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Abstract. Undeniable signatures, introduced by Chaum and van Antwerpen, require a veri-
fier to interact with the signer to verify a signature, and hence allow the signer to control the
verifiability of his signatures. Convertible undeniable signatures, introduced by Boyar, Chaum,
Damg̊ard, and Pedersen, furthermore allow the signer to convert signatures to publicly verifi-
able ones by publicizing a verification token, either for individual signatures or for all signatures
universally. In addition, the signer is able to delegate the ability to prove validity and convert
signatures to a semi-trusted third party by providing a verification key. While the latter function-
ality is implemented by the early convertible undeniable signature schemes, the recent schemes
do not consider this despite its practical appeal.
In this note we present an updated definition and security model for schemes allowing delegation,
and highlight a security property, token soundness, which is often implicitly assumed but not
formally treated in the description of the security model for convertible undeniable signatures.
We also note that the straightforward implementations of the efficient convertible undeniable
signature schemes recently proposed by Phong, Kurosawa and Ogata do not allow a verifier to
check the correctness of a public key, which essentially allows a malicious signer to break the token
soundness of the schemes. We then propose a convertible undeniable signature scheme inspired
by the recent designated confirmer signature scheme by Schuldt and Matsuura. The scheme
allows delegation of verification, does not require verifiers to hold public/private key pairs, and
is provably secure in the standard model assuming the computational co-Diffie-Hellman problem,
a closely related problem, and the decisional linear problem are hard. Compared to the most
efficient scheme by Phong et al., our scheme has slightly larger signatures, but allows delegation
of verification, is based on arguably more natural security assumptions, and has significantly
shorter tokens for individual conversion of signatures. Lastly, our scheme does not require tokens
to be verifier specific or the presence of a trusted third party, which seems to be needed to
guarantee the token soundness of the schemes by Phong et al.
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1 Introduction

Undeniable signatures, first introduced by Chaum and van Antwerpen [12], are like ordinary
signatures, except that verification of a signature requires interaction with the signer. Unlike
ordinary signatures, this enables a signer to control who can verify his signatures and when
verification is allowed. This feature makes undeniable signatures attractive when sensitive
data or confidential business agreements are being signed, since the signer is guaranteed that
only the relevant parties can verify his signature and no outsider will be able to link him to
the signed data. To preserve non-repudiation, an undeniable signature scheme furthermore
requires that a signer is able to disavow an invalid signature. Hence, a signer will either be
able to confirm or disavow the validity of any signature, and any dispute can be resolved by
letting the signer convince a judge about the validity or invalidity of the signature in question.
Since their introduction, a number of undeniable signature schemes have been proposed e.g.
[11, 18, 31, 26, 24, 32, 23].



In [7], Boyar, Chaum, Damg̊ard and Pedersen introduced convertible undeniable signatures
which allow the signer to convert his undeniable signatures into publicly verifiable signatures.
Two types of conversions were introduced: selective conversion which enables the signer to
individually convert signatures, and universal conversion which enables the signer to convert
all (existing and future) signatures. A signer selectively converts a signature σ on a message
m by releasing a token tkσ which will convince any verifier that σ is indeed a valid signature
on m. Likewise, a signer universally converts all signatures by releasing a universal token
tk∗ which can be used as a token for any signature. This feature is desirable when public
verifiability is required after a period of time, which, for example, is the case for the problem
of keeping digital records of confidential political decision (e.g. see [16]). Another aspect of
the definition in [7] is that the private key material of the signer is divided into two parts: a
signing key sk and a verification key vk. The former is only used to sign messages, whereas the
latter is used to convert and confirm or disavow signatures. This property is useful in scenarios
where the signer is met with more verification requests than he has capacity to handle, or the
signer might become off-line or otherwise unavailable and therefor cannot handle verification
requests. In such scenarios, the signer will be able to delegate the verification by releasing vk
to a semi-trusted entity who will then have the capacity to verify signatures on behalf of the
signer. It is required that the scheme remains unforgeable, even for the semi-trusted entity
with the knowledge of vk.

The original scheme by Boyar et al. [7] was shown to be insecure by Michels, Petersen
and Horster [28] when an universal token is released. Michels et al. furthermore proposed an
updated scheme, but only heuristic arguments for the security of this scheme were presented.
Recently, Aimani and Vergnaud [3] provided an analysis of the updated scheme in the generic
group model. Furthermore, Damg̊ard and Pedersen [16] proposed two convertible undeniable
signature schemes based on El Gamal signatures, but did not give full proofs of invisibility,
and Michels and Stadler [29] proposed a scheme based on Schnorr signatures.

The first RSA based scheme was proposed by Gennaro, Rabin and Krawczyk [18] which
Miyazaki later improved [30] (see also [19]). Kurosawa and Takagi [25] proposed a (selective
convertible only) scheme which they claimed to be the first RSA based scheme secure in the
standard model, but it was shown by Phong, Kurosawa and Ogata [34] that the scheme does
not provide full invisibility. Phong et al. furthermore proposed a new selective and universally
convertible RSA based scheme secure in the standard model.

Laguillaumie and Vergnaud [27] defined and proposed a pairing-based time-selective con-
vertible undeniable signatures which allow conversion of signatures constructed in a given
time period, and Monnerat and Vaudenay [31] pointed out that their efficient MOVA unde-
niable signature scheme supports selective conversion although a formal analysis is not given.
Recently, Huang, Mu, Susilo and Wu [22] proposed the currently most efficient scheme in the
random oracle model which supports both selective and universal conversion. Yuen, Au, Liu
and Susilo [38] proposed a selective and universal convertible standard model scheme, but
it was shown by Phong, Kurosawa and Ogata [33] that the scheme is not invisible for the
standard definition of invisibility. Phong et al. furthermore proposed two efficient schemes
which are claimed to be the first practical discrete logarithm based schemes both providing
selective and universal conversion and being provably secure in the standard model.

An intuitive approach to the construction of a convertible undeniable signature scheme is
to use an encryption scheme to encrypt (parts of) an ordinary signature, and this is indeed
the approach used in [16, 33]. The challenge in these type of schemes is to provide efficient
confirm and disavow protocols as well as reasonable short conversion tokens. Aimani [1, 2]
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proposed a generic construction based on a certain class of encryption and signature schemes.
However, this approach does not provide selective conversion as described above; while a
signer is able to extract a valid public verifiable signature from an undeniable signature, a
verifier will not receive any proof that the received publicly verifiable signature corresponds
to the undeniable signature i.e. the verifier does not receive a token which allows him to
independently verify the undeniable signature, but only a publicly verifiable signature derived
from the undeniable signature. It should be noted that a designated confirmer signature, in
which the signer holds both signer and confirmer key pairs, will not automatically yield a
selective and universal convertible signature scheme for a similar reason; the ability of the
confirmer to extract a publicly verifiable signature from an undeniable signature does not
necessarily imply the ability to provide a token which will convince a verifier of the validity
of the original signature1.

All of the early proposed schemes [7, 28, 16, 18] implement the above described separation
of the signer’s key material into a signer key and verification key, which allows delegation of the
verification. However, despite the practical advantages of this property, it is not considered in
the formalization, security model or the concrete schemes presented in the recent papers [27,
25, 22, 38, 1, 34, 33]. In these schemes, only the signer is able to confirm, disavow and convert
signatures and no mechanism is provided for delegating this ability2. Note that although the
possession of an universal token allows verification of any signature, this does not necessarily
provide the ability to efficiently prove validity to a third party in a non-transferable way.

In this note. We present an updated definition and security model for schemes allowing dele-
gation, and highlight a security property, token soundness, which is often implicitly assumed
but not formally treated in the description of the used security models3. Token soundness
guarantee that a malicious signer (or delegated verifier) cannot produce a token such that an
invalid signature/message pair appears valid. This is different from the ordinary complete-
ness requirement which only considers honestly generated tokens, and will furthermore, in
combination with unforgeability of undeniable signatures, guarantee unforgeability of mes-
sage/signature/token tuples (see Section 4). We also note that the straightforward implemen-
tations of the efficient schemes by Phong, Kurosawa and Ogata [33] do not allow a verifier to
check the correctness of a public key, which essentially allows a malicious signer to break the
token soundness of the scheme.

We then propose a convertible undeniable signature scheme which allows verification del-
egation and is provably secure in the standard model assuming the computational co-Diffie-
Hellman problem, a closely related problem, and the decisional linear problem are hard (see
Section 2). The scheme is based on the basic designated confirmer scheme recently proposed
by Schuldt and Matsuura [36]. Unlike [36], verifiers are not required to hold public/private
1 While the use of NIZK proofs might seem natural when considering token generation, this approach is also

somewhat problematic in the standard model since a common reference string is required, and this cannot
be generated by the signer due to a conflict between the zero-knowledge property of the NIZK and the
required token soundness of the scheme (see also the comments about the schemes by Phong et al. [33] in
Section 4).

2 We note that while the random oracle model schemes in [27, 22] do not consider delegation of verification, it
only requires knowledge of part of the private signer key to run confirm, disavow and convert. Defining this
part as the verification key and replacing the universal token with this, seems to provide schemes satisfying
our definition of verification delegation. While this would require the security to be re-proved (since the
adversary gains access to parts of the private signer key in some scenarios), we believe that this is possible.

3 We note that [27] and [21] briefly mention soundness of the verification algorithms as a requirement, but
many other recent papers, e.g. [22, 38, 1, 34, 33], do not explicitly describe this property.
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key pairs, key registration is not needed, and a token generation method is provided. We high-
light that while the aim of the constructions in [36] is to provide on-line non-transferability
for designated confirmer schemes, the proposed scheme only aims at providing “standard”
off-line non-transferability.

Besides enabling delegation of verification, our scheme has properties which compare fa-
vorably to those of the efficient schemes by Phong et al. [33]. Firstly, our scheme relies on
arguably more natural assumption compared to the schemes in [33] which require the q-strong
Diffie-Hellman assumption. Secondly, the tokens used for selective conversion in our scheme
correspond to two group elements or roughly 2 ·170 bits for approximately 80 bits of security,
whereas the schemes in [33] requires tokens of size 13 · 170 bits. Lastly, our scheme does not
require tokens to be verifier specific or the use of a trusted third party, which seems to be
needed to guarantee the token soundness in the schemes from [33]. We note that the signature
size of our scheme is identical to that of the second scheme in [33], while being roughly 100
bits larger than that of the first scheme.

2 Preliminaries

Negligible function. A function ε : N→ [0, 1] is said to be negligible if for all c > 0 there exists
an nc such that for all n > nc e(n) < 1/nc.

Bilinear maps. Our scheme makes use of groups equipped with a bilinear map (we refer the
reader to [5] for a detailed description of these maps). To instantiate our schemes, we consider
a generator G that on input 1k outputs a description of groups G1, G2 and GT of prime order
p where 2k < p < 2k+1, a bilinear map e : G1 ×G2 → GT and an isomorphism ψ : G2 → G1.
We will use the notation P = (e,G1,G2,GT , p, ψ) as a shorthand for the output of G.

The discrete logarithm problem in G2. Given P = (e,G1,G2,GT , p, ψ), and random elements
g2, h ∈ G2, the discrete logarithm problem in G2 is defined as computing x ∈ Zp such that
gx2 = h. We say that the discrete logarithm problem is hard in G2 if all polynomial time
algorithms have negligible probability (in the parameter k) of solving the problem.

The computational co-Diffie-Hellman problem in (G1,G2). Given P = (e,G1,G2,GT , p, ψ),
elements g2, ga2 ∈ G2 and h ∈ G1 where a is a random element in Zp, the computational
co-Diffie-Hellman problem in (G1,G2) is to compute ha ∈ G1. We say the computational co-
Diffie-Hellman problem is hard in (G1,G2) if all polynomial time algorithms have negligible
probability (in the parameter k) of solving the problem.

Besides the “standard” computational co-Diffie-Hellman problem defined above, we will
also consider the following variant: Given P = (e,G1,G2,GT , p, ψ), elements g2, ga2 , h ∈ G2

where a is a random element in Zp, compute ψ(ha) ∈ G1. We will refer to this problem as the
computational ψ-Diffie-Hellman problem to distinguish it from the above, and say that the
problem is hard in (G1,G2) if all polynomial time algorithms have negligible probability (in
the parameter k) of solving the problem.

The decisional linear problem in G2. Given P = (e,G1,G2,GT , p, ψ) and elements u, v, ux, vy, h, hz ∈
G2 where x, y are random elements in Zp, the decisional linear problem in G2 is to decide
whether z = x + y or z is a random element in Zp. We say the decisional linear problem is
hard in G2 if all polynomial time algorithms have negligible probability (in the parameter k)
of solving the the problem.

4



Sigma protocols. A sigma protocol for a binary relation R is a 3-move protocol between a
prover and a verifier. Both prover and verifier receive a common input x, but the prover
receives a witness y such that (x, y) ∈ R as an additional private input. In the first move of
the protocol, the prover sends a “commitment” message a, in the second move, the verifier
sends a random “challenge” message c, and in the final move, the prover sends a “response”
message z. Given the response message, the verifier either accepts or rejects the proof. A
sigma protocol is required to have two security properties:

– Special honest verifier zero-knowledge: There exists a simulation algorithm SimΣ that given
input x and a challenge message c, outputs an accepting transcript (a, c, z)← SimΣ(x, c).
We require that the simulated (a, c, z) is perfectly indistinguishable from the transcript
of a real interaction, conditioned on the event that the verifier chooses c as his challenge
message.

– Special soundness: There exists an algorithm WExtΣ that, given two accepting transcripts,
(a, c, z) and (a, c′, z′), for input x which have the same commitment message a but different
challenge messages c 6= c′, can extract a witness y such that (x, y) ∈ R.

In the construction of our schemes, we will make use of sigma protocols for proving various
relations among discrete logarithms, and we will use the notation

Σ{(x, y) : gx = v ∧ uxwy = e}

to mean a sigma protocol in which the prover receives the private input (x, y) and proves
to the verifier that the equations gx = v and uxwy = e holds for group elements g, v ∈ G
and u,w, e ∈ G′ where G and G′ might be different groups of the same order. Such sigma
protocols are relatively straightforward to construct using the well-known protocol for proving
knowledge of a discrete logarithm by Schnorr [35] as a building block, and we refer the reader
to the analysis by Camenisch and Stadler [10] for more details.

3 Convertible Undeniable Signatures

A convertible undeniable signature (CUS) scheme consists of the following algorithms and
protocols:

– Setup: Given input 1k, this algorithm outputs a set of public parameters par.
– KeyGen: Given par, this algorithm outputs a public key pk, a private verification key vk

and a private signing key sk. The verification key vk will be used as private prover input in
the confirm/disavow protocols, and to selectively convert signatures, whereas the signing
key will only be used to sign messages.

– Sign: Given par, sk and a message m, this algorithm outputs an undeniable signature σ.
– Convert: Given par, vk and (m,σ), this algorithm returns a verification token tkσ for σ

if (m,σ) is a valid message/signature pair. Otherwise, the algorithm returns ⊥.
– Verify: Given par, pk, (m,σ) and tkσ, this algorithm returns either accept or reject.
– (Confirm, Vcon): A pair of interactive algorithms for confirming validity of a signature.

Both algorithms take as common input par, pk and (m,σ). The algorithm Confirm takes as
an additional private input the verification key vk. While Confirm has no local output, the
algorithm Vcon will output either accept or reject after having interacted with Confirm.
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ExpsoundS,A (1k)

par ← Setup(1k)
(pk∗,m∗, σ∗, st)← A(par)
if pk∗ 6∈ PK

output 0
z1 ←2 {A(st)↔ Vcon}(par, pk∗,m∗, σ∗)
z2 ←2 {A(st)↔ Vdis}(par, pk∗,m∗, σ∗)
if z1 = z2 = accept

output 1
else output 0

Exptk-soundS,A (1k)

par ← Setup(1k)
(pk∗,m∗, σ∗, tk∗σ, st)← A(par)
if pk∗ 6∈ PK

output 0
z ←2 {A(st)↔ Vdis}(par, pk∗,m∗, σ∗)
if Verify(par, pk∗,m∗, σ∗, tk∗σ) = accept∧
z = accept

output 1
else output 0

Fig. 1. Soundness experiments

– (Disavow, Vdis): A pair of interactive algorithms for disavowing validity of a signature.
Similar to the above, both algorithms take as common input par, pk and (m,σ), and the
algorithm Disavow takes the verification key vk as an additional private input. Disavow
has no local output, but Vdis will output either accept or reject after having interacted
with Disavow.

Note that the above definition does not explicitly mention how a universal token is generated
or how signatures are verified using this token since this functionality follows directly from
the separation of the private key material into a signing key sk and a verification key vk. More
precisely, a universal token corresponds to vk, and using this, any signature can be verified
using the Convert algorithm. We assume that given a public key pk, it is possible to decide
if pk belongs to the set PK of valid public keys (i.e. PK is the set of all possible public keys
output by KeyGen). Furthermore, we also assume that given (pk, vk) it can be verified that
vk is a verification key for the public key pk.

We use the notation {Confirm(vk) ↔ Vcon}(par, pk,m, σ) to denote the interaction be-
tween Confirm and Vcon with the common input (par, pk,m, σ) and the private input vk to
the Confirm algorithm (a similar notation is used for Disavow and Vdis). We furthermore use
z ←2 {Confirm(vk) ↔ Vcon}(par, pk,m, σ) to denote the output of Vcon upon completion of
the protocol i.e. z will be either accept or reject.

Correctness. It is required that for all parameters par ← Setup(1k), all keys (pk, vk, sk) ←
KeyGen(par), all messages m ∈ {0, 1}∗, and all signatures σ ← Sign(par, sk,m), that the
interaction z ←2 {Confirm(vk) ↔ Vcon}(par, pk,m, σ) yields z = accept. Furthermore, it is
required that for all tkσ ← Convert(par, vk,m, σ) that Verify(par, pk,m, σ, tkσ) = accept.
Lastly, it is required that for any (m′, σ′) 6∈ {(m,σ) : σ ← Sign(par, sk,m)}, the interaction
z′ ←2 {Disavow(vk)↔ Vdis}(par, pk,m′, σ′)} yields z′ = accept.

4 Security

4.1 Soundness

Soundness of a CUS scheme S is defined via the experiment ExpsoundS,A (1k) shown in Figure 1.
In the experiment, we define the advantage of the algorithm A as

AdvsoundS,A = Pr[ExpsoundS,A (1k) = 1]

Definition 1 A CUS scheme is said to be sound if for all polynomial time algorithms A, the
advantage AdvsoundS,A is negligible in the security parameter k.
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Intuitively, the above soundness definition captures the requirement that a signer cannot
“cheat” when interacting with a verifier in the confirm or disavow protocol i.e. he cannot con-
vince a verifier that a signature is both valid and invalid. However, it does not guarantee that
a cheating signer cannot produce a token tkσ and a message/signature pair (m,σ) such that
Verify(par, pk,m, σ, tkσ) = accept, but (m,σ) can be disavowed. This requirement, which
we will refer to as token soundness, often seems to be implicitly assumed and not formally
defined in the used formalizations of the security for convertible undeniable signatures. Token
soundness of a CUS scheme S is defined via the experiment Exptk-soundS,A (1k) shown in Figure
1. In a similar manner to above, we define the advantage of the algorithm A as

Advtk-soundS,A = Pr[Exptk-soundS,A (1k) = 1]

Definition 2 A CUS scheme is said to have token soundness if for all polynomial time
algorithms A, the advantage Advtk-soundS,A is negligible in the security parameter k.

We note that the straightforward implementations of the recent schemes proposed by Phong,
Kurosawa and Ogata [33] do not allow a verifier to check the correctness of a public key, and
that this will essentially allow a malicious signer to break the token soundness of the scheme.
More specifically, the schemes in [33] make use of NIZK proofs as tokens, and a signer will
construct a token for a selective conversion of a signature by generating a NIZK proof of
the validity of the signature. However, since the common reference string (CRS) used by
the NIZK proofs is stored as part of the public signer key (i.e. the CRS will be generated
by the signer), a malicious signer will, by the zero-knowledge property of the NIZK proofs,
be able to generate a CRS which is indistinguishable from an honestly generated one, and
which allows the signer to simulate the NIZK proofs. Hence, the malicious signer can break
the token soundness of the schemes by simulating a NIZK proof for an invalid signature. We
note that this vulnerability stems from the fact that a verifier cannot distinguish between an
honestly generated CRS and a maliciously generated one, and is technically not a break of
the token soundness as defined above since this definition assumes that the correctness of a
public can be verified efficiently. This scenario can be avoid be letting the verifier generate the
CRS, but this will tie a conversion to a single verifier and will not provide public verifiability.
Alternatively, the CRS could be generate by a trusted third party. However, both of these
options limit the practical applicability of the scheme.

4.2 Unforgeability

Strong unforgeability against a chosen message attack for a CUS scheme S is defined via the
experiment Expsuf-cmaS,A (1k) shown in Figure 2. In the experiment, A has access to the oracle
O = {OSign} which is defined as follows

– OSign: Given a message m, the oracle returns σ ← Sign(par, sk,m).

It is required that A did not obtain σ∗ by submitting m∗ to OSign. Note that since A is given
the verification key vk, A can convert signatures and run the confirm and disavow protocols
by himself, and there is no need to provide A with oracles for these tasks. The advantage of
A is defined as

Advsuf-cmaS,A = Pr[Expsuf-cmaS,A (1k) = 1]

Definition 3 A CUS scheme is said to be strongly unforgeable if for all polynomial time
algorithms A, the advantage Advsuf-cmaS,A is negligible in the security parameter k.
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Expsuf-cmaS,A (1k)

par ← Setup(1k)
(pk, vk, sk)← KeyGen(par)
(m∗, σ∗)← AO(par, pk, vk)
if (m∗, σ∗) ∈ {(m,σ);σ ← Sign(par, sk,m)}

output 1
else output 0

Expinv-cmaS,A (1k)

par ← Setup(1k)
(pk, vk, sk)← KeyGen(par)
(m∗, st)← AO(par, pk)
b← {0, 1}
if b = 0 set σ∗ ← S
else set σ∗ ← Sign(par, sk,m)
b′ ← AO(st, σ∗)
if b = b′ output 1
else output 0

Fig. 2. Unforgeability and invisibility experiments

While the above definition does not involve tokens, it will, in combination with token sound-
ness, guarantee that an adversary without the knowledge of sk cannot produce (m,σ, tkσ)
such that Verify(par, pk,m, σ) = accept without having obtained (m,σ) from the signer.
This follows easily from the following observation. If the adversary does produce (m,σ, tkσ),
then if (m,σ) is a valid message/signature pair, the adversary has broken the above defined
unforgeability property, whereas if (m,σ) is not a valid message/signature pair, the token
soundness of the scheme has been broken, which should not be possible even for an adversary
knowing sk.

We furthermore stress the importance of giving A access to vk in the above definition.
This guarantees that if a signer delegates the verification operation by releasing vk to a semi-
trusted entity, this entity will not be able to forge new signatures, but only verify existing
ones.

4.3 Invisibility

Invisibility against a chosen message attack for a CUS scheme S is defined via the exper-
iment Expinv-cmaS,A (1k) shown in Figure 2. In the experiment, S denotes the signature space
and is defined as S = {σ : (pk, vk, sk) ← KeyGen(par);m ← M;σ ← Sign(par, sk,m)}
where M is the message space given in par. Furthermore, A has access to the oracles
O = {OSign,OConv,OConf/Dis} which are defined as follows:

– OSign: Defined as in the unforgeability experiment.
– OConv: Given a message/signature pair (m,σ), this oracle returns tkσ ← Convert(par, vk,m, σ)

if (m,σ) ∈ {(m′, σ′) : σ′ ← Sign(par, sk,m)}. Otherwise the oracle returns ⊥.
– OConf/Dis: Given a message signature pair (m,σ), this oracle interacts with A by running

Confirm(par, vk,m, σ) if (m,σ) ∈ {(m′, σ′) : σ′ ← Sign(par, sk,m)}. Otherwise, the
oracle interacts with A by running Disavow(par, vk,m, σ).

It is required that A does not query (m∗, σ∗) to the convert or confirm/disavow oracles. We
define the advantage of A in the experiment as

Advinv-cmaS,A = |Pr[Expinv-cmaS,A (1k) = 1]− 1/2|

Definition 4 A CUS scheme is said to be invisible if for all polynomial time algorithms A
the advantage Advinv-cmaS,A is negligible in the security parameter k.

Note that the only requirement in the above definition is that A did not submit (m∗, σ∗) to the
convert or confirm/disavow oracles. Hence, a deterministic scheme cannot satisfy the above
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definition since access to the signing oracle is not restricted (i.e. for a deterministic scheme,
an adversary can simply submit m∗ to OSign and compare the received signature with σ∗).
Furthermore, A is allowed to submit (m∗, σ) where σ 6= σ∗, and (m,σ∗) where m 6= m∗ to the
convert and confirm/disavow oracles. While a deterministic scheme should be able to satisfy
a security definition where these type of queries are allowed, some security models (e.g. [38])
do not allow the former type of query, and thereby further weaken the obtain security. These
issues might be a concern in a scenario where the entropy of the signed messages is small i.e.
the security of a signature on a message which the signer has previously signed might not be
guaranteed. However, with the above security notion, these concerns are eliminated.

Another aspect of the above security notion which we would like to highlight is the def-
inition of S. We note that anyone can sample S and that when using this definition of S,
invisibility implies anonymity i.e. the inability for an adversary to distinguish between sig-
natures constructed by different users (see [17, 22] for a formal proof of this). Some schemes
(e.g. [16, 23, 21]) use a more restricted definition limiting S to signatures from the signer i.e.
S = {σ : m←M;σ ← Sign(par, sk,m)}. This not only removes the guarantee of anonymity,
but might also make it difficult for users other than the signer to sample S. The latter can
potentially have an impact on the non-transferability of the scheme, which we will define in
the following section.

4.4 Non-transferability

The security notion non-transferability captures the property that a verifier who learns
whether a given signature is valid or not by interacting with the signer in the confirm or
disavow protocols, should not be able to prove this knowledge to a third party. More specif-
ically, the verify should be able to “fake” any evidence of the validity of a signature obtain
by interacting with the signer. When introducing convertible undeniable signatures, Boyar,
Chaum, Damg̊ard and Pedersen [7] referred to this property as undeniability and defined the
property as a verifier’s ability to produce fake signature/transcript pairs indistinguishable
from real ones.

The above definition of invisibility guarantees that a valid signature from a signer cannot
be distinguished from any other element in S, and furthermore allows any user to sample
S. Hence, to obtain non-transferability, we will furthermore require that transcripts of the
confirm and disavow protocols can be simulated. More specifically, we require that both
(Confirm, Vcon) and (Disavow, Vdis) are computational zero-knowledge (see [20] for a formal
definition). Informally, this will guarantee that for any (possibly malicious) verifier, there ex-
ists an expected polynomial time simulator which can generate transcripts which are compu-
tational indistinguishable from transcripts obtained by interacting with a real prover. Hence,
a verifier will be able to “fake” evidence of an interaction with a prover by running this
simulator.

Definition 5 A CUS scheme S is said to be non-transferable if S is invisible and the protocols
(Confirm, Vcon) and (Disavow, Vdis) are computational zero-knowledge.

4.5 Non-impersonation

While soundness informally guarantees that a prover cannot “cheat”, it does not prevent a
third party from impersonating the prover. This was pointed out by Kurosawa and Henge
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Expimp-cmaS,A (1k)

par ← Setup(1k)
(pk, vk, sk)← KeyGen(par)
(m∗, σ∗, st)← AO(par, pk)
if (m∗, σ∗) ∈ {(m,σ);σ ← Sign(par, sk,m)}
z ←2 {A(st)↔ Vcon}(par, pk,m∗, σ∗)

else
z ←2 {A(st)↔ Vdis}(par, pk,m∗, σ∗)

if z = accept

output 1
else output 0

Exptk-imp-cmaS,A (1k)

par ← Setup(1k)
(pk, vk, sk)← KeyGen(par)
(m∗, σ∗, tk∗σ)← AO(par, pk)
if Verify(par, pk,m∗, σ∗, tk∗σ) = accept

output 1
else output 0

Fig. 3. Non-impersonation experiments

[24], and Huang et al. [22] furthermore noticed that, for convertible schemes, this might be
an issue for token generation as well.

Non-impersonation against a chosen message attack for a CUS scheme S is defined via the
experiment Expimp-cmaS,A (1k) shown in Figure 3. In the experiment, A has access to the oracles
O = {OSign,OConv,OConf/Dis} defined as the invisibility definition. It is required that A
does not submit (m∗, σ∗) to the confirm/disavow oracle. We define the advantage of A in the
experiment as

Advimp-cmaS,A = Pr[Expimp-cmaS,A (1k) = 1]

Definition 6 A CUS scheme is said to be resistant to impersonation attacks if for all poly-
nomial time algorithms A, the advantage Advimp-cmaS,A is negligible in the security parameter
k.

Token non-impersonation against a chosen message attack for a CUS scheme S is defined
via the experiment Exptk-imp-cmaS,A (1k) shown in Figure 3. A has access to the oracles O =
{OSign,OConv,OConf/Dis} defined as in the above. It is required that A does not submit
(m∗, σ∗) to the conversion oracle. The advantage of A in the experiment is defined as

Advtk-imp-cmaS,A = Pr[Exptk-imp-cmaS,A (1k) = 1]

Definition 7 A CUS scheme is said to be resistant to token impersonation attacks if for
all polynomial time algorithms A, the advantage Advtk-imp-cmaS,A is negligible in the security
parameter k.

5 A Concrete Convertible Undeniable Signature Scheme

In this section we present a CUS scheme provable secure in the standard model. Our scheme
has a similar structure to the basic designated confirmer signature scheme by Schuldt et al.
[36], but we employ different proof systems and provide a token generation method. Further-
more, our scheme does not require verifiers to hold public/private key pairs and avoids the
key registration requirement of [36]. In the description of the scheme we use the notation
ZKPK{w : R} to mean a zero-knowledge proof of knowledge of w such that the relation R
holds. We present the implementation details of these proofs after describing the scheme.

– Setup: Compute P = (e,G1,G2,GT , p, ψ) ← G(1k), pick g2 ∈ G2 and set g1 ← ψ(g2).
Furthermore, choose a collision resistant hash function family H = {Hk : {0, 1}∗ → Zp}
indexed by a key k ∈ K. Return par = (P, g1, g2,H).

10



– KeyGen : Given par, pick α, x, y ← Zp, h ← G1 and w2 ← G2, and set w1 ← gα1 ,
v1 ← gx

−1

2 and v2 ← gy
−1

2 . Furthermore, pick u0, . . . , un ← G2
4, and define F (m) =

u0
∏n
i=1 u

mi
i where mi is the ith bit of m. Finally pick a hash key k ∈ K and set pk =

(k, w1, w2, v1, v2, h, u0, . . . , un), vk = (x, y) and sk = wα2 . Return (pk, vk, sk).
– Sign : Given input (par, sk,m), where sk = wα2 , pick random a, b, s ← Zp, compute t ←
Hk(ψ(v1)a||ψ(v2)b||m) and M = gs1h

t, and return σ = (ψ(v1)a, ψ(v2)b, ψ(wα2F (M)a+b), s).
– Convert : Given (par, vk,m, σ) where σ = (σ1, σ2, σ3, s) and vk = (x, y), check that
e(σ3, g2) = e(w1, w2)e(σx1σ

y
2 , F (M)) where M = gs1h

t and t = Hk(σ1||σ2||m), and return
⊥ if this is not the case. Otherwise, return the token tkσ = (σx1 , σ

y
2).

– Verify : Given (par, pk,m, σ, tkσ) where pk = (k, w1, w2, v1, v2, h, u0, . . . , un), σ′ = (σ1, σ2, σ3, s)
and tkσ = (tk1, tk2), return accept if e(tk1, v1) = e(σ1, g2), e(tk2, v2) = e(σ2, g2), and
e(σ3, g2) = e(w1, w2)e(tk1tk2, F (M)) where M = gs1h

t and t = Hk(σ1||σ2||m).
– (Confirm, Vcon): Given the common input (par, pk,m, σ), where pk = (k, w1, w2, v1, v2, h, u0, . . . , un)

and σ = (σ1, σ2, σ3, s), and the additional private input vk = (x, y) to the Confirm algo-
rithm, (Confirm, Vcon) is executed as

ZKPK{(x, y) : vx1 = g2 ∧ vy2 = g2 ∧ e(σ1, F (M))xe(σ2, F (M))y = e(σ3, g2)/e(w1, w2)}

where M = gs1h
t and t = Hk(σ1||σ2||m).

– (Disavow, Vdis): Given same common input as in (Confirm, Vcon) and private input vk =
(x, y) to the Disavow algorithm, (Disavow, Vdis) is executed as

ZKPK{(x, y) : vx1 = g2 ∧ vy2 = g2 ∧ e(σ1, F (M))xe(σ2, F (M))y 6= e(σ3, g2)/e(w1, w2)}

where M = gs1h
t and t = Hk(σ1||σ2||m).

Implementation of ZKPK. To implement the zero-knowledge proofs of knowledge for the
above scheme, we employ a transformation proposed by Cramer, Damg̊ard and MacKenzie [14]
which converts a sigma protocol into a perfect zero-knowledge proof of knowledge. As a tool,
the transform makes use of the well known technique by Cramer, Damg̊ard and Shoenmakers
[15] for constructing a witness indistinguishable “OR” proof from sigma protocols i.e. a sigma
protocol Σ for relation R and a sigma protocol Σ′ for relation R′ is combined into a sigma
protocol, denoted Σ ∨Σ′, which for common input (x, x′) and a witness w, proves that either
(x,w) ∈ R or (x′, w) ∈ R′. Given that Σ and Σ′ both have challenge space Zp, and if we,
without loss of generality, assume that the prover knows a witness w such that (x,w) ∈ R,
Σ ∨Σ′ is implemented as follows.

1. The prover honestly computes the first message a ofΣ, picks random c′ and runs (a′, c′, z′)←
SimΣ′(x′, c′). Then (a, a′) is sent to the verifier.

2. The verifier sends a randomly chosen c to prover.
3. The prover computes c← c−c′ mod p, respond honestly to c with the message z following
Σ, and sends (c, c′, z, z′) to the verifier who checks that c = c+c′ mod p and that (a, c, z)
and (a′, c′, z′) are accepting transcripts of Σ and Σ′.

In the above protocol, the verifier is unable to determine which relation the prover holds a
witness for. We refer the reader to [15] for a detailed analysis of the protocol.

The transformation for obtaining a zero-knowledge proof of knowledge works as follows.
Let Σ be a sigma protocol for a relation R with messages (a, c, z). Consider the following
commitment scheme induced by Σ and a fixed common input x:
4 We assume that the description of group elements in G1 is less than n bits.
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– To commit to a value c in the challenge space of Σ, simulate a transcript (a, c, z) ←
SimΣ(x, c), and return a as a commitment on c.

– To open a commitment a, reveal the corresponding (c, z).
– A verifier verifies the opening by confirming that (a, c, z) is an accepting transcript of Σ.

Furthermore, for this commitment scheme, assume there is a sigma protocol Σ′ for proving
knowledge of a committed value i.e. a sigma protocol for the relation R′ with common input
x′ = (x, a) and witness w′ = (c, z) (this is the only needed assumption). Then we can obtain
a perfect zero-knowledge proof for (x,w) ∈ R, where x is the common input and w is the
witness held by the prover, as follows:

1. Using the commitment scheme induced by Σ and x, the verifier commits to a random
value in the challenge space of Σ, and then proves knowledge of this value to the prover
using Σ′. (If the verifier does not provide an accepting proof, the prover will abort.) Let
com denote the commitment sent by the verifier.

2. The prover then proves to the verifier that he knows either the witness w or an opening
of com using the sigma protocol Σ ∨Σ′.

Although the above protocol is a six move protocol, it can easily be reduced to a four move
protocol by combining the second and third moves of the sigma protocol in step 1 with the
first and second moves of the sigma protocol in step 2.

In [14], Cramer, Damg̊ard and MacKenzie show that the protocol resulting from the above
transformation is a perfect zero-knowledge proof of knowledge with knowledge error at most
2−t assuming Σ uses t-bit challenges. We refer the reader to [14] for the details.

To obtain a zero-knowledge proof for (Confirm, Vcon) with common input (par, pk, σ,m),
we construct the following sigma protocol (as mentioned in Section 2, the construction of this
type of sigma protocol is relatively straightforward):

ΣStd{(x, y) : vx1 = g2 ∧ vy2 = g2 ∧ e(σ1, F (M))xe(σ2, F (M))y = e(σ3, g2)/e(w1, w2)}

where M = gs1h
t and t = Hk(σ1||σ2||m). A commitment to a value c ∈ Zp constructed

using ΣStd and (par, pk, σ,m) will be of the form (a1, a2, a3) = (vz11 g
−c
2 , vz22 g

−c
2 , ez11 e

z2
2 e
−c
3 )

where e1 = e(σ1, F (M)), e2 = e(σ2, F (M)), e3 = e(σ3, g2)/e(w1, w2), and z1, z2 ← Zp are
random values. The corresponding opening is (c, z1, z2), and a verifier accept the opening if
(a1, a2, a3, c, z1, z2) is a valid transcript ofΣStd. The following sigma protocol proves knowledge
of an opening.

Σ′Std{(c, z1, z2) : vz11 g
−c
2 = a1 ∧ vz22 g

−c
2 = a2 ∧ ez11 e

z2
2 e
−c
3 = a3}

Hence, by applying the above transformation to ΣStd and Σ′Std, a zero-knowledge proof for
(Confirm, Vcon) is obtained.

To obtain a zero-knowledge proof for (Disavow, Vdis) with common input (par, pk,m, σ),
we apply the same strategy as above. Firstly, we construct a sigma protocol Σ{(x, y) : vx1 =
g2∧ vy2 = g2∧ ex1e

y
2 6= e3} by adapting the technique used in the proof of inequality of discrete

logarithms by Camenish and Shoup [9]. More specifically, a prover first chooses r ← Zp,
computes C ← (ex1e

y
2/e3)r, and then interacts with the verifier in the protocol

ΣStd{(α, β, r) : vα1 g
−r
2 = 1 ∧ vβ2 g

−r
2 = 1 ∧ eα1 e

β
2e
−r
3 = C}
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where α = xr and β = yr. A verifier will only accept a proof if C 6= 1. A commitment
to a value c ∈ Zp constructed using ΣStd and (par, pk, σ,m) is of the form (a1, a2, a3, C) =
(vzα1 g−zr2 , v

zβ
2 g−zr2 , ezα1 e

zβ
2 e
−zr
3 C−c, C) where zα, zβ, zr ← Zp and C ← GT are random values.

To prove knowledge of the opening (c, zα, zβ, zr), the following sigma protocol can be used

Σ
′
Std{(c, zα, zβ, zr) : vzα1 g−zr2 = a1 ∧ v

zβ
2 g−zr2 = a2 ∧ ezα1 e

zβ
2 e
−zr
3 C−c = a3}

Hence, by applying the above transformation to ΣStd and Σ
′
Std we obtain a zero-knowledge

proof for (Disavow, Vdis).

5.1 Security

The soundness of the above scheme and the zero-knowledge property of the confirm and
disavow protocols follows directly from the soundness and the zero-knowledge properties of
the proofs obtained from the transformation by Cramer, Damg̊ard and MacKenzie [14]. We
refer the reader to [14] for proofs of these properties.

The token soundness of the scheme is implied by the properties of the bilinear map in
combination with the proof of knowledge property of the disavow protocol (which is achieved
without requiring any intractability assumptions [14]).

Theorem 8 If the disavow protocol is a zero-knowledge proof of knowledge, then the above
CUS scheme has token soundness.

The proof is given in Appendix B.
The unforgeability of the above CUS scheme is based on the unforgeability of the signature

scheme by Waters [37] which we recall in Appendix A. We note that Waters’ signature scheme
is (weakly) unforgeable assuming the computational co-Diffie-Hellman problem is hard [37].
The proof of the first theorem below, which is given in Appendix C, is based on the ideas by
Schuldt and Matsuura [36] which in turn is based on ideas from Boneh, Shen and Waters [6].
The proof of the second theorem is likewise based on ideas from [36] and is given in Appendix
D.

Theorem 9 Assume that the hash function family H is collision resistant, the discrete loga-
rithm problem is hard in G2, and that Waters signature scheme is (weakly) unforgeable. Then
the above CUS scheme is strongly unforgeable.

Theorem 10 Assume the above CUS scheme is strongly unforgeable and that the decision
linear problem is hard in G2. Then the above CUS scheme is invisible.

Lastly, the following theorems show that the above CUS scheme is resistant to impersonation
and token impersonation attacks. The strategy of the proof of the first theorem is to make
use of the proof of knowledge property of the used proof systems to extract the verification
key which, in the simulation, will contain an unknown discrete logarithm. Otherwise, the
simulation is very similar to that of Theorem 10, and can easily be derived from this. The
strategy of the proof of the second theorem is to return a signature in one of the adversary’s
signature queries such that a conversion will reveal the solution to a computational ψ-Diffie-
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Hellman problem5. The strong unforgeability of the scheme will ensure that the signature
converted by the adversary in a token impersonation attack was constructed by the simulator,
and the remaining part of the simulation is similar to that of Theorem 10. We omit the details
of the proofs here.

Theorem 11 Assume the above CUS scheme is strongly unforgeable and that the the discrete
logarithm problem is hard in G2. Then the above CUS scheme is resistant to impersonation
attacks.

Theorem 12 Assume the above CUS scheme is strongly unforgeable and that the computa-
tional ψ-Diffie-Hellman problem is hard in (G1,G2). Then the above CUS scheme is resistant
to token impersonation attacks.
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A Waters’ Signatures

Below we recall the signature scheme by Waters [37]. Note that we make use of an asymmetric
bilinear map e : G1 × G2 → GT whereas the original scheme in [37] was defined using a
symmetric bilinear map e : G1 ×G1 → GT .

– Setup: Compute P = (e,G1,G2,GT , p, ψ) ← G(1k), pick g2 ∈ G2 and set g1 ← ψ(g2).
Return par = (P, g1, g2).

– KeyGen : Given par, pick α ← Zp and w2 ← G2, and set w1 ← gα1 . Furthermore, pick
u0, . . . , un ← G2, and define F (m) = u0

∏n
i=1 u

mi
i where mi is the ith bit of m. Finally

set the public key to pk = (w1, w2, u0, . . . , un) and the private key to sk = wα2 . Return
(pk, sk).

– Sign : Given input (par, sk,m), where sk = wα2 pick r ← Zp, compute σ1 ← gr1 and
σ2 ← ψ(wα2F (m)r), and return the signature σ = (σ1, σ2).

– Verify : Given par, a public key pk = (w1, w2, u0, . . . , un), a message m and a signature
σ = (σ1, σ2), return accept if e(σ2, g2) = e(w1, w2)e(σ1, F (m)).

It follows from the proof of security given in [37], that the above signature scheme is unforge-
able against a chosen message attack assuming the computational co-Diffie-Hellman problem
is hard in (G1,G2).

B Proof of Theorem 8

Proof. Firstly, we show that if a signature passes the token verification, it must be a valid
signature. Consider a public key pk = (k, w1, w2, v1, v2, h, u0, . . . , un), a purported signature
σ = (σ1, σ2, σ3, s) on a message m, and a token tkσ = (tk1, tk2). There must exist unique
values a, b ∈ Zp such that σ1 = ψ(v1)a and σ2 = ψ(v2)b. Then, if the verification equations
e(tk1, v1) = e(σ1, g2) and e(tk2, v2) = e(σ2, g2) hold, we must have that tk1 = ga1 and tk2 = gb1.
Hence, we have tk1tk2 = ga+b1 . Furthermore, if e(σ3, g2) = e(w1, w2)e(ga+b1 , F (M)), where
M = gs1h

t and t = Hk(σ1||σ2||m), also holds, we have that σ3 = ψ(wα2F (M)a+b), where
α = logg1 w1. Hence, if the output of Verify(par, pk,m, σ, tkσ) is accept, σ must be a valid
signature on m under the public key pk.

Now assume that the adversary completes the disavow protocol for (pk,m, σ) with non-
negligible probability. By the proof of knowledge property of the protocol, there exists a
knowledge extractor which is able to extract a witness (α, β, r) with non-negligible probability
such that vα1 = gr2, vβ2 = gr2 and eα1 e

β
2/e

r
3 = C for some C 6= 1, where e1 = e(σ1, F (M)),

e2 = e(σ2, F (M)), and e3 = e(σ3, g2)/e(w1, w2). Letting x = logv1 g2 and y = logv2 g2, this
implies that α = xr and β = yr. Hence, we must have that (ex1e

y
2/e3)r 6= 1 which implies that

ex1e
y
2 6= e3. However, this contradicts that σ is a valid signature on m under pk.

C Proof of Theorem 9

Proof. Assume that a successful adversaryA that breaks the unforgeability of the CUS scheme
exists. Let (m∗, σ∗) denote the forgery output by A where σ∗ = (σ∗1, σ

∗
2, σ
∗
3, s
∗), and let (mi, σi)

denote the ith sign query and response where σi = (σi,1, σi,2, σi,3, si). Furthermore, we let
M∗ = gs

∗
1 h

t∗ , t∗ = Hk(σ∗1||σ∗2||m∗), Mi = gsi1 h
ti , and ti = H(σi,1||σi,2||mi), where h is part of

the public key pk. Finally, let q be the total number of sign queries made the adversary. We
then define three different types of forgeries:

16



1. A forgery where M∗ = Mi and t∗ = ti for some i ∈ {1, . . . , q}.
2. A forgery where M∗ = Mi and t∗ 6= ti for some i ∈ {1, . . . , q}.
3. A forgery where M∗ 6= Mi for all i ∈ {1, . . . , q}.

If A is successful, he must produce a forgery belonging to one of the above categories. For
each category, we define algorithms B1, B2 and B3 that breaks the collision resistance of Hk,
solves the discrete logarithm problem in G2, and breaks the weak unforgeability of the Waters
signature scheme, respectively.

Category 1. B1’s goal for this category forgery is, given a description of a hash function family
H and a random hash key k ∈ K, to produce messages x1 6= x2 such that Hk(x1) = Hk(x2).
We construct B1 as follows: Firstly, B1 runs P = (e,G1,G2,GT , p, ψ)← G(1k), picks g2 ← G2

and sets g1 ← ψ(g2) and par ← (P, g1, g2,H). Then B1 runs (pk, vk, sk) ← KeyGen(par) but
uses the received hash key k in pk instead of picking a random key. Then B1 runs A with
input (par, pk, vk).

While running, A can ask sign queries mi which B1 responds to by returning σi ←
Sign(par, sk,mi). Eventually,A outputs a forgery (m∗, σ∗) where σ∗ is of the form (σ∗1, σ

∗
2, σ
∗
3, s
∗).

B1 outputs messages x1 = σ∗1||σ∗2||m∗ and x2 = σi,1||σi,2||mi where i is the index for which
M∗ = Mi and t∗ = ti.
B1 succeeds if x1 6= x2. Assume towards a contradiction that x1 = x2 i.e. σ∗1||σ∗2||m∗ =

σi,1||σi,2||mk. Since A’s forgery is a type 1 forgery, we have that Mi = gsihti = gs
∗
ht
∗

= M∗

and ti = t∗. This implies that si = s∗. Furthermore, if σ∗ is a valid signature, it must be
possible to write σ∗3 as ψ(wα2F (M∗)a+b) where a = logv1 σ

∗
1 and b = logv2 σ

∗
2. However, since

σ∗1 = σi,1, σ∗2 = σi,2 and M∗ = Mi, we must have σi,3 = ψ(wα2F (Mi)a+b) = σ∗3. Hence, we
have (σ∗1, σ

∗
2, σ
∗
3, s
∗) = (σi,1, σi,2, σi,3, si) which contradicts A outputting a valid forgery.

Category 2. B2’s goal in this category is, given P = (e,G1,G2,GT , p, ψ) and elements g2, h2 ∈
G2, to compute x = logg2 h2. We construct B2 as follows: Firstly, B2 picks a hash function
family H, sets g1 ← ψ(g2) and par ← (P, g1, g2,H), and runs (pk, vk, sk)← KeyGen(par) but
uses the element h← ψ(h2) in pk instead of picking a random element in G1. Then B2 runs
A with input (par, pk, vk).

While running,A can ask sign queries which B2 responds to by returning σi ← Sign(par, sk,mi).
Eventually, A outputs a forgery (m∗, σ∗). Since A’s forgery is assumed to be of type 2, there
must be a i such that Mi = gsi1 h

ti = gs
∗

1 h
t∗ = M∗ but ti 6= t∗. Hence, B2 can compute

x = logg1 h = logg2 h2 = (si − s∗)/(t∗ − ti).

Category 3. B3’s goal in this category is to produce a forgery of the signature scheme by
Waters. B3 interacts with a (weak) unforgeability challenger C which provides B3 with a
signing oracle. Initially, B3 is given parameters par = (P, g1, g2,H) and a public key pk′ =
(w1, w2, u0, . . . , un). Firstly, B3 creates a public key pk by picking a hash key k ∈ K, picking
values c, x, y ← Zp, setting h ← gc1, v1 ← g−x2 and v2 ← g−y2 , and finally setting pk =
(k, w1, w2, v1, v2, h, u0, . . . , un). Then B3 sets vk ← (x, y) and runs A with input (par, pk, vk).

While running, A can ask sign queries, which B3 responds to as follows:

– Sign queries: Given a message m, B3 picks random z ← Zp, sets M ← gz1 and queries M
to its signing oracle to obtain a Waters signature σ′ = (gr1, ψ(wα2F (M)r)) on M . Then B3

picks random r′ ← Zp, and computes σ1 = ψ(v1)r+r
′ ← (gr1g

r′
1 )x

−1
and σ2 = ψ(v2)r−r

′ ←
(gr1/g

r′
1 )y

−1
. Note that since both r and r′ will be uniformly distributed in Zp, so will
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r + r′ and r − r′ (like the values a and b in an ordinary signature). Lastly, B3 computes
s← z−cHk(σ1||σ2||m), sets σ = (σ1, σ2, ψ(wα2F (M)r), s), and returns σ to A. Note that s
is uniformly distributed in Zp and that M = gshHk(σ1||σ2||m). Hence, σ is a valid signature
on m.

Eventually, A outputs a forgery (m∗, σ∗) where σ∗ = (σ∗1, σ
∗
2, σ
∗
3, s
∗). B3 then computes σ′1 ←

(σ∗1)x(σ∗2)y and outputs the message M∗ and σ′ ← (σ′1, σ
∗
3). Note that if A’s forgery is valid,

it follows that e(σ∗3, g2) = e(w1, w2)e(σ′1, F (M∗)), and since A’s forgery is assumed to be a
type 3 forgery, we have that M∗ 6= Mi for all i. Hence, the validity of B3’s forgery follows
directly from the validity of A’s forgery, and B3 successfully attacks the weak unforgeability
of the Waters signature scheme whenever A successfully attacks the CUS scheme. ut

D Proof of Theorem 10

Proof. We assume that an adversary A breaking the invisibility of the CUS scheme exists.
Let forge be the event that A submits a convert or confirm/disavow query (m,σ) where σ is
a valid signature on m which was not obtained through a sign query m. In the following we
will construct algorithms B1 and B2 which will break the strong unforgeability of the scheme
and the linear assumption in the events forge and ¬forge, respectively.

Firstly assume that the event forge happens. B1 runs an unforgeability experiment, re-
ceives the input (par, pk, vk), and forwards (par, pk) as input to A. While running, A can
ask sign, convert and confirm/disavow queries. B1 responds to these queries as follows. If A
makes a sign query, B1 forwards this queries to his own signing oracle, and returns the ob-
tained signature to A. If A makes a convert or confirm/disavow query (m,σ), B1 first checks
if σ was returned as a response to a sign query on m. If this is not the case, B1 checks if
(m,σ) is valid (using vk), and if so, returns (m,σ) as a forgery and halts. Otherwise, B1

either returns tkσ ← Convert(par, vk,m, σ) or ⊥, or interacts with A running Confirm or
Disavow, depending on the query type and the validity of (m,σ).

At some point, A outputs a challenge message m∗. As in the invisibility experiment, B1

flips a random coin b← {0, 1} and returns a random σ∗ ← S if b = 0. Otherwise, B1 returns σ∗

obtained by submitting m∗ to his own signing oracle. After receiving σ∗, A can ask additional
sign, convert and confirm/disavow queries which B1 answers as above. If forge happens, it
is clear that B1 succeeds in winning in the unforgeability experiment.

Now assume that forge does not happen. B2 will attempt to solve the decisional linear
assumption i.e. B2 receives P = (e,G1,G2,GT , p, ψ) and elements u, v, ux, vy, h, hz ∈ G2. B2’s
goal is to decide if z = x+ y. Firstly, B2 picks a hash family H = {Hk : {0, 1}∗ → Zp} and an
element g2 ← G2, and sets g1 ← ψ(g2) and par ← (P, g1, g2,H). B2 then generates a public
key by choosing α← Zp and w2 ← G2, and setting w1 ← gα1 , v1 ← u, v2 ← v and h1 ← ψ(h).
Furthermore, B2 picks a hash key k ∈ K and d0, . . . , dn ← Zp, and sets ui ← hdi for 1 ≤ i ≤ n,
pk ← (k, w1, w2, v1, v2, h1, u0, . . . , un) and sk = wα2 . Lastly, B2 runs A with input (par, pk).

While running, A can ask sign, convert and confirm/disavow queries which are answered
as follows.

– Sign: Given a messagem, B2 returns σ = (ψ(v1)a, ψ(v2)b, ψ(wα2F (M)a+b), s)← Sign(par, sk,m)
but remember the random choices a, b← Zp and stores (m,σ, a, b).

– Convert : Given (m,σ), B2 checks if σ was returned as a response to a sign query m. If
this is not the case, B2 returns ⊥. Otherwise, B2 recalls the random choices a, b used to
construct σ, and returns tkσ = (ga1 , g

b
1).
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– Confirm/Disavow : Given (m,σ), B2 simulates the confirm protocol if σ was returned as
a response to a sign query on m, but simulates the disavow protocol otherwise.
To simulate the confirm protocol, B2 interacts with A as follows. Upon receiving a com-
mitment com (constructed using ΣStd) and the first message a of Σ′Std from A, B2 choose
a random challenge c ← Zp, computes the first message a′ of ΣStd ∨ Σ′Std as if an open-
ing of com is known (note that the computation of the first message a′ does not require
knowledge of an opening to com), and returns (a′, c) to A. When A responds with the last
message z of Σ′Std and a challenge c′ for B2, B2 checks if (a, c, z) is an accepting transcript
of ΣStd. If not, B2 returns ⊥ to A. Otherwise, B2 rewinds A and provides A with a new
challenge c← Zp for the Σ′Std protocol. Hence, if A responds with a message z such that
(a, c, z) is a valid transcript for Σ′Std, B2 can extract an opening of com and complete the
protocol ΣStd ∨Σ′Std honestly for any challenge c′ sent by A (i.e. B2 learns a witness for
Σ′Std and can therefore honestly run ΣStd ∨ Σ′Std). If (a, c, z) is an invalid transcript, B2

returns ⊥ to A.
The simulation of the disavow protocol is similar to the above, except the protocols Σ′Std
and ΣStd ∨Σ

′
Std are used.

At some stage, A outputs a challenge message m∗. B2 constructs a challenge signature by
picking s∗ ← Zp and computing t∗ ← Hk(ψ(ux)||ψ(vy)||m∗), M∗ ← gs

∗
1 h

t∗
1 and σ∗ ←

(ψ(ux), ψ(vy), ψ(wα2 (hz)d0+
Pn
i=1 diM

∗
i ), s∗), where (ux, vy, hz) are the elements received in the

decisional linear problem and h1 is from pk. Note that if z is random, then σ∗ will be a
random element in G3

1 × Zp, whereas if z = x + y, σ∗ will be a valid signature on m∗ since
(hz)d0+

Pn
i=1 diM

∗
i = (hd0+

Pn
i=1 diM

∗
i )x+y = (u0

∏n
i=1 u

M∗i
i )x+y = F (M∗)x+y.

B2 returns σ∗ to A who can then ask additional sign, convert and confirm/disavow queries,
but is not allowed to query σ∗ to the convert or confirm/disavow oracle. B2 answers these
queries as above. Eventually, A outputs a bit b which B2 forwards as his own solution to the
decisional linear problem.
B2’s simulation of the invisibility experiment for A is perfect and it is clear that B2 will

solve the decisional linear problem if A breaks the invisibility of the scheme. ut
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