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Abstract. The P2PRep algorithm [1, 2] is a reputation-management
mechanism in which a peer uses fuzzy techniques to compute local rep-
utations and aggregates these results to compute a global reputation for
another peer which has made an offer of service. While this mechanism
is known to be extremely effective in the presence of malicious peers, it
has one drawback: it does not preserve the anonymity of peers in the
network during the voting phase of protocol. This makes it unsuitable
for use in networks which associate peers with a routing identifier such as
an IP address. We propose in this paper, a solution to this problem - the
3PRep (Privacy Preserving P2PRep) algorithm which implements two
protocols to maintain vote privacy in P2PRep without significant addi-
tional computation and communications overhead. In doing so, we also
provide a method to compute the Ordered Weighted Average (OWA)
over distributed datasets while maintaining privacy of these data.

1 Introduction

Distributed collections of peers that share resources with each other form
peer-to-peer (P2P) networks. These networks are growing in popularity
as a result of their excellent availability, reliability, and scalability. Often
in such networks, there are no trusted central authorities to help with
maintainence of the network, including with trust and reputation man-
agement. Reputation-management systems provide peers with a measure
of trustworthiness of other peers in the network, thus preventing wastage
of resources (that would result from interaction with malicious peers)
and helping improve quality of service. As noted in previous work, the
challenges of designing a decentralized reputation-management system
include the following:
1. Deciding where to place reputation information securely in the ab-

sence of a trusted central authority
2. How to collect and aggregate, for a global reputation, the reputation

assessments of a peer by other peers in the network
3. How to maintain the privacy of these reputation assessments.

Malicious peers might retaliate against other peers who have contributed
towards the propagation of a low reputation. For example, as noted in [3]
reputation assessments are often reciprocal. In addition, malicious peers
might react more harshly by launching attacks such as DoS against an
identified peer [4].



2 R. Nithyanand, K. Raman

1.1 Contributions

In this paper we propose the 3PRep (Privacy Preserving P2PRep) al-
gorithm which augments the P2PRep algorithm with two new proto-
cols to preserve vote privacy without significant additional computation
and communications overhead. In 3PRep, local reputation assessments
(votes) are transmitted to querying peers as ciphertexts and are ag-
gregated without the disclosure of their values. In doing so, we also
provide a method to compute the Ordered Weighted Average (OWA)
over distributed datasets while maintaining privacy of these data. This
method is also applicable to mining statistical information from private
distributed datasets, and other voting systems, where preserving the pri-
vacy of votes is paramount. The major result of 3PRep is its application
to non-anonymous peer-to-peer networks where user identifiers are often
routing identifiers.

1.2 Related Work

In this section, we describe related research and work in the two cate-
gories that encompass our paper - trust management and privacy pre-
serving mining.
There has been a considerable amount of research in the area of trust
management and reputation-management systems for decentralized net-
works. The EigenTrust algorithm [5] has been the benchmark for rep-
utation management systems in decentralized P2P networks. It imple-
ments the pagerank [6] algorithm for a peer to peer architecture. Yao
and Tamassia [7] present a private distributed scalar product protocol
that can be used to derive trust from private recommendations using
homomorphic encryption. Although this system preserves the privacy
of recommendations made by peers, the reputation management system
proposed is not highly resistant to attacks by malicious peers. The Su-
perTrust [8] framework manages the trust ratings of peers in a privacy-
preserving manner for the super peer P2P architecture. There are other
techniques to preserve privacy in reputation systems. TrustMe [9] pro-
vides anonymity to peers and their recommendations. However, its ar-
chitecture requires a single central authority so it is not applicable to
decentralized P2P networks. The authors of [10] propose several privacy
preserving protocols for reputation systems that make use of additive ag-
gregation. One of these is is fallible to collusion. Another is resistant to
collusion but has significant computation and communications overhead
of O(n3). [11] describes the architecture for an anonymous reputation
management layer plug-in for decentralized P2P networks that prevents
sybil attacks. [12] provides a privacy preserving method for computing
trust in an expert (using the Knots model). However, it assumes that all
peers in the network behave honestly. Other research work has been con-
centrated on reputation management for centralized networks in internet
communities. [13] presents some design options for privacy preservation
in reputation systems in centralized architectures. The proposals pro-
vided unlinkability and anonymity of user reputation profiles and were
backed up with common information theoretic models. Other work in [14]
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allows users to build and use reputations aggregated from a set of dif-
ferent communities which are interoperable with the reputation system,
the work is illustrated with the phpBB forum architecture. Finally, [3]
provides statistical evidence that reciprocal feedback distorts the pro-
duction of reputation in peer to peer networks.
The concept of secure multi-party computation was first introduced by
Andrew Yao [15] for two parties. Goldreich et al. [16] extended this for
more than two parties, proving security on the assumption that pri-
vate communication channels existed between each communicating party.
Since then, there has been considerable work done in the area of mining
statistics and information from private data held by two or more parties.
Atallah and Du [17] proposed efficient and secure solutions to solve geo-
metric problems using data from multiple parties. Several methods [18,
19] have also been proposed for privacy preserving classification of data
from multiple datasets. Work in [20, 21] addresses secure mining of as-
sociation rules over horizontally partitioned data. The methods incorpo-
rate cryptographic techniques and homomorphic encryption to minimize
the information shared between parties. Finally, work in [22, 23] present
methods for privacy preserving k-means clustering when different sites
contain different attributes for a common set of entities.

1.3 Organization

In section 2, we introduce the P2PRep algorithm which forms the basis
of our paper. In section 3, we present a definition of privacy and then
describe two protocols for preserving vote privacy in P2PRep along with
an analysis of correctness, communications and computation complexity.
In section 4, we describe 3PRep - a privacy preserving alternative to
P2PRep. Finally, in section 5, we make our conclusions.

2 The P2PRep Algorithm

The P2PRep algorithm consists of 5 phases - Resource Searching, Polling,
Vote Cleaning, Vote Aggregation, and Resource Downloading. In the first
phase, a peer (the requester) sends a broadcast message to others in the
network requesting for some resource, other peers (offerers) respond with
offers of service if they have the requested resource. In the Polling phase,
the requester broadcasts a request for the opinions on the quality of ser-
vice provided by the offerers. The peers that have interacted with the
offerers in the past respond to the request by sending their opinions
(essentially a vote). The requester then cleans votes based on its own
experiences with the voters i.e. some votes may be completely discarded
if the requester doesn’t trust the source. Finally, the set of clean votes for
each offerer is aggregated, resulting in the computation of a global rep-
utation value of the offerer. The requested resource is then downloaded
from the offerer with the highest global reputation.
In this section of the paper, we describe the reputation model of the algo-
rithm - i.e. the Polling phase (where peers compute the local reputations
of offerers) and the Vote Aggregation Phase (where the received votes
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are aggregated to compute an offerers global reputation). The remaining
sections of the paper will be dedicated to modifying these two phases to
maintain privacy of the votes.

2.1 The P2PRep Reputation Model

The P2PRep Reputation model considers two levels of reputations - local
and global. Local reputations denote the amount of trust one peer has
in another based on its own interactions with it. Global reputations are
an aggregation of many local reputations. Global reputations are used to
allow new peers, or peers with insufficient interaction with the offerers
to decide which offerers provide best quality of service.

Computation of Local Reputation Each local reputation (rij) is
initialized after the first interaction between i and j by taking the value
of t

(1)
ij . Where t

(n)
ij = 1 for a satisfactory transaction and t

(n)
ij = 0 for an

unsatisfactory transaction. After every subsequent interaction, the local
reputation is updated on the basis of the peer i’s satisfaction with the
interaction with peer j.

r
(n)
ij = α(n)r

(n−1)
ij + (1− α(n))t

(n)
ij

Here, α(n) is some “freshness” value (between 0 and 1) that is used to de-
note the importance of i’s past interactions with j. If α(n) ≈ 1, then the
reputation computed as a result of past interactions is more significant
than the result of the most recent one. If α(n) ≈ 0, the past reputations
carry almost no importance at all. α(n) must be high for the first few
transactions and reduce as n increases. We will not describe the method
for computation of this freshness parameter, but more information may
be obtained from [2].

Computation of Global Reputation If a peer has not interacted
with an offerer sufficiently enough, it enters the polling phase of P2PRep
and requests all other peers in the network to send their opinions of the
offerer. Once the vote (rkj) expressed by each peer k for the offerer j is
received by the requesting peer i, these votes need to be put together
in some manner to produce a global reputation value for j. This is done
using the Ordered Weighted Average (OWA) operator.

λOWA =

∑n
k=1Wkrtk,j∑n

k=1Wk

Here, n is the number of reputations that need to be aggregated, W is
the weighing vector and rt1,j ≥ rt2,j ≥ .... ≥ rtn,j . The weights are set
asymmetrically since the aggregation operator needs to be biased towards
the lower end of the interval in order to increase the impact of low-local
reputations on the overall result since peers are usually assumed to be
trustworthy and malicious behaviour is exceptional.
A bonus is given to multiple occurances of the same vote value. The unit
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interval of all possible local reputation values is partitioned into d + 1
intervals and their extreme values are used as the set of weights in the
weighing vector W for aggregating the d distinct local reputation values.
Peer i’s local reputation of j may also be added to the computation by
partitioning the unit interval into d+ 2 intervals and associating it with
the highest possible weight ( d+1

d+2
). Then, j’s global reputation Rj can be

given by:

Rj =

∑d+1
x=1 ( x

d+2
)Dx|Dx|∑d+1

x=1 ( x
d+2

)|Dx|

where Dx denotes the xth distinct vote value and |Dx| denotes the num-
ber of identical votes with value Dx that were received.

2.2 Loss of Vote Privacy in the P2PRep Algorithm

During the polling phase, the requester (i) polls peers about the rep-
utation of the offerer (j). Peers reply with messages in the form (ID,
LocalRepj). The ID is required to be sent along with the vote since
it is required in the Vote Cleaning phase. There is no possibility for a
peer to maintain privacy of its vote (LocalRepj). The most fundamental
requirement of any reputation or voting mechanism - anonymity, is com-
promised. In the following sections, we will descibe how to avoid revealing
LocalRepj values while still allowing computation of Rj , thereby, making
P2PRep completely privacy preserving and suitable for all decentralized
peer-to-peer networks.

2.3 P2PRep vs. EigenTrust

The P2PRep algorithm is known to have significantly better ability than
the EigenTrust [5] to choke malicious peers from the peer-to-peer net-
work. Although the algorithm gets of to a slow start, it catches up and
eventually surpasses the benchmark set by EigenTrust when the number
of reputation queries in the network increases. This is clearly illustrated
in [1]. Our modifications not effect the performance of the P2PRep al-
gorithm, instead it just adds the important element of anonymity, which
allows the P2PRep to be extended even to non-anonymous decentralized
peer to peer networks.

3 Preserving Vote Privacy in P2PRep

We require the use of some semantically secure homomorphic encryption
scheme (we describe the rest of the paper using the Paillier cryptosystem
[24]) to allow privacy preserving computation of global reputations in the
Vote Aggregation phase. We also introduce into P2PRep a concept that
was introduced originally in EigenTrust - an apriori notion of trust. We
assume that there exist some small percentage (≤ 5%) of peers that
will undertake more responsibility for the good of the network and are
modeled as honest but curious peers, as are all the others. These peers
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are called pre-trusted peers. All such peers have a public-private key pair
(PuK,PrK), of which PuK is known to all peers in the network (the
public keys of all pre-trusted peers may be distributed when a new peer
joins the network). Although pre-trusted peers will be used in the process
of reputation computation, we will keep their involvement to a minimum.
These pre-trusted peers are usually the peers which were involved during
the setup and initialization of the P2P network.
Our definition of privacy is similar to the definition of privacy used in
some distributed data-mining operations [25]. It can be defined by:

|Pr(B learns T |PAB)− Pr(B learns T |PBC)| ≤ ε

where, PXY denotes some privacy preserving protocol executed between
the parties X and Y . The client, X, is the party requesting some service
(statistics, mining, etc.) on its encrypted data from the Server, Y . Here,
Y is the party in possession of the decryption key. Pr(Y learns T |PXY )
denotes the probability of the server, learning some information T from
the client’s data during the execution of PXY . ε is some value that we
aim to minimize.
Essentially, our definition of privacy states that a protocol P between two
parties, a client and a server, preserves ε−privacy iff the probability of
the server Y learning anything from the client X, that he wouldn’t have
learnt by playing the role of the client himself with some other server Z
is less than or equal to ε.

3.1 The Paillier Cryptosystem and Its Homomorphic
Properties

The Paillier cryptosystem [24] is an IND-CPA secure public key en-
cryption scheme based on the composite residuosity class problem1 that
is believed to be intractable.

Homomorphic Properties: The paillier scheme is an additively
homomorphic scheme which has the following very useful homomorphic
properties:

1. e(m1) × e(m2) = e(m1 + m2), where m1 and m2 are two messages
(plaintext) which belong to the message space M and e(m) denotes
the encryption (ciphertext) of a message m under the paillier en-
cryption algorithm.

2. e(m1)c = e(m1 × c), where m1 is some message (plaintext) which
belongs to the message space M , e(m) denotes the encryption (ci-
phertext) of the message m under the paillier encryption algorithm,
and c is any constant.

1 Given a composite n and an integer z, it is hard to compute y such that z=y mod
n2.
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Cost of Computation: The paillier cryptosystem executes with costs
that are comparable with other public-key cryptosystems such as RSA
and El-Gamal. The key generation process requires constant time and
needs to be executed just once in our protocols. The encryption algorithm
requires the product of two exponentiations in ZN2 , with exponent N ,
where N is the product of two large primes. The encryption of a single
message requires 6 primary constant time operations. The decryption
algorithm requires essentially just the cost of one exponentiation in ZN2 .
The process of decryption of a single ciphertext requires 14 primary
constant time operations. A more detailed analysis of the computational
costs, effective speed-ups, along with comparisons to other public key
cryptosystems such as RSA and El-Gamal may be found in [24, 26].

3.2 Vote Preparation in the Polling Phase

When a requester i, enters the polling phase, it sends a Poll message
to all the other peers in the network requesting for their reputation of
some offerer j. The message is of the form {i, j, ptpeer, PuKi} where
ptpeer is any pre-trusted peer chosen by i such that ptpeer 6= i. Re-
cipients of the message check if they have some local information re-
garding the reputation of j. If they do, they encrypt their vote (Lo-
calRep) using the public key PuK of the pre-trusted peer mentioned
in the message and reply to i with a PollReply message of the form

e
{
ID, e {LocalRep}PuKptpeer

}
PuKi

.

At the end of this phase, i decrypts all the PollReply messages, from
which receives a collection of IDs and encrypted votes. The votes can
then be cleaned, and a small subset can even be verified to detect spoof-
ing attacks as suggested in Vote Cleaning phase described in [2]. Once
the cleaning and verification process is complete, we enter the Vote Ag-
gregation phase. In order to compute the global reputation value of a
peer j in the vote aggregation phase, we need to perform the following
steps:
1. Compute the number ‘d’ of distinct votes and the frequency of each

distinct vote received by the requester. The set of distinct votes will
be represented by D and their frequencies by |Dy| for each y ∈
{1, ..., d}.

2. Compute the weight value Wy given by ( y
d+2

)|Dy| and then find∑d+1
y=1Wy and the global reputation value

∑d+1
y=1 WyDy∑d+1

y=1 Wy
.

3.3 Protocol 1: Counting the Number of Distinct Votes
and Frequency of each Vote

After the vote cleaning phase, and at the start of the vote aggregation
phase, the first operation the requester peer i will need to perform is
- counting the number of distinct votes (or reputations) received and
the frequency of each distinct vote i.e. compute d, Dx, and |Dx| for all
x ∈ {0, ..., d} from the set of (say) n encrypted votes (e(v1), ..., e(vn))
that it received. To do this, we perform the following steps described
below:
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1. Step I: Computing the Encrypted Vote Difference List
i computes e(vx) × e(vy)−1 ( = e(vx − vy)) for all x, y ∈ {1, ..., n}
where x < y. We call this sequence α. Elements of the sequence are
labeled by the pair (x, y), where, as before x < y. i then permutes
this sequence randomly to obtain a new sequence α′. Elements of this
sequence are labeled by the pair (p, q) such that PERMUTE(x, y) =
(p, q).

2. Step II: Computing the Permuted +1/0/-1 Sequence
i sends α′ to the pre-trusted peer ptpeer which decrypts it and gen-
erates another sequence β′ such that the p, qth element of β′ is 0 if
the decrypted value of the p, qth element of α′ is 0. If the p, qth value
of α′ is +ve, then the p, qth element of β′ is assigned the value +1,
otherwise a value of -1 is assigned. i.e.

β′q =


0 if decrypt(α′p,q) = 0
+1 if decrypt(α′p,q) > 0
−1 if decrypt(α′p,q) < 0

3. Step III: Computing the Original +1/0/-1 Sequence Matrix
i receives the permuted sequence of +1/0/-1’s (β′p,q) and removes
the earlier applied permutation to obtain βx,y. This sequence is then
used to construct an n × n matrix (M). The element Mx,y is given
by βx,y and My,x = −Mx,y.

4. Step IV: Sorting and Counting Using the Matrix
Now, i needs to compute the frequency of occurance of each distinct
vote. To do this, it computes the sum of each row of the matrix M ,
i.e. i computes Sumx =

∑n
y=1Mx,y for all x ∈ {1, ..., n}. i first sorts

this sequence to obtain a SortedSum. It then counts the number
of distinct values that occur in {SortedSum1, ..., SortedSumn} and
the number of occurances of each value, thereby obtaining d, e(Dx),
and |Dx| where x ∈ {1, ..., d} and D1 > D2 > ... > Dd.

Highlight of Protocol 1: Protocol 1 solves the following problem -
Assume a partyA has a set of n encrypted numbers E = {e(x1), ..., e(xn)}
and party B has the private key PrK to perform decryption of this set.
How does A first sort and then compute the frequency of occurance of
each number in the set X = {x1, ..., xn} without revealing the numbers in
X to B (i.e. without simply sending the set E to B for decryption) while
ensuring that B obtains no vital information, even in spite of possessing
PrK?

Correctness Analysis of Protocol 1: To illustrate the correct-
ness of Protocol 1 clearly, we make use of the following example: In
our scenario, we let A and B be the requester and pre-trusted peer re-
spectively. A has the encrypted set of four ratings (or votes) e(V ) =
{e(75), e(50), e(90), e(50)}.
A computes α = {e(+25), e(−15), e(+25), e(−40), e(0), e(+40)}. Using
some permuting function PERMUTE(x, y) 7−→ (p, q), A now computes
α′ = {e(−40), e(0), e(+40), e(+25), e(−15), e(+25)} which is sent to B.
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B decrypts this sequence to obtain the permuted set of differences β′

{−4, 0,+4,+2,−2,+2} and gains no vital information regarding the orig-
inal set of votes that it couldn’t have obtained by playing the role of the
requester itself (ofcourse in that case, he wouldn’t know PrK!). Now B
computes β′ = {−1, 0,+1,+1,−1,+1}. A receives β′ from B and using
PERMUTE−1 (p, q) 7−→ (x, y), obtains β = {+1,−1,+1,−1, 0,+1}.
The matrix M is given by

M =


0 +1 −1 +1
−1 0 −1 0
+1 +1 0 +1
−1 0 −1 0


RowSum : +1
RowSum : −2
RowSum : +3
RowSum : −2

A obtains SortedSum = {+3,+1,−2,−2} from which it can sort the
votes it received to obtain Sorted − e(V ) = {e(90), e(75), e(50), e(50)}.
By counting the occurance of elements in SortedSum, A obtains d = 3,
and also finds |D| = {1, 1, 2}, e(D) = {e(90), e(75), e(50)}.

Computation and Communication Cost Analysis of Pro-
tocol 1: The cost of computation may be split into the following: (1)
Cost of computing the set of vote differences at peer i: O(n2), (2) Cost
of permuting the sequence of vote differences at peer i: O(n), (3) Cost
of decryption of the permuted sequence at peer ptpeer: O(n2), (4) Cost
of computing the original sequence of values at peer i: O(n), (5) Cost of
computing the +1/0/-1 matrix at peer i: O(n2), (6) Cost of computing
the sum of the rows of the matrix at peer i: O(n2), (7) Cost of computing
the sorted sum of the rows at peer i: O(n log n), (8) Cost of counting
the number of distinct elements in the sorted sum at peer i: O(n), (9)
Cost of computing the frequency of occurrence of each distinct element
at peer i: O(n). Total cost of computation at peer i (from 1, 2, and 4 -
9) is O(n2), and the cost of computation at peer ptpeer (from 3) is also
O(n2).
The communications cost may be split into the following: (1) i sends
ptpeer the permuted sequence of vote differences (in ciphertext): O(n2),
(2) ptpeer sends i the +1/0/-1 sequences for the n2 differences: O(n2).
Total communications overhead that results from protocol 1 for the net-
work: O(n2).

3.4 Protocol 2: Computing the Global Reputation Value

At the end of the first protocol, peer i has the following data available
to it: d, a sorted list of e(Dx) with the corresponding |Dx| for all x ∈
{1, ..., d}. Using this information, we need for peer i to (1) compute the
weight vector W , include its own opinion of the offerer in that vector,
then compute the value of its aggregate, (2) compute the product of the
encrypted votes and the weight vector and the aggregate of the resulting
vector - the WD vector, and finally (3) compute the global reputation
of the offerer.
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1. Step I: Computing the Weight Vector and Its Aggregate:
Peer i computes Wx = x

d+2
×|Dx| for all x ∈ {1, ..., d}. Recall that we

do this to ensure that higher importance is given to lower votes since
peers are more likely to be trustworthy than not. However, if peer
i has some local reputation value of its own, it should assign Wd+1

= d+1
d+2

and e(Dd+1) = e(vij) where vij denotes peer i’s own locally
computed reputation of the offerer j. We do this to ensure that i’s
vote receives highest priority - regardless of its value. Computing the
aggregate now requires only a simple

∑d+1
x=1Wx.

2. Step II: Computing the WD Vector and Its Aggregate:
At this point, peer i has the plaintext values of Wx and

∑
W , the en-

crypted values of e(Dx) for all x ∈ {1, ..., d+ 1}. Peer i now computes
e(Dx)Wx to obtain e(Wx×Dx) for all x ∈ {1, ..., d+ 1}. To compute
e(
∑d+1

x=1WxDx), we multiply all the ciphertexts obtained from pre-
vious operations - i.e. e(W1D1) × e(W2D2) × ... × e(Wd+1Dd+1) =
e(W1D1 +W2D2 + ...+Wd+1Dd+1).

3. Step III: Compute the Global Reputation of Offerer j
Peer i uses the value e(

∑d+1
x=1WxDx) obtained in the previous step

to compute Rj . This is done by computing

e(

d+1∑
x=1

WxDx)
( 1∑d+1

x=1 Wx
)

from which i obtains:

e(

∑d+1
x=1WxDx∑d+1

x=1Wx

) = e(Rj)

This value is then sent to the pre-trusted peer ptpeer for decryption,
to obtain Rj . ptpeer may then send a message to peer i informing it
of the latest global reputation value computed for the offerer j.

Highlight of Protocol 2: Protocol 2 allows a party to compute the
aggregate and average of encrypted values for which it does not have
the ability to decrypt. In addition, when combined with protocol 1, it
solves the following problem - Assume a party A has a set of n encrypted
numbers E = {e(x1), ..., e(xn)} and party B has the private key PrK
to perform decryption of this set. How does A compute the Ordered
Weighted Average (OWA) of the set X = {x1, ..., xn} while allowing
lower values of X to receive higher weights and vice versa, and giving a
bonus to the values in X which occur repetitively, without allowing the
decryptor B obtain more information than itself? Our protocols solve
this problem while keeping the communication between A and B at a
minimum.

Correctness Analysis of Protocol 2: To illustrate the correct-
ness of Protocol 2 clearly, we continue the illustration of our example
from Protocol 1. Recall, at the end of Protocol 1 we had - d = 3,
|D| = {1, 1, 2}, and e(D) = {e(90), e(75), e(50)}. In step 1, A com-
putes W =

{
1
5
× 1, 2

5
× 1, 3

5
× 2
}

and then sets W4 = 4
5
, D4 to his own
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computed local reputation for the offerer (say 60), to do this, he sets
e(D4) = e(60). Finally, A computes

∑
W = 1+2+6+4

5
= 2.6. In step

2, A computes e(90)
1
5 , e(75)

2
5 , e(50)

6
5 , e(60)

4
5 to obtain the set of val-

ues in the vector e(WD) = {e(18), e(30), e(60), e(48)}. On performing
e(18) × e(30) × e(60) × e(48), A obtains e(156). Finally, in step 3, A

computes e(156)
1

2.6 to obtain e( 156
2.6

), on decryption by B, the global
reputation of the offerer is computed to be 60.

Computation and Communication Cost Analysis of Pro-
tocol 2: The cost of computation may be split into the following: (1)
Cost of computing the elements of the weight vector and its aggregate
at peer i: O(n), (2) Cost of computing the elements of the WD vector at
peer i: O(n), and all other operations in the protocol occur with constant
computation cost. Total cost of computation at peer i is O(n), and the
cost of computation at peer ptpeer is O(1). The communications costs
for protocol 2 are also of the order of O(1).

4 3PRep: Privacy Preserving P2PRep

In this section, we re-write the P2PRep protocol to allow for our privacy
preserving protocols to be incorporated. We will do this by describing
the functioning of each of the 5 phases in 3PRep.

4.1 Phase I: Resource Searching in 3PRep

The first phase of 3PRep (and P2PRep) is the resource location phase.
Here, a querying peer i attempts to find a set of offerers of some resource
that it requires. The peer i may reduce the size of this set by providing in
it search query, a set of minimum requirements that it requires from the
offerers (such as a minimum bandwidth requirement). i sends a broadcast
message of the form Query(min req, resource req) to all peers in the
network.
Once the peers receive this message, if they have the resource required by
i and they meet the minimum requirements, they reply with a message of
the form QueryHit(ID, bandwidth, hits). i uses the message to compile
a list of offerers.

4.2 Phase II: Polling in 3PRep

During the polling phase of 3PRep, the querying peer i selects using
some metric, an offerer o from the list obtained in the Resource Searching
phase. At this point before downloading the resource, it needs to find out
if o is trustworthy or not. To do this, it first selects some bootstrapping
peer (as the pre-trusted peer - ptpeer). Once this is done, i sends out a
broadcast message of the form poll(i,o,ptpeer, PuKi) to all peers in the
network. Every peer that receives this message checks their reputation
log to check if they have a locally computed reputation for peer o as a
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result of past interactions.
If they have not interacted with o, they ignore this request. If they have
a history with the peer o, they look into their repository to find the
public-key (PuKptpeer) of the peer ptpeer listed in the message and then
reply to peer i with a message of the form:

poll-reply

{
e
{
ID, e {local repo}PuKptpeer

}
PuKi

}
.

4.3 Phase III: Vote Cleaning in 3PRep

After the querying peer i receives the encrypted values of other peer’s
local reputations for the peer o, it enters the vote cleaning phase in which
it (1) filters out replies obtained from peers that it does not trust, and
(2) selects some subset of votes which it will verify, to ensure that vote
spoofing or modification is not being carried out. While performing (1)
is trivial even with encrypted votes (since IDs in the poll-reply message
are in plaintext), (2) is a little more complicated.
First, the peer i needs to find a set of votes for which it will run a
verification procedure. The number of votes to verify may be calculated
based on a fast-start, fast-recovery algorithm such that, when a peer
enters the vote cleaning phase for the first time, he verifies the maximum
number of votes possible (there is a network limit on the number of
votes any peer may verify - Threshold max). If all the votes are correctly
verified and there is no vote spoofing, the peer verifies just half the
number of votes during the next cleaning phase (until it reaches a lower
limit - Threshold min). However, if there is some spoofing detected, it
doubles the number of votes to be verified during the next cleaning phase.
When a peer j is asked to verify a vote that was sent by him (to i for
o and using ptpeer’s PuK), he is sent a message of the form - V erify
(i, o, ptpeer, e {local repo}PuK). Since the paillier encryption scheme is
randomized, we use either of the following methods for vote verification

– Method One - Using a Vote Cache: Every peer j records the
e {local repo}PuK value that it sent in previous poll-reply messages.
If the V erify message has the same encrypted value that is stored
in its logs, peer j replies positively, otherwise, he reports that a
modification or spoofing attack occured on his vote. This method is
the simplest solution to the problem, and does not require any major
communication or computation overhead. However, it requires peers
to store their previous encrypted votes - thus increasing storage costs.

– Method Two - Invoking a Pre-Trusted Peer: When a peer j
receives the V erify message, it first extracts the e {local repo}PuK

value from it. Next, it re-ecrypts its stored local reputation using
the same PuK to obtain e {verify repo}PuK . It then computes -
e {local repo}PuK × e {−verify repo}PuK and sends it to ptpeer
where it is decrypted. If the decrypted value is non-zero, ptpeer
informs i and j of the attack on the vote, otherwise, ptpeer sends
a positive report to i. This method requires no extra storage over-
head, but it does require extra communication costs since there are
multiple additional messages sent between i, j, and ptpeer.
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4.4 Phase IV: Vote Aggregation in 3PRep

Once peer i has a clean, verified collection of encrypted about peer o, it
needs to compute the Ordered Weighted Average of these votes, giving
more importance to low reputation votes, and recurring vote values. This
is a challenge since peer i is unaware of the decryption key PrK. At
this point, i invokes protocol 1 to learn the number of distinct votes
and their frequency of occurance. i needs to communicate with ptpeer
just once during this protocol. i then invokes protocol 2 to compute the
final global reputation value of the offerer o. This is again done with
just one interaction between i and ptpeer, minimal communication and
computation costs, and reasonable storage costs.

4.5 Phase V: Resource Downloading in 3PRep

If peer i is satisfied with the computed global reputation for the offerer
o, he starts downloading his resource from o. After the transaction is
complete, he updates his locally computed reputation for o depending
on his satisfaction with the interaction. This locally computed reputation
is updated using the fuzzy technique described earlier in section 2.1.

5 Conclusions

In this paper, we presented several useful contributions towards the com-
putation of reputation in decentralized peer-to-peer networks and privacy
preserving statistics computation in a distributed environment. First, we
presented the 3PRep algorithm, a reputation-management system that is
applicable to even non-anonymous decentralized peer-to-peer networks
where user identifiers may be rounting identifiers. The performance of
the system in the presence of malicious peers remains exactly the same
as the original (known to be very effective) P2PRep algorithm that it
is based upon, since the reputation computation metrics are unchanged.
We also presented a method for computing the Ordered Weighted Aver-
age of data in a distributed environment while maintaining their privacy.
The method for privacy preserving computation of the Ordered Weighted
Average may also be applied to other voting, recommendation, and sta-
tistical computation applications, where data from certain parties are
given more weight than others depending on their values (i.e. weights
are required to be directly/indirectly proportional to the value of the
data held) and the privacy of the individual datasets must be respected.
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