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Abstract. Generating a distributed key, where a constant fraction of
the players can reconstruct the key, is an essential component of thresh-
old cryptography. Previous solutions are based on univariate polynomi-
als. We present a new distributed key generation (DKG) protocol. The
key idea of our scheme is to use bivariate symmetric polynomial. Com-
pared with other solutions, our construction is efficient in computation
and simple and flexible in applications. In addition, our construction ad-
mits a rigorous proof of security.
We also study the new-member-joining problem which often occurs in
some applications: Players P1, . . ., Pn, who make up a group G, have
jointly generated a pair of private and public keys based on some DKG,
when a new player hope to join in G, how does he get a share of private
key? We present a new-member-joining protocol which is based on our
DKG scheme and which completely solve this problem. we also give a
proof of the security of this new-member-joining protocol in terms of
correctness and secrecy.

Keywords. Threshold cryptography, bivariate polynomials , distributed
key generation, discrete logarithm

1 Introduction

In order to provide security to applications that are inherently distributed,
namely, several parties are trying to accomplish some common task (e.g., secure
elections, auctions, games) in the presence of an attacker, avoid single-point fail-
ure in a security system, and so on, threshold cryptosystems have received a lot
of attention in modern cryptographic research, e.g., [1, 2, 3, 4]. In many con-
texts, it is impractical or impossible to assume that a trusted third party, a.k.a
a trusted dealer, is present to generate and distribute key shares to users in such
systems. Consequently, distributed key generation (DKG) is desirable in princi-
ple. In essence, a distributed key generation scheme allows a set of n players to
jointly generate a pair of public and private keys according to the distribution
defined by the underlying cryptosysytem without assuming the existence of any
trusted party. While public key is output in the clear, the private key is shared
by the n players, each of which has its own unique secret share, so that any
sufficiently large subset of the n players can reveal or use the key. Commonly
the security parameter of such a system is called the threshold, t, which is the
number of players that can be corrupted without the key being compromised.



Distributed key generation protocols usually fall into two areas : the distribu-
tion of a secret for discrete-log based cryptosystems and the distribution of RSA
keys. The latter case is partially solved by the nice paper of Boneh and Franklin
[20]. However, the protocol does not allow to efficiently share RSA modulus
with strong primes and is not robust against cheaters. Following this paper, two
articles [21, 22]provide robustness using different techniques. In this work, we
shall limit our scope to distributed key generation for discrete-log cryptosystems.
At present, there are lots of distributed key generation schemes for discrete-log
cryptosystems, e.g., [5, 9, 11, 13, 14, 15]. However, these distributed key gen-
eration schemes have a common property, i.e, they all are based on univariate
polynomials. In this work, we present a distributed key generation scheme for
discrete-log cryptosystems which is based on bivariate polynomials. Compared
with other solutions, our construction is efficient in computation and simple and
flexible in applications.

In some practical applications, e.g, [16, 17, 18, 24, 25] , the following poblem
often occurs: Assuming that players P1, . . ., Pn ( their identities will be assigned
with their own indices), who make up a group G, have jointly generated a pair of
private and public keys < x, y >∈ Zq ×Zp by Some DKG scheme , where p is a
large prime and q a large prime dividing p− 1, each player Pi (i ∈ {1, 2, . . . , n})
holds a share si of the secret key x, and any t+1 players among P1, . . ., Pn can
jointly recover x. When a new good player Pm ( m 6= 1, 2, . . . , n) hopes to hold
a share of x and to become a member of G, how does he get a share sm of x?

We call the above problem as new member joining (or, NMJ, for short). For
this poblem, we may consider two cases: The first case is that all players P1, . . .,
Pn are honest3, the second one is that some of P1, . . ., Pn are dishonest.

For the first case, people very naturally think that, with choosing at least
t + 1 players among P1, . . ., Pn, Pm can get a share sm of x by directly making
use of Lagrange interpolation. In fact, this method is not secure and can expose
x to Pm. Without loss of generality, we assume that players P1, . . ., Pt+1 are
chosen. Then, each player Pi, i ∈ {1, 2, . . . , t + 1}, computes a partial secret
share si,m(=li(m)si) from its secret share si and returns si,m to Pm. Thus, Pm

can get a share sm of x as follows by the sum of these t + 1 partial secret shares
si,m, i ∈ {1, 2, . . . , t + 1}.

sm =

t+1∑
i=1

sili(m) =

t+1∑
i=1

si,m

li(m) =
(m− 1) . . . (m− (i− 1))(m− (i + 1)) . . . (m− (t + 1))

(i− 1) . . . (i− (i− 1))((i)− (i + 1)) . . . (i− (t + 1))
,

Since Lagrange coefficients li(m), i ∈ {1, 2, . . . , t + 1}, are publicly known, Pm

can derive si by si,m, and then easily computes x.
In order to solve the NMJ problem under the assumption that all players

P1, . . ., Pn are honest, J. Kong et al.[19] presented a shuffling scheme. In the

3 one player in group G is honest if he sends correct message to new member in
accordance with the provision of new-member-joining protocol, or else dishonest.
See Protocl2 in Section 4 for details.



shuffling scheme, a random number is exchanged between any two players Pi and
Pj (where i, j ∈ {1, 2, . . . , t + 1} and i 6= j). One of these two players treats this
random number as a positive number while the other side treats it as a negative
number. Such each Pi (where i ∈ {1, 2, . . . , t + 1}) has t random numbers Ni,
where i ∈ {1, 2, . . . , t}. Each Pi sums si,n+1 and these t random numbers N1,
. . ., Nt, respectively, and then sends such a s

(0)
i,m = si,m +

∑t
i=1 Ni to Pm instead

of si,m . It is easy to verify that Pm obtains the same value sm=
∑t+1

i=1 s
(0)
i,m. By

the above description, it is evident that J. Kong et al.’s method is independent
of DKG and requires that players exchange information with others.

For the second case, J. Kong et al.’s method isn’t competent for the NMJ
problem. Of course, the solution scheme for the NMJ problem which is inde-
pendent of DKG may be designed, and such solution scheme generally needs
cooperation between players of G. In this work, based on our DKG scheme, we
present a solution for the NMJ problem. Although our method depends on our
DKG, it does not need cooperation between players of G and then saves some
resource(e.g., computation cost, communication cost,etc).

1.1 Background and Related Work

Methods for distributed key generation for discrete-log cryptosystems have been
known for a long time, starting a simple polynomial-based scheme presented by
Pedersen [5]. The basic idea in Pedersen’s DKG scheme is to have n parallel ex-
ecutions of Feldman’s verifiable secret sharing (VSS) protocol [30] in which each
player Pi acts as a dealer of a random secret si that he picks. The secret value
x is taken to be the sum of the properly shared si’s. Pedersen’s DKG scheme
was then used in many discrete-log based threshold cryptosystems, e.g., [6, 7, 8].
It seems necessary that the output distribution of distributed key generation
schemes must be the same in the threshold and the centralized case if one at-
tempts to argue the security of the threshold cryptosystem by reducing it to the
security of the underlying centralized cryptosystem. But later in [9] ( extended
version in [10] ) a flaw of Pedersen’s DKG scheme was found by Gennaro et al.
that the key is not uniformly generated in the key space with a malicious adver-
sary and also a solution, which is based on Feldman’s VSS and Pedersen’s VSS
[31], is given to deal with such type of adversary. In [11], Canetti et al. improve
their results to resist a malicious, adaptive adversary. In [12], John Canny et
al. also proposed a new distributed key generation scheme based on Gennaro et
al.’s scheme. Besides the above schemes, there are lots of other distributed key
generation schemes, for example, [13, 14, 15].

Bivariate polynomials have been made use of designing cryptography scheme
for a long time, e.g., [27, 28, 29, 23]. Ben-Or et al. in [27] firstly presented a VSS
based on bivariate polynomial. In [23], D.R.Stinson and R.Wei also presented a
VSS which is an improvement of Ben-Or et al ’s VSS and is based on bivariate
symmetric polynomial, thus D.R.Stinson and R.Wei’s VSS is simpler and more
efficient than Ben-Or et al ’s VSS.



1.2 Our Contribution

In this paper, we present a distributed key generation scheme based on bivariate
symmetric polynomial( or BDKG, for short). Similar to Gennaro et al.’scheme
[9], BDKG also consists of two phases: in the first phase, the group of non-
disqualified players, Q, is selected, and players in Q jointly generate a random
secret key such that all players in Q have a share of the secret key, and in the
second phase, the public value associated to the shared secret is made. The
second phase of BDKG is similar to that of Gennaro et al.’scheme. However, in
the first phase, BDKG is fully different from Gennaro et al.’scheme. The security
of Gennaro et al.’scheme in the first phase is based on the hardness of solving
discrete logarithm. BDKG is based on the results of [23] and is unconditionally
secure and does not require expensive computations in the first phase. Thus,
BDKG is very efficient computationally.

The public key is fixed once it is generated with BDKG. We present a solution
for the NMJ problem which is based on BDKG. Based on our solution, when
a good player Px wants to hold a share of secret value corresponding to the
above public key and become a member of Q , players in Q can independently
provide Px with information on the above secret value and need not exchange
information (e.g, random numbers,etc.), which is used to protect the privacy of
the above secret value, with other players inQ. we also give a proof of the security
of this solution, i.e., the new-member-joining protocol, in terms of correctness
and secrecy.

In BDKG, our adversary is static, and BDKG is proven secure only against
a static adversary.

The paper will proceed as follows. In Section 2 we present the basic commu-
nication and adversarial models for our protocol. In Section 3 we present our
solution and its full analysis. In Section 4, we present a solution for the NMJ
problem and and analyze its security in term of secrecy and correctness. Section
5 concludes this paper.

2 Preliminaries

2.1 Communication Model

The systems we describe involve a group of n players. The players are modeled
by probabilistic polynomial-time Turing machines. They are connected by a
complete network of private point-to-point channels. In addition, the players
have access to a dedicated broadcast channel. For a broadcast message, it either
reaches all recipients or none. Furthermore, if it reaches all recipients, the order
for the recipients is random, i.e., the arrival ordering of a message to the players
from a given sender is arbitrary. The messages sent on either a point-to-point
or the broadcast channel are received by their recipients within some fixed time
bound. In addition, we assume that the honest players start a given round of a
protocol at the same time.



2.2 The Adversary

We assume that an adversary, A, can corrupt up to t of the n players in the
network, for any value of t < (n− 2)/3. We consider a malicious adversary that
may cause corrupted players to divert from the specified protocol in any way.We
assume that the computational power of the adversary is adequately modeled
by a probabilistic polynomial time Turing machine. Our adversaries are static.
Before the protocol executes, this type of adversaries has already decided which
player to corrupt during the execution of the protocol. In other words, he can not
change to attack another player by exploiting the runtime information obtained
during protocol execution.

2.3 Requirements of Secure DKG Protocol

The following definitions apply to discrete-log based cryptosystems. The globally
known constants are q, G, P , where q is a large prime; G, over which discrete
logarithm problem4 is hard, is a cyclic additive group of order q and P is its
generator. The first three criteria of the following definition have been used
widely to define DKG protocols. The fourth was added by Gennaro, et al. in
order to quantify the secrecy of an algorithms key against malicious players in
the generation phase.

Definition 1. A t-secure distributed key generation algorithm satisfies the fol-
lowing requirements, assuming the set of players controlled by the adversary is
less than t:
Correctness:
(C1) A ll subsets of t + 1 shares provided by honest players define the same

unique secret key x.
(C2) A ll honest parties have the same value of the public key y = xP , where

x is the unique secret guaranteed by (C1).
(C3) x is uniformly distributed in Zq (and hence y is uniformly distributed in

the subgroup generated by P ).
Secrecy:
(S1) The adversary can learn no information about x except for what is im-

plied by the value y = xP .

3 New Distributed Key Generation Scheme

Our construction, BDKG, is based on so-called bivariate symmetrical polynomi-
als and can work with less than n−2

3 corrupted players. The description of BDKG
is based on some group G5 which is a cyclic additive group of prime order q. In
fact, we can also describe BDKG over multiplicative cyclic group with a element
of prime order q, e.g, Z∗p where p is a large prime and q divides (p− 1).
4 Discrete logarithm problem over G which is a cyclic additive group of order q: Given

a generator P of G, and y = xP, x ∈ Zq, compute x.
5 we can take G as a subgroup of E/F which is an additive abelian group derived by

an elliptic curve E defined in finite field F .



3.1 Description of BDKG

In BDKG, we assume that the identity of each player is assigned with his own
index. BDKG works as follows.

1. Start with a dealing phase so that all players know q, G, P, where q is a
large prime, G is a addition cyclic group of prime order q, P is the generator
of G.

2. Generating secret value x (this process called as Joint-VSS (t)):
(a) Each player Pi randomly chooses a bivariate symmetrical polynomial

fi(x, z) over Zq of degree t :

fi(x, z) =
t∑

k=0

t∑

j=0

a
(i)
kj xkzj

where a
(i)
00 = zi, a

(i)
kj ∈ Zq, the degree of both x and z equals to t, and

a
(i)
kj =a

(i)
jk . And then, Pi computes hi

m(x) = fi(x,m) as follows:

hi
m(x) = fi(x,m) =

t∑

k=0

t∑

j=0

a
(i)
kj xkmj ,

and securely send hi
m(x) to Pm, here m = 1, 2, . . . , n.

(b) After receiving hi
m(x), Pm computes hi

mk = hi
m(k) and securely sends it

to Pk, here k = 1, 2, . . . , n.
(c) For each m = 1, 2, . . . , n, player Pk checks if

hi
mk = hi

k(m) (1)

If there are at least t+1 formulas that are not via checking, Pk broadcasts
a complaint against Pi.

(d) Each player Pi who receives at most t complaints broadcasts hi
k(x) that

satisfies Eq.1. Each of other n − 2 players, Pj , checks if hi
k(j) = hi

j(k).
If hi

k(j) = hi
j(k), Pj broadcasts “YES”, otherwise “NO ”.

(e) Any player Pi marks as disqualified if
– Pi received at least t + 1 complaints in Step (c), or
– there are at least t + 1 players that broadcast “NO ”in Step (d).

(f) Each player then builds the set of non-disqualified players Q.
(g) The distributed secret value s is not explicitly computed by any player,

but it equals s =
∑

i∈Qzi mod q. Each player Pi computes hi(x) =∑
j∈Qhj

i (x) =
∑

j∈Qfj(x, i), and sets his share of the secret as si =∑
j∈Qhj

i (0) mod q

3. Revealing y = sP

(a) Each player Pi, i ∈ Q, broadcasts A
(i)
0k = a

(i)
0kP for k = 0, 1, 2, . . . , t.



(b) Each player Pj , j ∈ Q verifies the values broadcast by the other players
in Q, namely, for each i ∈ Q, Pj checks if

hi
j(0)P =

t∑

k=0

jkA
(i)
0k (2)

If the check fails for an index i, Pj complains against Pi by broadcasting
the value hi

j(0) that satisfies Eq.1 but do not satisfies Eq.2.
(c) For players Pi who receive at least one valid complaint, i.e. value which

satisfies Eq.1 not Eq.2., the other players can jointly compute zi =
fi(0, 0), fi(0, z), and A

(i)
0k for k = 0, 1, . . . , t, with Lagrange interpola-

tion. For all players in Q, set yi = A
(i)
00 = ziP . Compute y =

∑
i∈Qyi.

3.2 Security Results of BDKG

The security properties of BDKG are stated in the following theorem.

Theorem2. In discrete-log based cryptosystems, protocol BDGK is a secure
protocol for the distributed generation of keys , namely, it satisfies the correctness
and secrecy requirements of definition 1 with threshold t, for any t < n−2

3 .

Proof of Correctness. We first note that all honest players in the protocol
compute the same set Q since the determination of which players are to be dis-
qualified depends on public broadcast information which is known to all (honest)
players.

(C1) To each i ∈ Q, then player Pi has successfully performed the sharing of
zi among all honest players, and each honest player Pj(j ∈ Q) receives its share
sij = hi

j(0) = fi(0, j) on zi. With these shares, we can get a unique polynomial
fi(0, x) which satisfies fi(0, 0) = zi. Thus, for any set R of t + 1 correct shares,

zi =
∑

j∈R

γjsij

where γj are appropriate Lagrange interpolation coefficients for the set R. Since
each honest party Pj computes its share sj of s as sj =

∑
i∈Qsij , then we have

that for the set R:

s =
∑

j∈Q
zj =

∑

j∈Q

∑

k∈R

γksjk =
∑

k∈R

γk(
∑

j∈Q
sjk) =

∑

k∈R

γksk

Since this holds for any set of t + 1 correct shares then s is uniquely defined.
(C2) The value y is computed (by the honest players) as y =

∑
i∈Qyi,

where the values of yi(= ziP ) are derived from information broadcast in the
protocol and thus known to all honest players. We need to show that indeed
y = sP where s =

∑
i∈Qzi. We will show that for i ∈ Q, yi = ziP , and

then y =
∑

i∈Qyi =
∑

i∈QziP = (
∑

i∈Qzi)P = sP . For players Pi( i ∈ Q)
against whom a valid complaint has been issued in Step 3b, value zi is publicly



reconstructed and yi set to ziP . Now we need to show that for Pi (i ∈ Q),
against whom a valid complaint has not been issued, the value yi is set to A

(i)
00 .

Values A
(i)
0k , k = 0, ..., t broadcast by player Pi define a t-degree polynomial

ĥi(x). Since we assume that no valid complaint was issued against Pi then the
under equation is satisfied for all honest players:

hi
j(0)P =

t∑

k=0

jkA
(i)
0k

and thus ĥi(x) and fi(0, x) have at least t+1 points in common, so ĥi(x)=fi(0, x),
and in particular yi=A

(i)
00 =fi(0, 0)P=ziP .

(C3)The secret s is defined as s =
∑

i∈Qzi. Note that as long as there is
one value zi in this sum that is chosen at random and independently from other
values in the sum, we are guaranteed to have uniform distribution of s. Also
note that the secret s and the components zi in the sum are already determined
at the end of Step 2 of BDKG (since neither the values zi nor the set Q change
later). Let Pi be a honest player, i ∈ Q, and suppose the adversary controls t
shares of fi(x, z). Without loss of generality, we assume he knows hi

1(x), hi
2(x),

. . ., hi
t(x),i.e, his view ViewA={hi

1(x), hi
2(x), . . ., hi

t(x)}. It is easy to show that,
for any value s′, we can find bij ∈ Zq, where b00 = s′, bij = bji, 0 ≤ i, j ≤ t such
that if

f
′
i (x, z) =

t∑

i,j=0

bijx
izj

then, f
′
i (x, 1) = hi

1(x), f
′
i (x, 2) = hi

2(x), . . ., f
′
i (x, t) = hi

t(x). That is to say,
ViewA does not contain any information of zi, i.e,

Prob[Pi has secret zi|ViewA)]=Prob[Pi has secret zi]= 1
q for all zi ∈ Zq.

Thus, it is independent of the view of the adversary that each honest Pi of Q
chooses zi. Hence the secret x is uniformly distributed.

Proof of Secrecy. To show that an adversary A, who compromises t′(≤ t)
players, is not able to learn any information about the private key s other than
the fact that it is the discrete log of the public key y, We provide a simulator SIM
for the BDKG protocol. Formally, a simulator is a probabilistic polynomial-time
algorithm that given y ∈ G, such that y = sP for some s, can produce a distri-
bution of messages that is indistinguishable from a normal run of the protocol
where the players controlled by the simulator are controlled instead by honest
players. This is the familiar technique used to show that zero-knowledge proofs
do not reveal any private information.

The input to the simulator is a y that could have been established at the end
of a normal run of the protocol. In the description and analysis of the simulator
we assume, without loss of generality, that the adversary A compromises players
P1, . . . , Pt′ , where t′ ≤ t. We denote the indices of the players controlled by



the adversary A by B= {1, ..., t′}, and the indices of the players controlled by
the simulator by G= {t′ + 1, ..., n}.

Consider the following algorithm for the simulator, SIM:

1. Perform Steps 1-2 on behalf of the uncorrupted players Pt′+1, ..., Pn exactly
as in protocol BDKG. This includes receiving and processing the information
sent privately and publicly from corrupted players to honest ones. At the end
of Step 2 the following holds:
– The set Q is well-defined. Note that G⊆ Q and that polynomials fi(x, y)

for i ∈ G are chosen at random.
– The adversary’s view consists of polynomials fi(x, y) for i ∈ B, unique

polynomials hi
j(x)(=fi(x, j)) for i ∈ Q and j ∈ B.

– SIM knows all polynomials fi(x, z) for i ∈ Q (note that for i ∈ Q∩B the
honest parties, and hence SIM, receive enough consistent shares from
the adversary that allow SIM to compute all these parties’ polynomials
fi(x, y) ). SIM also knows all hi

j(x)(=fi(x, j)).
2. Perform the following calculations:

– Compute A
(i)
0k = a

(i)
0kP for i ∈ Q\{n}, k = 0, ..., t

– SetA(n)∗
00 = y − (

∑
i∈Q\{n}A

(i)
00 ).

– Assign hn∗
j (x) = hn

j (x) = fn(x, j) for j = 1, ..., t

– Compute A
(n)∗
0k = γk0A

(n)∗
00 +

∑t
i=1 γkih

n∗
i (0)P for k = 1, ..., t, where γki

are the Lagrange interpolation coefficients.
3. Broadcast A

(i)
0k for i ∈ G\{n}, and A

(n)∗
0k for k = 0, ..., t.

4. Perform the checks of step 3 of the algorithm for each player Pj ,j ∈ G, on the
A

(i)
0k , i ∈ B, broadcast by the players controlled by adversary and broadcast

any necessary complaints.
5. Perform Step 3c of the protocol on behalf of the uncorrupted parties, i.e.

compute fi(0, x) and zi in the clear with Lagrange interpolation for every
Pi against whom a valid accusation was broadcast in the previous step.

We will show that the view of the adversary A that interacts with SIM on
input y is the same as the view of A that interacts with the honest players in a
regular run of the protocol that outputs the given y as the public key.

In a regular run of protocol BDKG, A sees the following probability distri-
bution of data produced by the uncorrupted parties:

– Polynomials hi
j(x)(=fi(x, j)) for i ∈ G and j ∈ B, randomly chosen in Zq[x],

(since fi(x, y), which is a bivariate symmetrical polynomial over Zq of degree
t, is randomly chosen).

– Values A
(i)
0k , i ∈ G, k = 0, ..., t that correspond to exponents of coefficients

a
(i)
0k (i ∈ G, k = 0, ..., t) of randomly chosen bivariate symmetrical polynomials

fi(x, z).

Since here we are interested in runs of BDKG that end with the value y as the
public key output of the protocol, we note that the above distribution of values
is induced by the choice (of the good players) of polynomials fi(x, z) for i ∈ G,



uniformly distributed in the family of t-degree bivariate symmetrical polynomials
over Zq subject to the condition that

∑

i∈Q
A

(i)
00 = y.

In other words, t-degree bivariate symmetrical polynomials fi(x, z) (i ∈ G\{n})
and fn(x, z) over Zq which are randomly chosen satisfy

fn(0, 0) = logy
P −

∑
i∈Q\{n}fi(0, 0)mod q,

where logy
P denotes logarithm s if y = sP , P is a generator of group G.

We show that the simulator SIM outputs a probability distribution which
is identical to the above distribution. First note that the above distribution
depends on the set Q defined at the end of Step 2 of the protocol. Since all
the simulator’s actions in Step 1 of the simulator are identical to the actions
of honest players interacting with A in a real run of the protocol, thus we are
assured that the set Q is defined at the end of this simulation step identically
to its value in the real protocol. We now describe the output distribution of
SIM in terms of t-degree polynomials f∗i (x, z) corresponding to the choices of
the simulator when simulating the actions of the honest players and defined as
follows:

– f∗i (x, z)=fi(x, z) for i ∈ G\{n}
– f∗n(0, 0) = logA

(n)∗
00

P , f∗n(x, j)=hn∗
j (x) = hn

j (x)=fn(x, j) for j = 1, . . . , t.

It can be seen that by this definition that the values of these polynomials eval-
uated at the points j ∈ B coincide with the values fi(x, j) which are seen by
the corrupted players in Step 2a of the protocol. Also, the coefficients of these
polynomials agree with the exponentials A

(i)
0k , i ∈ G\{n} and A

(n)∗
0k published

by the simulator in Step 2 on behalf of the honest parties and corresponding
to the players’ values in Step 3a of the protocol. Thus, these values pass the
verifications of Eq.(1) and (2) as in the real protocol.

It remains to be shown that polynomials f∗i (x, z) belong to the right distri-
bution. Indeed, for i ∈ G\{n} this is immediate since they are defined identically
to fi(x, z) which are chosen according to the uniform distribution. For f∗n(x, z)
we see f∗n(x, j)=fn(x, j) for j = 1, ..., t, get random values f∗n(0, j)=f∗n(0, j) for

j = 1, ..., t, and then compute f∗n(0, x) by f∗n(0, 0) = logA
(n)∗
00

P and Lagrange in-
terpolation formula. We set f∗n(x, 0)=f∗n(0, x), and compute f∗n(x, z) by f∗n(x, j)
for j = 0, ..., t and Lagrange interpolation formula. Since fn(x, j)(=f∗n(x, j)) for
j = 1, ..., t are chosen in Step 1 random and independent polynomials, then so
is f∗n(x, j).

3.3 Efficiency

BDKG consists of two phases. In first phase, BDKG does not require expensive
computation. In second phase, each player Pj , j ∈ Q, participating in the dis-
tributed key generation in BDKG, computes t + 1 values A

(j)
0k = a

(j)
0k P for k =



0, 1, 2, . . . , t and performs (|Q|−1) verifications of form hi
j(0)P =

∑t
k=0 jkA

(i)
0k

where i ∈ Q\{j} and |Q| denotes the number of elements of Q. In other words,
each player Pj , j ∈ Q, computes |Q|(t + 1) exponentiations6 over the group G.
Similarly, if BDKG is performed in Zp, we also have the result that each player
Pj , j ∈ Q, computes |Q|(t + 1) modular exponentiations over Zp. While each
player Pj , j ∈ Q, participating in the distributed key generation in [5] and [9],
computes at least n(t+1) and (n+ |Q|)(t+1)) modular exponentiations over Zp

respectively. The computational cost of the schemes in [13, 14] is more than that
of schemes in [5] and [9], because the schemes in [13, 14] are based on homomor-
phic encryption with proof of fairness. Thus, compared with other schemes, our
scheme, BDKG, is very efficient computationally.

4 New Member Joining Based on BDKG

In this section, we present new-member-joining protocols based on BDKG.

4.1 New-Member-Joining Protocol

We consider the following case: To perform some specific task, e.g, distributed
signature, the private key generator (PKG, for short) of ID-based cryptography,
etc, a group, G, is initially formed by n players P1, P2, . . ., Pn that jointly
generate a pair of public and private keys < s, y > of G and among whom t + 1
players can reconstruct the private key s, where s ∈ Z∗q , y = sP , P is a generator
of G which is a cyclic additive group of prime order q. To be better competent
for its works in some environments, for example, mobile ad hoc networks, G is
often required to be highly dynamic and decentralized: New players may join the
group G at any time, and when they do, they must be provided with shares of
private key s, by the other players in G (since it may be unreasonable to assume
that a trusted entity is able to provide a new player with such share). The above
case that we describe often occurs in lots of application, e.g, [16, 17, 18, 24, 25].

We assume that the above private key s is generated by n players P1, P2, . . .,
Pn with our new scheme, BDKG. We also assume that these n players jointly
generate a bivariate symmetrical polynomial as follows,

f(x, z) =
t∑

i=0,j=0

aijx
izj , and f(0, 0) = s,

and each player Pi, i ∈ {1, 2, 3, . . . , n}, gets a share hi(x)(= f(x, i)) of f(x, z)
and a share si(= hi(0) = f(0, i)) of s.

When a good player wants to join G, we assume that this new player has a
secure channel with each player of G and present two protocols to according to
the two kinds of cases introduced in Section 1, Protocol1 and Protocol2.

6 Exponentiation over the additive cyclic group G: Given a generation P of G, x ∈ Zq

where q is a large prime, compute xP .



– Protocol1:
Protocol1 is based on the assumption that each player of G is honest. When a
new player Pnew joins G, he requests and receives corresponding information
from at least t + 1 players from G. More specifically the protocol must be
realized as follows:
1. Pnew chooses a set G0 of at least t + 1 players from G. Without loss of

generality, we assume this set of players is G0={ P1, P2, . . ., Pt+1}.
2. Pnew requests to be accepted as a member of G.
3. Each Pi of G0 sends to Pnew the piece of information hi(new).
4. Then, Pnew computes his share polynomial hnew of f(x, z) with hnew(i) =

hi(new) and Lagrange interpolation:

hnew(x) =
t+1∑

i=1

∏

i 6=j

x− j

i− j
hnew(i) =

t+1∑

i=1

∏

i 6=j

x− j

i− j
hi(new)

– Protocol2:
Apparently, the above protocol is based on the assumption that each player
of G is honest. However, this kind of assumption is impractical or impossible
in many contexts. We must consider the case that some players of G are
dishonest. We assume that there are at most k (k ≤ t) dishonest players in
G and modify the above protocol as follows.
1. Pnew chooses a set G0 of at least n players from G. Without loss of

generality, we assume this set of players is G0={ P1, P2, . . ., Pn}.
2. Pnew requests to be accepted as a member of G.
3. Each Pi of G0 sends to Pnew the piece of information hi(new), yi(= siP ).
4. Then, Pnew computes as follows:

(S1, snew, hnew(x)) = EC-Interpolate(h1(new), h2(new), . . . , hn(new))
(S2, vnew, gnew(x)) = EC-Interpolate(y1, y2, . . . , yn)

∗5. Compute ynew = snewP , choose t players Pi1, . . ., Pit from S1 ∩ S1, get
function g1(x)P by polynomial interpolation for ynew, yi1, . . . , yit, where
g1(x) is a polynomial with degree of t.

∗6. Pnew accepts snew and hnew(x) and regards snew as a share of private
key s if g1(0)P = vnew = sP .

In Protocol2, we use notation (S, v, f(x)) =EC-Interpolate(v1, v2, . . ., vn) for
public reconstruction of a value through polynomial interpolation with the use
of error-correcting codes. If {v1, v2, . . . , vn} is a set of values such that at least
n−k of them lie on f(x), where f(x) is either polynomial or a function with form
of f1(x)P ( f1(x) is polynomial ) , and n > 2k + t, then v =EC-Interpolate(v1,
v2, . . ., vn)=f(0), S is a set which consists of the index of vi which lie on f(x).
The polynomial can be computed using the method of [32] or any other standard
error-correction mechanism, e.g. the Berlekamp-Welch decoder [26].

In Protocol2, Step 5 and Step 6 mainly make the new member Pnew believe
that snew held by him is a share of private key s. However, making use of the
shuffling technique presented by J. Kong et al.[19], we can ensure that private



key s is secure, but, we can not seem to convince Pnew that snew held by him is
a share of private key s .

4.2 Security of New-Member-Joining Protocol

The security of the new-member-joining protocol is defined in terms of correct-
ness and secrecy. Correctness property requires that, even though there are at
most k( k ≤ t) players dishonest, new member correctly gets a share of private
key s. By secrecy, we mean the following:

1. New member does not get any information on private key s.
2. Any d(d ≤ t) players in G do not get any information on a share of private

key s which is gotten and is held by new member.

Then, we have to ensure the correctness and the secrecy of our new-member-
joining protocol. In this section, we only discuss the security of Protocol2 since
Protocol1 is a special case of Procotol2. Because we assume that the number of
dishonest players is at most k( k ≤ t ) in our scheme, thus n > 2k + t, then the
correctness of Procotol2 is a direct result of [32]. Here we only prove the secrecy
of our scheme.

Lemma3. By Protocol2, new member does not get any information on s.

Proof. Assume players P1, . . ., Pn jointly generate bivariate symmetric poly-
nomial over Zq, i.e., f(x, z) =

∑t
i=0,j=0 aijx

izj satisfying f(0, 0) = s and
aij = aji, by BDKG. Thus, f(x, z) is denoted as f(x, z) = XT AY , where
X = (1, x, . . . , xt)T and Y = (1, y, . . . , yt)T , A is a symmetric matric, XT de-
notes the transpose of X. New member Pnew gets a share snew of private key
s and a polynomial hnew(x) =

∑t
i=0 aix

i = XT Z over Zq by BDKG, where
Z = (a0, a1, . . . , at)T . In order to prove that Pnew does not get any information
on private key s, we will show that, given any a ∈ Zq, there exists a sym-
metric matric Aa and a bivariate symmetric polynomial fa(x, y) = XT AaY
over Zq so that it satisfies fa(0, 0) = a and fa(new, x) ≡ hnew(x) (mod q).
In the rest of proof, we denote new as m and assume 1 ≤ m < q. Then
XT Z ≡ XT AaM (mod q), where M = (1,m, . . . , mt)T , i.e, for any X ∈ (Zq)t,
XT (AaM − Z) ≡ 0 (mod q). Thus, we get AaM ≡ Z (mod q) which is an
equations set regarding entries of Aa = (aij)1≤i≤n,1≤j≤n as variables. Because
we require that Aa is a symmetric matric and a11 = a, the above equations set
has t2−t

2 −1 free variables. Then there are q
t2−t

2 −1 symmetric matrices satisfying
the above equations set.

Lemma4. Any d(d ≤ t) players in G does not get any information on a share
of s which is gotten and is held by new member with Protocol2.

Proof. It is sufficient to prove the lemma in the case where d = t. If t players
in G does not get any information on a share sm of s which is gotten and is
held by new member Pm with Protocol2, then neither does fewer than t players.
Here, without loss of generality, let these t players P1, . . ., Pt. Then each Pi,



1 ≤ i ≤ t, gets hm(i)(= hi(m)). Because, for any a ∈ Zq, we can construct a
polynomial h0(x) which satisfies h0(0) = a, h0(1) = hm(1), . . ., h0(t) = hm(t).
Thus these t players don’t get any information on sm.

By above Lemma 3 and Lemma 4, we immediately get the following theorem.

Theorem5. Protocl2 has the secrecy property.

5 Conclusion

In this paper, we present a distributed key generation based on bivariate sym-
metric polynomials, BDKG. Compared with others solutions, our construction is
efficient in computation and simple and flexible in applications. BDKG is proven
secure only against a static adversary. However, we don’t know if it is secure or
not against an adaptive adversary. In addition, we also study the NMJ problem
and present a new-member-joining protocol which completely solve this prob-
lem. we also give a proof of the security of this new-member-joining protocol in
terms of correctness and secrecy.
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