs and decrease the number of rounds required in certain interactive zero-knowledge proof sys-
tems. We have identified two applications of our scheme: fair exchange protocols and verifiable group
escrow/encryption. Using our TPM-based protocols, we construct a verifiable group escrow scheme and
solve an open problem in Asokan et al.’s paper [1]: making their protocol non-interactive and bringing
down the cost of the verifiable escrow operation. We note that Camenisch and Shoup have also designed
a verifiable encryption protocol that avoids cut-and-choose [9], but there are certain differences and advan-
tages to our solution, which we expand on below in “Previous Work” and further in Section 4.3. In addition
to this, the algorithms proposed for verifiable group encryption in this paper can also be used in publicly
verrifiable secret sharing (PVSS) schemes since both are essentially the same problem. Even beyond direct
comparisons as solutions to the verifiable encryption problem, our motivation is to study how trusted hard-
ware can benefit cut-and-choose, and as a general construction other applications may also benefit from our
techniques, including applications such as group signatures and identity escrow schemes.

2 Related Work

This paper builds upon work in both cryptography and in hardware-assisted security, and in this section we
review related work in each of these areas.

2.1 Cryptographic Protocols

Cut-and-choose zero-knowledge proofs are used in many cryptographic protocols that involve authentica-
tion while maintaining privacy, such as the Fiat-Shamir identification scheme [17, 4], non-malleable com-
mitments [20], concurrent zero-knowledge protocols [3], and verifying secret shuffles [22], among other
protocols. While cut-and-choose is a powerful technique, such protocols tend to be inefficient and require
significant interaction, so a lot of work has been done in removing cut-and-choose from specific protocols.
In this paper we investigate how cut-and-choose can be removed through the use of trusted hardware devices,
with our main focus being on verifiable group encryption and a specific application of verifiable encryption:
fair exchange of signatures.

We now expand on the description of verifiable encryption given in the previous section to make precise
what is meant by the secret value satisfying some property. Specifically, there is a given relation R, the
prover and verifier share a public value x, and the prover also knows a secret s such that (x, s) ∈ R. The
prover and verifier agree on a trusted third party with public encryption key PKT , and the prover sends the
verifier ciphertext EPKT

(s) and proves in zero-knowledge that the ciphertext is really a properly-encrypted
valid secret. For example, x could be a public message, and s could be a digital signature made by the
prover on that message — while the verifier is convinced that the prover has indeed signed the message and
provided an encrypted version of this signature as EPKT

(s), the verifier cannot retrieve the actual signature
until either the prover provides it later or the recovery agent T decrypts the signature for the verifier (e.g., at
a specific “release time”).

The exact relation R depends on the application of verifiable encryption. In some protocols, the se-
cret is simply the pre-image of the public value x under some one-way function f(s) = x, meaning that
R = {(x, f−1(x))}— this is the case in the work by Asokan et al. [1], where f is additionally a homomor-

4

phism. Camenisch and Damgard [8] consider a generalized problem in which the relation R is any relation
possessing a 3-move proof of knowledge which is an Arthur-Merlin game, which they call a Σ-protocol, and
includes all of the relations considered by Asokan et al.’s earlier work. Camenisch and Shoup [9] consider
a restricted version where the secret s is the discrete log of the public value x (this is also the relation we
consider in this paper).

In addition to introducing Σ-protocols, Camenisch and Damgard also expand the problem from the
verifiable encryption problem studied by Asokan et al. (with a single trusted party), to the verifiable group
encryption problem (with n semi-trusted recovery agents, or proxies), that we described in the previous
section. Camenisch and Damgard’s solution [8] is a cut-and-choose based method in which the prover
generates two sets of n shares of an intermediate secret, and then encrypts these 2n shares. The verifier asks
the prover to open half of those encryptions, and in doing so can verify that the prover honestly constructed
that set of encryptions. Thus if the prover attempts to cheat on one (or both) sets of shares, this will be
discovered with probably of at least 1/2. Camenisch and Damgard then repeat this process multiple times to
decrease the chance of being cheated to a negligible probability.

Camenisch and Shoup developed a solution to the verifiable encryption problem, where the relation is
restricted to be the discrete log, in which they avoid cut-and-choose and thereby significantly improve upon
the efficiency of the previous solutions [9]. In order to accomplish this, they design a new encryption scheme
whose security depends on Paillier’s decision composite residuosity assumption, which they then use in
constructing a verifiable encryption protocol. While this is a significant improvement, it relies on a custom
encryption scheme rather than the well-studied standard schemes used by previous protocols. Furthermore,
it does not remove all interaction: the verifiable encryption scheme still requires a three-round protocol, so
is not suitable for “send-and-forget” schemes like emailing a verifiable encryption. Finally, there is no clear
way to convert their verifiable encryption scheme into a verifiable group encryption scheme, as addressed by
Camenisch and Damgard — in particular, the same modulus would not be useable by multiple independent
third parties as it is in schemes based on the standard discrete log problem over a prime-order cyclic group.

Fair exchange (of digital signatures) is an important application of verifiable encryption. There have
been a number of protocols developed for fair exchange of digital signatures, and a survey paper by Ray
outlines many of them [36]. Fair exchange protocols can be broadly classified into three categories: Proto-
cols requiring a third party that is always online, protocols that do not need a third party, but which rely on
“gradual fair exchange,” and protocols that work with an offline third party. Offline trusted third party-based
protocols are also known as Optimistic Fair Exchange protocols, where the third party is not actively in-
volved in the protocol, but whenever one of the two parties cheats, the honest party can go to the third party,
who will resolve the transaction. The work by Asokan, Shoup, and Waidner [1], which we mentioned above
for the results on verifiable encryption, provides one of the most widely-referenced and efficient optimistic
fair exchange protocols. Synchronizing messages between the parties so that the fair exchange properties
are met is challenging, but the heart of this protocol is their solution to the verifiable escrow problem. Thus,
in case one of the parties cheats, the other (honest) party can get the signature or the promised item from the
third party. In this protocol, the parties first exchange encrypted versions of their signatures and then in the
second step exchange plaintext signatures. In case either of them refuse to reveal their plaintext signature,
the other party can take the encrypted version to the third party who will resolve the transaction. The trusted
party ensures that the exchange is fair, and there are built-in constructs to deal with the situation where one
party unfairly accuses the other of cheating and asks the third party to intervene. As is common in many
other fair exchange protocols, this protocol employs a cut-and-choose zero-knowledge proof between the
prover and verifier.

Another application of verifiable group encryption is publicly verifiable secret sharing (PVSS) as used

5

by Stadler [40]. Although Stadler uses different techniques (double discrete logarithms) to construct a PVSS
scheme; in principle, PVSS is nothing but verifiably sharing a secret value among a group of parties such
that only an authorized subset of them can recover the secret. Our verifiable group encryption protocol
solves exactly this problem and hence is applicable to PVSS protocols too.

2.2 Hardware-Assisted Security for Cryptographic Protocols

The idea of using trusted hardware tokens to improve the security of cryptographic protocols can be traced
back to the work by Chaum and Pedersen [12], Brands [6], and Cramer [14] in which observers, or smart-
cards, or tokens act as intermediaries in financial transactions between a user and a bank. This idea was
recently studied in a theoretical setting by Katz [28] in which user-constructed hardware tokens are used
as part of a protocol for realizing multiple commitment functionality in the universal composability (UC)
framework. An important contribution of Katz’s paper is that to reduce or possibly eliminate the need for
trusted third parties in the UC model, Katz presents a new setup assumption using tamper-proof hardware
tokens. Similar to our work, the hardware tokens provide a fairly generic functionality, but to remove the
necessity of trust in a third party Katz assumes that each party is responsible for the complete construction
of its hardware token.

Independently, Chandran, Goyal and Sahai [11], and Damgard et al. [15] improve on Katz’s results by
making the token independent of the parties using it, resettable, and relying on general assumptions like
trapdoor permutations. More recently Moran and Segev [34] have improved upon all of the above results
by requiring that only one of the two parties involved needs to build a tamper-proof token as opposed to the
previous results which require that both parties have to generate their own hardware tokens. Our work is
clearly related to this line of work on hardware tokens, but rather than using tokens created by a participant
in the protocol we trust a hardware manufacturer to produce a trustworthy TPM that provides generic,
non-application and non-user-specific functionality. In other work looking at standard hardware, Hazay
and Lindell look at secure protocol design using standard smartcards [27], with solutions for oblivious set
intersection and various database search operations.

A similar approach using TPMs for a different problem was taken by Gunupudi and Tate [25], who
show how a TPM with some slight modifications can be used to act in a way indistinguishable from a
random oracle, which can then be used in multi-party protocols. This is accomplished by using a Certifiable
Migratable Key (CMK), which is supported by current TPMs, as a seed for an HMAC function (which is
also supported by current TPMs). The resulting functionality is called a “TPM-Oracle,” and Gunupudi and
Tate proved that any protocol secure in the random oracle model is also secure when using a TPM-Oracle.

Sarmenta et al. [37] introduced the notion of virtual monotonic counters, and designed two schemes to
implement this concept using TPMs. Sarmenta et al. then show how virtual monotonic counters can be
used to produce several interesting applications such as digital wallets, virtual trusted storage, and offline
payment protocols. In addition, they also introduced the concept of Count-limited objects (or clobs), which
are cryptographic keys or other TPM-protected objects that are tied to a virtual monotonic counter, and are
limited in the number of times that they can be used.

Using the foundation created by Sarmenta et al., Gunupudi and Tate [26] used clobs to create non-
interactive protocols for oblivious transfer, designing a particularly efficient technique for a set of concurrent
k-of-n oblivious transfers. In particular, a large set of general oblivious transfers can be performed using
just a single clob, resulting in a very efficient protocol for a wide range of applications that use oblivious
transfer, including secure function evaluation (SFE). In addition, Gunupudi and Tate give an application of
this protocol to secure mobile agents, removing interaction requirements that were present in all previous
secure agent protocols.

6

2.3 Our Work in Relation to Previous Work

As noted above, a TPM is a practical way of providing functionality similar to the hardware token considered
by Katz [28], although the operations implemented must be carefully chosen since a TPM may not be as
powerful as the abstract black-box token used in Katz’s work. Arguably, in the real world today, hardware
devices should be classified as tamper-resistent rather than tamper-proof, as it is hard to imagine any real-
world physical token that is tamper-proof in the strictest sense, meaning that it can thwart all physical attacks.
However, TPMs are designed to provide a high level of protection to their internal protected data, and TPMs
have the capability of wiping stored data if an attack is detected, increasing the trust that a user can have in
both its own TPM and remote TPMs.

Previous work [25, 26, 37] has shown that minor and realistic extensions to the TPM specification are
worth considering, if they result in significant performance improvements in the protocols in which they are
used. Katz’s paper and the subsequent papers on tamper-proof hardware [11, 15, 28] all demonstrate the
power of hardware-assisted security. The TPM commands we propose in this paper provide a practical way
in which users could directly use these primitives in their applications.

As a solution to the verifiable encryption problem, our solution has several advantages over previous
solutions, albeit with the requirement of hardware additions. While Camenisch and Shoup [9] present an
efficient solution that does not require cut-and-choose, their solution required the development of a new en-
cryption scheme, while ours can use standard well-studied encryption methods. Previous work by Asokan et
al. and Camenisch and Damgard also used standard encryption, but required cut-and-choose. There are
additionally some other advantages of our solution when compared to the Camenisch/Shoup solution, in-
cluding working over a smaller modulus and more compact ciphertexts. Furthermore, our solution is the
only one that is non-interactive: the cut-and-choose solutions require a large amount of interaction, and the
Camenisch and Shoup solution is a three-round protocol. As a result, our solutions is the only one appro-
priate for an e-mail like setting, where the ciphertext and zero-knowledge proof can be sent off and require
no further input from the prover. Finally, like the Camenisch/Damgard protocol for verifiable group encryp-
tion, our solution can also handle general settings with sets of trusted third parties, and it is not clear that the
Camenisch/Shoup protocol can support this more general access structure.

3 Preliminaries and Protocol Primitives

In this section we describe the TPM operations we propose in this paper. For constructing our protocols,
we use the ability of the TPM to generate random (secret) numbers, create signatures using one of the
TPM’s Attestation Identity Keys (AIKs), and do basic encryption. Recall that an AIK is a signing key that
is certified by a PrivacyCA as usable only inside a TPM, so we trust that values signed by an AIK were
correctly and honestly produced (assuming an uncompromised TPM). We will formalize our assumptions
regarding TPMs in Section 4.

To support the cryptographic operations required by the TPM specification, TPMs are able to perform
modular arithmetic, and we use these capabilities to perform operations over a particular cyclic group. In
particular, let p and q be primes such that q|p − 1, and let g be a generator for the subgroup of Z∗p of order
q. These values can be global for all TPMs, although it is advisable that these values be modifiable in case
particular primes are discovered to have undesirable properties. The operations we require of the TPM will
be modulo p and modulo q arithmetic, and based on other keys used by the TPM and other considerations p
might be 1024 or 2048 bits, with q being 160 bits.

7

3.1 Secret Sharing Schemes

Secret sharing is a fundamental part of our work, so we review the concepts and establish notation in this
section. Specifically, we look at threshold secret sharing, in which a secret is divided among a group of n
members who have decided on a threshold value, say, k. Each member gets a share of the secret, and only
groups of at least k members can reconstruct the secret. Shamir’s scheme [39] was one of the first such
secret sharing schemes, and is secure in the information theoretic sense (not depending on any complexity
assumptions). Other secret sharing variations, using both thresholds and more general notions of access
control structures, include those by Feldman [16], Blakley [5] and Krawczyk [30]. Formally, a threshold
secret sharing scheme consists of two functions: SHARE and RECOVER such that:

SHARE(x, k, n)→ (s1, s2, . . . , sn): Splits a secret x ∈ Zq into n shares, with each si ∈ Zq, so that the
secret can be reconstructed from any k shares but not from any fewer than k shares.

RECOVER(v1, v2, . . . , vk, k, n)→ y: If v1, v2, . . . , vk are k different shares produced by the SHARE oper-
ation, then the value y that this produces is the original secret value (x in the SHARE operation).

3.2 Our Protocol Primitives

The following are two proposed TPM commands which we will use in this paper. While not necessary for the
most straightforward applications, we give the capability to attach a “condition” to the certified randomness
produced by these commands, similar to a verifiable escrow scheme — the condition may be arbitrary, but
a fixed-length hash is passed to the first command and then included in each encrypted share by the second
command (e.g., if SHA-1 is used, like many other TPM commands, this would be a 160-bit parameter). This
condition is vital for verifiable escrow and more involved protocols, such as the fair exchange protocol that
we describe in Section 4.4, where a party uses the condition to commit to certain values when starting the
verifiable escrow process.

TPM MakeRandomSecret(hCond, k, n)→ (secHandle, r): This operation generates a random r ∈ Zq
that will be shared in a k-of-n secret-sharing scheme, and provides the value and a handle to an
internal protected storage version of the secret. The value hCond is the hash of a “condition” tied to
this random secret, as described above.

TPM EncryptShare(secHandle, AIKHandle, i, PK)→
SignAIK(EPK(hCond ‖ si), PK, k, n, gr, hCond): Gives a signed, encrypted version of the i-th
share of random secret r (referred to by secHandle). If this is called with i = 1, . . . , n, the shares
that are encrypted, s1, . . . , sn should be the shares output by SHARE(r, k, n) for some secret sharing
scheme.

Implementation note: For these operations, a TPM could use Shamir’s secret sharing scheme [39], and
for the TPM MakeRandomSecret operation the TPM would generate k random values c0, . . . , ck−1 ∈ Zq
which would be treated as coefficients of a degree k− 1 polynomial p(x) = ck−1x

k−1 + ck−2x
k−2 + · · ·+

c1x + c0, where c0 is the random secret r, and the shares are just si = p(i). The TPM would simply
need to keep the k coefficients so that they can be located from the assigned secret handle secHandle,
and the computations required are similar to existing capabilities within a TPM. We conjecture that real
applications of this technique would use small values of k (two or three), and so this is in fact quite efficient
to implement within a TPM. Moreover the share generation operation requires only polynomial evaluation,
and can be done with k−1 modular multiplications and additions by using Horner’s rule [13, Section 30.1].

8

In some applications, such as the optimistic fair exchange protocol that we describe later, we don’t need
secret sharing at all. Instead, we simply need to be able to encrypt the secret random value using the public
key of one or more trusted parties so that the secret can be recovered later if necessary. This is a degenerate
“1-of-n” case of the generic operation above, but we describe it here separately as this might be the most
useful form of the certified randomness operations.

TPM MakeRandomSecret1(hCond)→ (secHandle, r): Random r ∈ Zq is selected, stored internally
with secHandle to refer to it, and returned to the user. hCond is the hashed condition, as before.

TPM EncryptShare1(secHandle, AIKHandle, PK)→
SignAIK(EPK(hCond ‖ r), PK, gr, hCond): The previously generated r is bundled with the con-
dition hCond and encrypted for a trusted party whose public key is denoted by PK, and signed by
the Attestation Identity Key (AIK).

4 Our TPM-based Verifiable Group Encryption Protocol

In this section we show how the TPM operations defined above can be used to implement a form of verifiable
group encryption, a problem defined by Camenisch and Damgard [8]. In verifiable group encryption, there
is a sender (prover), a receiver (verifier), and n semi-trusted parties (“proxies”). The sender has a public
value x that it claims satisfies some property, which can be verified using a secret witness s known to the
sender. The sender wants to send x along with additional information to the receiver such that the receiver
(a) has assurance that it can recover the secret s if it has the cooperation of an authorized subset of the
proxies and (b) without the cooperation of an authorized subset of proxies the receiver gets no information
about s (of course, the sender can also reveal s to the receiver at any time). There are several ways to define
an “authorized subset” of proxies, but the most generic way is to use a monotone access structure Γ, which
is a set of subsets of authorized proxies that is monotone (so that if A ∈ Γ and A ⊆ B then B ∈ Γ).

We next provide a precise and formal definition of this problem. While Camenisch and Damgard for-
mally defined (non-group) Verifiable Encryption and then informally described the group encryption prob-
lem [8], they did not formally define the Verifiable Group Encryption problem. Therefore, while our defini-
tion is based on their work, the definition given here is new.

While expressed formally, the properties in the definition have simple intuitive descriptions: The Com-
pleteness property states that if the prover and verifier are honest, the verifier always accepts. The Validity
property says that no dishonest prover can trick a verifier into accepting something that will not allow recov-
ery of a valid witness s if the verifier uses a set of proxies that are included in the access control structure Γ.
The Computational Zero Knowledge property states that no dishonest verifier can recover any information
about a valid witness s, and this is true even if the verifier uses an arbitrary set of proxies that is not in the
access control structure.

Definition 4.1 (Generic Verifiable Group Encryption) Let R be a relation and define language LR by
LR = {x | ∃s : (x, s) ∈ R}. A Verifiable Group Encryption Scheme for relation R consists of a
two-party protocol (P, V) and a recovery algorithm R. Assume we have a set of n proxies with encryp-
tion/decryption algorithms denoted (Ei, Di) for i = 1, . . . , n, and denote this set with notation (E ,D) =
((E1, E2, . . . , En), (D1, D2, . . . , Dn)). Let VP (E , x,Γ, λ) denote the output of the verifier when interacting
with P on input (E , x,Γ, λ), where Γ is a monotone access structure over D and λ is a security parameter.
Let ⊥ denote the null set. The following properties must hold:

9

1. Completeness: If P and V are honest, then for all sets of proxies (E ,D) and all x ∈ LR,

VP (E , x,Γ, λ) 6=⊥ .

2. Validity/Soundness: For all polynomial time P̃ , all (E ,D), all Γ, all D̃ ∈ Γ, all positive polynomials
p(·), and all sufficiently large λ, if α = VP̃ (E , x,Γ, λ) and α 6=⊥ then

Prob[(x,R(D̃, α)) 6∈ R] < 1/p(λ) .

3. Computational Zero Knowledge: For any polynomial time Ṽ , which is a verifier that takes a subset of
decryption proxies D̃ ⊆ D in addition to the regular verifier parameters, there exists an expected poly-
nomial time simulator SṼ with black-box access to Ṽ such that for all polynomial time distinguishers
A, all positive polynomials p, all x ∈ LR, and all sufficiently large λ, if D̃ 6∈ Γ we have

Prob[A(E , x, αi) = i : α0 = SṼ (E , x, λ); α1 = ṼP (E , D̃, x, λ); i ∈R {0, 1}]

<
1
2

+
1

p(λ)
.

Definition 4.1 describes a generic form of verifiable group encryption, but in order to produce algorithms
that can be put into fixed trusted hardware, we restrict two general parameters in the above definition — we
fix the relation R to be a specific relation based on the discrete log problem, and we restrict the access
control structure Γ to be a threshold structure so that we can use simple threshold secret sharing schemes.
Specifically, we make the following two restrictions:

1. R ⊆ (Zp,Zq) is defined so that R = {(gs, s) | s ∈ Zq}. In other words, in any pair (x, s) ∈ R, the
secret s is the discrete log of x.

2. Γ = {D̃ | D̃ ⊆ D and |D̃| ≥ k}

Since we will be using trusted platforms to implement verifiable group encryption, we need to establish
the security properties of a trusted platform so that we can reason about the security of our solution.

Here we note that, like any physical device, TPMs are not perfectly tamper-proof, so to keep this clear
we refer to tamper-resistance of TPMs. However, physical protection of secrets within a TPM is an explicit
design goal of TPMs, reflected in the requirement from the TPM Protection Profile [23] that “the [TPM
Security Functions] shall resist physical manipulation and physical probing.” While other aspects of TPM
security have been shown to be vulnerable to physical attacks, such as attacks on system integrity mea-
surements [29], our only physical security assumption is the basic protection of secrets that is described in
the Protection Profile. TPMs manufactured today (STMicro, Atmel, Broadcom, Infineon, etc.) have a high
level of tamper resistance with regard to protection of secrets, so we believe that our security assumption is
realistic.

Definition 4.2 The Trusted Platform Security Assumption is the assumption that the system containing a
TPM satisfies the following properties:

1. Tamper-resistant hardware: It is infeasible to extract secrets stored in protected locations in the TPM.

2. Secure Encryption: The public-key encryption algorithm used by the TPM is CCA-secure.

10

3. Secure Signatures: The digital signature algorithm used by the TPM is existentially unforgeable under
adaptive chosen message attacks.

4. Trustworthy PrivacyCA: Only valid TPM-bound keys are certified by a trusted PrivacyCA.

Assuming we have a trusted platform that provides the operations defined in Section 3.2 and satisfies the
Trusted Platform Security Assumption, we define the following protocol for the verifiable group encryption
problem — since our protocol is non-interactive, we define it as a pair of algorithms, one for the sender which
produces the verifiably-encrypted secret, and one for the receiver which verifies that the values produced by
the sender are properly formed.

In the following algorithms, PK1, . . . , PKn denote the public encryption keys of the n proxies, so the n-
tuple (PK1, . . . , PKn) is the realization of the abstract set of encryption routines E given in Definition 4.1.
Furthermore, since the abstract access structure Γ is restricted to be a threshold structure, it is fully specified
by the pair (k, n), which represents a “k-of-n” threshold structure. Finally, we assume that the AIK used
in this protocol is loaded into the TPM before VESENDER is called and is referenced by TPM handle
AIKH , and we have a certificate Cert(AIK) for this AIK signed by a trusted PrivacyCA. The condition
hCond associated with this escrow is the same as described in Section 3.2, and can be used as needed by
applications.

Algorithm VESENDER((PK1, . . . , PKn), s, (k, n), hCond, λ)
x← gs

(secHandle, r)← TPM MakeRandomSecret(hCond, k, n)
d← s+ r mod q
t← gr mod q
for i ∈ 1, . . . , n do Ci ← TPM EncryptShare(secHandle,AIKH, i, PKi)
return B = 〈d, x, t, C1, C2, . . . , Cn, Cert(AIK)〉

Algorithm VERECVERIFY(B = 〈d, x, t, C1, C2, . . . , Cn, Cert(AIK)〉, hCond)
if Cert(AIK) is not certified by a trusted PrivacyCA then return ⊥
if C1, . . . , Cn are not tuples 〈ci, PKi, k, n, t, h〉 signed by AIK then return ⊥
if 〈k, n, t, h〉 are not identical in all tuples with h = hCond then return ⊥
if gd 6= xt then return ⊥
return α = B

If it is necessary to use these encryptions to recover the secret s, the following algorithm can be used:

Algorithm VERECOVER(α = 〈d, x, t, C1, C2, . . . , Cn, Cert(AIK)〉, hCond)
Select k Ci’s: Ci1 , Ci2 , . . . , Cik

, and use proxies to decrypt each hCondik
‖ sik

if any hCondik
does not match parameter hCond then return ⊥

r ←RECOVER(si1 , si2 , . . . , sik
, k, n)

s′ ← (d− r) mod q
return s′

Since the TPM guarantees that the recovered r is such that t = gr, and we have verified that gd = xt, we
have gd = xgr, so s′ is such that gs

′
= gd−r = x. Since s is the unique value in 0, . . . , q − 1 such that

gs = x, we must have s′ = s, and we have recovered the original secret s. We will prove that this scheme
is a secure verifiable group encryption scheme in Section 4.2, but first we demonstrate a useful application.

11

4.1 Application to Verifiable Group Encryption of Signatures

In this section, we show how to apply our verifiable group encryption protocol to the problem of verifiably
encrypting shares of a valid digital signature. In this problem there is a publicly-known message m, and
we would like for a party with public key y to sign this message. The signature is not to be revealed
immediately, but needs to be committed to and escrowed in such a way that an appropriate set of trusted
parties can recover the signature if necessary. We would like to verifiably encrypt the signature so that the
receiver has assurance that the ciphertexts which it receives (and which are unintelligible to it) are in fact
shares of the requested signature.

Our verifiable encryption protocol can be used with several signature schemes, including Digital Signa-
ture Standard (DSS) signatures [18], but for concreteness we instantiate it here with Schnorr signatures [38].
Techniques for using other signature schemes are similar to the techniques described in Section 4 of Asokan
et al. [1]. Note that the TPM operations used are independent of the signature scheme used, and the security
of the verifiable encryption is in no way related to the security of the underlying signature scheme. The
Schnorr signature scheme is briefly described below:

SETUP OF SYSTEM PARAMETERS: There is a prime modulus p with a generator g of a subgroup of Z∗p of
prime order q. A random value ζ ∈ Zq is the private key of the signer, Alice, and her public key is
y = gζ . Let Bob be the verifier.

SCHNORRSIGN(m, ζ): To create her signature, Alice picks a random r ∈ Zq and computes u = gr,
c = h(u ‖ m), and z = r + ζc mod q, where h is a cryptographic hash function. Her signature is
then (c, z).

SCHNORRVERIFY((c, z),m, y): Bob, who knows Alice’s public key y, checks if h(gzy−c ‖ m) = c, and
accepts if it is true, rejects otherwise.

Next we show the sender and receiver portions of our verifiable group encryption of a Schnorr signature.
Since the Schnorr signature is a pair (c, z), where c is random (in the random oracle model), we transmit c
in the clear and use the verifiable encryption for only the second component z.

Algorithm SIGSENDER((PK1, . . . , PKn),m, (k, n), ζ, hCond)
(c, z)←SCHNORRSIGN(m, ζ)
B ←VESENDER((PK1, . . . , PKn), z, (k, n), hCond, λ)
return 〈(c, z),B〉

Algorithm SIGVERIFIER(y,m, c,B = 〈d, x, t, C1, C2, . . . , Cn, Cert(AIK)〉, hCond)
if y is not an acceptable public key then return ⊥
if h(xy−c ‖ m) 6= c then return ⊥
return VERECVERIFY(B, hCond)

If it is necessary to recover the signature from the encrypted shares, we first do a recovery from the verifiable
group encryption to recover z. Since SIGVERIFIER has verified that h(xy−c ‖ m) = c, and the recovered
z is such that x = gz , we have h(gzy−c ‖ m) = c, which is exactly the property that must be verified in
SCHNORRVERIFY. Therefore, (c, z) is a valid Schnorr signature on message m.

Algorithm SIGRECOVER(c,B, hCond)
z ← VERECOVER(B, hCond)
if z =⊥ then return ⊥
return (c, z)

12

Our building blocks for this protocol, VESENDER and VERECVERIFY, provide a secure verifiable
group encryption scheme, which we formally establish in the next section.

4.2 Security Properties

In this section we prove that VESENDER and VERECVERIFY provide a secure verifiable group encryption
scheme.

Theorem 4.1 Let R be a relation such that R ⊆ (Zp,Zq) is defined so that R = {(gz, z) | z ∈ Zq}.
The protocol outlined above, when the prover uses a system that satisfies the Trusted Platform Security
Assumption, is a secure verifiable group encryption scheme for R.

Proof : We consider the three properties required by Definition 4.1.

1. Completeness: Follows directly from the protocol.

2. Soundness: First, assume that allCi’s were produced by a valid TPM using the TPM EncryptShare
function (we will return to this assumption later), and thus we are guaranteed that proxy i can use
value Ci to recover its correct share si of the secret s. Recall that in our setting, the monotone access
structure Γ from Definition 4.1 is defined to be a threshold access structure, where any D̃ from the
Soundness condition of the definition is simply a set of k or more proxies. For any such D̃ we select
k corresponding Ci’s in the first step of the VERECOVER function, use the proxies to decrypt the
shares from which the secret sharing RECOVER function recovers the secret r such that t = gr. By
the reasoning following the algorithm statement we will always recover a valid secret s.

Next, consider our assumption that all the Ci’s were produced by a valid TPM. Soundness requires
that B from the protocol pass the VERECVERIFY test, which means (by parts 1 and 4 of the Trusted
Platform Security Assumption) that all Ci’s have been signed by valid a AIK, i.e., a key that only
exists in usable form inside the TPM, and hence is unavailable to an attacker. Therefore, the only way
an adversary could produce a Ci that was not produced by a valid TPM is to forge a signature, which
can only be done with negligible probability by Part 3 of the Trusted Platform Security Assumption.
The soundness property follows.

3. Computational Zero Knowledge: For any probabilistic polynomial time (PPT) verifier Ṽ , we need a
PPT simulator SṼ that can simulate Ṽ ’s view of the transaction with just the common input variables
and without access to the prover. The common input variables consist of the variables that are given
to both the prover and verifier prior to the interaction, and include the general system parameters as
well as the public keys of n proxies, PK1, PK2, . . . , PKn and the value x that is the one-way image
of secret s, as x = gs (note that s is only known to the real prover, not the verifier or the simulator),
as well as any condition hCond.

The simulator does the following: First it generates two random keypairs for signing, one that is
generated in exactly the same way that a TPM generates an AIK, with secret signing key SKA and
public verification key V KA, and a second keypair that is generated exactly the same way as a Priva-
cyCA’s signing key, with signing and verification keys SKC and V KC , respectively. The simulator
then computes a fake certificate for V KA by signing the certificate form using SKC , and we denote
the result with notation CertV KC

(V KA) — note that the only difference between these keys and the
keys used by a real TPM is that the key SKC does not belong to a legitimate PrivacyCA, so we have

13

violated Trusted Platform Security Assumption part 4 (we’ll argue later that this does not matter when
considering the computational zero knowledge property).

Next, the simulator selects n + 1 random values d, s1, s2, . . . , sn ∈R Zq. The simulator computes
t = gdx−1 and then creates values Ci = SignSKA

(EPKi(hCond ‖ si), PKi, k, n, t, hCond) for i =
1, 2, . . . , n, where PKi is the public encryption key of proxy i. Finally, the simulator creates the tuple
B = 〈d, x, t, C1, C2, . . . , Cn, CertV KC

(V KA)〉 which it gives to Ṽ . Since t was computed so that
gd = xt, this tuple will be verified by the VERECVERIFY function. Now let D̃ be the subset of
proxies mentioned in the definition of the computational zero knowledge property, and so D̃ 6∈ Γ,
which means that if j = |D̃| where j < k. Using the set D̃ of proxies, we can decrypt j of the
ciphertexts contained in the Ci’s, say si1 , si2 , . . . , sij . Consider what Ṽ would see from a real prover
at this point: j shares of secret r, as well as t which depends on r — however, since we use a secret
sharing scheme with threshold k and j < k, the decrypted shares are random and independent of both
each other and r. This is the exact same as the distribution when we use the simulator. In addition
to the decrypted shares si1 , si2 , . . . , sij , which are random and independent, Ṽ also has access to all
ciphertexts Ci. When Ṽ interacts with the simulator, the corresponding plaintexts are simply random
values, so do not contain any information related to the secret r. When Ṽ interacts with the real
prover, the corresponding plaintexts are shares of r, but since the encryption scheme is CCA secure
this is indistinguishable to Ṽ from the simulator case. Therefore, the simulator presents a view to Ṽ
that is indistinguishable from the prover, and hence our protocol is zero-knowledge.

The above arguments show that the desired properties of a secure verifiable group encryption scheme are all
met.

4.3 Comparison to Non-Trusted Platform Protocols

We now briefly compare the costs of our protocol to two prior verifiable encryption protocols: that of
Camenisch and Damgard [8] (the “CD” protocol), and Camenisch and Shoup [9] (the “CS” protocol). We
first consider the CD protocol, as it is the only one to support verifiable group encryption, and hence is the
most directly comparable to our TPM-based verifiable group encryption protocol.

We compare costs in Table 1. Our TPM-based protocol is patterned after the CD protocol, with the
cut-and-choose proof replaced by a TPM signature, so the costs can be compared fairly simply. Looking
at one round of the CD protocol, the cut-and-choose technique requires that the prover actually create two
sets of values: one will be used to answer a challenge to honesty from the verifier, and the other to actually
use in the encryption. Because of this duplication of effort, the CD protocol requires twice the number of
encryptions as our protocol; however, trust in our protocol is built by the hardware signing values, so we
must do n signatures, resulting in the total cost being similar between our protocol and one round of the
CD protocol. However, for the CD protocol this round must be repeated in order to build trust: a dishonest
prover can get away with cheating on a single iteration of the prover’s phase with probability 1/2, and this
probability is reduced to 1/2R by repeating the protocol R times. Using 30 rounds means the probability of
the prover cheating without detection is about one in a billion, and a very high degree of assurance can be
obtained by repeating the protocol 80-100 times.

The CS protocol improves on the CD protocol when there is a single proxy, removing the cut-and-choose
and reducing the amount of interaction substantially; however, the CS protocol is not directly applicable to
the multiple-proxy verifiable group encryption problem. We compare all three schemes in this restricted
single-proxy setting in Table 2. While the CS protocol does not require the high interaction of the cut-
and-choose proof used by the CD protocol, it is nonetheless still an interactive protocol. The TPM-based

14

CD protocol Our Solution
Interactive Non-interactive
Cost for One Round (of 30-100) Cost for Full Solution

Prover: 2 n-party SHAREs 1 n-party SHARE

2n encryptions n encryptions
n signatures

Verifier: n encrytions n+ 1 sig. verifies
1 or 2 mod powerings 1 mod powerings
0 or 3 mod multiplies 1 mod multiplies

Recovery: k decryptions k decryptions
1 secret sharing RECOVER 1 secret sharing RECOVER

Table 1: Comparison of the cost of Camenisch-Damgard (CD protocol) to our TPM-based solution for n
proxies, with a threshold of k. Note that the Camenisch-Damgard protocol has a probability of 1/2 of being
“tricked” each round, so is repeated 30-100 times in order to build up trust in a statistical sense.

CD protocol CS protocol Our Solution
Interactive Interactive (3 rounds) Non-interactive
Cost for One Round (of 30-100) Cost for Full Solution Cost for Full Solution

Prover: 2 encryptions 1 non-std encryption 1 encryption
1 mod powering 10 mod powerings 1 mod powering

1 signature
Verifier: 1 encryption 13 mod powerings 2 sig. verifies

1 mod powerings 1 mod powerings
Recovery: 1 decryption 1 decryption

Table 2: Comparison of major costs of single-proxy solutions: Camenisch-Damgard (CD protocol),
Camenisch-Shoup (CS protocol), and our TPM-based solution.

protocol is completely non-interactive: the prover computes some values, sends them off, and then is no
longer involved. In an e-mail setting (send and forget), this is a vital property that our protocol achieves but
earlier solutions do not.

In addition, the CS protocol requires the use of a custom-designed encryption scheme, which is less well-
studied than the standard encryption schemes which can be used in the CD protocol or in our solution. While
providing some nice properties, this new encryption scheme requires significantly more work than traditional
public key encryption schemes: Modular operations are performed modulo n2, so are approximately twice
as large, and a single encryption requires 5 modular powerings and several modular multiplies, compared
to a single modular powering for RSA-based methods (both methods also require some hashing and lower-
complexity operations as well).

As mentioned in Section 4.1, we would again like to stress the point that the Schnorr signature scheme
is not an integral part of our protocol and we have shown it just as an example. In place of Schnorr, the user
is free to use any other supported signature scheme, and our protocol will work just as well. Furthermore,
since our verifiable encryption scheme uses generic operations that are not tied to the Schnorr signature
scheme, the security of the verifiable encryption of the signature is in no way dependant on the security of

15

the underlying signature scheme.

4.4 Fair Exchange of Digital Signatures

Fair exchange is an important application of the verifiable group encryption protocol outlined above, where
additional operations are included in order to synchronize the actions and ensure that the fair exchange
property is satisfied. One of the open problems left by Asokan et al. [1] was to improve the efficiency of
the verifiable escrow operation by avoiding cut-and-choose. Camenisch and Shoup showed that this was
indeed possible by introducing a new encryption scheme [9]. By using TPMs, we have shown an alternative
method that can make use of standard, well-studied encryption schemes, and further can make the verifiable
escrow operation fully non-interactive.

In fair exchange of signatures, two parties have messages that they have pledged to sign, and at the
end of the protocol either both have received the other’s signature, or neither has. For concreteness, we
assume Schnorr signatures (as we used in our SIGSENDER function), but this can easily be adapted to any
signature scheme that has a secure reduction scheme using the homomorphism θ(x) = gx. At the beginning
of the protocol, parties A and B have agreed to sign messages mA and mB , respectively, and along with the
publicly-known messages both parties know each other’s signature public keys yA and yB (corresponding
private keys ζA and ζB are known only to A and B, respectively). Asokan et al.’s protocol is an “optimistic
fair exchange protocol,” meaning that the trusted third party is not involved unless there is a dispute, but
the third party does require a single, consistent database of tuples to keep track of any requests that have
been made of it. The generality of our solutions for verifiable encryption in this paper, using multiple
trusted parties and a threshold scheme, causes complications for the fair exchange problem — unless a
single globally-consistent database is maintained, it might be possible for a party to cheat the controls that
the trusted party is supposed to enforce. While we could potentially do this with some distributed database
of tuples, we simplify the problem back to a single trusted party in this section. The trusted party has public
encryption key PK, which is known to all parties.

Below we give our modification of Asokan et al.’s fair exchange protocol, which has our construct
incorporated. In addition to inserting our signature escrow functions SIGSENDER, SIGVERIFIER, and SI-
GRECOVER, a few changes come from the fact that we are using a specific signature scheme rather than a
generic homomorphic reduction scheme.

1. A chooses r ∈ Domain(f) at random and computes v = f(r). A then computes its signature σA,
encrypts it using a regular escrow scheme with condition (v,mB, yB), giving an escrow α which it
sends along with v to B.

2. B receives v and α from A, and computes hCond = h(〈v, α,mA, yA〉), then 〈(cB, zB), β〉 =
SIGSENDER(PK,mB, ζB, hCond). B’s signature on mB is then σB = (cB, zB). B sends cB and β
to A.

3. A receives cB and β from B, computes it’s own copy of hCond and checks that β is a proper
signature escrow using SIGVERIFIER(yB,mB, cB, β, hCond) — if this does not verify, A calls A-
ABORT(r,mB, yB) and quits the protocol (perhaps having received B’s signature σB); otherwise, A
creates signature σA for message mA and sends σA to B.

4. B receives σA fromA and verifies that this is a valid signature onmA. If this is a valid signature, then
B sends signature σB to A; otherwise, B calls B-RESOLVE(v, α,mA, yA,mB, yB, σB) which either
returns σA (if α is a valid escrow) or an error message.

16

5. A receives σB from B and verifies that this is a valid signature on mB . If this is a valid signature,
then the protocol halts, with both parties having received valid signatures; otherwise, A calls A-
RESOLVE(r, α, β, cB,mB, yB,mA, yA) to get σB .

Functions A-ABORT, A-RESOLVE, and B-RESOLVE are executed (atomically) by the trusted party, and are
straightforward adaptations of the functions designed by Asokan et al. [1] following changes we made in
the base exchange protocol above. For ease of reference, the adapted functions are given in Appendix A.

The fairness of this protocol is established following reasoning similar to that in Asokan et al. [1], using
Theorem 4.1 in this paper for the security of our verifiable encryption scheme, resulting in the following
theorem. The proof of this theorem is a simple modification to the proof in Asokan et al. [1], so is not given
here.

Theorem 4.2 Given parties A and B, in which B has access to a TPM that satisfies the Trusted Platform
Security Assumption, the protocol described above is a secure optimistic fair exchange protocol.

The most expensive operation in Asokan et al.’s protocol is the verifiable escrow operation which makes
the cost of the protocol grow with R, where R is the number of rounds between prover and verifier. Using
our functions in place of the verifiable escrow, we only need a single round, reducing the computational
cost, and more importantly makes that part of the fair exchange protocol non-interactive.

5 Conclusion and Future Work

We have presented a generic subroutine-like TPM-based construct that we used to create algorithms that re-
place cut-and-choose protocols in some interactive zero-knowledge proofs, making that part of the protocol
non-interactive and more computationally efficient. In the process we have provided an efficient protocol
for verifiable group encryption and improved the efficiency of the protocol for fair exchange of signatures
due to Asokan et al. [1]. Our protocols are generic and independent of the signature scheme being used.
Under sensible assumptions about the construction of a TPM, we proved that our protocols are secure. One
interpretation of this is that we replace the statistical trust gained by repeating multiple rounds of a cut-and-
choose protocol with a degree of trust in the manufacturer of the TPM.

An intestesting open problem is whether other cut-and-choose protocols can also be replaced with the
help of the TPM-based techniques developed in this paper, and we are exploring the possibility that our con-
struct could be used to improve other applications. Another interesting direction to pursue would be looking
at whether the security our TPM-based techniques can be reasoned about in Canetti’s strong universally
composable model of security [10]. We believe that this is indeed possible, and could provide results quite
similar to Katz’s results but using our standard hardware components rather than custom-designed hardware
tokens.

References

[1] N. Asokan, V. Shoup, and M. Waidner. Optimistic Fair Exchange of Digital Signatures. In Advances
in Cryptology – EUROCRYPT ’98, pages 591–606, 1998.

[2] F. Bao, R. Deng, and W. Mao. Efficient and Practical Fair Exchange Protocols with an Off-line TTP.
In Proceedings of the 19th IEEE Symposium on Security and Privacy, pages 77–85, 1998.

17

[3] B. Barak, M. Prabhakaran, and A. Sahai. Concurrent Non-Malleable Zero Knowledge. In Proceedings
of the 47th Annual IEEE Symposium on Foundations of Computer Science, pages 345–354, 2006.

[4] M. Bellare and A. Palacio. GQ and Schnorr Identification Schemes: Proofs of Security against Im-
personation under Active and concurrent attacks. In Advances in Cryptology - CRYPTO ’02, pages
162–177. LNCS Springer-Verlag, 2002.

[5] G. Blakley. Safeguarding Cryptographic Keys. In AFIPS National Computer Conference, pages 313–
317, 1979.

[6] Stefan Brands. Untraceable Off-line Cash in Wallets with Observers. In CRYPTO ’93, pages 302–318.
Springer-Verlag, 1993.

[7] Ernie Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous attestation. In ACM Conference
on Computer and Communications Security, pages 132–145, 2004.

[8] J. Camenisch and I. Damgard. Verifiable Encryption, Group Encryption, and their Applications to
Separable Group Signatures and Signature Sharing Schemes. In Advances in Cryptology - ASIACRYPT
’00, pages 331–345. LNCS Springer-Verlag, 2000.

[9] Jan Camenisch and Victor Shoup. Practical Verifiable Encryption and Decryption of Discrete Loga-
rithms. In Advances in Cryptology - CRYPTO ’03, pages 126–144, 2003.

[10] Ran Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols. In
IEEE Symposium on Foundations of Computer Science, pages 136–145, 2001.

[11] Nishanth Chandran, Vipul Goyal, and Amit Sahai. New Constructions for UC Secure Computation
using Tamper Proof Hardware. In EUROCRYPT ’08, pages 545–562, 2008.

[12] David Chaum and Torben Pryds Pedersen. Wallet Databases with Observers (extended abstract). In
Advances in Cryptology - CRYPTO 92, pages 89–105. Springer-Verlag, 1992.

[13] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C.Stein. Introduction to Algorithms. MIT Press,
Cambridge, MA, Second edition, 2002.

[14] Ronald Cramer and Torben J. Pedersen. Improved Privcy in Wallets with Observers (extended ab-
stract). In EUROCRYPT ’93, pages 329–343. Springer-Verlag, 1993.

[15] Ivan Damgard, Jesper Buus Nielsen, and Daniel Wichs. Isolated Proofs of Knowledge and Isolated
Zero Knowledge. In EUROCRYPT ’08, pages 509–526, 2008.

[16] P. Feldman. A Practical Scheme for Non-interactive Verifiable Secret Sharing. In FOCS ’87, pages
427–437. IEEE Computer Society, 1987.

[17] A. Fiat and A. Shamir. How to prove to yourself: practical solutions to identification and signature
problems. In Advances in Cryptology - CRYPTO ’86, pages 186–194. LNCS Springer-Verlag, 1987.

[18] FIPS 186. Digital signature standard. Federal Information Processing Standards Publication 186, U.S.
Department of Commerce/NIST, 1994.

[19] M. Franklin and M. Reiter. Verifiable Signature Sharing. In EUROCRYPT ’95, pages 50–63. LNCS,
Springer-Verlag, 1995.

18

[20] R. Gennaro. Multi-trapdoor Commitments and their Applications to Proofs of Knowledge Secure
under Concurrent Man-in-the-Middle Attacks, 2004.

[21] S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexity of Interactive Proof Systems.
SIAM Jounal of Computing, pages 186–208, 1989.

[22] J. Groth. A verifiable Secret Shuffle of Homomorphic Encryptions. In Proceedings of the 6th Interna-
tional Workshop on Theory and Practice in Public Key Cryptography, pages 145–160, 2003.

[23] Trusted Computing Group. Protection profile — PC client specific trusted platform module. Available
at https://www.trustedcomputinggroup.org/specs/TPM/. TPM Family 1.2; Level 2.

[24] Trusted Computing Group. Trusted Platform Module Specifications – Parts 1–3. Available at
https://www.trustedcomputinggroup.org/specs/TPM/.

[25] Vandana Gunupudi and Stephen R. Tate. Random Oracle Instantiation of Distributed Protocols using
Trusted Platform Modules. In 21st International Conference on Advanced Information Networking
Applications, pages 463–469, 2007.

[26] Vandana Gunupudi and Stephen R. Tate. Generalized Non Interactive Oblivious Transfer using Count-
Limited Objects with Applications to Secure Mobile Agents. In Financial Cryptography, pages 98–
112, 2008.

[27] Carmit Hazay and Yehuda Lindell. Constructions of truly practical secure protocols using standard
smartcards. In CCS ’08: Proceedings of the 15th ACM conference on Computer and communications
security, pages 491–500, 2008.

[28] Jonathan Katz. Universally Composable Multi Party Computation using Tamper-proof Hardware. In
EUROCRYPT ’07, pages 115–128, 2007.

[29] Bernhard Kauer. OSLO: Improving the security of trusted computing. In SS’07: Proceedings of 16th
USENIX Security Symposium on USENIX Security Symposium, pages 1–9, 2007.

[30] Hugo Krawczyk. Secret sharing made short. In Advances in Cryptology - CRYPTO ’93, pages 136–
146. Springer-Verlag, 1993.

[31] N. Low, D. Maxenchuck, and S. Paul. Anonymous Credit Cards. In 2nd ACM Conference on Computer
and Communications Security, pages 108–117, 1994.

[32] N. Low, D. Maxenchuck, and S. Paul. Anonymous Credit Cards and their Collusion Analysis. In
IEEE/ACM Transactions on Networking, pages 809–816, 1996.

[33] G. Medvinsky and B.C.Neuman. NetCash: A Design for Practical Electronic Currency on the Internet.
In Proceedings of the 1st ACM Conference on Computer and Communications Security, volume 1993,
pages 102–106, 1993.

[34] Tal Moran and Gil Segev. David and Goliath Commitments: UC Computation for Asymmetric Parties
using Tamper-proof Hardware. In EUROCRYPT ’08, 2008.

[35] G. Poupard and J. Stern. Fair Encryption of RSA Keys. In EUROCRYPT ’00, pages 173–190. LNCS,
Springer Verlag, 2000.

19

[36] I. Ray and I. Ray. Fair Exchange in E-Commerce. In Proceedings of ACM SIGEcom Exchange, pages
9–17, 2002.

[37] L.F.G. Sarmenta, M. van Dijk, C.W. O’Donnell, J. Rhodes, and S. Devadas. Virtual Monotonic Coun-
ters and Count-Limited Objects using a TPM without a Trusted OS. In STC ’06, 2006.

[38] C. Schnorr. Efficient Signature Generation by Smart Cards. Jounal of Cryptology, pages 161–174,
1991.

[39] A. Shamir. How to share a secret. Communications of the ACM, pages 612–623, 1979.

[40] Markus Stadler. Publicly Verifiable Secret Sharing. In Advances in Cryptology - EUROCRYPT ’96,
pages 190–199, 1996.

[41] J. Zhou and D. Gollman. A Fair Non-Repudiation Protocol. In Proceedings of the 5th IEEE Symposium
on Security and Privacy, pages 55–61, 1996.

20

A ABORT and RESOLVE functions in the Fair Exchange protocol

The following functions are used in the fair exchange protocol of Section 4.4 in order to coordinate actions
with the trusted third party when such interaction is necessary. These are straightforward adaptations of the
functions from Asokan et al. [1], and are provided here for ease of reference.

Algorithm A-ABORT(r,mB, yB)
v ← f(r)
if (no-abort, v) ∈ S then return “Error”
if (deposit, v,mB, yB, σB) ∈ S for some σB then return σB
Add (abort, v) to S
return “Successfully aborted”

Algorithm A-RESOLVE(r, α, β, cB,mB, yB,mA, yA)
v ← f(r)
if (abort, v) ∈ S then return “Error”
Add (no-abort, v) to S
Decrypt α with condition (v,mB, yB) to obtain σA
if decryption failed or not SCHNORRVERIFY(σA,mA, yA) then return ⊥
hCond← h(〈v, α,mA, yA〉)
return SIGRECOVER(cB, β, hCond)

Algorithm B-RESOLVE(v, α,mA, yA,mB, yB, σB)
if (abort, v) ∈ S then return “Error”
Add (no-abort, v) to S
if not SCHNORRVERIFY(σB,mB, yB) then return ⊥
Decrypt α with condition (v,mB, yB) to obtain σA
if decryption failed or not SCHNORRVERIFY(σA,mA, yA) then return “α is an invalid escrow”
Add (deposit,mB, yB, σB) to S
return σA

21

