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Abstract. In this paper, we examine the relationship between and the
efficiency of different approaches to standard (univariate) DPA attacks.
We first show that, when feeded with the same assumptions about the
target device (i.e. with the same leakage model), the most popular ap-
proaches such as using a distance-of-means test, correlation analysis, and
Bayes attacks are essentially equivalent in this setting. Differences ob-
served in practice are not due to differences in the statistical tests but
due to statistical artifacts. Then, we establish a link between the correla-
tion coefficient and the conditional entropy in side-channel attacks. In a
first-order attack scenario, this relationship allows linking currently used
metrics to evaluate standard DPA attacks (such as the number of power
traces needed to perform a key recovery) with an information theoretic
metric (the mutual information). Our results show that in the practical
scenario defined formally in this paper, both measures are equally suit-
able to compare devices in respect to their susceptibility to DPA attacks.
Together with observations regarding key and algorithm independence
we consequently extend theoretical strategies for the sound evaluation of
leaking devices towards the practice of side-channel attacks.

1 Introduction

Just over a decade ago the publication of Differential Power Analysis (DPA)
attacks [10] excited the cryptographic community because of their unexpected
simplicity and effectiveness in practical settings. Their introduction sparked off
research in different directions: attacks vs. countermeasures and theory vs. prac-
tice. Obviously, practice informs the development of theory, and countermeasures
can neither be formalized nor tested without a sound understanding of attacks.

Important steps towards the theoretical analysis of countermeasures (based
on formal descriptions of adversaries) have been made in [4, 17]. Dedicated work
on theoretical models for side-channel attacks has been published in [13], and
then further developed in [18]. The beauty of these theoretical approaches is that
they formalize a large number of attacks. The drawback is they have not bridged
the gap to practical works such as [10]. In particular, the work in [18] establishes
the conditional entropy as a measure of information leakage and discusses several
properties of it. But while these metrics are expected to serve as a comparison
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basis for any device, their connection to the efficiency of standard attacks was
let as an open problem. Hence it is not clear if the evaluation of side-channel
attacks requires an information theoretic approach anyway or if simpler evalua-
tion tools (DPA, typically) could be exploited in certain meaningful scenarios. In
parallel, research such as [2, 9], which is discussed in more practically orientated
communities such as CHES (Cryptographic Hardware and Embedded Systems),
has developed an interest in finding the “best” way to conduct DPA attacks. In
other words, given the multitude of approaches to DPA attacks (e.g. correlation
attacks, distance-of-means attacks, template attacks, etc. ), which one requires
the least number of leakage traces to break a given algorithm?1

Our contributions. In this article we tackle this question of what is the “best”
standard DPA attack. For this purpose, we first provide concise definitions for
attacks and discuss to which extent DPA attacks are key and algorithm indepen-
dent. Our definitions capture a large class of DPA attacks whilst being specific
enough to allow us to make concrete statements later on. This is an important
contribution towards putting such attacks on a sound theoretical basis.

Second, we show that for standard univariate DPA attacks (i.e. attacks based
on assumptions such as made in [2, 10], precise definitions are given in Section 2)
the most popular methods are in fact equally efficient. Specifically, we show that
these different distinguishers mainly optimize the same criteria. Hence, differ-
ences observed in actual experiments are only due to statistical artifacts (i.e.
imprecise estimations in case of too low numbers of leakages).

Third and under certain reasonable physical assumptions, we relate the corre-
lation coefficient to the concept of conditional entropy (or mutual information),
which has been established as a theoretical measure for side-channel leakage in
[18]. This relationship has the important practical implication that the leakage
of a device can sometimes be directly related to the efficiency of standard DPA
attacks mounted against this device. Linking this with our discussion about key
and algorithm independence, it turns out that the leakage can be measured
independent of algorithms and related to the efficiency of DPA attacks.

Summarizing, our research solves a long-standing discussion about the effi-
ciency of different types of DPA attacks. We show that in a first-order scenario
and when provided with the same leakage models, the most popular attack
methods essentially require the same number of leakage traces to extract keys in
practice. Furthermore, we show that in this setting, the conditional entropy as
a measure for the leakage of a device can be related to the efficiency of standard
DPA attacks. Hence, by applying one standard DPA method, designers are even
able to quantify the leakage of a device using the theoretical measure introduced
in [18]. These results consequently establish a simple link between theory and
practice, for a restricted but important class of side-channel attacks.

1 Another possible definition of “best” could be: which attack requires the least precise
assumptions about the leakage behaviour of the devices they target? In this paper
we look at the number of leakages which is important for practical adversaries.
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Preliminary remarks. While we believe that the following results highlight
useful intuitions for the evaluation of leaking devices, it is essential to underline
that they are also limited, in order to avoid misinterpretations. Note that these
limitations are inherent to our goal of stating general results for physical attacks,
which requires the definition of a well-defined context in which our claims hold.

First, this paper considers statistical distinguishers that all exploit the same
leakage model. But in practice, the choice of a distinguisher can go together with
the choice of a leakage model. For example, correlation attacks often exploit
approximated models, based on the Hamming weights of the manipulated data.
By contrast, Bayesian attacks are usually applied after a careful profiling of
the target device (i.e. the construction of templates). This does not reduce the
impact of our conclusions but suggests another reading. Namely, in standard
first-order DPA attacks, the selection of a leakage model has more impact on
the success rate than the selection of the statistical tool to exploit this model.

Second, the equivalence that we claim for different distinguishers is asymp-
totic. That is, we show that once all the terms in a statistical test used in a DPA
attack are properly estimated, then the only key-dependent terms are identical
for the equivalent distinguishers. Since side-channel attacks use statistical tests
to discriminate different key candidates, and this discrimination usually hap-
pens before the perfect estimation of all the terms in the statistics, this means
that different distinguishers may indeed perform differently, up to a certain ex-
tent. But since these differences are only due to statistical artifacts, there is not
much to be learned from them. Also, this difference vanishes when the number
of queries required to perform a successful key recovery increases.

Third, our results rely on a number of physical assumptions that may not
be perfectly observed in practice. Most importantly, the equivalence between
correlation attacks and template attacks only holds in case of so-called Gaussian
leakages. This nicely captures the context of an attack against an unprotected
CMOS device. But as demonstrated in [21], the equivalence between different
distinguishers does not generalizes to attacks against implementations protected
with masking. More generally, the observations in this paper do not prevent the
information theoretic metric of [18] to remain necessary in more advanced sce-
narios. For example, when exploiting multivariate statistics against protected de-
vices, the generality of an information theoretic metric remains useful to capture
any possible leakage dependency (in contrast with the correlation coefficient).

Organization of this paper. We define our notations, the attacks we consider
and the necessary assumptions for our analysis to hold in Sect. 2. Our contribu-
tions are organised in three main sections. Sect. 3 discusses key and algorithm
independence issues in side-channel attacks. In Sect. 4 we show that (two of)
the most popular methods for DPA attacks are equally efficient. Sect. 5 investi-
gates the relationship between correlation and conditional entropy in a practical
implementation setting. Finally, Sect. 6 welds the different pieces of this work
into a whole and discusses implications and future research directions. There are
several appendices to this paper that provide definitions, more details for proofs,
and cover an additional distinguisher (the distance-of-means test).
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2 Background

2.1 Notations

In this work, we use an n-bit block cipher as an example of a cryptographic algo-
rithm that is implemented in a device. It aims to illustrate concepts and attacks,
but our analyzes and definitions hold also for other cryptographic primitives. Let

x be a plaintext selected at random from a set X : x
R←− X and let k be a key

selected at random from a set K: k
R←− K such that X = K = {0, 1}n. For such x

and k, let Ek(x) be the encryption of the plaintext x under a key k. In classical
cryptanalytic attacks, an adversary is able to query the block cipher (or any
algorithm) in order to obtain pairs of plaintexts and ciphertexts [xi, Ek(xi)]. In
side-channel attacks, the adversary is additionally provided with the output of
a leakage function L. Following [13], this function is used to represent the actual
output of a leaking device’s measurement setup. Let now xq = [x1, x2, . . . , xq] be
a vector containing a sequence of q input plaintexts to a target implementation.
The measurements resulting from the observation of the encryption of these q
plaintexts are stored in a leakage vector denoted as lq = [l1, l2, . . . , lq]. Each ele-
ment li corresponds to the encryption of an input xi under key k. These elements
are often referred to as leakage traces and contain many points in practice.

2.2 Definition of the attacks

Side-channel attacks are usually based on a divide-and-conquer strategy in which
different parts of a secret key are recovered separately. In general, the attacks
define a function γ : K → S which maps each key k to a subkey s = γ(k),
such that |S| ≪ |K|. Note that [16] uses the term “subkeys” where [18] uses the
term “key classes”. We use “subkeys” in the remainder of this article. In [18],
a side-channel key recovery adversary is defined as an algorithm with a certain
time, data and memory complexity that can query a target implementation with
inputs xq and exploit answers containing both the ciphertexts Ek(xq) and the
leakages lq corresponding to their encryption. A more practical definition is also
proposed in which the adversary is described as a statistical procedure that
compares key-dependent predictions of the leakages with actual measurements.
The success of a side-channel attack essentially depends on the extent to which
the best prediction actually corresponds to the leakage of the correct subkey.
As a matter of fact, there are many different ways to predict the leakages and
compare the predictions with physical measurements. In this paper, we focus on
a specific category of attacks that is widely used in practical settings.

Specifically, we will focus on standard DPA attacks that are intuitively pic-
tured in Figure 1 using the key addition and S-box layers of a block cipher as
concrete example. These DPA attacks follow three main steps:

1. For different plaintexts xi and subkey candidates s∗, the adversary predicts
some intermediate values in the target implementation. For example, one
could predict S-box outputs zi in Figure 1 and get values vs∗

i = S(xi ⊕ s∗).
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Fig. 1: Notations and illustrative univariate DPA attack.

2. For each of these predicted values, the adversary models the leakages. For
example, if the target block cipher is implemented in a CMOS-based 8-
bit microcontroller, the model can be the Hamming weight (HW ) of the
predicted values. One then obtains modeled leakages ms∗

i = HW (vs∗

i ).
3. For each subkey candidate s∗, the adversary compares the modeled leak-

ages with actual measurements, produced with the same plaintexts xi and
a secret subkey s. In first-order DPA attacks, each ms∗

i is compared with a
single point in the traces. This comparison is independent of all other points.
Consequently, these attacks are referred to as univariate attacks. In practical
attacks, this comparison is applied to many points in the leakage traces and
the subkey candidate that performs best is selected by the adversary.

As detailed in [12], different statistical tests can be considered to perform the
comparison and our goal is to analyze them. We will investigate two frequently
considered ones in detail, namely Pearson’s correlation coefficient [2] and Bayes
(used, e.g. in template attacks [5]). We also deal with a third one (namely the
distance-of-means test) in Appendix E (that should be read after Section 4). In
a so-called correlation attack, the adversary selects the subkey candidate as:

s̃ = argmax
s∗

ρ̂(lq,m
s∗

q ), (1)

where ρ̂ denotes Pearson’s sample correlation coefficient. In an attack using
Bayes, the adversary directly exploits an approximated probability density func-
tion for the leakages and selects the subkey candidate with maximum likelihood:

s̃ = argmax
s∗

q
∏

i=1

P̂r[li|ms∗

i ] (2)
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Note that in practice, comparing different statistical tests requires to provide
them with the same leakage samples. The points which lead to good attacks are
related to the intermediate values selected in step 1 of the analysis. Among these
points, there is typically one that stands out. Different methods can be used to
identify it. In this paper, we only assume that it is somehow selected with an
arbitrary method of choice (i.e. we do not assume that it is known a priori).
Because we show in Section 4 that all the statistical tests under investigation
optimize the same criteria, our results hold irrespective of the selection of the
point: any sample that is good (or bad) for one test will be equally good (or bad)
for the other tests. Finally and as far as adversarial capabilities are concerned, we
consider known and uniformly generated random inputs for our attacks. In this
context, we work with adversaries exploiting a known message leakage model.

Definition 1. A side-channel adversary exploits a known message leakage model
if he can predict the leakage generated by any input/output of his target device.

This definition is needed to avoid (unusual) situations in which, e.g. an adversary
would have built templates only for a few plaintexts and key bytes.

2.3 Characteristics of the leakage function

Definition 2. A leakage sample li is said to have additive noise if this sample
can be written as the sum of a deterministic part di and a random part ri.
In addition, the random part is independent of the deterministic part and it is
identically distributed for all messages and subkeys.

Additive noise is a standard assumption in side-channel attacks, e.g. it was
used in [1], [4], and also for constructing stochastic models [16]. Another common
assumption is related to a symmetry property for certain pairs of leakages and
subkeys. It is denoted as EIS property and we use the definition provided in [16].

Definition 3. Let A be an arbitrary set and let φ : X × S → A be a mapping
for which the images φ(X × s) ⊂ A are equal for all subkeys s ∈ S. We say that
a leakage sample has property of Equal Images under different Subkeys (EIS)
if it can be written as li = δ(xi, s) + ri with δ = δ ◦ φ for a suitable mapping
δ : A → L, i.e. δ(xi, s) can be written as a function of φ(xi, s).

We illustrate the EIS property using our block cipher example. Consider an
implementation of a key addition mapping φ(xi, s) = xi⊕ s that leaks the Ham-
ming weight. The leakage of this intermediate value then has the EIS property
because all pairs (xi, s) map to the same set of images xi ⊕ s.

Note that the EIS property can be similarly defined for a leakage model ms∗

i .
In fact, if one assumes EIS for the target leakage samples, then the underlying
model also has the EIS property. Combined with the additive noise assumption,
this further implies that the models have equal distributions (EDS) for all sub-
keys. As a last property for the leakages, we fix the probability distribution of
the random part to be a normal distribution. In practice, these properties are
not supposed to be perfectly respected but to hold to a sufficient degree.
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Definition 4. A leakage sample li is Gaussian if it has additive noise and its
random part follows a normal distribution with mean zero and variance σ2

R.

2.4 Attack scenario

Taking advantage of the previous definitions, we now define our attack scenario.

Definition 5. A standard univariate DPA attack (short: standard DPA attack)
is an attack that follows the 3-step procedure outlined in Sect. 2.2 under the fol-
lowing conditions. The adversary exploits uniform inputs with a known message
leakage model, the leakage samples are Gaussian, models and leakages have the
EIS property, and all subkey candidates s have equal a-priori probabilities.

The previous definitions capture the conditions observed in many practical DPA
attacks, in particular [2, 5, 10]. In the next section, we discuss to which extent
these attacks are independent of a cryptographic algorithm and its key.

3 Key and algorithm independence issues

It is a general intuition that up to a certain extent, DPA attacks are key and
algorithm independent. Again, we use a block cipher as concrete example. One
expects that if an attack against this cipher implemented on a given platform
succeeds, then an attack against another block cipher implemented on the same
platform should succeed as well. It is also frequently assumed that block ciphers
have no weak or strong keys with respect to DPA attacks. In this section, we dis-
cuss the conditions upon which these intuitions hold. In particular, we show that
standard DPA attacks imply a certain level of key and algorithm independence.

3.1 Key independence

Essentially, the EIS property combined with the additive noise assumption im-
plies that all keys potentially lead to the same leakages. If inputs are chosen
uniformly at random, this implies that standard DPA attacks apply equally to
all subkeys values and hence are independent of them. Theorem 1 formalizes this
observation, using the definition of success rate recalled in Appendix A.

Theorem 1. On average over its input vectors xq and given a target subkey
defined by a function γ : K → S, the success rate of a standard DPA attack
against a cryptographic implementation is the same for all subkey values s ∈ S.

A proof sketch is given in Appendix B. Note that the assumption about uni-
formly distributed plaintexts is important - it is easy to find an example of at-
tack with non uniform plaintexts leading to key dependencies (see Appendix C).
When applicable, Theorem 1 indicates that all key values are equally difficult
to recover. A similar claim holds for the information theoretic metric of [18],
namely that all the lines in the entropy matrix (recalled in Appendix A) are
identical, up to a permutation (i.e. the so-called weak template attack context).
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3.2 Algorithm independence

Theorem 2. If for each input plaintext xi, there is a bijective relation between
the target subkey and the intermediate value exploited in a single-query standard
DPA attack against a cryptographic implementation, then the success rate of this
attack averaged over its inputs is independent of the algorithm it targets.

The proof of this theorem trivially derives from the fact that the distribution
of a random variable is only permuted if this variable goes through a bijection.
Hence, it does not change the cardinalities of the subkey candidates in a side-
channel attack. Taking the example of Figure 1, we can imagine an attack in
which the S-box outputs zi are the target intermediate values. Intuitively, a first
leakage sample l1 corresponding to a plaintext x1 reduces the set of intermediate
values Z to the dark grey subset in Figure 2. A subset of the same cardinality
can be defined in the set of subkeys S since for a given plaintext x1, going
through the inverse S-box and XORing with x1 is a bijection. We note that this
statement holds even if only a part of the leakage produced by the intermediate
values is modeled by the adversary (e.g. if only a few bits of zi are predicted).

SZ

S   (z1) + x1
-1

S   (z2) + x2
-1

l1

l2

l1 & l2

Fig. 2: Combination of leakages and algorithm independence.

More interesting is the observation that Theorem 2 does not hold anymore
for two leakage samples. Indeed, if a second plaintext x2 is used to generate a
second sample l2, then the correct key s also has to be part of the light grey
subset in Figure 2. The probability Pr[s|l1, l2] consequently depends on how the
intersection between the two subsets in S is distributed. As already pointed out,
e.g. in [15, 19], this depends on the algebraic structure of the S-box. Note that
in practice, this second sample could correspond both to a new plaintext x2 or
to the leakage of another intermediate value, e.g. an attack targeting the inputs
and outputs of the S-box in Figure 1 would suffer from the same issue. However,
this algorithm dependency vanishes when the number of queries increases. That
is, the intersection in the set S eventually only contains the correct subkey
candidate s (if a sound leakage model in the sense of [18] is used).

In summary, if there is a bijective relation between subkeys and target values,
side-channel attacks are independent of the block cipher on which they oper-
ate, when one or all leakages are used. Intermediate amounts of queries lead to
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algorithm-dependencies. This fact strengthens the suggestion of [18] to compare
implementations with the conditional entropy computed from a single query2.
Combined with the result of the previous section, it means that the evaluation of
standard DPA attacks can indeed be performed key and algorithm independent.

4 Relation between statistical methods for standard DPA

In this section, we formalize the similar efficiency of the correlation and template
attacks in a univariate DPA attack scenario. In practice there are several popular
methods. The covariance was first mentioned in Chari et al. [3] and later on re-
introduced in [2], and Bayes was introduced by Chari et al. in [5]. We show that
in a standard DPA attack, these methods are equally efficient in practice.

Definition 6. The efficiency of a side-channel attack A to reach a success rate
sr is the minimum average number of queries qA

sr such that the success rate
(defined in Appendix A.1) of this attack reaches sr, i.e. Succ

sc-kr

A (qA
sr) ≥ sr.

Theorem 3. In a standard DPA attack where the leakage samples have noise
variance σ2

R, the statistical closeness between correlation and Bayesian attacks
|qcorr

sr − qbayes
sr | is a monotonously decreasing function of σ2

R.

Proof sketch. Without restricting generality, we assume that an attacker sub-
tracts the mean Ê(Lq) from the leakages and models at the beginning of an
attack. An attacker using the correlation coefficient then selects the key accord-
ing to (1), which can be simplified and written as described in Appendix D.

Because the attacker first subtracts the mean Ê(Lq) from all leakages, the term

Ê(Lq) · Ê(Ms∗

q ) equals zero, and the correlation is given in (3):

s̃ = argmax
s∗

Ê(Lq ·Ms∗

q )

Ê((Ms∗

q )2)− (Ê(Ms∗

q ))2
(3)

Similarly, an attacker using Bayes’ method selects the key according to (2), which
can be simplified and written as detailed in Appendix D:

s̃ = argmax
s∗

Ê(Lq ·Ms∗

q )

Ê
(

(Ms∗

q )2
) (4)

Theorem 3 essentially results from the three following observations:

1. Due to the EIS property and for any given number of leakage traces q, the
distribution of the model Ms∗

q is equal for all subkey candidates s∗. It directly
implies that the sampling distribution of the denominator terms in equations
(3) and (4) is independent of the subkeys in this context.

2 In case of surjective S-boxes, even single queries lead to algorithm dependencies. We
let the careful investigation of this context as a scope for further research.
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2. For any model used by the adversary, the variance of the sampling distribu-
tion of the denominator terms in equations (3) and (4) is a monotonously
decreasing function of q. In other words, the more leakage traces are used in
an attack, the better these denominator terms are estimated.

3. Eventually, the product term in the numerators of equations (3) and (4) has
a different sampling distribution for different subkey candidates. Hence, only
this product term allows discriminating the correct subkey. Furthermore, the
sampling distribution of the variance of this product term is a monotonously
increasing function of the noise variance σ2

R. It implies that the more noise
there is in the leakages, the higher is the variance of the sampling distribution
of this product term and the more difficult it is to estimate.

Putting these observations together leads to Theorem 3 as follows. First, increas-
ing σ2

R leads to a higher variance for the sampling distribution of the product
term in the nominators of equations (3) and (4). It implies a drop in the success
rate of the attacks. In order to achieve the same success rate for the increased
noise level as for the original one, it is necessary to increase q. But by increasing
both σ2

R and q, one can only improve the estimation of the denominator terms
in equations (3) and (4). Indeed, the variance of the sampling distribution of
these denominator terms does not depend on σ2

R and decreases with q. Hence,
the difference between these denominator terms for different subkey candidates
is becoming smaller in this case. Since these denominators are also the only place
where the correlation and Bayes attacks differ, it implies that these statistical
tests are becoming more similar. Summarising, the numerator becomes more
decisive the higher σ2

R and q, because the denominator becomes subkey inde-
pendent. As the numerator is the same for Bayes and correlation, the absolute
difference |qcorr

sr − qbayes
sr | monotonously decreases as a function of σ2

R. ⊓⊔

The previous theorem states that the efficiency of Bayesian and correlation
attacks gets close as soon as the number of queries required to perform a suc-
cessful attack is “large enough” and this number depends on the variance of
the product term in equations (3) and (4). Of course, in practice the important
question is to determine how this requirement fits to practical scenarios and to
quantify it. In the following, we first discuss this problem theoretically, by in-
troducing an additional empirical assumption. Then, we provide simulated and
actual experiments that both validate our claims.

Empirical assumption. We assume that the distributions of the leakage sam-
ples’ deterministic part di and the models ms∗

i in a standard DPA attack are
close to Gaussian, with respective variances σ2

D and σ2

M .

We first note that this empirical assumption considers the leakages’ deter-
ministic part and the models, by opposition to Definition 4 that only considers
the leakages’ random part. Intuitively, it can be simply explained using the ex-
ample of Figure 3. The left part of the figure shows the binomial distribution
that corresponds to a Hamming weight leakage function with noise variance
σ2

R = 0. The right part of the figure shows the same leakage function with some
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Fig. 3: Examples of overall leakage probability distribution.

additive noise. Clearly, none of these distributions is strictly Gaussian. On the
other hand, such Gaussian mixtures constructed from a binomial distribution
reasonably fulfill our empirical requirement. And in fact, this observation holds
for a lot of leakage models that are considered in practice (in particular, all
the models that capture a weighted sum of certain bits in an implementation).
Furthermore, this empirical assumption holds the better the higher σ2

R. Hence,
it appears as a reasonable starting point to discuss the quantitative aspects of
Theorem 3. It directly leads to the following corollary:

Corollary 1. In a standard DPA attack where the leakages’ deterministic part
and the models are close to Gaussian, the variance of the sampling distribution
of the terms Ê(Lq ·Ms∗

q ) and (Ê(Ms∗

q ))2 in equations (3) and (4) equals (1+r2) ·
(σ2

D + σ2

R) · σ2

M/q and 2σ4

M/q, respectively, where the coefficient r = ρ(Ms∗

q ,Lq)
denotes the correlation between the model and the leakages.

These variances can be directly obtained from [6]. They allow putting forward
an important shortcut to avoid in the application of Theorem 3. Namely, the
corollary shows that the number of queries required to perform a successful
attack that can be considered as “large enough” for Theorem 3 to hold actually
depends on several parameters, since the condition to be respected is:

(1 + r2) · (σ2

D + σ2

R) · σ2

M/q > 2σ4

M/q

For example, the more the model and leakages are correlated, the smaller this
number will be. In other words, the corollary shows that Theorem 3 strictly holds
for a given device and model. But it does not indicate any improved closeness
between the distinguishers when different devices and models are considered.

We finally emphasize that the empirical assumption in this section is not
necessary for Theorem 3 to hold but it is useful to analyze it quantitatively. The
next two sections confirm the previous claims empirically.
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4.1 Validation of the results using simulated experiments

We first simulated attacks against the exemplary implementation of Figure 1
with the AES S-box, assuming a Hamming weight leakage function and model
for which we have σ2

M = 2. Figure 4 illustrates the success rates of the correlation
and Bayesian attacks in a standard DPA scenario, with respective noise standard
deviations σR = 1 and σR = 5. It clearly illustrates that correlation and Bayes
attacks have very a similar efficiency in this context, even with a low number
of leakages. This can be explained by the perfect matching of (i.e. high correlation
between) the actual leakages and the adversary’s model.
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Fig. 4: Success rate of the correlation and Bayesian attacks - simulated attacks.

4.2 Validation of the results using real experiments

In order to further validate Theorem 3, this section shows that our results also
hold in practice, for a range of different devices. For this purpose, we have se-
lected: an 8-bit microcontroller such as found in typical low-end smart cards, a
32-bit microprocessor such as found in more expensive smart cards and embed-
ded devices and finally a 128-bit ASIC coprocessor dedicated to the computation
of the AES. The different attacks we performed exactly follow the standard DPA
procedure described in this paper and exploit setups such as described, e.g. in
[12]. Figure 5 illustrates the success rates of the correlation and Bayesian attacks
for our three different devices. We again observe that by only adding Gaussian
noise to the measurements, the two attacks get closer (as in the two upper parts
of the figure). Also, we see that changing a device implies a different condition for
the “large enough” number of leakages. For example, the Hamming weight model
does not perfectly capture the leakage variations of our 32-bit microprocessor,
which explains a larger difference between the two statistical tests in this case.

Summarizing, the results in this section show that from a designer’s point
of view, the most important question when performing a standard DPA attack
is the selection of a good leakage model. But once this model is given, using a
correlation coefficient, a Bayesian distinguisher (or a distance-of-means test, see
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Fig. 5: Success rate of the correlation and Bayesian attacks - real measurements.

Appendix E) in parallel is redundant to a certain extent and will not give much
additional insights about the security of a leaking device. One statistical test
will essentially do the job. These results also confirm empirical evaluations such
as [20] in which different univariate side-channel attacks are experimented.

5 Relation between correlation and mutual information

In [18], the mutual information is suggested as a metric to compare different
leaking implementations. The intuition is that if two devices A and B run an al-
gorithm Ek(x) and the same subkey is targeted by an adversary such that H[S|L1]
respectively equals hA, hB for these devices and hA > hB, then the success rate
of a Bayesian adversary in recovering this subkey should be higher for device B.
It results from the observation that side-channel attacks generally require sev-
eral queries to be successful, which allows the intuition “more entropy implies
less success rate” to be experimented in practice. But although empirically con-
firmed by different applications, this relation between information theoretic and
security metrics was only shown for a Bayesian adversary recovering a single-bit
subkey in previous work. In this section, we investigate how the mutual infor-
mation relates to the correlation coefficient used in standard DPA attacks. We
show how this relation confirms the proofs of [18] in another specific realistic
implementation scenario. For this purpose, we use the following theorem.
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Theorem 4. The mutual information between two normally distributed random
variables X, Y , with means µX , µY and variances σ2

X , σ2

Y can be expressed as:

I(X ; Y ) = −1

2
· log

2

(

1− ρ(X, Y )2
)

(5)

The proof of this theorem is in Appendix F. We now discuss the extent to which
it applies to the standard DPA attacks. For this purpose, it is worth recalling
the four main variables that we consider, namely the subkeys S, intermediate
values Vq, models Mq and leakages Lq that are related as follows:

S  Vq  Mq  Lq

Overall, the quantity we are interested in to evaluate a leaking device is H[S|Lq].
A first observation is that, assuming a bijective relation between S and Vq, we
have H[S|L1] = H[V1|L1], as discussed in Section 3.2. Hence, we can identically
evaluate the leaking device with these two quantities. Let us now assume that
the adversary’s model exactly corresponds to the leakages’ deterministic part
in a standard DPA attack. Then, a second observation is that, because of the
additive noise property, we have ρ(Vq,Lq) = ρ(Vq,Mq) · ρ(Mq,Lq). Similarly,
we have for the conditional entropy:

H[V1|L1] = H[V1|M1] + H[M1|L1] (6)

(see Appendix G). Eventually, if we additionally assume that the leakage’s de-
terministic part and the models have a close to Gaussian distribution (i.e. our
empirical assumption in the previous section), we can directly use Theorem 4
and approximate I(M1;L1) with − 1

2
· log2

(

1− ρ(Mq,Lq)
2
)

and H[V1|M1] (that
does not depend on the actual measurements L1) separately. The additive law
of Equation 6 can then be used to compute H[V1|L1].

In practice, the quality of this approximation depends on how well the “close
to Gaussian” assumption is respected. In order to confirm this assumption, we
again simulated experiments with the example of Figure 1, assuming a Hamming
weight leakage function. We considered both a Hamming weight and single-bit
leakage model. The results are illustrated in Figure 6. In both cases, we see that:

– H[V1|M1] is fixed and does not depend on the measurements L1,
– The mutual information I(M1;L1) varies from 0 and ≈ 2.5 (resp. ≈ 0.1) for

the Hamming weight (resp. single-bit) leakage models
– The estimation of this mutual information with the correlation coefficient is

good as long as the value of this coefficient is not too close to one (e.g. when
the noise standard deviation is lower than 0.25 in the left part of Figure 6).

As already mentioned, none of the investigated models is Gaussian. But the
Hamming weight leakage model follows a binomial distribution that reasonably
approximates the normal distribution. And for the single-bit leakage model, the
noise generated by the 7 other bits of the target intermediate values is sufficient
for Theorem 4 to be observed in practice. In this respect, it is worth noting that
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Fig. 6: Estimation of the conditional entropy with a correlation coefficient.

the correlation never reaches one with the single-bit leakage model because even
for low measurement noises, the algorithmic noise (made of 7 bits out of 8) is
such that the maximum value for ρ(Mq,Lq) equals

√

1/8 ≈ 0.35.

Summarizing, Theorem 4 states that in the context of standard DPA attacks,
when the leakages’ deterministic parts and models are “close to Gaussian”, both
an information theoretic metric (such as the conditional entropy proposed in
[18]) and the correlation coefficient previously used in the side-channel litera-
ture measure the extent to which a key dependent model captures the actual
leakage variations. We note that this result also applies in the case of unperfect
leakage models. But as discussed in [22], the adversary will then underestimate
the information leakages. Again, the good selection (or profiling) of a leakage
model is the main element to allow a proper evaluation of its leakages. We fi-
nally mention that, as for Theorem 3, it is important to avoid shortcuts in the
application of Theorem 4. In particular, the “close to Gaussian assumption” ap-
plies reasonably well to standard DPA attacks. But it does not apply in advanced
scenarios, e.g. when countermeasures such as masking are considered, in which
the leakages distributions can be significantly different than Gaussian. Because
of its genericity, the conditional entropy remains necessary in such contexts.

6 Implications for practice and further research

Our results first imply that in a standard DPA scenario, the efficiency of attacks
using the correlation coefficient and a Bayesian distinguisher is statistically close
if both attacks use the same leakage model. An amusing consequence is that in
this context, even Kocher’s original single bit DPA is close to a single bit Bayesian
attack that is usually assumed to be much more powerful. Consequently, our
work provides a mathematical foundation for the observations made in the “DPA
Contest” [8] and other empirical evaluations such as [20]. It explains that the
small differences between the investigated distinguishers that are observed in
practice are not due to the statistical tests but to statistical artifacts (which
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may nevertheless be significant in certain scenarios, e.g. if the number of queries
to the target device is strictly limited). Further research could tackle the question
of how these conclusions apply to distinguishers that we did not discuss, e.g. [9].

Our second important conclusion is that the amount of information leaked
by a cryptographic device measured with an information theoretic metric is
connected to the correlation coefficient used in standard DPA attacks. Hence,
under certain reasonable physical assumptions that we discuss in this paper,
both metrics can be used as a figure of merit of the target devices with respect
to these attacks. Connecting this result with the practical security analysis of
[11], we can even relate these quantities to the security of the implementations
(i.e. the number of traces required to recover the keys with high success rate).
Further research could investigate more complex situations, e.g. higher-order
attacks in which standard DPA attacks potentially become suboptimal compared
to a generic information theoretic approach using multivariate statistics.

Third, this paper shows that up to a certain extent, the evaluation of a
leaking device can be done independently of the algorithms and keys that are
targeted in side-channel attacks. With this respect, further research could inves-
tigate situations where the relation between the intermediate value from which
information is extracted and the subkey that is to be recovered is not bijective,
situations where the inputs are not uniformly generated, because of chosen plain-
text leakage models or adaptively selected plaintexts in the attacks, or situations
in which side-channel attacks are combined with advanced cryptanalysis tools.

Overall, the results discussed in this article are an important step towards a
sound mathematical investigation of side-channel attacks. They are also of prac-
tical importance for developers and evaluators of cryptographic devices because
they show that in the important scenario of standard DPA attacks, all distin-
guishers are equally efficient. Hence, testing does not always require to investigate
all distinguishers exhaustively: it is sometimes sound to use “one distinguisher
for all”. Last, we hope that our work will provide a germ for further research
and raise more fundamental questions in the field of side-channel analysis.
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A Definition of the metrics

A.1 Security metric

We define the success rate of a side-channel adversary as follows. First, the adver-
sary AEK ,L is an algorithm with limited time complexity τ , memory complexity
m and queries q to the target implementation (EK , L). Its goal is to guess a
subkey s = γ(k) with non negligible probability. For this purpose, we assume
that the adversary AEK ,L outputs a guess vector g = [g1, g2, . . . , g|S|] with the
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different subkey candidates sorted according to the attack result: the most likely
candidate being g1. A success rate of order 1 (resp. 2, . . . ) relates to the proba-
bility that the correct subkey is sorted first (resp. among the two first ones, . . . )
by the adversary. More formally, we define the experiment:

Experiment Expsc-kr-o
AEK ,L

k
R←− K;

s = γ(k);
g← AEk,L;
if s ∈ [g1, . . . , go] then return 1;

else return 0;

The oth-order success rate of the side-channel key recovery adversary AEK ,L

against a subkey variable S is straightforwardly defined as:

Succ
sc-kr-o,S
AEK,L

(τ, m, q) = Pr [Expsc-kr-o
AEK ,L

= 1] (7)

We also define the success rate for a given subkey value s with the same ex-
periment, where s is not picked up at random but fixed to an arbitrary value.
Theorem 1 considers this second definition. Note also that [18] defines an alterna-
tive security metric (namely, the guessing entropy) that can be used to measure
the efficiency of a side-channel adversary in a more flexible fashion: it measures
the average position of the correct subkey candidate in the guess vector g.

A.2 Information theoretic metric

Using the notations of Section 2.1, let Pr[s|lq] be the conditional probability of a
subkey s given a leakage vector lq. We first define a conditional entropy matrix:

H
q
s,s∗ = −

∑

lq

Pr[lq|s] · log2 Pr[s∗|lq],

where s and s∗ denote the correct key and a candidate out of |S| possible ones
in a side-channel attack. A conditional entropy matrix typically looks like:

H
q
s,s∗ =









h1,1 h1,2 ... h1,|S|

h2,2 h2,2 ... h2,|S|

... ... ... ...
h|S|,1 h|S|,2 ... h|S|,|S|









For each line of the matrix, we denote the diagonal element hs,s as the residual
entropy of a key s. Then, we define Shannon’s conditional entropy:

H[S|Lq] = −
∑

s

Pr[s]
∑

lq

Pr[lq|s] · log2 Pr[s|lq] = E
s

Hq
s,s (8)
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B Proof sketch of Theorem 1

Proof sketch. We only give an argument of independence for a Bayesian adver-
sary and assuming an EIS proposerty with φ(xi, s) a group operation. A similar
argument can be used for correlation attacks, distance-of-means tests and other
functions φ. Let us pick two subkeys s and s′ and show that the conditional
probabilities Pr[s|Lq] and Pr[s′|Lq] are equal. In practice, the leakages Lq are
generated by a sequence of plaintexts Xq. Because of the EIS property with φ
a group operation, we have that ∀xi ∈ X , there is only one x′

i ∈ X such that
φ(xi, s) = φ(x′

i, s
′) and for this x′

i, we have that L(xi, s) = L(x′
i, s

′). Hence,
from each sequence of plaintexts xq that is used to identify s, one can build a
corresponding sequence x′

q to identify s′ such that the leakage function outputs
corresponding to (s,xq) and (s′,x′

q) are identical and the number of different

sequences equals |X |q for both xq and x′
q. Let finally L′

q be the corresponding
random leakage vector. Since the plaintext vectors xq are uniformly distributed,
we have that Pr[s|Lq] = Pr[s′|L′

q] = Pr[s′|Lq]. And since the same equalities
holds for any pair of correct key candidates (s, s′) or incorrect pair of key can-
didates (s∗, s′∗) we directly have the claimed key independence.

C Key-dependent attack with non uniform plaintexts

Let us consider Figure 1 with the 8-bit S-box of the AES Rijndael and a Hamming
weight leakage model without noise. Say that an adversary can only observe 2
plaintexts out of the 256 possible ones. Then, we can find a subkey value s1

for which one of these two plaintexts leads to zi = 0 or zi = 255. Hence, this
subkey can be recovered with probability one during the attack (since Hamming
weights 0 and 8 exactly identify the S-box output zi). But we can also find a
subkey value s2 for which these two plaintexts lead to different zi values such
that when performing the attack, s2 remains undistinguishable from a few other
subkey candidates. Hence, the success rates against s1 and s2 are different.

D Simplification of Bayes and correlation

A correlation attack selects the subkey based on (1), which we rewrite as follows.

s̃ = argmax
s∗

Ê(Lq ·Ms∗

q )− Ê(Lq) · Ê(Ms∗

q )

σ̂(Lq) · σ̂(Ms∗

q )

= argmax
s∗

Ê(Lq ·Ms∗

q )− Ê(Lq) · Ê(Ms∗

q )

σ̂(Ms∗

q )

= argmax
s∗

Ê(Lq ·Ms∗

q )− Ê(Lq) · Ê(Ms∗

q )

Ê
(

(

Ms∗

q

)2
)

−
(

Ê(Ms∗

q )
)2
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A Bayesian attack selects the subkey based on (2), which we rewrite as follows.

s̃ = argmax
s∗

q
∏

i=1

1√
2 · π · σL

· exp

(

−1

2
·
(

li −ms∗

i

σL

)2
)

= argmin
s∗

q
∑

i=1

(

li −ms∗

i

σL

)2

= argmin
s∗

q
∑

i=1

l2i + (ms∗

i )2 − 2 · li ·ms∗

i

= argmin
s∗

Ê
(

(Lq)
2
)

− 2 · Ê(Lq ·Ms∗

q ) + Ê
(

(Ms∗

q )2
)

= argmax
s∗

2 · Ê(Lq ·Ms∗

q )− Ê
(

(Ms∗

q )2
)

= argmax
s∗

Ê(Lq ·Ms∗

q )

Ê
(

(Ms∗

q )2
) − 1

= argmax
s∗

Ê(Lq ·Ms∗

q )

Ê
(

(Ms∗

q )2
)

Notes. The simplification of Bayes and relation to the correlation coefficient
strongly relates to the Gaussian assumption of the leakage samples. Also, the
leakage standard deviation term σ̂(Lq) in a correlation attack, although asymp-
totically independent of the subkey candidates, can have an impact in attacks
where several leakage samples (potentially having different standard deviations)
have to be tested in parallel, e.g. in order to detect ghost peaks [2].

E Connection with Kocher’s original DPA attack

The original DPA attack, as it has been presented by Kocher et al. in [10] assumes
a binary leakage model. Using our notation this means that ms∗

i ∈ [0, 1]. In the
attack the adversary selects his key candidate as:

s̃ = argmax
s∗

1

qs∗

1

q
∑

i=1

li ·ms∗

i −
1

1− qs∗

1

q
∑

i=1

li · (1−ms∗

i ),

where qs∗

1
=
∑q

i=1
ms∗

i . This classical definition can be rewritten as follows:

s̃ = argmax
s∗

q
∑

i=1

li ·
(

ms∗

i

qs∗

1

− 1−ms∗

i

q − qs∗

1

)

=
1

q

q
∑

i=1

li · m̃s∗

i ,

where m̃s∗

i = ms∗

i
q

q1

+ (ms∗

i − 1) · q

q−q1

and therefore m̃s∗

i ∈ [− q

q−q1

, q

q1

]. These

two values equal the probabilities that ms∗

i is zero or one, respectively. In case of
a correlation attack, the adversary selects the key according Equation (1). The
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correlation between two random variables is invariant under linear transforma-
tions of the variables and hence ρ̂(lq,m

s∗

q ) = ρ̂(lq, m̃
s∗

q ). Using almost exactly
the same proof as in case of Theorem 3 we therefore have that the difference
of success rate between the original DPA attack and the correlation attack is a
monotonously decreasing function of σ2

R. Thanks to Theorem 3 this also holds
for the difference between a Bayesian attack and the original DPA attack.

F Proof of Theorem 4

From [7], we write the joint entropy of a multivariate gaussian distribution as:

H(X1, . . . , Xn) =
1

2
· log

2
((2πe)n · |C|) , (9)

where |C| is the covariance matrix corresponding to (X1, . . . , Xn). Considering
a bivariate distribution (X, Y ), it yields (we use ρ(X, Y ) = ρ for short):

C =

(

σ2

X ρ · σXσY

ρ · σY σX σ2

Y

)

Add filling this covariance matrix in (9), we directly find:

I(X ; Y ) = H(X) + H(Y )−H(X, Y )

=
1

2
· log2(2πe · σX

2) +
1

2
· log2(2πe · σY

2)

−1

2
log2

(

(2πe)2 · (σ2

Xσ2

Y − ρ2σ2

Xσ2

Y )
)

= −1

2
· log

2
(1− ρ2)

G H[V1|L1] = H[V1|M1] + H[M1|L1]

This relation comes from the observation that, in our scenario:

1) H[V1|M1,L1] = H[V1|M1], i.e. knowing the model M1, there is nothing
to learn about the target values by observing the leakage L1.
1) H[M1] = I(M1;V1), i.e. the only randomness in M1 comes from V1.

Then, by applying standard relations from [7], we find:

H[V1|L1] = H[V1|M1,L1] + I[V1;M1|L1]

= H[V1|M1] + I[V1;M1|L1]

= H[V1|M1] + H[M1|L1]
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