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Abstract. We define hybrid multi-party computation (HMPC) and hybrid broadcast (HBC) in a model without broadcast channels
but assuming a signature scheme and a respective public-key infrastructure (PKI) among the players. The goal is to achieve un-
conditional (PKI- and signature-independent) security up to a certain threshold, and security beyond this threshold under stronger
assumptions, namely, that forgery of signatures is impossible and/or that the given PKI is consistent. We give a tight characterization
of when HMPC and HBC are possible.
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1 Introduction

In [LRM08] an optimal trade-off between full information-theoretic (IT) security and computational privacy is proven
for multi-party computation (MPC) in a setting where a broadcast channel is available. It appears natural to ask what can
be achieved in a setting where the broadcast channel is absent. For the case without additional resources this question
has been answered in [FHHW03] and [LRM08]. In this paper we discuss another very natural setting where a digital
(pseudo-)signature scheme and a respective public-key infrastructure (PKI) are provided — but no broadcast channels.
This setting was treated in [FHW04] with respect to three different levels of security to be achieved simultaneously. In
this setting, protocols are defined with respect to three thresholds tσ, tp, and T , where tσ, tp ≤ T . A protocol is said to
achieve hybrid security if it is secure under the following condition:

– t ≤ T players are corrupted, AND
– if t > tσ players are corrupted then the adversary cannot forge signatures, AND
– if t > tp players are corrupted then the underlying PKI is consistent.

We call such protocols hybrid protocols. In this paper we will provide protocols for hybrid broadcast (HBC) and hybrid
multi-party computation (HMPC) — see Sections 4 and 5 for more precise definitions. In the case of broadcast, our
protocols will always achieve full-fledged broadcast. In contrast, MPC protocols can only achieve full security (typically
characterized by the conditions correctness, privacy, robustness, and fairness) if T < N/2 since fairness cannot be
achieved beyond [Cle86]. We thus allow the possibility of unfair abort whenever necessary (i.e., exactly under the tight
conditions in [LRM08]) — but still abort with agreement, i.e., either no honest player aborts or all honest players do. We
show that HBC is possible if and only if

T + 2tσ < N ∧ (tp > 0 ⇒ 2T + tp < N) , (1)

and that, essentially, the same bound is tight for the achievability of HMPC.

2 Model

We assume that the players share a complete synchronous network of pairwise secure channels (for HBC alone, authen-
ticated channels are sufficient). No broadcast channels are available. Instead, the players share a PKI with respect to a
given (pseudo-)signature scheme. Still, the PKI might be inconsistent, or the adversary might be able to forge respective
signatures.

3 Contribution and Outline

The treatment in [FHW04] is restricted to robust HMPC (implying T < N/2) — for which they give a tight bound. In
particular, they do not give bounds on the achievability of HBC for T ≥ N/2. In this paper we give a tight bound for the
achievability of HBC for general T , tσ, and tp. This result then naturally extends to HMPC.

We first focus on HBC in Section 4 and demonstrate full HMPC in Section 5. In these sections, the protocols are
shown to be stand-alone secure. UC security is demonstrated in Section 6. Our bounds are shown to be tight in Section 7.

4 Hybrid Broadcast (HBC)

Definition 1 (BC). A protocol among a player set P , |P | = N , where a player ps ∈ P (the sender) inputs a value xs

and every player pi ∈ P outputs a value yi achieves broadcast (BC) if the following conditions hold:

VALIDITY. If the sender is honest then every honest player pi outputs yi = xs.
CONSISTENCY. Every honest player pi outputs the same value yi = y.
TERMINATION. All honest players terminate the protocol. �

Definition 2 (HBC). A protocol among N players with thresholds tσ, tp, and T (tp, tσ ≤ T ) achieves hybrid broadcast
(HBC) if it achieves broadcast under corruption of t players and the following conditions:
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• if t ≤ min(tp, tσ) (unconditionally),
• if (t ≤ tσ ∧ tp < t ≤ T ) and the PKI is consistent,
• if (t ≤ tp ∧ tσ < t ≤ T ) and the adversary cannot forge signatures of honest players.
• if max(tσ, tp) < t ≤ T , the PKI is consistent, and the adversary cannot forge signatures of honest players. �

Let us recall the claimed bound for the achievability of HBC:

T + 2tσ < n ∧ (tp > 0 ⇒ 2T + tp < n) .

In order to demonstrate achievability it is sufficient to restrict our treatment to the case where tp = 0 since tp > 0
implies T < N/2 — a subcase for which a protocol has already been given in [FHW04]. Another restriction we apply is
to assume the underlying PKI to be consistent; and give a generic way how to fix a possibly bad PKI later in Section 4.3.

For our construction of a HBC protocol, a protocol to satisfy the following definition will be constructed as a building
block first.

Definition 3 (Broadcast with extended validity (BCEV) [FHHW03]). A broadcast protocol with sender ps achieves
broadcast with extended validity with respect to thresholds tσ and T ≥ tσ if

tσ-BROADCAST: if t ≤ tσ players are corrupted the protocol achieves broadcast unconditionally,
T -VALIDITY: if tσ < t ≤ T players are corrupted and the adversary cannot forge signatures then the protocol achieves

the validity condition of broadcast. �

For simplicity, we will restrict our treatment to binary input-message domains in the sequel. Protocols for larger
domains can be easily achieved by running binary protocols in parallel.

4.1 An Efficient Protocol for BCEV

Protocol Πbcev is described by the local view of each player pi (see Figure 1). Let σi(x) be a signature by player pi on
value x. Let BGP be the efficient, perfectly secure broadcast protocol in [BGP89] tolerating t < N/3 corrupted players
— it starts with its sender sending his input to every player in the first round.

– In Step 1 of Protocol Πbcev, the sender ps distributes the pair (xs, σs(xs)) where xs is his input and σs(xs) is a
signature by ps on xs.

– In Step 2, each player pj redistributes the received pair with an instance of the BGP protocol. Let (vj,0
i , σj,0

i ) be the
initial (first-round) message that pi receives during the BGP instance with sender pj , and (vj

i , σ
j
i ) the respective final

broadcast result. Player pi now assembles player sets Sv,0
i and Sv

i for each value v ∈ {0, 1} — where j ∈ Sv,0
i means

that pj sent v with a valid signature by ps during the first round of his BGP protocol; and j ∈ Sv
i means that v together

with a valid signature by ps was received as the final result of pj’s BGP.
– Depending on the cardinalities of the sets Sv,0

i and Sv
i , pi now decides as depicted in Figure 1.

1. ps: send (xs, σs(xs)). [receive (xi, σi)]

2. ∀pj : BGP((xi, σi)). [∀j: receive ((vj,0
i , σj,0

i ), (vj
i , σ

j
i ))]

Sv,0
i := {j|vj,0

i = v ∧ σj,0
i valid}; Sv

i := {j|vj
i = v ∧ σj

i valid};

3. if |Sxi,0
i | ≥ N − T ∧ |S1−xi

i | = 0 then yi := xi (I)

elsif |S0
i | > |S1

i | then yi := 0 else yi := 1 (II)

fi

Fig. 1. Protocol Πbcev.

Lemma 1. Assuming a consistent PKI, Protocol Πbcev (Figure 1) efficiently achieves BCEV if T + 2tσ < N .

Proof. Efficiency easily follows by inspection of the protocol. Let the number of corrupted players be t. Note that T +
2tσ < n (tσ ≤ T ) or tσ = 0 implies that tσ < N/3 and thus that BGP works correctly for t ≤ tσ.
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• Broadcast (t ≤ tσ): Validity. If ps is honest and t ≤ tσ then honest pi sees |Sxs,0
i | ≥ N − tσ, |Sxs

i | ≥ N − tσ, and
|S1−xs

i | ≤ tσ < N − tσ. Thus pi decides on yi = xs according to either Branches (I) or (II).
• Broadcast (t ≤ tσ): Consistency. If no honest pi decides according to Branch (I) then all honest pi decide on the same

value since they have the same view of the sets Sv
i . Thus, for the rest, let us assume that some honest pi decides

according to Branch (I). Thus |Sxi,0
i | ≥ N − T and |S1−xi

i | = 0. We distinguish two cases.
1. honest pj also decides according to (I). Since at most tσ of the players in Sxi,0

i are corrupted, player pj sees
|Sxi

j | ≥ N −T − tσ > 0. Thus xj = 1−xi is not possible since Sxi
j is not empty. Thus xj = xi, and consistency

follows.
2. honest pj decides according to (II). Since BGP is reliable (tσ < N/3), it follows that S1−xi

j = S1−xi
i = ∅. On

the other hand, Sxi
j is not empty: Since there are at least |Sxi

i | − t ≥ N − T − tσ > 0 honest players ph ∈ Sxi
i ,

these players ph must have sent xi also during the first round of BGP (see beginning of this section). Thus, pj

sees |Sxi
j | > 0, and consistency follows by majority in Branch (II).

• T -Validity. It remains to demonstrate validity for tσ < t ≤ T . Since the adversary cannot forge signatures in this case,
an honest player pi sees |Sxs,0

i | ≥ N − T and S1−xs
i = ∅ and thus computes yi = xs. ut

4.2 Achieving HBC from BCEV

Protocol Π
tp=0
hbc (see Figure 2) is described by the local view of each player pi. Let ps be the sender, ins the sender input,

and outi the broadcast output of player pi. Let DS-BC denote the efficient broadcast protocol in [DS82] tolerating any
number of corrupted players, relying on a PKI and respective signatures.

– In Step 1 of Protocol Π
tp=0
hbc , the sender ps distributes his input ins by an instance of DS-BC.

– In Step 2 the sender distributes his input ins by an instance of Πbcev (see previous section).
– In Step 3, each player pi signs his BCEV result and sends the BCEV result together with the signature to every

player.1

– Now, for each pi,
• if some value v was received in Step 3 by at least N − tσ different players pj together with correct signatures by

the pj then pi broadcasts the respective signatures with an instance of DS-BC and outputs outi = v;
• else pi distributes the empty set with an instance of DS-BC and then computes his output in the following way: If

there is a value v such that at least N − tσ valid signatures (originating from different players) were received by
some player during this step then outi = v, otherwise pi accepts the result of the initial DS-BC by the sender as
his final output.

1. Run Protocol DS-BC on sender input ins. [receive xi]
2. Run Protocol Πbcev on sender input ins. [receive yi]
3. Send yi, signed. [for each pj , receive zj

i ]
4. if some value v was received at least N − tσ times as zj

i = v for different j’s with correct
signatures then DS-broadcast the respective signatures and outi := v, [receive Sj

i ] (I)
else DS-broadcast ∅. [receive Sj

i ]
If there is a value v and a set Sj

i consisting of valid signatures on v and |Sj
i | ≥ N − tσ then

outi := v (II)
else outi := xi (III)
fi

fi

Fig. 2. Protocol Π
tp=0

hbc .

Lemma 2. Assuming a consistent PKI, Protocol Π
tp=0
hbc efficiently achieves hybrid broadcast if T + 2tσ < N .

Proof. Efficiency easily follows by inspection of the protocol. Let the number of corrupted players be t.

• t ≤ tσ. Protocol Πbcev achieves broadcast, all N − tσ honest players correctly sign their values yj and resend them in
Step 3. Since N − tσ > N/2, every honest player pi uniquely decides on outi = yi = ins in Step 4.

1 by using some unique message tag in order to separate these signatures from those in DS-BC
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• T corruptions. It remains to demonstrate broadcast for the case that tσ < t ≤ T . Note that the adversary cannot forge
signatures of honest players in this case.

Validity. If honest pi decides on (I) then value outi was propagated by at least N − tσ − T > tσ honest players in
Step 3, and thus outi = ins because of T -validity of BCEV. If honest pi decides on (II) then at least N−tσ−T >
tσ honest players must have signed value outi (with Step-3 tagging), and thus outi = ins because of T -validity
of BCEV. If honest pi decides on (III) then outi = ins by validity of DS-BC.

Consistency. If no honest player decides on (I) then all honest players agree since their decisions are based solely on
information that was DS-broadcasted, and thus on a common view. Thus, assume that there is an honest player pj

who decides on (I). Note that pi cannot decide on (III) because |Sj
i | ≥ N − tσ.

1. Honest pi decides on (I): because of pj’s situation pi sees at least N − tσ − T > tσ signatures on outi by
honest players, and thus outi = outj since value 1− outi cannot have enough support.

2. Honest pi decides on (II): for some pk, |Sk
i | ≥ N − tσ, and at least N − tσ − T > tσ honest players signed

outi (but no other value with the message tag for Step 3). Thus less than N − tσ players ever signed value
1− outi, and thus outj = outi. ut

4.3 Fixing the PKI

In the previous section we assumed that the given PKI was always consistent. However, since tp = 0, this is not guaranteed
in our model for the case that t = 0 players are corrupted, i.e., that all players are honest. We now fix this by giving a
generic construction on how to transform a possibly bad PKI into a consistent one under the condition that tp = 0. The
transformation is based on the protocol FGHHS in [FGH+02] for detectable precomputation of a PKI tolerating any
number of corrupted players. This protocol sets up a (possibly inconsistent) PKI with the additional properties that

– either all honest players accept the protocol outcome, or all honest players reject;
– if no player is corrupted then all players accept the protocol outcome;
– if the players accept the protocol outcome then the PKI is consistent.

The transformation works as follows: LetPKI be the given PKI that might be inconsistent. Before executing the HBC
protocol, an instance of FGHHS is executed resulting in an alternative PKI instance PKI ′ that might also be inconsistent.

However, if all honest players accept then the new PKI PKI is consistent and the players can use the given HBC
protocol together with the new PKI instead. If the honest players reject then some player must be corrupted (t > 0), and
the original PKI PKI is consistent by assumption. In this case, the players run the protocol together with the original
PKI.

Lemma 3. HBC is efficiently achievable if

T + 2tσ < N ∧ (tp > 0 ⇒ 2T + tp < N) .

Proof. The case tp > 0 follows from [FHW04]. The case tp = 0 follows from Lem. 2 and the discussion of this section.
ut

We denote the HBC protocol achieving the bound above by Πhbc. Protocol Πhbc, for tPKI = 0, runs FGHHS and
Π

tp=0
hbc , and for tPKI > 0 runs the BC protocol from [FHW04].

Theorem 1. HBC is (efficiently) achievable if and only if

T + 2tσ < N ∧ (tp > 0 ⇒ 2T + tp < N) .

Proof. Achievability follows from Lem. 3. Impossibility beyond the given bounds follows from Lem. 8 in Section 7. ut
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5 Hybrid Multi-Party Computation (HMPC)

We now consider Hybrid Multi-Party Computation (HMPC). As for HBC, the exact guarantees provided by HMPC de-
pend on the number t of corrupted players. As in the treatment of HBC, we define thresholds tσ for tolerating adversaries
that may forge signatures, and tp for tolerating inconsistent PKIs. Additionally we introduce a threshold tc for tolerating
computationally unbounded adversaries.2 Moreover, we define robustness limits along the lines of [LRM08], that qualify
which robustness properties we guarantee for a given t: For t ≤ `r we guarantee fully secure (robust) MPC, for t ≤ `f

we guarantee fair secure MPC (with privacy, correctness, agreement, and fair abort), and for t ≤ L we guarantee abort
secure MPC (with privacy, correctness, agreement, and unfair abort). For t > L we make no security guarantees. The
threshold T for basic security is not necessary in this context, as its role has been taken by the limit L.

We will, after proving a first general result, derive more specific results with a substantially reduced number of
parameters.

Definition 4 (Hybrid Multi-Party Computation (HMPC)). Let tσ, tp, tc be thresholds, and `r, `f , L be limits. Let a
PKI and a complete network of secure channels be given. Consider an adversary corrupting t players in the following
adversarial setting:

1. if t > tc then the adversary is computationally bounded, otherwise it may be unbounded,
2. if t > tσ then the adversary cannot forge signatures, otherwise it may be able to do so,
3. if t > tp then the PKI is consistent, otherwise it may be inconsistent.

A protocol then achieves hybrid multi-party computation (HMPC) if it achieves

1. fully secure MPC (privacy, correctness, agreement, and robustness) for t ≤ `r,
2. fair secure MPC (privacy, correctness, agreement, and fair abort) for `r < t ≤ `f ,
3. abort secure MPC (privacy, correctness, agreement, and unfair abort) for `f < t ≤ L. �

In [LRM08], for the model with broadcast channels, N -player MPC is defined with respect to a limit `r = ρ, and
implicitly defined limits `f , L. In keeping with the above definition of these limits, the MPC protocol πρ

SA of [LRM08] is
fully secure for t ≤ `r, fair secure for t ≤ `f , and abort secure for t ≤ L corrupted parties.3

They demonstrate the following bound for the achievability of such MPC:

`r ≤ `f ≤ L ∧ 2tc < N ∧ 2`f < N ∧ L + `r < N . (2)

This bound is tight as shown in [IKLP06,Kat07,Cle86,Kil00] and discussed in [LRM08]. Naturally this bound also applies
to our weaker model, where only a PKI is provided in place of a BC channel. We will subsequently show that HMPC
which is fully secure for t ≤ max(tσ, tp) is achievable if and only if both the bounds from Eq. (2) and Lem. 3 are
satified, i.e.:

Theorem 2 (Bounds for HMPC). HMPC with thresholds tσ, tp, tc, `r, `f , and L that is fully secure for t ≤ max(tσ, tp)
(i.e. where `r ≤ max(tσ, tp)) is achievable if and only if

L + 2tσ < N ∧ (tp > 0 ⇒ 2L + tp < N) ∧ (3)

`r ≤ `f ≤ L ∧ 2tc < N ∧ 2`f < N ∧ L + `r < N .

5.1 Proof of Thm. 2

We first argue the necessity of the bound in Thm. 2. The necessity of the bounds in Eq. (2) inherited from [LRM08] is
argued there. Naturally these bounds also apply to our weaker model, where only a PKI is provided in place of a BC
channel. It remains to show that the bounds of Lem. 3 are necessary. This does not follow from the fact that they are
necessary for HBC. As HMPC only guarantees privacy, correctness, agreement, and unfair abort for `f < t ≤ L, HMPC

2 In the preceding sections we could always tolerate computationally unbounded adversaries, as long as they were unable to forge (pseudo-
)signatures for t > tσ . For the following discussion, we will sometimes need to restrict ourselves to computationally bounded adversaries. Thus,
we introduce an additional threshold tc.

3 For now, we use the stand-alone secure protocol variant πρ
SA of the protocol of [LRM08]. The UC setting will be discussed in the next section.
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does not imply HBC. Rather it implies non-robust HBC (NRHBC, for short). NRHBC is the same as HBC except except
that robustness is not required for t > max(tσ, tp). In Sec. 7 we prove that the bounds of Lem. 3 are necessary, not only
for HBC but even for NRHBC, thus proving necessity of the bounds in Thm. 2.

We now argue sufficiency, by exhibiting an HMPC protocol that achieves the bounds above. We combine the MPC
protocol πρ

SA of [LRM08] with our HBC protocol Πhbc, thus deriving an MPC protocol πρ
SA ◦Πhbc for the model with a

PKI instead of a BC channel.3 The MPC protocol πρ
SA of [LRM08] is fully secure for t ≤ `r, fair secure for t ≤ `f , and

abort secure for t ≤ L corrupted parties. The protocol Πhbc is secure under the bounds of Thm. 1.
In principle, we could choose thresholds for the protocols πρ

SA and Πhbc independently. The MPC protocol πρ
SA ◦

Πhbc is then secure whenever both the BC protocol Πhbc and the MPC protocol πρ
SA are secure. In particular, the MPC

protocol πρ
SA ◦Πhbc becomes insecure for t > min(L, T ), as beyond this point either the BC protocol Πhbc (for t > T ) or

the MPC protocol πρ
SA (for t > L) becomes insecure. Hence, lowering the higher of the two parameters to the value of the

lower one loses nothing, but gives increased flexibility in choosing the remaining parameters. As such we may without
loss set T = L. We will for the remainder of this section refer to this parameter as L, as in the definition of HMPC.

Given the fact that the MPC protocol πρ
SA ◦Πhbc exhibits the security properties of protocol πρ

SA, whenever it is run
with a correct BC channel, we arrive at the following:

Theorem 3 (Security of πρ
SA ◦Πhbc). Let a PKI and a complete network of secure channels be given. Let tσ, tp, tc, `r,

`f , and L be thresholds as in Thm 2

L + 2tσ < N ∧ (tp > 0 ⇒ 2L + tp < N) ∧ (4)

`r ≤ `f ≤ L ∧ 2tc < N ∧ 2`f < N ∧ L + `r < N .

Consider a static adversary corrupting t players in the following adversarial setting:

1. if t > tc then the adversary is computationally bounded, otherwise it may be unbounded
2. if tσ < t ≤ L then the adversary cannot forge signatures, otherwise it may be able to do so,
3. if tp < t ≤ L then the PKI is consistent, otherwise it may be inconsistent.

The protocol πρ
SA ◦ Πhbc then achieves hybrid multi-party computation (HMPC). In other words protocol πρ

SA ◦ Πhbc

achieves

1. fully secure MPC (privacy, correctness, agreement, and robustness) for t ≤ `r,
2. fair secure MPC (privacy, correctness, agreement, and fair abort) for `r < t ≤ `f ,
3. abort secure MPC (privacy, correctness, agreement, and unfair abort) for `f < t ≤ L. �

Proof. Thm. 3 follows directly from the properties of the MPC protocol πρ and of the HBC protocol Πhbc as discussed
above. ut

Showing that protocol πρ
SA ◦Πhbc is a secure HMPC protocol achieving the bounds of Eq. (4) completes the proof of

Thm. 2. ut

5.2 Simplifications

We may simplify the statement of Thm. 3 considerably, by varying just one parameter and deriving the remaining so that
they are maximal under the bounds of Eq. (4). The parameters tc and `f are independent of all other parameters and we
may fix them to their maximal possible value tc = `f =

⌊
N−1

2

⌋
. We now consider two cases: tp = 0 and tp > 0.

For tp > 0 we have L < N
2 by Eq. (4). We can by the bounds in Eq. (4) maximally set `r = L. We thus arrive at an

MPC protocol with properties as in [FHW04]:

Corollary 1 (Security of πρ
SA ◦Πhbc for tp > 0). Let a PKI and a complete network of secure channels be given. Let tσ,

tp, and L be thresholds such that

L + 2tσ < N ∧ 2L + tp < N . (5)

Consider an unbounded static adversary corrupting t players in the following adversarial setting:
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1. if tσ < t ≤ L then the adversary cannot forge signatures, otherwise it may be able to do so,
2. if tp < t ≤ L then the PKI is consistent, otherwise it may be inconsistent.

The protocol πρ
SA ◦Πhbc then achieves fully secure MPC for t ≤ L.

For tp = 0 we obtain new results that go beyond those of [FHW04]. Let us take tσ as a free parameter. As there are no
guarantees for tσ > L, we may assume tσ ≤ L. By Eq. (4), then we have tσ < N

3 . Maximizing the remaining thresholds
under the bounds of Eq. (4) we arrive at the following:

Corollary 2 (Security of πρ
SA ◦ Πhbc for tp = 0). Let tσ < N

3 and let a PKI (guaranteed to be consistent for t >
0 as tp = 0) and a complete and synchronous network of secure channels be given. Consider an unbounded static
adversary corrupting t players that, for tσ < t ≤ L, cannot forge signatures (otherwise it may be able to do so). MPC
protocol πρ

SA ◦Πhbc is then

1. fully secure for t ≤ min(2tσ, N − 2tσ − 1),
2. secure with fairness (but without robustness) for t < min(N

2 , N − 2tσ),
3. secure with agreement on abort (but without fairness) for t < N − 2tσ.

To see that Cor. 2 provides results beyond those of [FHW04], consider, e.g., the choice tσ = N
5 , resulting in a

protocol that provides security with agreement on abort (but without fairness) for t < N − 2tσ = 3
5N . As such we

provide guarantees exceeding the limit t < N
2 of [FHW04].

6 UC Security

We now place our result into the context of universally composable (UC) security.

6.1 Security Definitions and Notations

We follow the Universal Composability (UC) paradigm [PW00,Can01,BPW04]4, which defines a simulation-based se-
curity model. The security of a protocol (the real world) is defined with respect to an ideal world, where the computation
is performed by a Trusted Third Party or Ideal Functionality F. Informally, a protocol π achieves security if whatever an
adversary can achieve in the real world could also be achieved in the ideal world.

More precisely, let P = {P1, . . . ,PN} be the set of players, and define [N ] := {1, . . . , N} Then, in the real world,
there is a given set of resources R (e.g., authenticated or secure channels, BC channels, a PKI) and for each honest
player Pi a protocol machine πi is connected to the resources R. Let H ⊆ P denote the set of such honest players.
Corrupted players Pi access the resources directly. Let A = P \ H denote the set of corrupted players. The ideal world
consists of the ideal functionality F and an ideal adversary (or simulator) S connected to F.

A protocol π achieves security if, for every possible set of corrupted players A, there is a simulator S such that no
environment or distinguisher D can tell the real world and the ideal world apart.5 For this purpose, the distinguisher
directly interacts with either one of the two systems, and in the end outputs a decision bit.

In contrast to [Can01] we use a synchronous communication model with static corruption. As resources R we will
generally assume a complete network NetN of synchronous secure channels.6

In this model, a strong composition theorem can be proven [PW00,Can01,BPW04]. In other words, UC security
states that wherever a protocol π is used, we can indistinguishably replace this protocol by the corresponding ideal
functionality F together with an appropriate simulator. This follows from the free interaction between the distinguisher
and the system during the execution, which implicitly models that outputs of the system can be used in arbitrary other
protocols, even before the execution ends.7

4 We follow the UC model of [Can01] in spirit, but do not adhere to the notation of [Can01].
5 In this model, the adversary is thought of as being part of the distinguisher. Canetti [Can01] shows that this is equivalent since the security

definition quantifies over all distinguishers.
6 In [Can01], resources R are modeled as ideal functionalities available in a hybrid model.
7 This is in contrast to a stand-alone definition of security where the distinguisher is restricted to providing input in the beginning of the computa-

tion, and receiving output only at the end.
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Definition 5 (Universally Composable (UC) Security). A protocol π UC securely implements an ideal functionality F
if ∀A, ∃SA, ∀D : |Pr[D(SA(F)) = 1] − Pr[D(πH(R)) = 1]| ≤ ε(κ). Here ε(κ) denotes a negligible function in
the security parameter κ, F denotes the ideal functionality to be implemented, πH denotes the protocol machines of
the honest players in H, and R denotes the resources available to the protocol machines. If we admit computationally
unbounded distinguishers we obtain information-theoretic (IT) security, if we restrict ourselves to efficient distinguishers
and simulators we arrive at computational (CO) security.

We generally only consider efficient simulators, since otherwise, IT security does not imply CO security. We discuss
hybrid-secure protocols that provide different security properties depending on the number of corrupted players and on
the computational setting. As such we will use corruption and computational model-aware functionalities that exhibit dif-
ferent behavior depending on the number t of corrupted players and on the computational setting (bounded or unbounded
adversaries). We will say that a protocol π UC securely implements an ideal functionality F if π securely implements F
in both the CO and the IT setting.

We will, in the following, generally be interested in MPC, i.e., in securely implementing an arbitrary N -player func-
tionality F. We thus model implementing a functionality F with subsets of the security properties privacy, correctness,
robustness, fairness, and agreement on abort. We describe the following four specific security notions:

Full Security. Computing functionality F with privacy, correctness and robustness, which implies all the security
notions mentioned above, is modeled by functionality F itself, since, in the setting which we consider, demanding a
secure implementation of functionality F already amounts to demanding full security.

Fair Security. Demanding privacy, correctness and fairness (which implies agreement on abort) only for function-
ality F is captured by the ideal functionality Ffair, which operates as follows: Ffair internally runs F. Any inputs to F
are forwarded, as are any messages F may output to the adversary. If F makes an output y, then Ffair request an output
flag o ∈ {0, 1} from the adversary, defaulting to o = 1 if the adversary makes no suitable input. Finally, for o = 1
functionality Ffair makes output y to all players, for o = 0 it halts.

Abort Security. The functionality Fab, specifying privacy, correctness and agreement on abort only, works like Ffair

but forwards output y to the adversary before requesting an output flag.8

No Security. The functionality FnoSec models demanding no security whatsoever: Functionality FnoSec turns control
over to the adversary by forwarding all inputs from the honest players to the adversary and letting the adversary fix all
outputs to honest players.

As a simulator SnoSec can use the inputs of honest players to simulate honest protocol machines, this already proves
the following (rather trivial) lemma:

Lemma 4. Any protocol π UC securely implements the ideal model FnoSec.

6.2 UC Security of HBC

In our synchronous variant of the UC setting, BC can be formalized by means of an ideal BC functionality bc, which
behaves as follows: When an arbitrary player Ps gives input xs, functionality bc outputs (xs, s) to all players.

Similarly we can formalize HBC using a functionality bctσ ,tp,T : The behavior of functionality bctσ ,tp,T depends on
the number of corrupted players t and adversarial setting: Functionality bctσ ,tp,T gives up and turns over control to the
adversary,

– if t > T or
– if t > tσ and the adversary can forge signatures or
– if t > tp and the PKI is inconsistent.

Otherwise functionality bctσ ,tp,T behaves exactly like the plain BC functionality bc

Lemma 5 (UC security of HBC). Protocol Πhbc efficiently implements functionality bctσ ,tp,T whenever

T + 2tσ < N ∧ (tp > 0 ⇒ 2T + tp < N) .

8 We could relax the definition further by allowing the adversary to send one output flag for each player, dropping agreement on abort. However,
all our protocols will achieve agreement on abort.
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Proof of Lem. 5 Efficiency easily follows by inspection of the protocols. We show that the protocol Πhbc indeed im-
plements functionality bctσ ,tp,T whenever T + 2tσ < N ∧ (tp > 0 ⇒ 2T + tp < N) by providing an appropriate
simulator Sbc:

The simulator Sbc connects to the interfaces of corrupted players to functionality bctσ ,tp,T . In any situation where
functionality bctσ ,tp,T turns over control to the adversary simulation is trivial and we have nothing to show. Otherwise,
simulator Sbc internally emulates the protocol machines Π i

hbc for the honest players Pi and an instance of the PKI. The
connections to corrupted players are exposed the adversary.

Let Pi be the honest player with the smallest index i, and Pj be the corrupted player with the smallest index j.
If the internally emulated protocol machine of player Pi outputs (xs, s) where Ps is corrupted, then Sbc inputs xs to

bctσ ,tp,T via the interface of Ps.
The simulator Sbc identically emulates the same protocol machines Π i

hbc in the ideal model that the honest players run
in the real model. This means ideal and real model are perfectly indistinguishable, as long as the outputs of all emulated
protocol machines match the outputs of the ideal functionality bctσ ,tp,T . This amounts to nothing else then demanding
consistency and validity as proven above.

6.3 UC Secure HMPC

We now translate Sec. 5 to the UC setting. First, we formalize HMPC by providing an ideal functionality Fhyb
tσ ,tp,tc,`r,`f ,L.

This functionality evaluates an arbitrary N -player functionality F with the HMPC properties:

Definition 6 (Functionality Fhyb
tσ ,tp,tc,`r,`f ,L). Given an arbitrary N -player functionality F, functionality Fhyb

tσ ,tp,tc,`r,`f ,L

behaves as follows:

1. If t > tc and the adversary is computationally unbounded, or
2. if t > tσ and the adversary can forge signatures, or
3. if t > tp and the PKI is inconsistent, or
4. if t > L

functionality Fhyb
tσ ,tp,tc,`r,`f ,L turns over control to the adversary by running FnoSec. Otherwise functionality Fhyb

tσ ,tp,tc,`r,`f ,L

behaves like

1. functionality F (full security) for t ≤ `r,
2. functionality Ffair (fair security) for `r < t ≤ `f ,
3. functionality Fab (abort security) for `f < t ≤ L. �

Consider the protocol πρ◦Πhbc obtained from the MPC protocol πρ of [LRM08] by using out HBC protocol Πhbc for
broadcasts. As for the stand-alone setting in Sec. 5 we now show that protocol πρ ◦Πhbc is a UC secure HMPC protocol
in the following sense: Protocol πρ ◦Πhbc can implement an HMPC for an arbitrary N -player functionality F under the
bounds of Eq. (4).

To avoid the impossibility results of [Can01,CF01], we have to move to the CRS-model where a common reference
string CRS drawn from a prescribed distribution is made available to all players. So, we will generally assume as re-
sources R a common reference string CRS and a complete network NetN of synchronous secure channels.A correctly
chosen CRS is a prerequisite to the security of the protocols from [LRM08].9

Theorem 4 (Security of πρ ◦ Πhbc). Given an arbitrary N -player functionality F, protocol πρ ◦ Πhbc UC securely
implements functionality Fhyb

tσ ,tp,tc,`r,`f ,L from a complete network of synchronous secure channels and a CRS for any
choice of thresholds respecting

L + 2tσ < N ∧ (tp > 0 ⇒ 2L + tp < N) ∧ (6)

`r ≤ `f ≤ L ∧ 2tc < N ∧ 2`f < N ∧ L + `r < N .

in presence of an active, static adversary.
9 As noted in [LRM08], it is possible to minimize the reliance on the CRS such that our protocols tolerate an adversarially chosen CRS for

few corrupted players by applying techniques from [GK08,GO07] and a (t, 2t − 1)-combiner for commitments (e.g. [Her05]). However, this
construction is beyond the scope of this paper.
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Proof. The proof of Thm. 4 is almost trivial. By Lem. 5 the BC protocol Πhbc implements functionality bctσ ,tp,T under
the bounds of Lem. 3. According to the UC Theorem it is hence sufficient to prove that protocol πρ ◦bctσ ,tp,L implements
functionality Fhyb

tσ ,tp,tc,`r,`f ,L. Now, by the choice of bounds in the definition of functionality Fhyb
tσ ,tp,tc,`r,`f ,L, we find: In any

setting where functionality Fhyb
tσ ,tp,tc,`r,`f ,L does not turn over control to the adversary, the functionality bctσ ,tp,T behaves

exactly like a plain bc. But on a plain bc, protocol πρ precisely the guarantees made by functionality Fhyb
tσ ,tp,tc,`r,`f ,L (also

see [LRM08]). ut

Results along the lines of Cor. 1 and Cor. 2 are easily translated to the UC setting. We refrain from restating them
here.

7 Impossibility

We demonstrate impossibility of HMPC beyond the bounds of Lem. 2 by showing that the special case of an HMPC,
namely (unfair) non-robust HBC (NRHBC, for short), is not achievable. NRHBC is the same as HBC except that robust-
ness is not required for t > max(tσ, tp).

Definition 7 (NRBC). A protocol among a player set P , |P | = N , where a player ps ∈ P (the sender) inputs a value
xs 6= ⊥ and every player pi ∈ P outputs a value yi achieves non-robust broadcast (NRBC) if the following conditions
hold:

VALIDITY. If the sender is honest then either every honest player pi outputs yi = xs or every honest player pi outputs
yi = ⊥.

CONSISTENCY. Every honest player pi outputs the same value (where ⊥ is an allowed output).
TERMINATION. All honest players terminate the protocol. �

Definition 8 (NRHBC). A protocol among a player set P , |P | = N , where a player ps ∈ P (the sender) inputs a value
xs 6= ⊥ and every player pi ∈ P outputs a value yi achieves non-robust hybrid broadcast (NRHBC) if the following
conditions hold:

• if t ≤ max(tp, tσ) then the protocol achieves broadcast,
• if max(tp, tσ) < t ≤ T then the protocol achieves non-robust broadcast. �

Impossibility of NRHBC beyond the bounds of Lem. 2 can be shown along the lines of [FLM86] and [FHW04] by
demonstrating the impossibility of the following two special cases:

1. First, we show that NRHBC is impossible if tp = 0, tσ > 0, and T + 2tσ ≥ N .
2. Second, we show that NRHBC is impossible if tσ = 0, tp > 0, and 2T + tp ≥ N .

7.1 Impossibility of T + 2tσ ≥ N when tσ > 0.

For the sake of contradiction, assume a protocol that achieves NRHBC under these conditions among a player set P ,
|P | = N ≥ 3. We can partition the players in to three sets P0, P1, and P2, with cardinalities |P0| ≤ T and |P1|, |P2| ≤ tσ
where the sender ps is in P0. Let p′i be a copy of player pi ∈ P0 and P ′

0 = {p′i|pi ∈ P0} where player p′i holds the same
protocol information as pi. We show that the assumed protocol leads to a contradiction when we connect the players in
P ′ = P0 ∪ P1 ∪ P2 ∪ P ′

0 in a certain way and let the protocol run.
The players are connected in the following way — see Figure 3. Exactly all pairs in (P0 ∪ P1) × (P0 ∪ P1), (P1 ∪

P2)× (P1 ∪ P2), and (P2 ∪ P ′
0)× (P2 ∪ P ′

0) are connected by pairwise channels meaning that a message that normally
would be sent from pi ∈ P2 to pj ∈ P0 is sent from pi to p′j ∈ P ′

0 instead, and that p′j communicates with the players in
P2 ∪ P ′

0 as it would with the players in P2 ∪ P0 under normal conditions. Note that no further connections exist.
We first show that for input xs = 0 of the original sender ps and input x′s = 1 of the sender’s copy p′s the joint view

among the different sets P0 ∪ P1, P1 ∪ P2, and P2 ∪ P ′
0, are indistinguishable from their joint view in a protocol under

normal conditions where the adversary corrupts the remaining players.



11

Fig. 3. Simulated system by the adversary for the case tσ > 0

Joint view of P0 ∪ P1 with xs = 0. By corrupting all players in P2 in the original system the adversary simulates all
players in P2 ∪ P ′

0 of the new system. Since |P2| ≤ tσ, the adversary can forge all signatures by players in P ′
0 required

for the simulation. Thus the joint view of the players in P0 ∪ P1 in the original system is exactly the same as their view
in the new system.

Joint view of P2 ∪ P ′
0 with x′s = 1. By symmetry, this case follows from the above paragraph.

Joint view of P1 ∪ P2. By corrupting all players in P0 in the original system the adversary can simulate all players in
P0 ∪ P ′

0 of the new system. Note that, by corrupting the players in P0, the adversary gains access to all corresponding
secret keys and thus is not required to forge any signatures for the simulation. Thus the joint view of the players in P1∪P2

in the original system is exactly the same as their view in the new system.

Contradiction. The assumption that the given protocol achieves NRHBC implies that the players pi ∈ P0 ∪ P1 must
agree on yi = xs = 0 since the adversary corrupting the at most tσ players in P2 implies that t ≤ max(tσ, tp). By the
same argument, the players pj ∈ P2 ∪ P ′

0 must agree on yj = x′s = 1. However, this implies that the players in P1 and
the players in P2 disagree on their outputs in contradiction to the definition of NRHBC. This implies that NRHBC is not
achievable under these conditions.

Lemma 6. If tσ > 0 then NRHBC is not achievable if T + 2tσ ≥ N .

Proof. The proof follows from the above discussion. ut

7.2 Impossibility of 2T + tp ≥ N when tp > 0.

We proceed in the same way as in the previous section. We can partition the players in to three sets P0, P1, and P2, with
cardinalities |P0| ≤ tp and |P1|, |P2| ≤ T where the sender ps is in P0. Let p′i, P ′

0, and P ′ be defined as in the previous
section.

The players are connected in the following way — see Figure 4. Exactly all pairs in (P0∪P1)×(P0∪P1), (P1∪P2)×
(P1 ∪ P2), and (P2 ∪ P ′

0)× (P2 ∪ P ′
0) are connected as in the previous section. Additionally, for all players p′i ∈ P ′

0 the
old secret-key/public-key pair is erased and replaced by a random valid pair (SK′

i, PK′
i); and for all players pj ∈ P2 ∪ P ′

0

pj’s copy of PKi is replaced by PK′
i.

Fig. 4. Simulated system by the adversary for the case tp > 0
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We again show that for input xs = 0 of the original sender ps and input x′s = 1 of the sender’s copy p′s the joint view
among the different sets P0 ∪ P1, P1 ∪ P2, and P2 ∪ P ′

0, are indistinguishable from their joint view in a protocol under
normal conditions where the adversary corrupts the remaining players.

Joint view of P0 ∪ P1 with xs = 0. By corrupting all players in P2 in the original system the adversary simulates all
players in P2 ∪ P ′

0 of the new system. For all pi ∈ P ′
0 it generates a random valid secret-key/public-key pair (SK′

i, PK′
i)

and overwrites pi’s own secret key, and, for all pj ∈ P2 ∪ P ′
0, overwrites pj’s copy of pi’s public key. The PKI among

the players in P0 ∪ P1 is still fully consistent and thus the joint view of the players in P0 ∪ P1 in the original system is
exactly the same as their view in the new system.

Joint view of P2 ∪ P ′
0 with x′s = 1. By symmetry, this case follows from the above case.

Joint view of P1 and P2. Since |P0| ≤ tp the adversary can have previously made the PKI inconsistent by generating and
respectively distributing the key pairs (SK′

i, PK′
i) for all pi ∈ P ′

0 (according to Figure 4). By corrupting all players in P0

in the original system the adversary can now simulate all players in P0 ∪P ′
0 of the new system. Thus the joint view of the

players in P1 ∪ P2 in the original system is exactly the same as their view in the new system.

Contradiction. Assuming the protocol to achieve NRHBC now implies that the players pi ∈ P0∪P1 must agree on either
yi = xs = 0 or yi = ⊥ since at most T players are corrupted. By the same argumentation, the players pj ∈ P2 ∪P ′

0 must
agree on either yj = x′s = 1 or yj = ⊥. However, this implies that the players in P1 and the players in P2 either disagree
on their outputs or jointly output ⊥ — which is not allowed under the corruption of t ≤ tp players. This concludes that
NRHBC is not achievable under these conditions.

Lemma 7. If tp > 0 then NRHBC is not achievable if 2T + tp ≥ N .

Proof. The proof follows from the above discussion. ut

Lemma 8. NRHBC, HBC, and HMPC, are not not achievable if tσ > 0 and T +2tσ ≥ N , or if tp > 0 and 2T +tp ≥ N .

Proof. The lemma follows from Lem. 6, Lem. 7, the fact that HBC implies NRHBC, and the fact that NRHBC is an
instance of HMPC. ut

8 Conclusions

We describe a hybrid broadcast (HBC) protocol Π
tp=0
hbc and, building on it, a hybrid MPC (HMPC) protocol πρ ◦Π

tp=0
hbc

for a setting where a PKI and a complete network of secure channels, but no broadcast channels are provided. We thereby
extend the work of [LRM08] to the setting where a PKI is available instead of a BC channel, and we extend the work of
[FHW04] to the setting where robustness is not always required.

Our protocols achieve different levels of security, depending on the number t of corrupted players:

– For t ≤ tσ we tolerate adversaries that may forge signatures,
– for t ≤ tp we tolerate inconsistent PKIs,
– for t ≤ T we achieve broadcast.

Furthemore we have a number of limits that pertain to HMPC only:

– For t ≤ tc we tolerate computationally unbounded adversaries,
– for t ≤ `r we guarantee fully secure MPC (with privacy, correctness, agreement, and robustness),
– for t ≤ `f we guarantee fair secure MPC (with privacy, correctness, agreement, and fair abort),
– for t ≤ L we guarantee abort secure MPC (with privacy, correctness, agreement, and unfair abort).

We demonstrate that our HBC and HMPC protocols are optimal by showing that HBC is achievable if and only if

T + 2tσ < n ∧ (tp > 0 ⇒ 2T + tp < n) .

and that HMPC (with the minimal robustness requirement `r ≥ max(tσ, tp)) is achievable if and only if

L + 2tσ < N ∧ (tp > 0 ⇒ 2L + tp < N) ∧
`r ≤ `f ≤ L ∧ 2tc < N ∧ 2`f < N ∧ L + `r < N .
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