
Table of Contents

A Multivariate Signature Scheme with an almost cyclic public key . . . . . . . . . . . . . . . . . . . . . 2
Albrecht Petzoldt and Johannes Buchmann

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 The Oil and Vinegar Signature Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3 Description of the Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1 Construction of F and P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 The Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.1 Security under direct attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.2 UOV-Reconciliation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.3 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
A Toy example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6



A Multivariate Signature Scheme with an almost cyclic
public key

Albrecht Petzoldt1 and Johannes Buchmann1

TU Darmstadt, FB Informatik
Hochschulstrasse 10, 64289 Darmstadt, Germany

{apetzoldt,buchmann}@cdc.informatik.tu-darmstadt.de

Abstract. Multivariate public key cryptography is one of the main approaches to guarantee
the security of communication in a post quantum world. One of the major drawbacks in
this area is the huge size of the public key. In this paper we present a new idea to create a
multivariate signature scheme with an almost cyclic public key. The scheme is very similar
to the UOV-Scheme of Kipnis and Patarin but reduces the size of the public key by about
83 %.

Keywords: Multivariate Cryptography, UOV Signature Scheme, cyclic public key

1 Introduction

During the last two decades, multivariate cryptography has become a major field of research and
many schemes both for encryption and signatures have been proposed. This is mainly due to the
need of an alternative to classical public-key cryptosystems like RSA or ECC which can be bro-
ken when quantum computers arrive. Multivariate public-key cryptography enables fast en- and
decryption as well as signature generation and verification. Since the operations needed are very
simple (addition and multiplication over small fields with characteristic 2), multivariate schemes
can be implemented on low cost smart cards. However, multivariate cryptography is not yet widely
spread, because of the large size of its public keys.

In this paper we present a new idea how to decrease the size of the public key. The principle
idea is to compute the coefficients of the private key in such a way, that the corresponding public
key gets a nice structure. So it is possible to compute most of the public coefficients out of the
coefficients of the first public polynomial, which decreases the storage needed for the public key
by a large factor.

In Section 2 we shortly discuss the UOV Signature Scheme which is the basis of our new
scheme. Section 3 describes the new scheme in detail. Section 4 contains a short security analysis
of the scheme as well as example parameters and Section 5 concludes the paper. A toy example
of our scheme can be found in the appendix of this paper.

2 The Oil and Vinegar Signature Scheme

One classical way to build a multivariate signature scheme is the so called (Unbalanced) Oil and
Vinegar Signature Scheme ([Pa97], [KP99]).

Let K be a finite field (for example K = GF (28)). Let o and v be two integers and set n = o+v.
Patarin suggested to choose o = v. After this original scheme was broken by Kipnis and Shamir



in [KS98], it was recommended in [KP99] to choose v > o (Unbalanced Oil and Vinegar (UOV)).
In this section we describe the more general approach UOV.
We set V = {1, . . . , v} and O = {v+ 1, . . . , n}. Of the n variables x1, . . . , xn we call x1, . . . , xv the
Vinegar variables and xv+1, . . . , xn Oil variables. We define o quadratic polynomials
fk(x) = fk(x1, . . . , xn) by

fk(x) =
∑

i∈V, j∈O

α
(k)
ij xixj +

∑
i,j∈V, i≤j

β
(k)
ij xixj +

∑
i∈V ∪O

γ
(k)
i xi + η(k) (k ∈ O)

Note that Oil and Vinegar variables are not fully mixed, just like oil and vinegar in a salad dressing.

The map F = (f1(x), . . . , fo(x)) can be easily inverted. First, we choose the values of the v
Vinegar variables x1, . . . , xv at random. Such we get a system of o linear equations in the o vari-
ables xv+1, . . . , xn which can be solved by Gaussian Elimination. (If the system does not have a
solution, choose other values of x1, . . . , xv and try again).

In the public key, the central map is hidden by composing it with a linear map T : Kn → Kn. So
the public key of the scheme is given by P = F ◦ T and is difficult to invert. The private key of
the scheme consists of the maps F and T and therefore allows to invert the public key.

Signature Generation To sign a signature m, one computes a hashvalue h ∈ Ko of m and then
recursively y = F−1(h) and z = T −1(y). Here, F−1(y) means to find a preimage of y under the
central map F . The Signature of the message m is z ∈ Kn.

Signature Verification To verify the authenticity of a signature, one simply computes h′ = P(z).
If h′ equals h, the signature is accepted, otherwise rejected.

Note that the (n+1)·(n+2)−o·(o+1)
2 coefficients of each of the central polynomials f1, . . . fo can be

chosen arbitrarily. In the next Section we look at the question how they can be chosen to create
a partially cyclic public key.

3 Description of the Scheme

3.1 Construction of F and P

If we choose a monomial ordering (e.g. reversed graded lexicographical ordering) we can write the
coefficients of the private and public polynomials into two o× (n+1)·(n+2)

2 matrices F = (fij) and
P = (pij). In the matrix F , the columns corresponding to quadratic monomials of the Oil×Oil
type contain only zeros (so F contains o·(o+1)

2 zero columns).
The linear map T is represented by an n× n matrix T .

Note: For the simplification of our notation we start counting rows and columns of a matrix
by 0. So the top left element of the matrix A = (aij) will be called a00.
Therefore, the first public polynomials coefficient of the term x2

1 will be denoted by p00, that of
the term x1x2 by p01 ans so on.

In the following we try to create a public map P such that the highest possible number r of
the columns of the corresponding matrix P will be cyclic.

If we use the reversed graded lexicographical ordering, the pij

(
0 ≤ j < n·(n+1)

2

)
are the coef-

ficients of the quadratic monomials. Since P = F ◦ T for a linear map T , we have

pij =
∑n·(n+1)−o·(o+1)−2

2
k=0 (fik · ( some quadratic term in the tij))

(
0 ≤ j < n·(n+1)

2

)
(1)



So, if we fix the values of the tij , the pij (j < n·(n+1)
2 ) will be given as linear combinations of the fij .

Note that the fij (n·(n+1)−o·(o+1)
2 ≤ j < n·(n+1)

2 ) correspond to quadratic monomials of the
Oil×Oil type and are 0. That’s why you have to sum only up to n·(n+1)−o·(o+1)−2

2 .
Now we set for a randomly chosen vector b = (b0, . . . br−1)

pij = bj−i mod r ∀j ∈ {0, . . . , r − 1} (2)

Together with formula (2), the first r equations of formula (1) lead for each i ∈ {0, . . . , o− 1} to
a system of r linear equations in the n·(n+1)−o·(o+1)

2 coefficients fij

(
0 ≤ j < n·(n+1)−o·(o+1)

2

)
.

By solving these systems of linear equations, we get the non-zero coefficients of the quadratic
terms of the central polynomials.
Note, that if you choose r too big, the upper system will not have a solution. However, our exper-
iments show, that the choice r = n·(n+1)−o·(o+1)

2 is possible.
The other coefficients of the central map F are chosen at random.
Since we know both T and F now, we can easily compute the remaining coefficients of the public
polynomials.

Note that we do not have to store the whole public key any longer. By our construction you
only have to store the columns r, . . . , (n+1)·(n+2)−2

2 of P and the vector b. So, the parameter r
determines the rate by which the size of the public key is reduced.

3.2 The Scheme

Key Generation
parameters: Underlying field K (e.g. K = GF (28)),
o (number of Oil variables), v (number of Vinegar variables), r (reduction factor)
The number of variables will be n = o+ v.

1. Choose a vector b = (b0, . . . , br−1) at random.
2. Choose an n× n matrix T at random. T must be invertible.
3. Set the entries of the first r columns of P to

pij = bj−i mod r.

4. Solve for i = 0, . . . , o − 1 the linear systems given by the equations (1) (for j < r) to get the
non-zero coefficients of the quadratic terms of the central map F .

5. Choose the coefficients of the linear and constant terms of the central map at random.
6. Compute the remaining coefficients of the public polynomials by composing F and T .

The public key of the scheme consists of the columns r, . . . , (n+1)·(n+2)−2
2 of P and the vector b.

Moreover, it contains a rule how to compute the public map P out of the key.
So the size of the public key will be o · (n+1)·(n+2)−2r

2 + r byte.
The private key consists of the matrices F and T . Its size is o · (n+1)·(n+2)

2 + n2 byte (as in the
case of the UOV Scheme)

Signature Generation and Verification The Signature Generation and Verification works as in the
case of the UOV Scheme. To sign a message with a hash value h ∈ Ko, we compute recursively
y = F−1(x) and z = T −1(y). The signature of the message is z ∈ Kn.
To verify the authenticity of the signature, one computes h′ = P(z). If h′ = h holds, the signature
is accepted, otherwise rejected.



4 Security

4.1 Security under direct attacks

We carried out some experiments with MAGMA, which contains an implementation of Faugeres
F4 algorithm. To see whether one can exploit the special structure of our public key, we compared
the running time of F4 on a random system to that of our scheme with a partially cyclic key. The
results are shown in the table below.

# equations 11 12 13 14 15 16
random 1894 s 10980 s 88832 s 527500 s 4540928 s 28345344 s
cyclic 1765 s 10368 s 82688 s 485120 s 4152320 s 26208265 s

93 % 94 % 93% 92% 91% 92 %

As you can see from the Table, MAGMA works slightly faster on our scheme than on a random
system. However, the speed up factor is so small that it isn’t a major drawback of our scheme.

4.2 UOV-Reconciliation

During the algebraic part of the UOV-Reconciliation attack some of the structure of our public key
gets lost. Because of that we don’t believe that the running time of this attack will be decreased
by a major factor. However, we haven’t proved this yet.

4.3 Parameters

Since we haven’t made a detailed security analysis of our scheme yet, the proposed parameters
have to be seen with great reservation. Yet we propose (as for UOV): (o, v) = (24, 48). We get
r = (o+v)·(o+v+1)−o·(o+1)

2 = 2328. So, the size of the public key is 11.3 kB. This means a reduction
of 83 % to the UOV Scheme (public key size: 64.8 kB)

5 Conclusion and Future Work

We think that the idea presented in this paper might be an interesting approach to reduce the
size of the public key. However, there remains a lot of work to be done. Some points we want to
adress in the future are

– complete security analysis of our scheme (especially rank attacks)
– effect of a random choice of the cyclic columns (instead of choosing the first r)
– Extension of the idea to other schemes (e.g. Rainbow)
– effect of a cyclic structure on algorithms like XL

Additionally we want to invite anybody to send us his ideas of attacking or strengthening our
scheme.

6 Acknowledgements

The first author wants to thank Jintai Ding and Stanislav Bulygin for many helpful hints.

References

[KP99] Kipnis, A., Patarin, L., Goubin, L.: Unbalanced Oil and Vinegar Schemes. In: Stern, J. (ed.)
EUROCRYPT 1999. LNCS vol. 1592, pp. 206-222 Springer, Heidelberg (1999)

[KS98] Kipnis, A., Shamir, A.: Cryptanalysis of the Oil and Vinegar Signature scheme. In: Krawzyck,
H. (ed.) CRYPTO 1998, LNCS vol. 1462, pp. 257-266 Springer, Heidelberg (1998)

[Pa97] Patarin, J,: The oil and vinegar signature scheme, presented at the Dagstuhl Workshop on Cryp-
tography (september 97)



A Toy example

In our example we set K = GF (17) and (o, v) = (2, 3). Then we have r = (o+v)·(o+v+1)−o·(o+1)
2 =

12. We choose our vector b and the matrix T to

b = (5, 1, 6, 3, 2, 13, 2, 15, 13, 6, 10, 4), T =


4 9 11 4 15
13 1 9 9 11
14 2 12 15 1
4 4 2 15 9
13 8 11 15 12


Our preliminary public key is (see equation (2))

P =
(

5 1 6 3 2 13 2 15 13 6 10 4 ? ? ? ? ? ? ? ? ?
4 5 1 6 3 2 13 2 15 13 6 10 ? ? ? ? ? ? ? ? ?

)
By the first 12 equations of (1) we get

(f0,0, . . . , f0,11) = (12, 13, 10, 12, 2, 13, 8, 9, 8, 1, 11, 13)
(f1,0, . . . , f1,11) = (10, 7, 14, 5, 14, 4, 15, 11, 0, 4, 0, 8)

The next three coefficients of each central polynomial are those of the Oil×Oil-terms and have
to be zero.
If we choose the remaining coefficients of the central map at random, we may get

F =
(

12 13 10 12 2 13 8 9 8 1 11 13 0 0 0 0 9 13 16 2 7
10 7 14 5 14 4 15 11 0 4 0 8 0 0 0 9 5 7 0 3 1

)
By composing F with T we get the public key of our scheme

P =
(

5 1 6 3 2 13 2 15 13 6 10 4 15 10 10 15 13 2 2 8 7
4 5 1 6 3 2 13 2 15 13 6 10 1 10 12 0 5 6 10 12 1

)
respectively

P = (5x2
1 + x1x2 + 6x1x3 + 3x1x4 + 2x1x5 + 13x2

2 + 2x2x3 + 15x2x4 + 13x2x5 + 6x2
3 + 10x3x4 + 4x3x5

+ 15x2
4 + 10x4x5 + 10x2

5 + 15x1 + 13x2 + 2x3 + 2x4 + 8x5 + 7,
4x2

1 + 5x1x2 + x1x3 + 6x1x4 + 3x1x5 + 2x2
2 + 13x2x3 + 2x2x4 + 15x2x5 + 13x2

3 + 6x3x4 + 10x3x5

+ x2
4 + 10x4x5 + 12x2

5 + 5x2 + 6x3 + 10x4 + 12x5 + 1)

From the second polynomial of the public key you have to store only the last 9 coefficients.


