
Efficient Certificateless KEM in the Standard
Model

Georg Lippold, Colin Boyd, Juan González Nieto

Information Security Institute, Queensland University Of Technology,
GPO Box 2434, Brisbane QLD 4001, Australia

{g.lippold,c.boyd,j.gonzaleznieto}@qut.edu.au

Abstract. We give a direct construction of a certificateless key encap-
sulation mechanism (KEM) in the standard model that is more efficient
than the generic constructions proposed before by Huang and Wong [9].
We use a direct construction from Kiltz and Galindo’s KEM scheme [10]
to obtain a certificateless KEM in the standard model; our construction
is roughly twice as efficient as the generic construction.

1 Introduction

Certificateless encryption introduced by Al-Riyami and Paterson [1] is a
variant of identity based encryption that limits the key escrow capabilities of the
key generation centre (KGC), which are inherent in identity based encryption
[3]. Dent [8] published a survey of more than twenty certificateless encryption
schemes that focuses on the different security models and the efficiency of the re-
spective schemes. In certificateless cryptography schemes, there are three secrets
per party:

1. The key issued by the key generation centre (Dent [8] calls it “partial private
key”). We assume in the following that this key is ID-based, although it does
not necessarily have to be ID-based.

2. The user generated private key xID (Dent calls it “secret value”).
3. The ephemeral value chosen randomly for each session.

Key encapsulation mechanisms (KEM) provide efficient means to com-
municate a random key from a sender to a designated receiver. Messages used
with public key encryption schemes are usually limited in length or have to be-
long to a specific group. Contrariwise, key encapsulation mechanisms encrypt
only a key that is then usually used in a symmetric data encapsulation mecha-
nism (DEM) and thus provide increased efficiency over public key encryption.
The resulting scheme is then called a hybrid encryption scheme [7,6]. Efficient
constructions for a certificateless encryption scheme in the standard model can
be obtained from our scheme using the KEM-DEM construction [6,2].

Previous work has identified both identity based key encapsulation mech-
anisms (IB-KEM) [10,5] (see [11] for a comparison) and certificateless key en-
capsulation mechanisms (CL-KEM) [2,9]. However, the known constructions for

CL-KEM schemes are all generic constructions: they involve running a public
key based encryption scheme and an ID-based KEM in parallel and are thus not
very efficient. In this work we propose the first direct CL-KEM construction from
an efficient IB-KEM in the standard model and prove the construction secure.

The security model for our CL-KEM construction is similar to that of
previous work by Bentahar et al. [2] and Huang and Wong [9]. We consider a
“weak” certificateless adversary that can replace public keys, but cannot request
decapsulations of a ciphertext under a replaced public key unless the correspond-
ing user secret value is disclosed to the simulator. This is a realistic notion as in
real life one cannot expect a user to successfully decrypt ciphertexts that do not
correspond to the user’s private key. For a full discussion of the security model
see Section 3 on the facing page.

The main contributions of this work are:

– First efficient direct construction for a CCA secure certificateless key encap-
sulation mechanism proven secure in the standard model.

– Simplified proof strategy for certificateless KEM constructions.
– Direct efficient constructions for certificateless CCA secure encryption [2]

and key agreement [4] follow from our construction.
– Approximately twice as efficient as the generic construction by Huang and

Wong.
– Improved security model for certificateless KEM

2 Definitions

2.1 Target Collision Resistant Hash Function

Let F = (TCRs)s∈S be a family of hash functions for security parameter k and
with seed s ∈ S where S is parametrized by the security parameter k. F is said
to be collision resistant if, for a hash function TCR = TCRs with s

$← S, it is
infeasible for an efficient adversary to find two distinct values x 6= y such that
TCR(x) = TCR(y).

The notion of a target collision resistant hash function(TCR) is strictly weaker.
The adversary against a target collision resistant hash function is supplied with
a randomly drawn hash function TCR = TCRs and a randomly chosen element
x. The task of the adversary is to find a y such that TCR(x) = TCR(y). Note
that the adversary may not select x, and is thus limited with respect to collision
resistant hash functions. Target collision resistant hash functions are sometimes
also called universal one-way hash functions. Naor and Yung [13] and Rompel
[14] give efficient constructions for target collision resistant hash functions from
arbitrary one-way functions. In the following we assume that TCR’s exist and
define the advantage of any efficient polynomial time adversary M against a
randomly chosen hash function TCR = TCRs as

Advhash-tcr
TCR,M (k) = Pr[y $←M(TCR(·), x)|TCR(y) = TCR(x)]

The hash function TCR is said to be target collision resistant if the advantage
for all M against TCR is negligible in k.

2.2 Admissible Bilinear Pairing

LetG andGT be groups of prime order p. A bilinear pairings map e : G×G→ GT
between the groups G and GT satisfies the following properties:

Bilinear We say that a map e : G×G→ GT is bilinear if e(ga, gb) = e(g, g)ab for
all g ∈ G and a, b ∈ Zp.

Non-degenerate We say that e is non-degenerate if it does not send all pairs in
G×G to the identity in GT . Since G and GT are groups of prime order p, it
follows that if g ∈ G is a generator of G, then e(g, g) is a generator of GT .

Computable There is an efficient algorithm to compute e(g, h) for any g, h ∈ G.

2.3 Decisional Bilinear Diffie-Hellman Problem

The decisional Bilinear Diffie-Hellman assumption states that given {ga, gb, gc} ∈
G3 it is hard to distinguish e(g, g)abc ∈ GT from a random element R $← GT .
Let Z be an algorithm that takes as input a triple {ga, gb, gc, T} ∈ G3 × GT ,
and outputs a bit b ∈ {0, 1} indicating T

?= e(g, g)abc. We define the dBDH
advantage of Z to be

AdvdBDH
Z =

∣∣∣Pr
[
a, b, c

$← Zp : Z(ga, gb, gc, T) =
(
T

?= e(g, g)abc
)]
− 1/2

∣∣∣
3 Security Model

3.1 Types of certificateless adversaries

In certificateless cryptography it is common to distinguish between two types of
adversaries:

Type I: A Type I adversary represents an outsider adversary that does not
have access to the secret master key of the key generation centre (KGC).

Type II: A Type II adversary represents an insider adversary that has access
to the master secret key (e.g. a malicious KGC).

The security of the scheme is then further classified by the type of decryption
oracle access that the adversary has:

Strong security: The adversary has access to a strong decryption oracle. This
means that the oracle can decrypt ciphertexts even if it does not know the
private key that matches the public key used for encryption. Thus it can
decrypt a ciphertext C ∈ C even if the adversary replaced the certificateless
public key that was used to generate the ciphertext and does not disclose
the matching private key to the decryption oracle.

Weak security: The adversary has access to a weak secret value decryption
oracle (Weak SV Decrypt oracle). The oracle can decrypt ciphertexts only if
it is given all private keys necessary for decryption. If the adversary replaced
a public key, then decryption is only possible if the adversary submits the a
private key matching the public key along with the decryption request.

In his survey on certificateless encryption schemes, Dent [8] remarks:

The Weak [. . .] [security] model seems to most realistically reflect the po-
tential abilities of an attacker. The attacker can replace public keys with
arbitrary values of its choice, thus allowing for senders to be duped,
but the attacker can still ask a legitimate receiver to decrypt any ci-
phertext with his original private key value (using the Decrypt oracle).
Furthermore, the attacker may be able to dupe a legitimate receiver into
changing his public key and secret value to that of the attacker’s choice
(using a combination of the Replace Public Key oracle and the Weak SV
Decrypt oracle), and so obtain encryptions and decryptions using keys
formed from arbitrary secret values.

All published CL-KEM schemes [9,2] focus on the weak security model. We will
use this model for our work as well.

3.2 Certificateless Key Encapsulation Mechanism

We use the definition by Huang and Wong [9] for a certificateless key-encapsulation
mechanism (CL-KEM). A certificateless KEM consists of the following algo-
rithms:

CL-KEM IBE Setup: On input 1k where k ∈ N is a security parameter, it
generates a master public/private key pair (mpk,msk).

CL-KEM IBE KeyDerivation: On inputmsk and a user identity ID ∈ {0, 1}∗,
it generates a user partial key / ID-based private key skID.

CL-KEM User KeyGen: On input mpk and a user identity ID, it generates
a user public/private key pair (βID, xID).

CL-KEM Encapsulation: takes as input (mpk, βID, ID) and outputs an en-
capsulation key pair (K,C) ∈ K × E where C is called the encapsulation
of the key K and K and E are the key space and the encapsulation space
respectively.

CL-KEM Decapsulation: takes as input ((skID, xID), ID, C) and decapsulates
C to get back the corresponding key K, or outputs the special symbol ⊥
indicating invalid encapsulation.

3.3 The security game for CL-KEM

To model the security guarantees of a certificateless scheme correctly, we intro-
duce the following model that merges the requirements by Dent [8] and Huang
& Wong [9]. The adversary M has access to the following oracles:

Reveal master key: The adversary is given access to the master secret key.
Reveal ID-based key(ID): The adversary extracts the ID-based private key

of party ID.
Get user public key(ID): The adversary obtains the certificateless public key

for ID. If the certificateless key for the identity has not yet been generated,
it is generated with the user key gen algorithm.

Replace public key(ID, pk): Party ID’s certificateless public key is replaced
with pk chosen by the adversary. All communication (encryption, encapsu-
lation) for Party ID will use the new public key.

Reveal secret value(ID): The adversary extracts the secret value xID that cor-
responds to the certificateless public key for party ID. If the adversary issued
a replace public key query for ID before, ⊥ is returned.

Decapsulate(ID, C): The adversary learns the decapsulation of C under ID or
⊥ if C is invalid or if the adversary replaced the public key of ID.

Decapsulate(ID, C, x): The adversary learns the decapsulation of C under ID
using the secret value x. The special symbol ⊥ will be returned if C is invalid.

Get challenge key encapsulation(ID∗): The adversary requests a challenge
key encapsulation and thus marks the transition from Oracles1 to Oracles2

in Experiment 1. The simulator returns a challenge key encapsulation as
described in Experiment 1.

The security game for a CL-KEM scheme is associated with the following ex-
periment:

Experiment Challengecl−kem−type1−ccaCL-KEMM (k) :

(mpk,msk) $← CL-KEM IBE Setup(k)

(ID∗, state) $←MOracles1(find,mpk)

K∗0
$← K; (C∗,K∗1) $← CL-KEM Enc(pk, ID∗)

γ
$← {0, 1};K∗ = K∗γ

γ′
$←MOracles2(guess,K∗, C∗, state)

Return γ == γ′

(1)

The advantage an adversary M has against a CL-KEM scheme is therefore
expressed by

AdvCL-KEM
M (k) =

∣∣∣Pr
[
Experiment Challengecl−kem−type1−ccaCL-KEMM (k)

]
− 1/2

∣∣∣
For a Type I adversaryM, Oracles1 and Oracles2 mean access to all oracles

listed above with the following limitations:

1. No reveal master key queries.
2. C∗ must not be submitted to a decapsulate oracle under ID∗.
3. Not both (reveal secret value OR replace public key) AND reveal ID-based

key oracles may be asked for ID∗.

For a Type 2 adversary M, Oracles1 and Oracles2 are subject to the the
following limitations:

1. Oracles1 and Oracles2 now includes reveal master key as allowed query,
2. C∗ must not be submitted to a decapsulate oracle under ID∗.
3. reveal secret value must never be asked for ID∗,
4. Oracles1 must not include replace public key for ID∗.

CL-KEM IBE Setup(k) :

u1, u2, α
$← G

∗; z ← e(g, α)

H
$← HGen(G)

mpk ← (u1, u2, z,H);msk ← α

Return(mpk,msk)

CL-KEM IBE KeyDerivation(msk, ID) :

s
$← Zp

∗

skID ← (α ·H(ID)s, gs)

Return(skID)

CL-KEM User Keygen(mpk, ID) :

(u1, u2, z,H)← mpk

xID
$← Zp

∗

βID ← zxID

Return(βID, xID)

CL-KEM Enc(mpk, βID, ID,M) :

r
$← Zp

∗

c1 ← gr

c2 ← H(ID)r, t← TCR(c1)

c3 ← (ut
1, u2)r; z ← mpk

K ← βID
r = (zx)r ∈ GT

C ← (c1, c2, c3) ∈ G3

Return(K,C)

CL-KEM Dec(skID, xID, C) :

c1, c2, c3 ← C

d1, d2 ← skID

t← TCR(c1)

Test e(g, c3)
?
= e(ut

1u2, c1)&&

e(g, c2)
?
= e(H(ID), c1)

True : K ←
„
e(c1, d1)

e(c2, d2)

«xID

False : K
$← GT

Return(K)

Fig. 1. Our CCA secure CL-KEM.

4 The CL-KEM scheme

We describe the phases of our certificateless key encapsulation mechanism in this
section. Our protocol consists of five phases: setup, identity based key derivation,
user key generation, key encapsulation, and key decapsulation. The algorithms
setup, and identity based key derivation are exactly the same as in Kiltz and
Galindo’s KEM [11]. In the following, we first recapitulate the parameters needed
for the Kiltz-Galindo KEM and continue then to describe the differences needed
to obtain a certificateless KEM. We will use bilinear pairings and Waters hash
in the scheme, which we describe shortly.

4.1 Waters’ Hash

To prove our scheme, we use Waters’ hash function H : {0, 1}n → G as described
in Waters’ identity based encryption scheme [15]. On input of an integer n, the
randomized hash key generator HGen(G) chooses n+ 1 random group elements
h0, h1, . . . , hn ∈ G and returns h = (h0, h1, . . . , hn) as the public description of
the hash function. The hash function H : {0, 1}n → G∗ is evaluated on a string

ID = (ID1, . . . , IDn) ∈ {0, 1}n as the product

H(ID) = h0

n∏
i=1

hIDi
i .

4.2 CL-KEM Algorithms

Setup On input of the security parameter k, the key generation center picks
suitable bilinear pairing parameters (e(·, ·), p,G,GT , g) and uses HGen(G) to
obtain a suitable Waters’ hash function. The KGC also publishes system param-
eters (u1, u2, z) ∈ G. See Algorithm CL-KEM IBE Setup in Figure 1 on the
preceding page for details.

Identity-based Key Derivation To generate an ID-based key for an identity
ID ∈ {0, 1}n, the key generation centre follows the Algorithm CL-KEM IBE
KeyDerivation in Figure 1 on the facing page.

User key generation To obtain a certificateless KEM, we introduce the new
algorithm user key generation into the Kiltz-Galindo KEM. The user generates
a certificateless key pair from the system parameters as outlined by Algorithm
CL-KEM User Keygen in Figure 1 on the preceding page. After key genera-
tion, the user publishes βID and keeps xID private.

Certificateless Key Encapsulation We modify the Kiltz-Galindo encapsu-
lation mechanism by using βID instead of z for encryption. Thus we get a very
efficient encapsulation mechanism, outlined by Algorithm CL-KEM Enc in
Figure 1 on the facing page. The key K is used for encryption, C is the certifi-
cateless encapsulation of K.

Certificateless Key Decapsulation Decapsulation is also very efficient as it
needs only one additional exponentiation over the Kiltz-Galindo KEM decapsu-
lation algorithm. The Algorithm CL-KEM Dec in Figure 1 on the preceding
page describes the decapsulation. This concludes the description of the certifi-
cateless KEM construction.

5 Efficiency comparison

When compared to the only other CL-KEM in the standard model by Huang
and Wong [9], we note that both key generation and encapsulation are twice as
efficient, we save one exponentiation during decapsulation, key size is five times
smaller and ciphertext size is approximately halved. For a detailed comparison
see Table 1 on the following page.

Scheme KeyGen Enc Dec Keysize Ciphertext
#pairings + #[multi,regular,fixed-base]-exp pk overhead

IB-KEM [11] 0 + [0,2,0] 0 + [1,3,1] 3 + [1,0,2] n+4 3l
+ PKE [12] 0 + [0,4,0] 0 + [0,4,0] 0 + [0,2,0] 4n 2l

= CL-KEM [9] 0 + [0,6,0] 0 + [1,7,1] 3 + [1,2,2] 5n+4 5l

Ours 0 + [0,3,0] 0 + [1,3,1] 3 + [1,1,2] n+4 3l

Table 1. Comparison of the Huang-Wong scheme with our scheme

We instantiate the Huang & Wong [9] scheme with the most efficient CCA2 secure
PKE scheme by Kurosawa & Desmedt [12] and the most efficient CCA2 secure ID-
based KEM by Kiltz & Galindo [11] and compare it to our direct construction from
the Kiltz & Galindo KEM.

6 Proof of security for the CL-KEM

Theorem 1 Assume TCR is a target collision resistant hash function. Under the
decisional Bilinear Diffie-Hellman assumption relative to the generator G, the
CL-KEM from Section 4 on page 6 is secure against chosen ciphertext attacks.

Proving the protocol is easier if we do not treat Type I and Type II adversaries
separately. Essentially, there are two strategies for dealing with an adversary:

– Embed the challenge into the ID-based part. Then the adversary may learn
the secret value or replace the certificateless public key. This is generally not
applicable for Type II adversaries.

– Embed the challenge into the CL-based part. Then the adversary may learn
the ID-based secret key. This is applicable for both Type I and Type II
adversaries.

For Type I adversaries that want to learn the CL-key, we use the proof from
Kiltz and Galindo [11] unmodified and hand over the user secret value xID to
the adversary. The original proof does still hold in this setting.

For Type II adversaries and Type I adversaries that want to learn the ID-
based key, we have to modify the proof. The simulator B gets the dBDH chal-
lenge (g, ga, gb, gc, T) from its challenger. Given that the adversary M has an
advantage in the CL-KEM game, B uses the adversary M to get an advantage
in solving the dBDH challenge. This strategy simplifies proving the security of
the scheme: a well known proof in the ID-based setting is expanded only with
what is necessary for the certificateless setting. As it turns out, the proof for the
CL-part of the scheme is easier to understand as it does not have to deal with
artificial aborts.

We rewrite the proof by Kiltz and Galindo to get a proof for the CL-KEM
scheme for Type II adversaries. As in Kiltz & Galindo’s paper, the main idea is
again that the simulator knows a back door for the hash function H. Knowing the
back door for H allows the simulator to let H “vanish” for the target identity.
To achieve this, we have to embed the challenge slightly differently from the

original proof by Kiltz and Galindo [11]. We also use a game based approach.
The simulator B starts with knowing the discrete logarithms of ga, gb, gc and
“forgets” the discrete logarithms during modifications of the game.
Game 0.(Forget b) The simulator B picks (a, b, c) $← Zp

∗, computes gc and t∗ =

TCR(gc) and additionally picks d $← Zp
∗. The CL-KEM IBE Setup algorithm is

modified as follows:

CL-KEM IBE Setup(k) :

γ
$← Zp, u1 = ga, u2 = (ga)−t

∗
gd, α = gb; z ← e(g, α) = e(g, gb)

H
$← HGen(G)

mpk ← (u1, u2, z,H);msk ← α

Return(mpk,msk)

(2)

We assume that the adversaryM makes no more than q0 queries for distinct
identities. One of these identities will be used to create the challenge ciphertext.
We enumerate these queries. The simulator B guesses the index of the target
identity ID∗ that the adversary will use in the test query by selecting q∗ $← Zq0 .
B sets the target identity’s public key to βID∗ = e(ga, gb) = za. Both the KGC
public key and the master secret key α = gb can be given to the adversary at
the start of the game.

Find Phase. During its execution, M makes a number of reveal master
key, reveal ID-based key, reveal secret value, replace public key, and decapsulate
requests. The simulator deals with the adversary’s queries in the following way:

Get master key: B returns α.
Get user public key(ID): If these requests target an identity that has not

been initialized before, there are two possibilities: If it is the q∗th distinct
query, the simulator returns βID∗ = za as discussed above. Otherwise, the
simulator generates a new certificateless key (βID, xID) on the fly, publishes
the ID’s certificateless public key βID in the directory of certificateless public
keys and records the certificateless private key xID along with the ID in a
table (later referred to as the table of certificateless private keys).

Replace user public key(ID, β′ID): The simulator inserts the new certificate-
less public key β′ID into the table of certificateless public keys and inserts ⊥
into the table of certificateless private keys at position ID.

Reveal ID-based key(ID): (only Type I) As the simulator knows α = gb

these queries can always be answered throughout the game for Type I ad-
versaries. For Type II adversaries, α can be passed to the adversary at the
start of the game. Then it is not necessary to provide this functionality to
the adversary (the adversary may compute the keys on its own).

Decapsulation(C, ID): The simulator returns the decapsulation of C under ID
query using the entry from the table of certificateless private keys or ⊥ if the
certificateless public key was replaced by the adversary or C is an invalid
encapsulation.

Decapsulation(C, ID, x): The simulator returns the decapsulation of C under
ID query using x as the user secret value or ⊥ if C is an invalid encryption.

Eventually, the adversary returns a target identity ID∗. The simulator chooses
a random key K∗0 and runs the encapsulation algorithm to create a key K∗1
together with the challenge ciphertext C∗ = (c∗1, c

∗
2, c
∗
3). The challenge ciphertext

is computed as

c∗1 ← gc, t∗ ← TCR(gc), c∗2 = H(ID∗)c, c∗3 = (ut
∗

1 u2)c

Then, the simulator chooses a random bit b and the challenge ciphertext C∗

is returned together with the key K∗ = K∗b to the adversary.
Guess Phase. The adversary continues to query the oracles provided by the

simulator under the condition that he may not request a decapsulation of C∗

under ID∗ and may not request the user secret value xID∗ . Finally, the adversary
returns a bit b′. If b′ = b then the simulator returns 1, else he returns 0. This
completes the description of the simulator. Let Xi denote the event that the
adversary M wins game i. Thus we have for the advantage of the adversary
against the CL-KEM scheme: Advcl−kem−ccaCL−KEM,M = |Pr[X0]− 1/2|.
Game 1.(Eliminate hash collisions) The simulator fixed c∗1 = gc and t∗ =
TCR(gc) at the start of the game and aborts if a decapsulation query is made
for any ciphertext C = (c1, c2, c3) for that TCR(c1) = t∗ and c1 6= c∗1. Other-
wise, Game 0 and Game 1 are identical. This event happens only with negligible
probability as otherwiseM could be used as an efficient adversary against TCR.
Thus we have

|Pr[X1]− Pr[X0]| ≤ Advhash-tcr
TCR,M (k)

Game 2.(Change of hash keys) The game continues as in Game 1 except that
the simulator changes the way the hash keys h = (h0, h1, . . . , hn) are generated.
Set m = 2q and randomly choose

x0, x1, . . . , xn
$← {0, . . . , p− 1}; y′0, y1, . . . , yn

$← {0, . . . ,m− 1}

k
$← {0, . . . , n}

(3)

and set y0 ← p− km+ y′0.
B redefines the public hash keys h = {h0, . . . , hn} as hi = gxiuyi

1 = gxi(ga)yi

for 0 ≤ i ≤ n. Thus, the public hash functionH evaluated at identity ID ∈ {0, 1}n
is given by

H(ID) = h0

n∏
i=1

hIDi
i = gx(ID)u

y(ID)
1 = gx(ID)(ga)y(ID)

with x(ID) = x0 +
∑n
i=1 IDixi and y(ID) = y0 +

∑n
i=1 IDiyi (where x() and y()

are only known to the simulator). As this does not change the distribution of
the hash keys, the probability of success for the adversary does not change:

Pr[X2] = Pr[X1]

Game 3.(Abort for wrong challenge identity) The simulation proceeds as in
Game 2. Once the simulator is being asked the challenge ciphertext query, it
checks the ID∗ is the q∗th distinct identity and aborts otherwise. The simulator
also aborts if y(ID∗) 6= 0.

As we do not need to change the key derivation oracle during the sequence
of games (as Kiltz and Galindo do), we can simplify the proof significantly. We
especially do not have to deal with artificial aborts, as the abort probability for
the simulator can be estimated directly using results from Kiltz and Galindo [11,
Section A.2]. From Equation 3 on the facing page we have that

y(ID∗) = 0 = p− km+ y′0 +
n∑
i=1

ID∗i yi

and from the distribution of the yi we get that

0 ≤ y′0 +
n∑
i=1

ID∗i yi < (n+ 1)m

Thus if y(ID∗) = 0 mod m, then there is a unique 0 ≤ k < n + 1 such that
y(ID∗) = 0 over the integers. Since k is uniformly and independently distributed
over the integers, we get:

Pr[y(ID∗) = 0] = Pr[y(ID∗) = 0 mod p] ≥ Pr[y(ID∗) = 0 mod m]/(n+ 1)

Thus for a fixed k and b ∈ Zm we have that Pr[y(ID) = b mod m] = 1/m. So we
conclude with

Pr[y(ID∗) = 0] ≥ 1
n+ 1

Pr[y(ID∗) = 0 mod m] =
1

n+ 1
· 1
m

=
1

m(n+ 1)

Thus, the probability that Game 3 succeeds is given by the probability that
y(ID∗) = 0 and that ID∗ is the q∗th distinct identity. As there are at most q0
distinct ID queries by the adversary we have

Pr[X3] ≥ Pr[X2]/(q0m(n+ 1))

Game 4.(Change of decapsulation oracle / Forget a) The simulator knows all
user secret keys except for those the adversary replaced with a replace certificate-
less public key request. Regarding decapsulation queries, the simulator does not
have to answer requests for identities that were issued a replace certificateless
public key query unless the adversary supplies the user secret key matching the
replaced certificateless public key. As the simulator can derive ID-based private
keys from the master parameters, answering decapsulation queries for all iden-
tities except ID∗ is easy, as all secret information to do this is readily available
using the standard CL-KEM Dec algorithm as described in Figure 1 on page 6.

The simulator established in Game 3 that y(ID∗) = 0. This enables the
simulator to answer decapsulation queries for ID∗ in the following way: instead

of answering the decapsulation as in CL-KEM Dec in Figure 1 on page 6, the
simulator computes the decapsulations for ID∗ as follows: with u1 = ga, u2 =
(ga)−t

∗
gd and c1 = gr we have

c3 = (ut1u2)r = ((ga)tg−t
∗agd)r = ((ga(t−t

∗)gd)r = (ca1)t−t
∗
· cd1.

To decapsulate the correct key K, we would like to compute e(ga, gb)r. Thus
knowing gb and computing ca1 = (gr)a = gra will allow us to compute K by
computing e(gra, gb) = e(g, g)rab:

(
c3/c

d
1

) 1
t−t∗ =

(
(ca1)t−t

∗
· cd1/cd1

) 1
t−t∗

= (ca1)
t−t∗
t−t∗ = ca1 = gra

As K = βrID∗ = e(ga, gb)r = e(g, g)abr, knowing t = TCR(gr) we can recompute
K with

K = e
(
gb,
(
c3/c

d
1

) 1
t−t∗

)
= e(gb, gar) = e(g, g)abr

As this behaviour does not alter the adversary’s view of the game we have

Pr[X4] = Pr[X3]

Game 5.(Modify the challenge / Forget c) The simulator changes its answer
to the get challenge key encapsulation query. Game 3 established that y(ID∗) =
0 mod p, thus the challenger can compute the challenge ciphertext C∗ = (c∗1, c

∗
2, c
∗
3)

as
c∗1 = gc, c∗2 = (gc)x(ID

∗), c∗3 = (gc)d,K = T

where gc and T are given by the challenger before the game starts. Now the
answer of the adversary to the challenge ciphertext is directly related to the
challenge, and thus the simulator has an advantage in solving the dBDH chal-
lenge if the adversary has an advantage in winning the game:

Advcl−kem−ccaCL−KEM,M =
∣∣∣∣Pr[X0]− 1

2

∣∣∣∣ ≤ ∣∣∣∣ 1
q0m(n+ 1)

AdvdBDH
M (k) + Advhash-tcr

TCR,M (k)− 1
2

∣∣∣∣
7 Conclusion

We show how to construct an efficient CL-KEM scheme from an existing ID-
based KEM scheme in the standard model. Our construction requires only one
additional exponentiation during the construction of the certificateless key and
one additional exponentiation during the decapsulation compared to the original
ID-based KEM scheme and is thus more efficient than any generic construction
that has been published before. By modifying the Kiltz-Galindo KEM scheme
[11] which is one of the most efficient ID-based KEM schemes in the standard
model, we obtain the most efficient CL-KEM scheme in the standard model
today.

References

1. Al-Riyami, S.S., Paterson, K.G.: Certificateless Public Key Cryptography. In
Laih, C.S., ed.: ASIACRYPT. Volume 2894 of Lecture Notes in Computer Science.,
Springer (2003) 452–473 Online available at http://eprint.iacr.org/2003/126.
pdf. 1

2. Bentahar, K., Farshim, P., Malone-Lee, J., Smart, N.P.: Generic Constructions of
Identity-Based and Certificateless KEMs. J. Cryptology 21(2) (2008) 178–199 1,
2, 4

3. Boneh, D., Franklin, M.: Identity based encryption from the Weil pairing. SIAM
Journal of Computing 32(3) (2003) 586–615 Online available at http://crypto.

stanford.edu/~dabo/papers/bfibe.pdf. 1
4. Boyd, C., Cliff, Y., Nieto, J.M.G., Paterson, K.G.: Efficient one-round key exchange

in the standard model. In Mu, Y., Susilo, W., Seberry, J., eds.: ACISP. Volume
5107 of Lecture Notes in Computer Science., Springer (2008) 69–83 2

5. Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-
based techniques. In Atluri, V., Meadows, C., Juels, A., eds.: ACM Conference on
Computer and Communications Security, ACM (2005) 320–329 1

6. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1)
(2004) 167–226 1

7. Dent, A.W.: A Designer’s Guide to KEMs. In Paterson, K.G., ed.: Cryptography
and Coding. Volume 2898 of Lecture Notes in Computer Science., Springer (2003)
133–151 1

8. Dent, A.W.: A survey of certificateless encryption schemes and security models.
International Journal of Information Security 7(5) (October 2008) 349–377 1, 4

9. Huang, Q., Wong, D.S.: Generic Certificateless Key Encapsulation Mechanism. In
Pieprzyk, J., Ghodosi, H., Dawson, E., eds.: ACISP. Volume 4586 of Lecture Notes
in Computer Science., Springer (2007) 215–229 1, 2, 4, 7, 8

10. Kiltz, E., Galindo, D.: Direct Chosen-Ciphertext Secure Identity-Based Key En-
capsulation Without Random Oracles. In Batten, L.M., Safavi-Naini, R., eds.:
ACISP. Volume 4058 of Lecture Notes in Computer Science., Springer (2006) 336–
347 1

11. Kiltz, E., Galindo, D.: Direct Chosen-Ciphertext Secure Identity-Based Key En-
capsulation without Random Oracles. Cryptology ePrint Archive, Report 2006/034
(2006) http://eprint.iacr.org/2006/034. 1, 6, 8, 9, 11, 12

12. Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In
Franklin, M.K., ed.: CRYPTO. Volume 3152 of Lecture Notes in Computer Sci-
ence., Springer (2004) 426–442 8

13. Naor, M., Yung, M.: Universal One-Way Hash Functions and their Cryptographic
Applications. In: STOC, ACM (1989) 33–43 2

14. Rompel, J.: One-Way Functions are Necessary and Sufficient for Secure Signatures.
In: STOC, ACM (1990) 387–394 2

15. Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In
Cramer, R., ed.: EUROCRYPT. Volume 3494 of Lecture Notes in Computer Sci-
ence., Springer (2005) 114–127 6

http://eprint.iacr.org/2003/126.pdf
http://eprint.iacr.org/2003/126.pdf
http://crypto.stanford.edu/~dabo/papers/bfibe.pdf
http://crypto.stanford.edu/~dabo/papers/bfibe.pdf
http://eprint.iacr.org/2006/034

	Efficient Certificateless KEM in the Standard Model
	ICISC 2009 Submission

