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Abstract. Generic constructions of designated confirmer signatures follow one of the following two strategies;
either produce a digital signature on the message to be signed, then encrypt the resulting signature, or produce
a commitment on the message, encrypt the string used to generate the commitment and finally sign the latter.
We study the second strategy by determining the exact security property needed in the encryption to achieve
secure constructions. This study infers the exclusion of a useful type of encryption from the design due an
intrinsic weakness in the paradigm. Next, we propose a simple method to remediate to this weakness and we
get efficient constructions which can be used withanydigital signature.
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1 Introduction

Digital signatures were introduced in [13] as an analogous to signatures in the paper world to seize most
properties needed in a signature, for instance, the universal verification. However, in some applications,
the signer might want to restrain the holder of a signature from convincing other parties of the validity
of the signature in question. A typical illustration of sucha need is this real-life scenario from [19].
An employer issues a job offer to a certain candidate. Naturally, the employer needs to compete with
the other job offers in order to attract the good candidate. Therefore, he does not wish the offer to
be revealed to his competitors. At the same time, the candidate needs more than a verbal or unsigned
agreement in order to protect himself from the employer not keeping his promise. Undeniable signatures,
introduced in [10], provide a good solution to this problem as they are: 1. only verified with the help
of the signer, 2. non transferable, 3. binding in the sense that a signer cannot deny a signature he has
actually issued. The only drawback of these signatures is that unavailability of the signer obstructs
the entire process. To overcome this problem, designated confirmer signatures were introduced in [8],
where the confirmation/denial of a signature is delegated toa designated confirmer. With this solution,
the signer can confirm only signatures he has just generated,whilst the confirmer can confirm/deny any
signature. Actually, in the literature, there is a clear separation between confirmer signatures anddirected
signatures[23], which share the same concept as confirmer signatures with the exception of allowing
both the signer and the confirmer to confirm/deny signatures.Finally, a desirable property in designated
confirmer signatures is the convertibility of the signatures to ordinary ones. Indeed, looking at the job
scenario, it would be preferable to be able to convert the contract of the candidate, once he officially
joins the company, to a universally verifiable one instead ofhaving to issue a new contract.

1.1 Related work

Since the introduction of confirmer signatures, a number of attempts have been made to produce them
from basic primitives. Most such proposals fall into one of the following two categories:

“Encryption of a signature” approach. This approach consists in first producing a digital signature
on the message to be signed, then encrypting the produced signature using a suitable cryptosystem. The



construction was first formally1 described in [6], and required the components to meet the highest secu-
rity notions (EUF-CMA signatures and IND-CCA encryption).The main weakness of the construction
lies in the resort to concurrent zero knowledge (ZK) protocols of general NP statements in the confirma-
tion/denial protocol. Later, the construction in [19] managed to circumvent the problem by encrypting
the digital signature during the confirmation protocol. With this trick, the authors managed to get rid
of concurrent ZK proofs of general NP statements in the confirmation protocol (the denial protocol
still suffers the recourse to such proofs), but at the expense of the security and the length of the result-
ing signatures. Another construction implementing this principle is given in [11]; the construction uses
cryptosystems with labels and is analyzed in a more elaborate security model. However, it is supplied
with only one efficient instantiation as the confirmation/denial protocols still resort to concurrent ZK
protocols of general NP statements. Finally, the last proposal in this category is given in [22], where
we propose a construction using certain cryptosystems thatare required to be only IND-CPA secure.
As a consequence, we manage to get efficient confirmation/denial protocols in case the construction is
instantiated from a specific class of signature schemes (similar to the one considered in [19]). Moreover,
the resulting confirmer signatures are very efficient (smallgeneration/verification/conversion cost and
short signatures due to IND-CPA encryption) and they enjoy amaximal security. However, although the
considered class of digital signatures includes most proposals that appeared in the literature, there exists
some schemes which do not seem to belong to it, e.g., the PSS signature scheme [2].

“Signature of a commitment” approach. This technique consists in generating a commitment on
the message to be signed, then signing the produced commitment using a digital signature scheme.
The confirmer signature is comprised of both the commitment and the signature. The first proposal
that realizes this principle is [25] where a construction ofconfirmer signatures from digital signatures
obtained from the Fiat-Shamir paradigm is presented. Thus,the resulting confirmer signatures can be
only proven secure in the random oracle model (ROM), inheriting this property from the use of the
Fiat-Shamir paradigm, which constitutes their major shortcoming. Actually, it is well known, according
to [32], that most discrete-logarithm-based signatures obtained from the Fiat-Shamir technique are very
unlikely to preserve the same level of security in the standard model. Moreover, the construction does
not support the conversion of the confirmer signatures. In [16] and [35], a construction which supports
the conversion of the signatures and applies toanydigital signature scheme was proposed. The key idea
behind the proposal resides in augmenting the confirmer signature (comprised of the commitment and a
signature on it) by the encryption of the random string used to generate the commitment. Although the
confirmation/denial protocols involve general ZK proofs since the confirmer has to prove in concurrent
ZK the knowledge of the decryption of an IND-CCA encryption and of a string used for commitment,
the construction accepts an efficient instantiation using Camenisch-Shoup’s verifiable encryption scheme
[7] and Pedersen’s commitment scheme.

To finish the exhaustive list of constructions of confirmer signatures, we must cite the first construc-
tion due to Okamoto [28], which was used to prove equivalencebetween confirmer signatures and public
key encryption with respect to existence. Thus, efficiency was not taken into account in the framework.
There is also the construction [26] which uses an undeniablesignature among its building blocks and
provides a restricted security (under lunch time attacks) in the ROM. Finally, In [35], the authors pro-
posed a second construction which does not require any encryption, but at the expense of the underlying
security assumption. In fact, it has its invisibility resting on the decisional Diffie-Hellman assumption,
which rules out using the scheme in bilinear groups and thus benefiting from the attractive features they
present such as achieving short group elements. Moreover, the construction suffers also the recourse to
the ROM.

In this paper, we revisit the second approach, namely the “signature of a commitment” method. In
fact, efficient as the first approach is, it still applies onlyto a restricted class of signatures. This is clearly

1 The idea without proof was already known, for instance, it was mentioned in [12].
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manifested in the constructions in [19] or [22] which do not seem to be plausible with the signature
PSS [2]. Our goal is to further improve the “commit then sign”method in terms of efficiency (signature
length and cost) and security by allowing more efficient instantiations of the encryption and commitment
schemes used as building blocks.

1.2 Contributions and key ideas

We make three contributions. First, we revisit the constructions implementing the “signature of a com-
mitment” paradigm, namely those provided in [16, 35]. We prove that indistinguishable cryptosystems
under aplaintext checking attack(IND-PCA secure) are necessary and sufficient to obtain secure con-
firmer signatures. Our approach is similar to the one provided in [22] to study the “encryption of a
signature” technique. In fact, we first exclude non malleable encryption from the design (NM-CPA se-
cure cryptosystems), which rules out the weaker notions that are IND-CPA and OW-CPA. We do this
by means of an efficient tool, called meta-reductions, whichwas used in a number of important cryp-
tographic results [4, 32, 31, 30]. Then, we exclude the OW-CCA notion by a similar technique, which
again rules out the OW-PCA notion. The notion that has to be considered next is IND-PCA which luck-
ily turns out to be sufficient to achieve secure constructions. We conclude that, although we mange to
weaken the assumption on the encryption (from IND-CCA as claimed in [16, 35] to IND-PCA), the
construction still cannot allow homomorphic encryption inthe design since a homomorphic cryptosys-
tem can never be IND-PCA secure. This is unfortunate since such encryption proved to be efficient
decryption verifiable (see [22] for an illustration), i.e.,possesses efficient ZK protocols for proving the
knowledge of the plaintext underlying a given ciphertext, and such a property in profoundly needed in
the confirmation/denial protocols.

In the second contribution, we tackle the problem of homomorphic encryption in the design; we show
that using a small trick that consists in producing the digital signature on the commitmentconcatenated
with the encryption of the string used in the commitmentsuffices to make the security needed in the
encryption drop drastically to being only IND-CPA secure. The key idea is to remark that the original
construction is not strongly unforgeable, i.e., one can produce a valid confirmer signature without the
help of the signer, which explains the need for a decryption or a plaintext checking oracle (CCA or
PCA security) to handle such signatures. With the small trick, we are able to annihilate this weakness
and allow a weak encryption in the design without compromising the overall security. As a result, we
achieve better performances that manifest in a short signature, a small signature generation, verification
and conversion cost, and finally more efficient instantiations of the construction (instead of using only
Camenisch-Shoup encryption and Pedersen commitment) by allowing homomorphic encryption.

Finally, our last contribution sheds light on a particular sub-case of the “signature of a commitment”
paradigm, which consists in using IND-CPA encryption instead of the commitment scheme. In fact,
it is well known that IND-CPA encryption yields secure commitment schemes, which makes such an
instantiation plausible. However, the bright side of this technique consists in not requiring the encryption
of the random string anymore. Thus, a confirmer signature on agiven message can be achieved by
encrypting the message to be signed, then producing a digital signature on this encryption. The pair
consisting of the encryption and the resulting signature forms the confirmer signature on the message.
This method clearly improves the original paradigm, however it necessitates efficient non-interactive
proofs of knowledge. This is no longer a problem nowadays dueto the progress of research made recently
in this area, e.g., [21].

2 Convertible Designated Confirmer Signatures (CDCS)

Since their introduction, many definitions and security models for CDCS have emerged. We adhere to
the following model which implies many popular models for CDCS, for instance, the one adopted in
[16, 35], where constructions from the “signature of a commitment” method were provided.
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We refer to Appendix A for the comparison of the present modelwith the other models, as well as
for the necessary cryptographic primitives that will come into use, that are, digital signatures, public key
encryption schemes, commitment schemes, and finallyΣ protocols.

2.1 Syntax

A CDCS scheme consists of the following procedures:

Key generation.Generates probabilistically key pairs(skS , pkS) and(skC , pkC) for the signer and for
the confirmer respectively, consisting of the private and the public key.

ConfirmedSign.On inputskS , pkC and a messagem, outputs a confirmer signature signatureµ, then
interacts with the signature recipient to convince him of the validity of the just generated signature.

Confirmation/Denial protocol.These are interactive protocols between the confirmer and a verifier.
Their common input consists of, in addition topkS andpkC , the alleged signatureµ, and the mes-
sagem in question. The confirmer uses his private keyskC to convince the verifier of the validity
(invalidity) of the signatureµ onm. At the end, the verifier either accepts or rejects the proof.

Selective conversion.This is an algorithm run by the confirmer usingskC , in addition topkC andpkS .
The result is either⊥ or a string which allows the signature to be universally verified as a valid
digital signature.

Selective verification.This is an algorithm for verifying converted signatures. Itinputs the converted
signature, the message andpkS and outputs either0 or 1.

Remark 1.In [16, 35], the authors give the possibility of obtainingdirectly digital signatures on a given
message. We find this unnecessary since it is already enough that a CDCS scheme supports the convert-
ibility feature. Moreover, in [11], the author considers a further protocol used by the confirmer to prove
the correctness of the conversion. We will see that all the constructions provided in this paper extend
readily to this augmented model.

2.2 Security model.

The above algorithms must be complete. Moreover the confirmedSign, confirmation and denial protocols
must be complete, sound and zero knowledge. In the sequel, wedescribe two further properties that a
CDCS scheme should meet.

Security for the signer (unforgeability).It is defined through the following game: the adversaryA is
given the public parameters of the CDCS scheme, namelypkS andpkC , the public key of the signer
and of the confirmer resp, in addition to the private keyskC of the confirmer.A is further allowed to
query the signer on polynomially many messages, sayqs. At the end,A outputs a pair consisting of
a messagem, that has not been queried yet, and a stringµ.A wins the game ifµ is a valid confirmer
signature onm. We say that a CDCS scheme is(t, ǫ, qs)-EUF-CMA secure if there is no adversary,
operating in timet, that wins the above game with probability greater thanǫ.

Security for the confirmer (invisibility).Invisibility against a chosen message attack (INV1-CMA) is
defined through the following game between an attackerA and his challengerR: afterA gets the
public parameters of the scheme fromR, he startsPhase 1where he queries the signing, confirma-
tion/denial, selective conversion oracles in an adaptive way. OnceA decides thatPhase 1is over, he
outputs two messagesm0,m1 that have not been queried before to the signing oracle and requests
a challenge signatureµ⋆. R picks uniformly at random a bitb ∈ {0, 1}. Thenµ⋆ is generated us-
ing the signing oracle on the messagemb. Next,A starts adaptively querying the previous oracles
(Phase 2), with the exception of not queryingm0,m1 to the signing oracle and(mi, µ

⋆), i = 0, 1,
to the confirmation/denial and selective conversion oracles. At the end,A outputs a bitb′. He wins
the game ifb = b′. We defineA’s advantage asadv(A) = |Pr[b = b′] − 1

2 |. We say that a CDCS
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scheme is(t, ǫ, qs, qv, qsc)-INV1-CMA secure if no adversary operating in timet, issuingqs queries
to the signing oracle,qv queries to the confirmation/denial oracles andqsc queries to the selective
conversion oracle wins the above game with advantage greater thatǫ.

3 The Plain “Signature of a Commitment” Paradigm

The first construction of CDCS that realizes the “Signature of a Commitment” principle was given in
[16], then it was refined in [35]. This construction devises aconvertible confirmer signature (CDCS)
using an EUF-CMA signature schemeΣ, an IND-CCA encryption schemeΓ with labels and a se-
cure commitment schemeΩ. The signer key pair consists of(Σ.pk, Σ.sk), corresponding to the key
pair of the signature schemeΣ, whereas the confirmer key pair consists of(Γ.sk, Γ.sk) which cor-
responds to the key pair related toΓ . To sign a messagem, the signer first computes a commit-
mentc on the message, then encrypts, under the labelm‖Σ.pk, the random string used for the com-
mitment, sayr, and finally, signs the commitmentc usingΣ.sk. The confirmer signature consists of
the triple(Γ.encryptΓ.pk,m‖Σ.pk(r), c = Ω.commit(m, r), Σ.signΣ.sk(c)). To confirm/deny a signature
µ = (µ1, µ2, µ3) on a given messagem, the confirmer first checks whetherµ3 is a valid digital sig-
nature onµ2 w.r.t. Σ.pk, if so, he provides a concurrent ZK proof (using his private key Γ.sk) of the
equality/inequality of the decryption ofµ1 and the opening value of the commitmentµ2 w.r.t.m. Such a
proof is plausible since the encryption and commitment algorithms in a cryptosystem and a commitment
scheme resp define an NP (co-NP in case of inequality) language that accepts a zero knowledge proof
system. Note that the signer can also provide such a proof in case the alleged signature has just been
generated (using the randomness used to generate the encryption µ1). Selective conversion of a signa-
tureµ = (µ1, µ2, µ3) is achieved by releasing the decryption ofµ1, in caseµ is valid, or the symbol⊥
otherwise.

Completeness, soundness and non-transferability of the confirmedSign, confirmation/denial proto-
cols follow directly by using zero knowledge proofs of knowledge. Concerning unforgeability of the
resulting confirmer signatures, it rests on the EUF-CMA security and on the binding property of the
underlying digital signature scheme and commitment schemeresp. Finally, invisibility (INV1-CMA)
is attained by using an IND-CCA secure cryptosystem with labels and a secure commitment scheme.
Details about the proofs were not given so far, but are due to appear in a forthcoming paper (full version
of [35]). Since the paper is not available yet, we flesh out theproofs in Appendix B.

In the rest of this section, we prove that IND-PCA cryptosystems with labels are necessary and
sufficient to obtain invisible signatures. We must note herethat using cryptosystems with labels was
suggested in [35] to provide invisibility of the resulting signatures in a model where the attacker can
directly obtaindigital signatureson any message of his choice. As mentioned in Subsection 2.1,we do
not opt for this model since it is unnecessary, however cryptosystems with labels proved to be requisite
for the analysis that will follow.

3.1 The exact invisibility of the construction

In this subsection, we prove that IND-PCA cryptosystems with labels are necessary and sufficient to
achieve invisible signatures. Our study is similar to the one provided in [22] which analyzes the plain
“encryption of a signature” paradigm. Thus, we will first exclude NM-CPA secure cryptosystems with
labels from use, which will rule out automatically IND-CPA and OW-CPA cryptosystems. We do this
using an efficient algorithm (ameta-reduction) which transforms an algorithm (reduction), reducing
the invisibility of the confirmer signatures to the NM-CPA security of the underlying cryptosystem, to
an algorithm breaking the NM-CPA security of the same cryptosystem. Hence, such a result suggests
that under the assumption of the underlying cryptosystem being NM-CPA secure, there exists no such
a reduction, or if it (the cryptosystem) is not NM-CPA secure, such a reduction will be useless. Next,
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we exclude similarly OW-CCA cryptosystems from the design.The next security notion that has to be
considered is IND-PCA, which turns out to be sufficient to achieve invisibility. Likewise, our impossi-
bility results are in a first stage partial in the sense that they apply only tokey preservingreductions,
i.e., reductions which, trying to attack a property of a cryptosystem given by the public keypk, feed the
invisibility adversary with the confirmer public keypk. Next, we extend the result to arbitrary reductions
under some complexity assumption on the cryptosystem in question.

Lemma 1. Assume there exists a key-preserving reductionR that converts an INV1-CMA adversary
A against the above construction to an NM-CPA adversary against the underlying cryptosystem. Then,
there exists a meta-reductionM that NM-CPA breaks the cryptosystem in question.

As mentioned in the discussion above, the lemma claims that under the assumption of the underlying
cryptosystem being NM-CPA secure, there exists no key-preserving reductionR that reduces NM-CPA
breaking the cryptosystem in question to INV1-CMA breakingthe construction, or if there exists such an
algorithm, the underlying cryptosystem is not NM-CPA secure, thus rendering such a reduction useless.

Proof. LetR be a key-preserving reduction that reduces the invisibility of the construction to the NM-
CPA security of its underlying cryptosystem. We will construct an algorithmM that usesR to NM-CPA
break the same cryptosystem by simulating an execution of the INV1-CMA adversaryA against the
construction.

Let Γ be the cryptosystem with labelsM is trying to attack.M launchesR overΓ with the same
public key, sayΓ.pk.M, acting as the INV1-CMA adversary against the construction, queriesR on

m0,m1
R
←− {0, 1}⋆ for confirmer signatures. Then he queries the resulting stringsµ0 = (µ1

0, µ
2
0, µ

3
0)

andµ1 = (µ1
1, µ

2
1, µ

3
1) (corresponding to the confirmer signatures onm0 andm1 respectively) for a

selective conversion. Letr0 andr1 be the output decryption ofµ1
0 andµ1

1 resp (i.e., the randomnesses
used generate the commitmentsµ2

0 andµ2
1 on m0 andm1 resp). With overwhelming probability, we

haver0 6= r1
2, and if it is not the case,M will repeat the experiment until he obtains two differentr0

andr1. Then,M inputsD = {r0, r1} to his own challenger as a distribution probability from which

the plaintexts will be drawn. Moreover, he chooses uniformly at random a bitb
R
←− {0, 1} and outputs

to his challenger the challenge labelmb‖Σ.pk, whereΣ.pk is the public key of the digital signature
underlying the construction.M will receive as a challenge encryptionµ⋆

b . At that point,M will query
R on the string(µ⋆

b , µ
2
b , µ

3
b) and the messagemb for a selective conversion. If the result of such a

query is different from⊥, then,µ⋆
b is a valid encryption of the random string used to generate the

commitmentµ2
b , namelyrb.M will then output to his challenger an encryptionµ of rb under the same

challenge labelmb‖Σ.pk, whererb refers to the bit-complement of the elementrb, and the relationR:
R(r, r′) = (r′ = r). Otherwise, he will output an encryption ofr1−b (under the same challenge label)
and the same relationR. FinallyM aborts the game (stops simulating an INV1-CMA attacker against
the generic construction). ⊓⊔

Lemma 2. Assume there exists a key-preserving reductionR that converts an INV1-CMA adversaryA
against the above construction into a OW-CCA adversary against the underlying cryptosystem. Then,
there exists a meta-reductionM that OW-CCA breaks the cryptosystem in question.

Proof. The proof technique is similar to the one above. LetR be the key-preserving reduction that
reduces the invisibility of the construction to the OW-CCA security of the underlying cryptosystem.
We construct an algorithmM that usesR to OW-CCA break the same cryptosystem by simulating an
execution of the INV1-CMA adversaryA against the construction.

Let Γ be the cryptosystemM is trying to attack w.r.t. a public keyΓ.pk.M launchesR over Γ
with the same public keyΓ.pk. AfterM gets the labelL on whichR wishes to be challenged, he (M)

2 Actually, if R uses always the same string to produce the commitments, thenthe construction is clearly not invisible.

6



forwards it to his own challenger. Finally,M gets a challenge ciphertextc, that he forwards toR. Note
thatM is allowed to query the decryption oracle on any pair (ciphertext,label) except on the pair(c, L).
Thus, all decryption queries made byR, which are by definition different from the challenge(c, L),
can be forwarded toM’s own challenger. At some point,M, acting as an INV1-CMA attacker against
the construction, will output two messagesm0,m1 such thatL /∈ {m0‖Σ.pk,m1‖Σ.pk}, whereΣ.pk

is the public key of the digital signature underlying the construction.M gets as response a challenge
signatureµ⋆ = (µ⋆

1, µ
⋆
2, µ

⋆
3) which he is required to tell to which message it corresponds.Since the

messagesm0 andm1 were chosen such that the label under which is created the encryption µ⋆
1 (either

m0‖Σ.pk or m1‖Σ.pk) is different from the challenge labelL, M can query his decryption oracle
on both pairs(µ⋆

1,m0‖Σ.pk) or (µ⋆
1,m0‖Σ.pk). Result of such queries will enableM to open the

commitmentµ⋆
2, and thus check the validity of the signatureµ⋆ w.r.t. to one of messagesm0 or m1.

Finally, whenR outputs his answer, decryption of the challenge(c, L), M will simply forward this
result to his challenger. ⊓⊔

Thus, when the considered notions are obtained from pairinga security goal GOAL∈ {OW, IND, NM}
and an attack model ATK∈ {CPA, PCA, CCA}, we have

Theorem 1. The cryptosystem underlying the above construction must beat least IND-PCA secure, in
case the considered reduction is key-preserving, in order to achieve INV1-CMA secure signatures.⊓⊔

Similarly to the study in [22], we generalize the above theorem to arbitrary reductions if the cryp-
tosystem underlying the construction has anon malleable key generator(See Appendix C.1)

Theorem 2. If the cryptosystem underlying the above construction has anon malleable key generator,
then it must be at least IND-PCA secure in order to achieve INV1-CMA secure confirmer signatures.

We provide the proof in Appendix C.2.
One way to explain this result is to remark that the above construction is notstrongly unforgeable.

In fact, an adversaryA, given a valid signatureµ = (µ1, µ2, µ3) on a messagem, can create another
valid signatureµ′ on m without the help of the signer as follows;A will first request the selective
conversion ofµ to obtain the decryption ofµ1, sayr, which he will re-encrypt inµ′

1 under the same
labelm‖Σ.pk (Σ.pk is the public key of the digital signature underlying the construction). Obviously
µ′ = (µ′

1, µ2, µ3) is also a valid confirmer signature onm that the signer did not produce, and thus cannot
confirm/deny or convert without having access to a decryption oracle of the cryptosystem underlying the
construction. This explains the insufficiency of notions like IND-CPA, and the necessity of having the
cryptosystem IND-CCA secure in the invisibility claim of [35]. However, we observe that an IND-
CCA secure encryption is too much than needed in this framework since a query of the typeµ′ is not
completely uncontrolled by the signer. In fact, its first componentµ′

1 is an encryption of some data
already disclosed by the signer, namelyr, and thus a plaintext checking oracle is sufficient to deal with
such a query.

Theorem 3. The above construction is (t, ǫ, qs, qv, qsc)-INV1-CMA secure if it uses a(t, ǫ′, qs)-EUF-
CMA secure digital signature, a secure commitment and a (t+qsqsc(qsc+qv), ǫ·(1−ǫ′)(qsc+qv), qsc(qsc+
qv))-IND-PCA secure cryptosystem with labels.

We provide the proof in Appendix D.

4 An Efficient Construction from the “Signature of a Commitment” Paradigm

A simple way to eliminate the strong forgeability in signatures from the plain “signature of a commit-
ment” technique consists in producing a digital signature on both the commitment and the encryption of
the random string used in it. In this way, the attack discussed after Theorem 2 no longer applies, since
an adversary will have to produce a digital signature on the commitment and the re-encryption of the
random string used in it. We describe the full construction in the following paragraph.
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4.1 Construction

Let Σ be a signature scheme given byΣ.keygen that generates(Σ.pk, Σ.sk), Σ.sign and Σ.verify.
Let further Γ denote a cryptosystem given byΓ.keygen that generates(Γ.pk, Γ.sk), Γ.encrypt and
Γ.decrypt. We note thatΓ does need to support labels in our construction. Finally letΩ denote a com-
mitment scheme given byΩ.commit andΩ.open. We assume that either the ciphertexts produced byΓ
or the commitment values produced byΩ do not contain a special character, say⋄. The construction of
confirmer signatures fromΣ, Γ andΩ is given as follows.

Key generation.The signer key pair is(Σ.pk, Σ.sk) and the confirmer key pair is(Γ.pk, Γ.sk).
ConfirmedSign.On input messagem, produce a commitmentc onm using a random stringr, encrypt

this string ine and then produce a digital signatureσ = Σ.signΣ.sk(e‖ ⋄ ‖c). Outputµ = (e, c, σ) as
a confirmer signature onm, and prove in ZK the equality of the decryption ofe and the string used
for the commitmentc. This proof is possible using the randomness used to encryptr in e.

Confirmation/Denial protocol.On a messagem and an alleged signatureµ = (µ1, µ2, µ3), check the
validity of µ3 on µ1‖ ⋄ ‖µ2. In case it is not valid, produce⊥. Otherwise, compute the decryption

r of µ1 and check whetherr
?
= Ω.open(µ2,m), according to the result give a ZK of the equal-

ity/inequality of the decryption ofc andΩ.open(µ2,m).
Selective conversion.Proceed as in the confirmation/denial protocol with the exception of issuing the

decryption ofµ1 in case the signature is valid or the symbol⊥ otherwise.

4.2 Security analysis

First we note that completeness, soundness and the zero knowledge property of the confirmedSign, con-
firmation and denial protocols are ensured by using zero knowledge proofs of knowledge. Furthermore,
the construction is EUF-CMA secure and INV1-CMA secure if the underlying components are secure.

Theorem 4. The construction depicted above is(t, ǫ, qs)-EUF-CMA secure if uses a binding commit-
ment scheme and a(t, ǫ, qs)-EUF-CMA secure digital signature scheme.

Theorem 5. The construction depicted above is(t, ǫ, qs, qv, qsc)-INV1-CMA secure if it uses a(t, ǫ′, qs)-
EUF-CMA secure digital signature, a secure commitment and a(t+ qs(qv + qsc),

ǫ
2(1− ǫ′)qv+qsc)-IND-

CPA secure cryptosystem.

We provide the proofs of both theorems in Appendix E.

4.3 Efficiency analysis

We show in this paragraph that requesting the cryptosystem to be only IND-CPA secure improves the ef-
ficiency of constructions from the plain “signature of a commitment” paradigm from many sides. First, it
enhances the signature generation, verification and conversion cost as encryption and decryption is usu-
ally faster in IND-CPA secure encryption than in IND-CCA secure encryption (e.g., ElGamal vs Cramer-
Shoup or Paillier vs Camenisch-Shoup). Next, we achieve also a shorter signature since ciphertexts
produced using IND-CPA schemes are standardly shorter thantheir similars produced using IND-CCA
secure cryptosystems. Finally, we allow homomorphic encryption in the design, which will render the
confirmedSign/confirmation/denial protocols more efficient. In fact, in [16, 35], the signer/confirmer has
to prove in ZK the equality/inequality of the decryption of an IND-CCA encryption and an opening value
of a commitment scheme. Thus, the only efficient instantiation, that was provided, used Camenisch-
Shoup encryption and Pedersen commitment. In the rest of this subsection, we enlarge the category of
encryption/commitment schemes that yield efficient instantiations thanks to the allowance of homomor-
phic encryption in the design.
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Definition 1. (The class C of commitments) C is the set of all commitment schemes for which there
exists an algorithmCompute that on the input: the commitment public keypk, the messagem and the
commitmentc onm, computes a description of aone-way functionf : (G, ∗)→ (H, ◦s):

– where(G, ∗) is a group andH is a set equipped with the binary operation◦s ,
– ∀r, r′ ∈ G: f(r ∗ r′) = f(r) ◦s f(r′).

and anI ∈ H, such thatf(r) = I, wherer is the opening value ofc w.r.t. m.

It is easy to check that Pedersen’s commitment scheme is in this class. Actually, most commit-
ment schemes have this built-in property because it is oftenthe case that the committer wants to prove
efficiently that a commitment is produced on some message. This is possible if the functionf is homo-
morphic as shows Figure 1.

1. The prover choosesr′
R
←− G, computes and sendst1 = I ◦s f(r′) to the verifier.

2. The verifier choosesb
R
←− {0, 1} and sends it to the prover.

3. If b = 0, the prover sendsr′.
Otherwise, he sendsr ∗ r′.

4. If b = 0, the verifier checks thatt1 is computed as in Step 1.
Otherwise, he accepts iff(r ∗ r′) = t1.

l

Fig. 1. Proof system for membership to the language{r : f(r) = I} Common input: I andPrivate input : r

Theorem 6. The protocol depicted in Figure 1 is an efficientΣ protocol for proving knowledge of
preimages of the functionf described in Definition 1.

The proof will be given in Appendix F.1.
For encryption, we use the same classE that was defined in [22], with the exception of not requiring

the cryptosystems to be derived from the hybrid encryption paradigm.

Definition 2. (The class E of cryptosystems) E is the set of encryption schemesΓ that have the follow-
ing properties:

1. The message space is a groupM = (G, ∗) and the ciphertext spaceC is a set equipped with a binary
operation◦e.

2. Letm ∈M be a message andc its encryption with respect to a keypk. On the common inputm and
c, there exists an efficient zero knowledge proof ofm being the decryption ofc with respect topk.
The private input of the prover is either the private keysk, corresponding topk or the randomness
used to encryptm in c.

3. ∀m,m′ ∈ M, ∀pk : Γ.encryptpk(m ∗m′) = Γ.encryptpk(m) ◦e Γ.encryptpk(m
′). Moreover, given

the randomness used to encryptm in Γ.encryptpk(m) andm′ in Γ.encryptpk(m
′), one can deduce

(using only the public parameters) the randomness used to encrypt m ∗ m′ in Γ.encryptpk(m) ◦e
Γ.encryptpk(m

′).

Examples of cryptosystems in the above class are ElGamal’s encryption [14], the cryptosystem defined
in [3] which uses the linear Diffie-Hellman KEM or Paillier’s[29] cryptosystem. In fact, these cryptosys-
tems are homomorphic and possess an efficient protocol for proving that a ciphertext decrypts to a given
plaintext: the proof of equality of two discrete logarithms[9], in case of ElGamal or the cryptosystem in
[3], or the proof of knowledge on anN -th root in case of Paillier’s encryption.

Theorem 7. Let Γ be a cryptosystem from the above classE. Let furthermoree be an encryption of
some message under some publicpk. The protocol depicted in Figure 2 is an efficientΣ protocol for
proving knowledge of the decryption ofe.

The proof is similar to the one given in [22]. ⊓⊔
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1. The prover choosesr′
R
←− G, computes and sendst2 = Γ.encrypt(r′) ◦e e to the verifier

2. The verifier choosesb
R
←− {0, 1} and sends it to the signer.

3. If b = 0, the prover sendsr′ and the randomness used to encrypt it inΓ.encrypt(r′).
Otherwise, he sendsr′ ∗ r and proves thatt2 is an encryption ofr′ ∗ r.

4. If b = 0, the verifier checks thatt2 is computed as in Step 1.
Otherwise, he checks the proof of decryption oft2:

It it fails, he rejects the proof.

l

Fig. 2. Proof system for membership to the language{e : ∃m : m = Γ.decrypt(e)} Common input: (e, Γ.pk) and
Private input: Γ.sk or randomness encryptingm in e

The confirmation/denial protocol The confirmedSign, confirmation and denial protocols of the con-
struction in Subsection 4.1 are depicted below.

1. The prover and verifier, given the public input, computeI as defined in Definition 1.

2. The prover choosesr′
R
←− G, computes and sendst1 = f(r′) ◦s I and

t2 = Γ.encrypt(r′) ◦e e to the verifier.

3. The verifier choosesb
R
←− {0, 1} and sends it to the prover.

4. If b = 0, the prover sendsr′ and the randomness used to encrypt it inΓ.encrypt(r′).
Otherwise, he sendsr′ ∗ r and proves thatt2 is an encryption ofr′ ∗ r.

5. If b = 0, the verifier checks thatt1 andt2 are computed as in Step 1.
Otherwise, he checks the proof of decryption oft2:

It it fails, he rejects the proof.
Otherwise:

If the prover is confirming the signature, the verifier accepts if f(r′ ∗ r) = t1.
If the prover is denying the given signature, the verifier accepts the proof iff(r′ ∗ r) 6= t1.

l

Fig. 3. Proof system for membership (non membership) to the language {(e, c) : ∃r : r = Γ.decrypt(e) ∧ r = ( 6=
)Ω.open(c, m)} Common input: (e, c, m, Γ.pk, Ω.pk) andPrivate input: Γ.sk or randomness encryptingr in e

Remark 2.The prover in Figure 3 is either the confirmer who can run the above protocols with the
knowledge of his private key, or the signer who wishes to confirm the validity of a just generated signa-
ture. In fact, with the knowledge of the randomness used to encrypt s in e, the signer can issue the above
confirmation protocol thanks to the properties satisfied byΓ .

Theorem 8. The confirmation protocol (run either by the signer on a just generated signature or by the
confirmer on any signature) described in Figure 3 is aΣ protocol.

Theorem 9. The denial protocol described in Figure 3 is aΣ protocol under the assumption of the
underlying cryptosystem being IND-CPA-secure.

The proofs of both theorems are given in Appendices F.2 and F.3 respectively.

5 Improvements and Possible Extensions

5.1 The “signature of an encryption” paradigm

We have seen that confirmer signatures realizing the “signature of a commitment” paradigm are com-
prised of a commitment on the message to be signed, an encryption of the random string used to produce
the commitment, and a digital signature on the commitment. Since IND-CPA encryption can be easily
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used to get secure commitments, one can use instead of the commitment in the previous constructions an
IND-CPA secure cryptosystem. With this choice, there will be no need of encrypting the string used to
produce the encryption of the message, since the private keyof the cryptosystem is sufficient to check the
validity of a ciphertext w.r.t. to a given message. We give below the full description of the construction.

Key generation.The signer key pair is(Σ.pk, Σ.sk) and the confirmer key pair is(Γ.pk, Γ.sk) where
Σ andΓ are the digital signature and the cryptosystem underlying the construction resp.

ConfirmedSign.On input messagem, compute an encryptionc = Γ.encryptΓ.pk(m) of m, then a
digital signatureσ = Σ.signΣ.sk(c). Finally output(c, σ) and a ZK proof thatc decrypts inm. Such
a proof is possible given the randomness used to encryptm in c.

Confirmation/Denial protocol.On a messagem and an alleged signatureµ = (µ1, µ2), check the
validity of µ2 onµ1. In case it not valid, produce⊥. Otherwise, compute the decryptioñm of µ1 and

check whether̃m
?
= m, according to the result give a ZK of the equality/inequality of the decryption

of µ1 andm. These proofs are possible using the private key ofΓ .
Selective conversion.Proceed as in the confirmation/denial protocol with the exception of issuing⊥ is

case the signature is invalid, and anon-interactiveproof thatm is the decryption of the first field of
the signature otherwise.

We notice that the construction depicted above achieves better performances than all previously
cited constructions in terms of signature length, generation/verification and conversion cost. In fact, the
signature contains only an IND-CPA encryption and signature on it. Moreover, verification or conver-
sion of the signature are simpler as they do not involve anymore checking whether a commitment is
correctly computed. Besides, the proofs underlying the confirmedSign/confirmation/denial protocols are
reduced in case of Discrete-Logarithm-based cryptosystems to proofs of equality/inequality of discrete
logarithms for which there exists efficient protocols [9, 7]. The only problem with this technique is the
resort to non-interactive ZK (NIZK) proofs of knowledge. Infact, we know how to produce such proofs
from their interactive variants using the Fiat-Shamir paradigm, which is known to provide security only
in the ROM. However, the recent results in [21, 20] exhibit efficient NIZK proofs of knowledge in some
settings, which suggests that the above construction accepts efficient instantiations.

Concerning the security analysis, we first note that completeness, soundness and the ZK property
of the confirmedSign/confirmation/denial protocols is ensured by the use of ZK proofs. Next, we prove
that the construction is invisible and that it resists existential forgeries.

Theorem 10. The above construction is(t, ǫ, qs)-EUF-CMA secure if the underlying digital signature
is also(t, ǫ, qs)-EUF-CMA secure.

Theorem 11. The above construction is(t, ǫ, qs, qv, qsc)-INV1-CMA secure if it uses a(t, ǫ′, qs)-EUF-
CMA secure digital signature and a(t + qs(qv + qsc), ǫ(1 − ǫ′)qv+qsc)-IND-CPA secure cryptosystem.

We provide the proofs in Appendix G.

Remark 3.Note that the IND-CPA requirement on the cryptosystem is also necessary. In fact, determin-
istic schemes, e.g., RSA (which is OW-CPA secure) are not allowed in the design, since an invisibility
adversary will compute the encryptions of the two challengemessages and check whether one of them
is the first field of the signature.

5.2 A stronger security model

In [11], the author presented an elaborate security model. We discuss in this paragraph how one can
extend the constructions seen so far to this model.
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Security against malicious confirmers. The first difference between our model and the one in [11]
is the unforgeability againstmaliciousconfirmers which is satisfied in the latter but not considered
in the former. This property requires the construction to remain EUF-CMA secure even if the EUF-
CMA adversary is allowed to choose the confirmer public key. One can easily see that the constructions
presented in this document meet this property as the confirmer public key does not play any role in the
unforgeability proofs.

Correctness of the conversion.Another difference lies in requesting the confirmer to provide a proof
of the correctness of the conversion. This is vital, becausein all constructions that realize the “signa-
ture of a commitment” paradigm, the confirmer can convertinvalid signatures; he can release the “real”
opening value of the commitment, which does not have to be thedecryption of the first field of the
confirmer signature. A way to overcome this, is to provide, along with the opening value of the com-
mitment, a proof that it is the correct decryption of the firstfield of the alleged signature. In [11], the
author suggested to use a protocol, i.e., an interactive proof, proving the correctness of the conversion.
We propose to use non interactive proofs to get transferability, i.e., anybody can check the correctness
of a converted confirmer signature. As mentioned in the previous subsection, there exists efficient ways
to obtain non-interactive proofs of knowledge without using Fiat-Shamir heuristics. Again constructions
shown before meet this stronger property (the reduction in the invisibility proofs can issue such proofs
using the randomness used to produce the encryption of the commitment opening value). Finally, our
constructions allow also the confirmer to convertinvalid signatures although it is not his responsibility to
convert ill-formed signatures. The confirmer can do so by issuing simply the decryption of the first field
of signature (in case it is a well-formed ciphertext) along with a non-interactive proof of the correct-
ness of the decryption. Anybody can then check that the released string does not open the commitment
(second field of the confirmer signature).

6 Summary

We supplemented the study in [22]. In fact, after a quick browse through the plethora of generic con-
structions of confirmer signatures, we managed to categorize them under either those instantiating the
“encryption of a signature” principle, or those realizing the “signature of commitment” paradigm. Con-
structions obtained from bothplain paradigms were shown to necessitate strong encryption which makes
them quite impractical, or at least allow very limited instantiations. However, a small variation of both
principles results in a tremendous improvement: short signature, small generation, verification and con-
version cost, in addition to efficient confirmation/denial protocols. The “encryption of a signature”
principle compares better than the “signature of commitment” paradigm in terms of security (poten-
tial anonymity) and length of the resulting signatures, however, the latter betters the former in terms of
flexibility as it applies toany signature. We also shed light on a particular construction,which can be
seen as a special sub-case of the latter paradigm, namely the“signature of an encryption” technique. The
advantage of this technique consists in achieving better performances than the original technique (short
signature, small generation, verification and conversion cost) , yet applying to any signature scheme. Its
sole limitation resides in requiring efficient non interactive proofs of knowledge. This motivates research
to further tackle this problem as was started recently in [21].
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A Preliminaries

A.1 Comparison with other CDCS security models

First we note that requiring the confirmedSign, confirmationand denial protocols to be zero knowledge
captures the different definitions of non transferability which were provided in [6, 19, 16, 35, 11]. More-
over, combination of this requirement and the invisibilityproperty implies the transcript simulatability
defined in [16, 35]. Finally, in some applications, it is required that the confirmer signatures are anony-
mous, i.e., do not leak the identity (public key) of the signer (see [15]). Thus, to capture both anonymity
and invisibility, Galbraith and Mao introduced in [15] a notion, which we denote INV2-CMA, that re-
quires the confirmer signatures to be indistinguishable from random elements in the signature space.
This new notion is proven to imply both INV1-CMA and ANO-CMA (Theorem 1 and Theorem 4 re-
spectively of [15]). The constructions analyzed/given in this paper, for instance those described in [16,
35] do not fulfill this notion. However, this should not be a problem because the INV1-CMA property
suffices in many practical situations. We refer to the discussion in [16] (Section 3) for techniques that
can be used by the signer to camouflage the presence of valid signatures.

A.2 Digital signatures

A signature schemeΣ comprises three algorithms, namely the key generation algorithm keygen, the
signing algorithmsign, and the verification algorithmverify. The standard security notion for a signature
scheme is existential unforgeability under chosen messageattacks (EUF-CMA), which was introduced
in [18]. Informally, this notion refers to the hardness of, given a signing oracle, producing a valid pair of
message and corresponding signature such that message has not been queried to the signing oracle. There
exists also the stronger notion, SEUF-CMA (strong existential unforgeability under chosen message
attack), which allows the adversary to produce a forgery on apreviously queried message, however the
corresponding signature must not be obtained from the signing oracle.

A.3 Public key encryption schemes

A public key encryption (PKE) scheme consists of the key generation algorithmkeygen, the encryp-
tion algorithmencrypt and the decryption algorithmdecrypt. The typicalsecurity goalsa cryptosystem
should attain are: one-wayness (OW) which corresponds to the difficulty of recovering the plaintext from
a ciphertext, indistinguishability (IND) which refers to the hardness of distinguishing ciphertexts based
on the messages they encrypt, and finally non-Malleability (NM) which corresponds to the hardness of
deriving from a given ciphertext another ciphertext such that the underlying plaintexts are meaningfully
related. Conversely, the typicalattack modelsan adversary against an encryption scheme is allowed to
are: Chosen Plaintext Attack (CPA) where the adversary can encrypt any message of his choice. This
is inevitable in public key settings, Plaintext Checking Attack (PCA) in which the adversary is allowed
to query an oracle on pairs (m, c) and gets answers whetherm is really encrypted inc or not, and fi-
nally Chosen Ciphertext Attack (CCA) where the adversary isallowed to query a decryption oracle.
Pairing the mentioned goals with these attack models yieldsnine security notions: GOAL-ATK for
GOAL ∈ {OW, IND, NM} and ATK∈ {CPA, PCA, CCA}. We refer to [1] for the formal definitions of
these notions as well as for the relations they satisfy.
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Cryptosystems with labels. Encryption with labels was first introduced in [34]. In theseschemes, the
encryption algorithm takes as input, in addition to the public key pk and the messagem intended to be
encrypted, a labelL. Similarly, the decryption algorithm takes additionally to the ciphertext and private
key the label under which the ciphertext was created. Security notions are then defined as usual except
that the adversary specifies always the label, to be used in the challenge ciphertext, to his challenger, and
in case he (the adversary) is allowed to query oracles, then he cannot query them on the pair formed by
the challenge and the label used to form it.

A.4 Commitment schemes

A commitment scheme [5] consists of the following algorithms:

– setup: the setup algorithm that generates the public parameters of the system.
– keygen: generates probabilistically a public commitment keypk.
– commit: a probabilistic algorithm that, on input a public keypk and a messagem, produces a pair

(c, r): c serves as the commitment value (locked box), andr as the opening value.
– open: this is a deterministic algorithm that given a commitment(c, r), w.r.t. a public keypk, on a

alleged messagem, checks whetherc
?
= commitpk(m, r).

The algorithmopen must succeed if the commitment was correctly formed (correctness). Moreover, we
require the following security properties:

1. Hiding. It is hard for an adversary A to generate two messagesm0,m1 such that he can distinguish
between their corresponding locked boxesco, c1. That is,c reveals no information aboutm.

2. Binding. It is hard for an adversary A to come up with acollision (c, d, d′) such that(c, d) and(c, d′)
are valid commitments form andm′ resp andm 6= m′.

We call a commitment schemesecureif it meets the previous properties.
It is easy to see the similarity between public key encryption and commitment schemes. In fact, one

can easily check that IND-CPA encryption implies a secure commitment scheme. The main difference
between encryption and commitment is that the former requires the decryption algorithm to be based
on a “universal” secret key (independent of the message) whilst commitment allows to decrypt with
a “message-dependent” secret key, namely the opening valuer of the message in question. Another
difference is that in encryption, the message is always derived from the ciphertext. This is not always
the case in commitments, as the following example shows:

– setup andkeygen choose a multiplicative group(G, ·) of orderd and generated by an elementg.
Choose further an elementy ∈ G of unknown discrete logarithm with respect tog, and a collision
resistant hash functionh : {0, 1}⋆ → Zd. The public commitment key isy.

– commit on a messagem ∈ {0, 1}⋆ is the pair(r, c) wherer
R
←− Zd andc = gryh(m).

– open an alleged commitment(c, r) on a messagem is achieved by checking whetherc
?
= gryh(m).

It is easy to check that the above commitment, referred to asPedersen-basedcommitment scheme,
is correct. Moreover it is statistically hiding becauser is random inZd and so isc = gryh(m), regardless
of m. Besides the biding property is achieved under the discretelogarithm assumption inG and the
collision resistance assumption on the hash functionh.

Finally, it is worth noting that given an alleged commitmentvaluec on a messagem, one can use
the opening valuer to prove (disprove) in zero knowledge thatc is (is not) a commitment onm. In fact,
the last assertion corresponds to an NP (co-NP) language which accepts a zero knowledge proof system
(see [17]).
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A.5 Σ protocols

A Σ protocol is an argument of knowledge which is complete, sound, Zero Knowledge (ZK), and which
remains ZK after parallel repetition. We refer to [17] for more information.

B Security of the plain “Signature of a Commitment” Paradigm

Theorem 12. The construction depicted in Section 3 is(t, ǫ, qs)-EUF-CMA secure if uses a binding
commitment scheme and a(t, ǫ, qs)-EUF-CMA secure digital signature scheme.

Proof. LetA be an attacker against the construction. We will construct an attackerR against the under-
lying signature scheme as follows.
R gets the parameters of the signature schemeΣ from his challenger, namely the public keyΣ.pk.

Then,R will choose an appropriate cryptosystemΓ along with the key pair(Γ.sk, Γ.pk) and a suitable
commitment schemeΩ. Finally,R will set the mentioned entities as components of the constructionA
is trying to attack.

For a signature query on a messagemi,R will first create a commitmentci using a random stringri,
then he will query his own challenger for a digital signatureon ci. Let σi be the output digital signature
on ci. The output confirmer signature consists of the tripleµi = (ei, ci, σi), whereei is an encryption of
ri under the labelmi‖Σ.pk.
A will have at his disposalΓ.sk and thus he won’t need to ask confirm/deny or selective conversion

queries. And, even in case he requests them,R is able to answer such queries with the knowledge of
Γ.sk.

At some point,A will output a forgeryµ⋆ = (e⋆, c⋆, σ⋆) on some messagem⋆ that has never been
queried. If there exists an1 ≤ i ≤ qs such thatc⋆ = ci, whereµi = (ei, ci, σi) is an output confirmer
signature on a querymi, then sincemi 6= m⋆,R will output a collision for the commitment schemeΩ.
Since the latter is by assumption binding,c⋆ never occurred in signatures output toA. Therefore(c⋆, σ⋆)
corresponds to a valid existential forgery onΣ. ⊓⊔

Theorem 13. The construction depicted in Section 3 is(t, ǫ, qs, qv, qsc)-INV1-CMA secure if is(t, ǫ′, qs)-
EUF-CMA secure and it is uses a hiding commitment and a(t, ǫ

2(1 − ǫ′)qv+qsc , qs)-IND-CCA secure
cryptosystem with labels.

Proof. LetA be an attacker against the construction. We will construct an attackerR against the under-
lying cryptosystem scheme as follows.
R gets the parameters of the cryptosystemΓ from his challenger. Then he will choose a signature

schemeΣ (along with a key pair (Σ.pk, Σ.sk)) and a secure commitment schemeΩ. R will set the
above entities as components of the constructionA is trying to attack.

For a signature query on a messagemi, R will compute a commitmentci on mi using a random
stringri, which he will encrypt inei under the labelmi‖Σ.pk, then he will produce a digital signature
σi on ci usingΣ.sk. Finally he outputsµi = (ei, ci, σi) as a confirmer signature onmi and a ZK proof
of knowledge of the equality of the decryption ofei and the string used in the commitmentci. Such a
proof is possible using the randomnessti used to encryptri in ei..

To confirm/deny an alleged signatureµi = (µ1
i , µ

2
i , µ

3
i ) on a messagemi,R will proceed as follows.

First he checks the validity of the digital signatureµ3
i on µ2

i , in case it is invalid, he will output⊥, oth-
erwise he will obtain the decryption ofµ1

i (from the decryption oracle thanks to the CCA attack model),
ri; if ri is (is not) the same string used to compute the commitmentµ2

i ,R will issue a zero knowledge
proof of the equality (inequality) of the decryption ofµ1

i and the string used for the commitmentµ2
i .R

can issue these proofs without the knowledge ofΓ.sk using the rewinding technique (the proofs are ZK
and thus simulatable) or by keeping a record of the randomnesses used to encrypt the random stringsri
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in ei. Selective conversion is similarly carried out with the exception of issuing the decryption ofµ1
i in

case the signature is valid and⊥ otherwise.
At some point,A will output two messagesm0,m1 that have not been queried for signature.R will

then choose uniformly at random a bitb
R
←− {0, 1}, and two different random stringsr0 andr1 from

the corresponding space.R will output to his challenger the labelmb‖Σ.pk and the stringsr0, r1. He

receives then a ciphertextc, encryption ofrb′ , for someb′
R
←− {0, 1}. To answer his challenger,R will

compute a commitmentcb on the messagemb using the stringrb′′ whereb′′
R
←− {0, 1}. Then,R will out-

put µ = (c, cb, Σ.signΣ.sk(cb)) as a challenge signature toA. Note thatA can only exploit information
leaked fromc about the opening value ofcb because the commitment scheme is by assumption hiding.

Next, A will continue issuing queries whichR can handle as previously, with the exception of
issuing the denial protocol in case of a verification query (or ⊥ in case of a selective conversion query
) on a presumed signature(c,−,−) on mb. In fact, in this phase,R cannot query his decryption oracle
on (c,mb‖Σ.pk). This simulation differs from the real algorithm when the signature(c,−,−) is valid.
SinceA is not allowed to querym0,m1 to the signing oracle nor(µ,mi) (i ∈ {0, 1}) to the verification
oracle, such a query will correspond to an existential forgery on the construction asmb was never queried
to the signing oracle. Thus, the probability that this does not occur is at least(1 − ǫ′)qv+qsc since the
construction is(t, ǫ′, qs)-EUF-CMA secure by assumption.

Now, let us analyze the challenge signatureµ = (c, cb, Σ.signΣ.sk(cb)). In case,c is an encryption
of rb′′ (that is if b′ = b′′), thenµ corresponds to a valid confirmer signature onmb. Otherwise, it is not
a valid signature on neithermb nor m1−b. In fact, cb is a commitment onmb using a string different
from the decryption ofc under the labelmb‖Σ.pk. Let ba the bit output byA. A will output b′′ to his
challenger in caseb = ba and1− b′′ otherwise.

The advantage ofA in such an attack is defined by

ǫ = adv(A) = Pr[ba = b|b′ = b′′]−
1

2

Whereas the advantage ofR is given by

adv(R) = (1− ǫ′)qv+qsc

[

Pr[b = ba, b
′ = b′′] + Pr[b 6= ba, b

′ 6= b′′]−
1

2

]

= (1− ǫ′)qv+qsc

[

Pr[b = ba|b
′ = b′′] Pr[b′ = b′′] + Pr[b 6= ba|b

′ 6= b′′] Pr[b′ 6= b′′]−
1

2

]

= (1− ǫ′)qv+qsc

[

1

2
(ǫ +

1

2
) +

1

2

1

2
−

1

2

]

=
ǫ

2
(1− ǫ′)qv+qsc

The last but one equation is due to the factsPr[b′ 6= b′′] = Pr[b′ = b′′] = 1
2 asb′′

R
←− {0, 1}, and to

the fact that, in caseb′ 6= b′′, the probability thatA answersb is exactly1
2 since in that case the challenge

signature is not valid on both messages. ⊓⊔

C Generalization to Arbitrary Reductions

C.1 Non malleable key generators

We define the notion ofnon malleability of a cryptosystem key generatorthrough the following two
games:
In Game 0, we consider an algorithmR trying to break a cryptosystemΓ , w.r.t. a public keyΓ.pk, in the
sense of NM-CPA (or OW-CCA) using an adversaryA which solves a problem A, perfectly reducible to
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OW-CPA breaking the cryptosystemΓ (w.r.t. the public keyΓ.pk). In this game,R lunchesA over his
own challenge keyΓ.pk and some other parameters chosen freely byR. We will denote byadv0(R

A)
the success probability ofR in such a game, where the probability is taken over the randomtapes of
bothR andA. We further definesuccGame0

Γ (A) = maxR adv0(R
A) to be the success inGame 0of

the best reductionR making the best possible use of the adversaryA. Note that the goal ofGame 0is
to include all key-preserving reductionsR from NM-CPA (or OW-CCA) breaking the cryptosystem in
question to solving a problem A, which is reducible to OW-CPAbreaking the same cryptosystem.
In Game 1, we consider the same entities as inGame 0, with the exception of providingR with, in
addition toA, a OW-CPA oracle (i.e. a decryption oracle corresponding toΓ ) that he can query w.r.t. any
public keyΓ.pk′ 6= Γ.pk, whereΓ.pk is the challenge public key ofR. Similarly, we defineadv1(R

A)
to be the success ofR in such a game, andsuccGame1

Γ (A) = maxR adv0(R
A) the success inGame 1

of the reductionR making the best possible use of the adversaryA and of the decryption (OW-CPA)
oracle.

Definition 3. A cryptosystemΓ is said to have a non malleable key generator if
∆ = maxA|succGame1

Γ (A)− succGame0
Γ (A)| is negligeable in the security parameter.

This definition informally means that a cryptosystem has a non malleable key generator if NM-CPA (or
OW-CCA) breaking it w.r.t. a keypk is no easier when given access to a decryption (OW-CPA) oracle
w.r.t. any public keypk′ 6= pk.

C.2 Proof of Theorem 2

To prove Theorem 2, we first need the following Lemma (similarto Lemma 6 of [31])

Lemma 3. LetA be an adversary solving a problem A, reducible to OW-CPA breaking a cryptosystem
Γ , and letR be an arbitrary reductionR that NM-CPA (OW-CCA) breaks a cryptosystemΓ , given
access toA. We have

adv(R) ≤ succGame1
Γ (A)

Proof. We will construct an algorithmM that playsGame 1with respect to a perfect oracle forA and
succeeds in breaking the NM-CPA (OW-CCA) security ofΓ with the same success probability ofR.
AlgorithmM gets a challenge w.r.t. a public keypk and launchesR over the same challenge and the
same public key. IfR callsA on pk, thenM will call his own oracle forA. Otherwise, ifR callsA
on pk′ 6= pk,M will invoke his own decryption oracle forpk′ (OW-CPA oracle) to answer the queries.
In fact, by assumption, the problem A is reducible to OW-CPA solving Γ . Finally, whenR outputs the
result toM, the latter will output the same result to his own challenger. ⊓⊔

Proof of Theorem 2 This proof is similar to the one of Theorem 5 in [31].

Proof. We first remark that the invisibility of the construction depicted in Section 3 is perfectly reducible
to OW-CPA breaking the cryptosystem underlying the construction. In fact, an invisibility adversaryA,
given a challenge confirmer signature can first decrypt its first component, then use the resulting string
to check the validity of the second component (alleged commitment on the message in question).
Next, we note that the advantage of the meta-reductionM in the proof of Lemma 1 (Lemma 2) is
the same as the advantage of any key-preserving reductionR reducing the invisibility of a given con-
firmer signature to the NM-CPA (OW-CCA) security of its underlying cryptosystemΓ . For instance,
this applies to the reduction making the best use of an invisibility adversaryA against the construction.
Therefore we have:

succGame0
Γ (A) ≤ succ(NM − CPA[Γ ])
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wheresucc(NM − CPA[Γ ]) is the success of breakingΓ in the NP-CPA sense. We also have

succGame0
Γ (A) ≤ succ(OW − CCA[Γ ])

.
Now, LetR be an arbitrary reduction from NM-CPA (OW-CCA) breaking a cryptosystemΓ , with a non
malleable key generator, to INV1-CMA breaking the construction (using the same cryptosystemΓ ). We
have

adv(R) ≤ succGame1
Γ (A)

≤ succGame0
Γ (A) + ∆

≤ succ(NM − CPA[Γ ])(succ(OW − CCA[Γ ])) + ∆

since∆ is negligeable, then under the assumption ofΓ being NM-CPA (OW-CCA) secure, the advantage
ofR is also negligeable. ⊓⊔

D Proof of Theorem 3

Proof. LetA be an attacker against the construction. We will construct an attackerR against the under-
lying cryptosystem scheme as follows.
R gets the parameters of the cryptosystemΓ from his challenger. Then he will choose a signature

schemeΣ (along with a key pair (Σ.pk, Σ.sk)) and a suitable commitment schemeΩ. R will set the
above entities as components of the constructionA is trying to attack.

For a signature query on a messagemi, R will compute a commitmentci on mi using a random
stringri, which he will encrypt inei under the labelmi‖Σ.pk, then he will produce a digital signature
σi on ci usingΣ.sk. Next, he outputsµi = (ei, ci, σi) as a confirmer signature onmi and a ZK proof
of knowledge of the equality of the decryption ofei and the string used in the commitmentci. Such
a proof is possible using the randomnessti used to encryptri in ei. Finally, R will add the record
Ri = (mi, ti, ri, ei, ci, σi) to a history listL.

To confirm/deny an alleged signatureµi = (µ1
i , µ

2
i , µ

3
i ) on a messagemi,R will proceed as follows.

First he checks the validity of the digital signatureµ3
i on µ2

i , in case it is invalid, he will output⊥,
otherwise he will check the listL, if he finds a recordRi having as first field the messagemi, he will
proceed to the next step, namely, check whether the fourth field of Ri is equal toµ1

i , if it is the case,R
will issue a ZK proof of the equality of the decryption ofµ1

i and the string used for the commitmentµ2
i .

R can issue these proofs without the knowledge ofΓ.sk using the rewinding technique (the proofs are
ZK and thus simulatable) or by using the second field ofRi (randomness used to produce the encryption
µ1

i ). Now, if Ri containsmi in its first field, but its fourth field is different fromµ1
i , thenR will check

the next recordRj (j > i) havingmi in its first field and proceed in a similar fashion. Actually, if the
messagemi is queried more than once, then it will occur in many records in L. If R browses through
all the records but none of them containsmi andµ1

i in their first and fourth field resp, then for all the
recordsRi containingmi in their first field,A will invoke his PCA oracle on the ciphertextµ1

i and the
third fields of these records. If one of the queries yields “yes” as an answer, e.g., there exists a record
Rj = (mi, tj , rj , ej , cj , σj) such that its third fieldrj is a decryption ofµ1

i , then according to whether
rj is (is not) the opening value of the commitmentµ2

i on mi, R will issue a ZK proof of the equality
(inequality) of the decryption ofµ1

i and the string used for the commitmentµ2
i . Again such a proof is

possible to issue using the rewinding technique (the valuetj cannot be used here because it was not used
to encryptrj in µ1

i ). Finally, if no query to the PCA oracle yields the answer “yes”, thenR will issue
the denial protocol, namely simulate a ZK proof, using the rewinding technique, of the inequality of the
decryption ofµ1

i and of the string used for the commitmentµ2
i .
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Selective conversion is similarly carried out with the exception of issuing the decryption ofµ1
i instead

of the confirmation protocol and⊥ instead of the denial protocol.
The difference between the above simulation and the real execution of the algorithm is when the signa-
tureµi = (µ1

i , µ
2
i , µ

3
i ) is valid, however,µ1

i is not an encryption of a stringri already issued toA during
a selective conversion query regarding the messagemi and a presumed signature on it. We distinguish
two cases, eithermi was never queried for signature, in which case such a signature would correspond
to an existential forgery on the construction and thus to an existential forgery on the underlying digital
signature. Or,mi was queried before for signature. Letµj = (µ1

j , µ
2
j , µ

3
j ) be the output confirmer signa-

ture to such a query. Sinceµ1
i is encryption of someri which was never used to generate signatures on

mi, then with overwhelming probabilityµ2
i 6= µ2

j (both are commitment onmi with different random
strings). Thus, in this case(µ2

i , µ
3
i ) will correspond to an existential forgery on the underlyingdigital

signature scheme. We conclude that the above simulation is indistinguishable from the real execution
with probability at least(1 − ǫ′)qv+qsc , as the digital signature scheme underlying the construction is
(t, ǫ′, qs)-EUF-CMA secure by assumption.

At some point,A will output two messagesm0,m1 that have not been queried for signature. The

latter will then choose uniformly at random a bitb
R
←− {0, 1}, and two different random stringsr0 andr1

from the corresponding space.R will output to his challenger the labelmb‖Σ.pk and the stringsr0, r1.

He receives then a ciphertextc, encryption ofrb′ , for someb′
R
←− {0, 1}. To answer his challenger,

R will compute a commitmentcb on the messagemb using the stringrb′′ whereb′′
R
←− {0, 1}. Then,

R will output µ = (c, cb, Σ.signΣ.sk(cb)) as a challenge signature toA. Again, note thatA can only
exploit information leaked fromc about the opening value ofcb because the commitment scheme is by
assumption hiding.
Note that at this stage,R cannot request his PCA oracle on(c, ri), i ∈ {0, 1} under the labelmb‖Σ.pk.
R would need to query his PCA oracle on such a quantity if he getsa verification (conversion) query
on a signature(c, cb,−) and the messagemb. R will respond to such a query by simulating the denial
protocol (output⊥). This simulation differs from the real algorithm when(c, cb,−) is valid on mb.
Again, such a scenario won’t happen with probability at least (1 − ǫ′)qv+qsc, because the query would
form an existential forgery on the construction since by definition of an invisibility game,A cannot
requestR for a signature on both messagem0,m1.
The rest of the proof follows directly as in the proof of Theorem 13 . Now, letµ = (c, cb, Σ.signΣ.sk(cb))
be the challenge signature. In case,c is an encryption ofrb′′ (that is if b′ = b′′), thenµ corresponds to a
valid confirmer signature onmb. Otherwise, it is not a valid signature on neithermb nor m1−b. In fact,
cb is a commitment onmb using a string different from the decryption ofc under the labelmb‖Σ.pk.
Let ba the bit output byA.A will output b′′ to his challenger in caseb = ba and1− b′′ otherwise.

The advantage ofA in such an attack is defined by

ǫ = adv(A) = Pr[ba = b|b′ = b′′]−
1

2

Whereas the advantage ofR is given by

adv(R) = (1− ǫ′)qv+qsc

[

Pr[b = ba, b
′ = b′′] + Pr[b 6= ba, b

′ 6= b′′]−
1

2

]

= (1− ǫ′)qv+qsc

[

Pr[b = ba|b
′ = b′′] Pr[b′ = b′′] + Pr[b 6= ba|b

′ 6= b′′] Pr[b′ 6= b′′]−
1

2

]

= (1− ǫ′)qv+qsc

[

1

2
(ǫ +

1

2
) +

1

2

1

2
−

1

2

]

=
ǫ

2
(1− ǫ′)qv+qsc
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The last but one equation is due to the factsPr[b′ 6= b′′] = Pr[b′ = b′′] = 1
2 asb′′

R
←− {0, 1}, and to

the fact that, in caseb′ 6= b′′, the probability thatA answersb is exactly1
2 since in that case the challenge

signature is not valid on both messages.
⊓⊔

E Security of the Modified “Signature of a Commitment” Paradigm

E.1 Proof of Theorem 4

The proof is similar to the one of Theorem 12. So we focus on thedifferences and omit the details.

Proof. (Sketch)
Let A be an EUF-CMA attacker against the construction. We construct an EUF-CMA attackerR

against the underlying digital signature scheme as follows.
R gets the parameters of the digital signature from his attacker, and chooses a suitable encryption

and commitment scheme. Simulation of the confirmedSign queries (on messagesmi) is done by first
computing a commitmentci on mi using some random stringri, then encrypting the stringri in ei and
finally requesting the challenger for a digital signatureσi onei‖ ⋄ ‖ci. The string(ei, ci, σi) is output to
A along with a proof of the equality of the decryption ofei and the opening value ofci. Such proof can
be issued using the cryptosystem private key thatR knows or the randomness used to encryptri in ei.
Confirmation/denial and selective conversion queries can be perfectly simulated with the knowledge of
the cryptosystem private key.

At some point,A will output a forgeryµ⋆ = (e⋆, c⋆, σ⋆) on some messagem⋆, which has never
been queried before. By definition,σ⋆ is a valid digital signature one⋆‖ ⋄ ‖c⋆. It will form an existential
forgery on the digital signature scheme ife⋆‖ ⋄ ‖c⋆ has never been queried before byR for a digital
signature. Suppose there exists1 ≤ i ≤ qs such thate⋆‖ ⋄ ‖c⋆ = ei‖ ⋄ ‖ci whereµi = (ei, ci, σi) was
the output confirmer signature on the querymi. Since the ciphertexts (or commitments) do contain the
special character⋄, then equality of the stringse⋆‖ ⋄ ‖c⋆ andei‖ ⋄ ‖ci implies equality of their prefixes
and suffixes, which implies equality ofc⋆ andci. We are then back to Theorem 12. In fact, this equality
implies the equality ofmi andm⋆ since the used commitment is binding.

⊓⊔

E.2 Proof of Theorem 5

Proof. Simulation of the key generation is similar to the previous proofs.
For a ConfirmedSign query on a messagemi, the reductionR (attacker against the cryptosystem)

will proceed exactly as a real signer would do, with the exception of maintaining a list of records that
contains the queried messages, the output confirmer signatures and the intermediate values used to pro-
duce these signatures, namely the random string used in the commitment and the randomness used to
encrypt it. This list will be used later for the confirm/deny and selective conversion queries. In fact,
for such queries, say(ei, ci, σi) on mi,R will simulate the confirmation protocol (using the rewinding
technique or the randomness used to encrypt the opening value of the commitment) if the encryption
ei appears in one record in the list (as an encryption of a stringused for commitment), or simulate the
denial protocol otherwise. Selective conversion of a confirmer signature whose first field appears in the
list is done by revealing the opening value of the commitment, otherwise such a confirmer signature is
converted to⊥.
The difference of this simulation with the real execution ofthe algorithm is when a queried signature,
say(ei, ci, σi), is valid butei was never used to generate confirmer signatures. We distinguish two cases,
either the underlying messagemi has been queried previously on not. In the latter case, such asignature
would correspond to an existential forgery on the construction, thus, to an existential forgery on the
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underlying digital signature. In the former case, the adversary would have to compute a digital signature
on ei‖ ⋄ ‖ci, whereei was never used before. By the same argument used in the proof of Theorem 4
(for the analysis of the forger’s output ), we conclude that the adversary would have to compute a digital
signature on a string for which he never had obtained a signature. Thus, in the former case, the query
would lead to an existential forgery on the underlying signature scheme. Since the latter is by assumption
(t, ǫ′, qs)-EUF-CMA secure, the probability that the simulation differs from the real execution is at least
(1− ǫ′)qv+qsc .

Finally, in the challenge phase, the adversary outputs two challenging messagesm0,m1.R will then
produce two stringsr0, r1 and hands them to his challenger. He gets as a response a challenge ciphertext

e onrb for someb ∈ {0, 1}.R will choose a bitb′
R
←− {0, 1} and produces a commitmentc on a message

mb′′ , for someb′′
R
←− {0, 1}, using the stringrb′ . Finally, he will produce a digital signatureσ one‖⋄‖c.

The challenge confirmer signature is(e, c, σ). Note, that ifb = b′, the signature is valid on the message
mb′′ , otherwise, it is invalid on both messages. Note also that the adversary exploits only information
leaked from the encryptione because the commitment scheme is hiding.

The adversary will continue issuing his queries toR, who will handle them as previously. At the
end, the adversary outputs a bitba. Clearly the advantage of the adversary isǫ = Pr[b′′ = ba|b = b′]− 1

2 .
R will output b′ in caseb′′ = ba and1− b′ otherwise.

The advantage ofR is clearly

adv(R) = (1− ǫ′)qv+qsc

[

Pr[b′′ = ba, b
′ = b] + Pr[b′′ 6= ba, b

′ 6= b]−
1

2

]

= (1− ǫ′)qv+qsc

[

Pr[b′′ = ba|b
′ = b] Pr[b′ = b] + Pr[b′′ 6= ba|b

′ 6= b] Pr[b′ 6= b]−
1

2

]

= (1− ǫ′)qv+qsc

[

1

2
(ǫ +

1

2
) +

1

2

1

2
−

1

2

]

=
ǫ

2
(1− ǫ′)qv+qsc

⊓⊔

F Efficient Instantiations using Certain Commitments and Cryptosystems

F.1 Proof of Theorem 6

We first remark that the functionf used in the definition of the classC induces a group law inH = f(G)
for the operation◦s. Moreover, we have1H = f(1G) and∀r ∈ G: f(r)−1 = f(r−1).

Proof. For completeness, it is clear that if both parties follow theprotocol, the prover will always be
able to provide a proof that the verifier will accept.
For soundness, we show that the prover can cheat with probability at most2−1 in one round if the verifier
choosesb uniformly at random from{0, 1}. In fact, suppose that the prover can answer both challenges
for the same commitmentt1. Let r0 andr1 be the responses of the prover to the challenges0 and1
respectively in Step 3. Since the verifier accepts the proof,we have,t1 = f(r0) ◦s I = f(r1). Thus,
f(r1) ◦s f(r0)

−1 = f(r1 ∗ r−1
0 ) = I. Hence, the prover would know a preimage ofI. We conclude that

a cheating prover can cheat with at most1/2, providedf is one-way and the verifier is honest (chooses
the bit b uniformly from {0, 1}). Repeating the protocoll times leads to a soundness error which is at
most2−l.

To prove that the proof is ZK, we provide the following simulator.

1. Generate uniformly a random bitb′ ∈R {0, 1}. If b′ = 0, chooser′ ∈R G and sendst1 = f(r′) ◦s I,
otherwise, chooser′′ ∈R G and sendst1 = f(r′′) to the verifier.
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2. Getb from the verifier. Ifb = b′: if b = 0, the simulator sends backr′, otherwise, it sendsr′′. If
b 6= b′, it goes to Step 1.

The prover’s first message is always the functionf applied to a random valuer′′ ∈ G, and so is the first
message of the simulator. Sinceb′ is chosen uniformly at random from{0, 1}, the probability that the
simulator rewinds the verifier is:

1− Pr[b = b′] = 1− (Pr[b = 0, b′ = 0] + Pr[b = 1, b′ = 1]) = 1− (
1

2
p +

1

2
(1− p)) = 1−

1

2
=

1

2

wherep = Pr[b = 0]. Therefore, the expected number of rewinds is 2 and as a consequence, the
simulator runs in expected linear time. Finally, the distribution of the answers of the prover and of the
simulator is again the same. We conclude that the protocol isZK. It also remains ZK if it is runl times
in parallel, wherel is either constant or logarithmic in the security parameter. In fact, the simulator of
the parallel composition of the protocol will be the parallel composition of the above simulator. Thus,
the expected running time of the new simulator is2l (probability of not rewinding the verifier is2−l),
which is either constant or polynomial in the security parameter. ⊓⊔

F.2 Proof of Theorem 8

Proof. The confirmation protocol depicted in Figure 3 is a parallel composition of the proofs depicted
in Figures 1 and 2. Therefore completeness and soundness follow as a direct consequence of the com-
pleteness and soundness of the underlying proofs (see [17]).

To prove that the protocol is ZK. We provide the following simulator (for one execution):

1. Generateb′ ∈R {0, 1}. If b′ = 0, chooser′ ∈R G and sendst1 = f(r′)◦sI andt2 = encrypt(r′)◦ee,
otherwise, chooser′′ ∈R G and sendst1 = f(r′′) andt2 = encrypt(r′′) to the verifier.

2. Getb from the verifier. Ifb = b′: if b = 0, the simulator sends backr′ and the randomness used to
encrypt it inencrypt(r′), otherwise, it sendsr′′ and simulates the proof oft2 being an encryption of
r′′ (this proof is simulatable since it is by assumption ZK). Ifb 6= b′, it goes to Step 1.

The prover’s first message is an encryption of a random valuer′′ ∈R G, in addition tof(r′′), and so is
the simulator’s first message. Therefore the distributionsof the prover and of the simulator outputs are
the same in the first round of the proof. Moreover, the expected number of rewinds is 2 (Pr(b 6= b′) = 1

2 ),
making the simulator run in expected linear time. The distribution of the prover’s messages in the third
round is also similar to that of the simulator’s messages. Weconclude that the confirmation protocol is
ZK. Parallel execution of the protocol will remain also ZK ifthe number of executionsl is constant or
logarithmic in the security parameter (see the above proof). ⊓⊔

F.3 Proof of Theorem 9

Proof. With the standard techniques, we prove that the denial protocol depicted in Figure 3 is complete
and sound with error probability2−l (l is the number of rounds) provided the verifier is honest and the
cryptosystem is one way. Similarly, we provide the following simulator to prove the ZK property.

1. Generateb′ ∈R {0, 1}. If b′ = 0, chooser′ ∈R G and sendst1 = f(r′)◦sI andt2 = Γ.encrypt(r′)◦e
e, otherwise, chooser′′ ∈R G and a randomt1 ∈R f(G) andt2 = Γ.encrypt(r′′).

2. Getb from the verifier. Ifb = b′: if b = 0, the simulator sends backr′ and the randomness used to
encrypt it inΓ.encrypt(r′), otherwise, it sendsr′′ and simulates the proof oft2 being an encryption
of r′′ (this proof is simulatable since it is by assumption zero knowledge). Ifb 6= b′, it goes to Step
1.
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The prover’s first message is an encryption of some random value r′′, and the elementt1 = f(r′′ ∗
r−1) ◦s I. The simulator’s first message is an encryption of a random value r′′, and in caseb = 0 the
elementt1 = f(r′′ ∗ r−1) ◦s I, whereas in the caseb = 1, it is the elementt1 ∈R f(G) (independent
of r′′). Distinguishing these two cases it at least as hard as breaking the IND-CPA security of the under-
lying cryptosystem. In fact, if the verifier is able to distinguish these two cases, it can be easily used to
break the cryptosystem in the IND-CPA sense. Therefore, under the assumption of the IND-CPA secu-
rity of the cryptosystem, the simulator’s and prover’s firstmessage distributions are indistinguishable.
Moreover, the simulator runs in expected linear time, sincethe number of rewinds is2. Moreover, the
distribution of the prover’s and the simulator’s message inthe last round are again, by the same argu-
ment, indistinguishable under the IND-CPA security of the cryptosystem. Finally, with same argument
as above, parallel execution of the protocol remains also ZKif the number of executions is constant or
logarithmic in the security parameter. ⊓⊔

G The “Signature of an Encryption” Paradigm

G.1 Proof of Theorem 10

Proof. The adversaryR against the signature underlying the construction will getthe parameters of the
digital signature he is trying to attack from his challenger. Then, he will choose a suitable cryptosystem.
Simulation of signatures is simple; on a querymi,R will first compute an encryptionci of mi, then re-
quest his challenger for a signature onci. Letσi be the answer of such a query.Rwill then output(ci, σi)
and produces a ZK proof thatci decrypts inmi. Such a proof, in addition to all the proofs involved in the
verification/conversion queries is possible forR to give with the knowledge of the cryptosystem private
key.

At some time, the adversaryA against the construction will output a forgery(c⋆, σ⋆) on a message
m⋆, that has never been queried before.σ⋆ is by definition a digital signature onc⋆. The former has
never been queried byR for digital signature, since otherwisem⋆ would have been queried before. We
conclude that(c⋆, σ⋆) is also a valid forgery on the signature scheme. ⊓⊔

G.2 Proof of Theorem 11

Proof. LetA be the invisibility adversary against the construction, weconstruct an IND-CPA adversary
R against the underlying cryptosystem as follows.
R gets the parameters of the target cryptosystem from his challenger, and chooses a suitable digital

signature scheme. For a confirmedSign query onmi, R will proceed as in the real algorithm, with the
exception of maintaining a listL of records that consists of the query, its encryption, the randomness
used to produce the encryption, and finally the digital signature on the encryption.R can produce digital
signatures on any encryption with the knowledge of the signature scheme private key. Moreover, he
can confirm any signature he has just generated with the knowledge of the randomness used in the
encryption.

For a verification query(ci, σi) on mi, R will checkL (after checking of course the validity ofσi

on mi), if the recordRi = (mi, ci,−,−) appears in the list, then he will issue a proof thatci decrypts
in mi using the third component of the record. Otherwise, he will simulate a proof of the inequality of
the decryption ofci andmi using the rewinding technique.
For a conversion query,R will proceed as in a verification query with the exception of providing the
non-interactive variant of the proof he would issue if the signature is valid, and the symbol⊥ otherwise.
This simulation differs from the real one when the queried signature(ci, σi) is valid onmi howeverci

does not appear in the list (as first field of the output confirmer signatures). We distinguish two cases,
either the message in questionmi has not been queried before for signature, in which case sucha query
would correspond to a valid existential forgery on the construction, and thus on the underling signature
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scheme. Or, the queried signature is on a message that has been queried before, which corresponds
to an existential forgery on the underlying signature scheme. Since the signature scheme underlying
the construction is(t, ǫ′, qs)-EUF-CMA secure, this scenario does not happen with probability at least
(1− ǫ′)qv+qsc .

At some point,A produces two messagesm0,m1. R will forward the same messages to his chal-

lenger and obtain a ciphertextc, encryption ofmb for someb
R
←− {0, 1}. R will produce a digital

signature onc and give the result in addition toc toA as a challenge confirmer signature. It easy to see
thatA’s answer is sufficient forR to conclude. Note that after the challenge phase,A is allowed to issue
confirmedSign, verification and conversion queries andR can handle them as previously.

⊓⊔
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