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Abstract. Often authentication and confidentiality are required as counterparts in many cryptographic
applications. Both these functionalities are efficiently achieved simultaneously by the cryptographic
primitive called signcryption. On the other hand hybrid encryption (KEM-DEM) provides an efficient
and practical way to securely communicate very large messages. Recently, the first certificateless hybrid
signcryption scheme was proposed by Fagen Li et al.. The concept of certificateless hybrid signcryption
evolved by combining the ideas of signcryption based on tag-KEM and certificateless cryptography.
Fagen Li et al. claimed that their scheme is secure against adaptive chosen ciphertext attack and it
is existentially unforgeable. In this paper, we show that their scheme is existentially forgeable and
also provide an improved certificateless hybrid signcryption scheme. We formal prove the security of
the improved scheme against both adaptive chosen ciphertext attack and existential forgery in the
appropriate security models for certificateless hybrid signcryption.

Keywords. Certificateless Cryptography, Signcryption, Cryptanalysis, Hybrid Signcryption, Tag-KEM,
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1 Introduction

Simultaneous confidentiality and authentication of messages are often required in secure and authentic mes-
sage transmission over an insecure channel like internet. Signcryption is the cryptographic primitive that
offers both these properties concurrently with a very low cost when compared to encrypting and signing a
message independently. Zheng [21] introduced the concept of signcryption in 1997, subsequently signcryp-
tion, which was considered to be an important and useful primitive for secure message transmission and got
the attention of crypto researchers. As a result many signcryption schemes were proposed till date, [15, 14,
8, 6, 13, 5, 7, 4, 17] to name a few. Zheng’s [21] scheme was not proven to be secure. Baek et al. in [3] gave the
formal security model for signcryption and proved the security of [21] in the model.

In 1984, Shamir [18] introduced the concept of identity based cryptography (IBC) and proposed the
first identity based signature scheme. The idea of identity based cryptography is to enable an user to use
any arbitrary string that uniquely identifies him as his public key. Identity based cryptography serves as
an efficient alternative to Public Key Infrastructure (PKI) based systems because no certificate is needed
to validate the public key of an user. Identity based cryptosystem makes use of a trusted third party the
private key generator (PKG) who is in procession of a master secret key which is used to derive the private
key of any user in the system. Thus the private key of all the user in the system is known to the PKG,
since it was generated by him. This is an inherent issue in IBC and is called as the key escrow problem.
Certificateless Cryptography (CLC) was introduced by Al-Riyami at al. [1] inorder to reduce the trust level
of KGC (The trusted third party in CLC is the Key Generation Center) and thus to find an effective remedy
to the key escrow problem. This can be achieved by splitting the private key into two parts; one is generated
by the KGC and is known as the partial private key, other one is an user selected secret value. An effective
signcryption or unsigncryption can only be done with both these private key components or a combination
of both. The public key is no longer the identity of the user in CLC but it is derived from the partial private
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key and the secret value of the corresponding user. The main challenge in building a CLC is to build a system
that can resist two types of attacks namely Type-I and Type-II attacks (described later in the paper).

There are two different ways to construct signcryption schemes, one is public key signcryption and other
is hybrid signcryption. In a public key signcryption scheme both encryption and signature are in public
key setting. A few examples for this type of construct are schemes by An et al. [2], Malone-Mao [16] and
Dodis et al.[11]. In a Hybrid signcryption scheme, the signature is in public key setting and encryption is
in symmetric key setting, here an one-time secret key which is used in the symmetric key encryption of
the message is encrypted by a public key encryption algorithm. The formal security model for a hybrid
signcryption scheme was given by Dent [10] and Bjrstad [20]. Generation of secret key and encrypting it
using a public key encryption scheme is called key encapsulation mechanism (KEM) and encrypting the
message with the secret key and a symmetric key encryption scheme is called as data encryption mechanism
(DEM). The definitions and formal treatment of KEM/DEM can be found in [9] and [19].

2 Preliminaries

2.1 Bilinear Pairing

Let G1 be an additive cyclic group generated by P , with prime order q, and G2 be a multiplicative cyclic
group of the same order q. A bilinear pairing is a map ê : G1 ×G1 → G2 with the following properties.

– Bilinearity. For all P,Q,R ∈ G1,
• ê(P +Q,R) = ê(P,R)ê(Q,R)
• ê(P,Q+R) = ê(P,Q)ê(P,R)
• ê(aP, bQ) = ê(P,Q)ab [Where a, b ∈R Z∗q ]

– Non-Degeneracy. There exist P,Q ∈ G1 such that ê(P,Q) 6= IG2 , where IG2 is the identity element of
G2.

– Computability. There exists an efficient algorithm to compute ê(P,Q) for all P,Q ∈ G1.

2.2 Computational Assumptions

In this section, we review the computational assumptions related to bilinear maps that are relevant to the
protocol we discuss.

Computation Diffie-Hellman Problem (CDHP) Given (P, aP, bP ) ∈ G3
1 for unknown a, b ∈ Z∗q , the

CDH problem in G1 is to compute abP .

Definition. The advantage of any probabilistic polynomial time algorithm A in solving the CDH problem
in G1 is defined as

AdvCDH
A = Pr

[
A(P, aP, bP ) = abP | a, b ∈ Z∗q

]
The CDH Assumption is that, for any probabilistic polynomial time algorithm A, the advantage AdvCDH

A
is negligibly small.

Decisional Bilinear Diffie-Hellman Problem (DBDHP) Given (P, aP, bP, cP, α) ∈ G4
1 × G2 for un-

known a, b, c ∈ Z∗q , the DBDH problem in G1 is to decide if α = ê(P, P )abc.

Definition. The advantage of any probabilistic polynomial time algorithm A in solving the DBDH problem
in G1 is defined as

AdvDBDH
A = |Pr

[
A(P, aP, bP, cP, ê(P, P )abc) = 1

]
− Pr [A(P, aP, bP, cP, α) = 1] |

The DBDH Assumption is that, for any probabilistic polynomial time algorithm A, the advantage AdvDBDH
A

is negligibly small.



2.3 Certificateless Signcryption Tag-KEM (CLSC-TKEM)

A generic Certificateless Signcryption Tag-KEM scheme consists of the following seven probabilistic polyno-
mial time algorithms:

– Setup (κ). Given a security parameter κ, the Key Generation Center (KGC) generates the public
parameters params and master secret key msk of the system.

– Extract Partial Private Key (IDA). Given an identity IDA ∈R {0, 1}∗ of an user A as input, the
KGC computes the corresponding partial private key DA and gives it to A in a secure way.

– Generate User Key (IDA). Given an identity (IDA) as input, this algorithm outputs a secret value
xA and a public key PKA. This algorithm is executed by the user A to obtain his secret value which
is used to generate his full private key and the corresponding public key which is published without
certification.

– Set Private Key (DA, xA). The input to this algorithm are the partial private key DA and the secret
value xA of an user A. This algorithm is executed by the user A to generate his full private key SA.

– Sym (IDA, PKA, SA, IDB , PKB). This is a symmetric key generation algorithm which takes the sender’s
identity IDA, public key PKA, private key SA, the receiver’s identity IDB and public key PKB as input.
It is executed by the sender A in order to obtain the symmetric key K and an internal state information
ω.

– Encap (ω, τ). This is the key encapsulation algorithm which takes a state information ω, an arbitrary
tag τ , the sender’s identity IDA, public key PKA and private key SA as input. This algorithm is executed
by the sender A in order to obtain the encapsulation ψ.

– Decap (ψ, τ, IDA, PKA, IDB , PKB , SB). In order to obtain the encapsulated key K, the receiver B
runs this algorithm. The input to this algorithm are the encapsulation ψ, a tag τ , the sender’s identity
IDA, public key PKA, the receiver’s identity IDB , public key PKB and private key SB . The output to
this algorithm is a key K or invalid with respect to the validity of ψ.

The consistency constraint we require is, if (K,ω) = Sym(IDA, PKA, SA, IDB , PKB) and ψ = Encap(ω, τ),
then K = Decap(ψ, τ, IDA, PKA, IDB , PKB , SB).

2.4 Security Model for CLSC-TKEM

The security notions for certificateless signcryption scheme was first formalized by Barbosa et al. in [4].
A CLSC scheme should satisfy indistinguishability against adaptive chosen ciphertext and identity attacks
(IND-CLSC-TKEM-CCA2) and existential unforgeability against adaptive chosen message and identity at-
tacks (EUF-CLSC-TKEM-CMA). We describe below the security models to prove the confidentiality and
unforgeability of a CLSC-TKEM scheme. These are the strongest security notions for this problem.

Confidentiality To prove the confidentiality of CLSC-TKEM scheme, we consider two games ”IND-CLSC-
TKEM-CCA2-I” and ”IND-CLSC-TKEM-CCA2-II”. A Type-I adversary AI interacts with the challenger
C in the IND-CLSC-TKEM-CCA2-I game and a Type-II adversary AII interacts with the challenger C in
the IND-CLSC-TKEM-CCA2-II game. A CLSC-TKEM scheme is indistinguishable against adaptive chosen
ciphertext attacks (IND-CLSC-TKEM-CCA2), if no polynomially bounded adversariesAI andAII have non-
negligible advantage in both IND-CLSC-TKEM-CCA2-I and IND-CLSC-TKEM-CCA2-II games between C
and AI , AII respectively:
IND-CLSC-TKEM-CCA-I: The following is the interactive game between C and AI .

Setup: The challenger C runs this algorithm to generate the master public and private keys, params and
msk respectively. C gives params to AI and keeps the master private key msk secret from AI .

Phase 1: AI performs a series of queries in an adaptive fashion in this phase. The queries allowed are given
below:
– Extract Partial Private Key queries: A chooses an identity IDi and gives it to C. C computes the

corresponding partial private key Di and sends it to AI .



– Extract Private Key queries: AI produces an identity IDi and can request the corresponding full
private key. If IDi’s public key has not been replaced then C responds with the full private key Si.
If AI has already replaced IDi’s public key, then C does not provide the corresponding private key
to AI .

– Request Public Key queries: AI produces an identity IDi to C and requests IDi’s public key. C
responds by returning the public key PKi for the user IDi. (First by choosing a secret value if
necessary).

– Replace Public Key queries: AI can repeatedly replace the public key PKi for an user IDi with any
value PK ′

i of AI ’s choice. The current value of the user’s public key is used by C in any computations
or responses to AI ’s queries.

– Symmetric Key Generation queries: AI produces a sender’s identity IDA, public key PKA, the
receiver’s identity IDB and public key PKB to C. The private key of the sender SA is obtained
from the corresponding list maintained by C. C computes the symmetric key K and an internal state
information ω, stores and keeps ω secret from the view of AI and sends the symmetric key K to AI .
It is to be noted that C may not be aware of the corresponding private key if the public key of IDA

is replaced. In this case AI provides the private key of IDA to C.
– Key Encapsulation queries: AI produces an arbitrary tag τ , the sender’s identity IDA and public

key PKA, The private key of the sender SA is obtained from the corresponding list maintained by
C. C checks whether a corresponding ω value is stored previously. If ω exists then C computes the
encapsulation ψ with ω and τ and deletes ω, else returns invalid.

– Key Decapsulation queries: AI produces an encapsulation ψ, a tag τ , the sender’s identity IDA,
public key PKA, the receiver’s identity IDB and public key PKB . The private key of the receiver
SB is obtained from the corresponding list maintained by C. C returns the key K or invalid with
respect to the validity of ψ. It is to be noted that C may not be aware of the corresponding private
key if the public key of IDB is replaced. In this case AI provides the private key of IDB to C.

Challenge: At the end of Phase 1 (which is decided by AI), AI sends to C, a sender identity ID∗
A and

a receiver identity IDB∗ on which AI wishes to be challenged. Here, the private key of the receiver
IDB∗ was not queried in Phase 1. Now, C computes 〈K1, ω

∗〉 using Sym(IDA, PKA, SA, IDB , PKB)
and chooses K0 ∈R K, where K is the key space of the CLSC-TKEM scheme. Now C chooses a bit
b ∈R {0, 1} and sends Kb to AI . When AI receives Kb, it generates an arbitrary tag τ∗ and sends it to
C. C computes the challenge encapsulation ψ∗ with ω∗ and τ∗ and sends ψ∗ to AI .

Phase 2: AI can perform ploynomially bounded number of queries adaptively again as in Phase 1 but it
cannot make a partial private key extraction query on IDB∗ or cannot query for the decapsulation of
ψ∗. If the public key of IDB∗ is replaced after the Challenge, AI can ask for the decapsulation of ψ∗.

Guess: AI outputs a bit b′ and wins the game if b′ = b.

The advantage of AI is defined as AdvIND−CLSC−TKEM−CCA2−I(AI) = |2Pr[b′ = b]− 1|, where Pr[b′ = b]
denotes the probability that b′ = b.

IND-CLSC-TKEM-CCA-II: The following is the interactive game between C and AII .

Setup: The challenger C runs this algorithm to generate the master public and private keys, params and
msk respectively. C gives both params and msk to AII .

Phase 1: AII performs a series of queries in an adaptive fashion in this phase. The queries allowed are
similar to that of the IND-CLSC-TKEM-CCA-I game except that Extract Partial Private Key queries:
is excluded because AII can generate it on need basis as it knows msk.

Challenge: At the end of Phase 1 (which is decided by AII), AII sends to C, a sender identity IDA∗ and
a receiver identity IDB∗ on which AII wishes to be challenged. Here, the full private key of the receiver
IDB∗ was not queried in Phase 1. Now, C computes 〈K1, ω

∗〉 using Sym(IDA, PKA, SA, IDB , PKB)
and chooses K0 ∈R K, where K is the key space of the CLSC-TKEM scheme. Now C chooses a bit
b ∈R {0, 1} and sends Kb to AII . When AII receives Kb, it generates an arbitrary tag τ∗ and sends it
to C. C computes the challenge encapsulation ψ∗ with ω∗ and τ∗ and sends ψ∗ to AII .

Phase 2: AII can perform ploynomially bounded number of queries adaptively again as in Phase 1 but it
cannot make a partial private key extraction query on IDB∗ or cannot query for the decapsulation of
ψ∗. If the public key of IDB∗ is replaced after the Challenge, AI can ask for the decapsulation of ψ∗.

Guess: AII outputs a bit b′ and wins the game if b′ = b.



The advantage of AII is defined as AdvIND−CLSC−TKEM−CCA2−II(AII) = |2Pr[b′ = b]−1|, where Pr[b′ =
b] denotes the probability that b′ = b.

Existential Unforgeability To prove the existential unforgeability of CLSC-TKEM scheme, we consider
two games ”EUF-CLSC-TKEM-CMA-I” and ”EUF-CLSC-TKEM-CMA-II”. A Type-I forger FI interacts
with the challenger C in the EUF-CLSC-TKEM-CMA-I game and a Type-II forger FII interacts with the
challenger C in the EUF-CLSC-TKEM-CMA-II game. A CLSC-TKEM scheme is existentially unforgeable
against adaptive chosen message attack (EUF-CLSC-TKEM-CMA), if no polynomially bounded forgers FI

and FII have non-negligible advantage in both EUF-CLSC-TKEM-CMA-I and EUF-CLSC-TKEM-CMA-II
games between C and FI , FII respectively:
EUF-CLSC-TKEM-CMA-I: The following is the interactive game between C and FI :

Setup: The challenger C runs this algorithm to generate the master public and private keys, params and
msk respectively. C gives params to FI and keeps the master private key msk secret from FI .

Training Phase: FI performs a series of polynomially bounded number of queries in an adaptive fashion
in this phase. The queries allowed are identical to the queries allowed in Phase 1 of IND-CLSC-TKEM-
CCA2-I game.

Forgery: At the end of the Training Phase (which is decided by FI), FI sends to C an encapsulation
〈τ∗, ψ∗, IDA∗ , IDB∗〉, where IDA∗ is the sender identity and IDB∗ is the receiver identity. It is to be
noted that the partial private key of the sender IDA∗ should not be queried and the public key of IDA∗

should not be replaced during the Training Phase simultaneously. In addition ψ∗ should not be the
response for any key encapsulation queries by FI during the Training Phase.

FI wins the game if the output of Decap(ψ∗, τ∗, IDA∗ , PKA∗ , IDB∗ , PKB∗ , SB∗) is not invalid. The ad-
vantage of FI is defined as the probability with which it wins the EUF-CLSC-TKEM-CMA-I game.

EUF-CLSC-TKEM-CMA-II: The following is the interactive game between C and FII :

Setup: The challenger C runs this algorithm to generate the master public and private keys, params and
msk respectively. C gives both params and msk to FII .

Training Phase: FII performs a series of polynomially bounded number of queries in an adaptive fashion
in this phase. The queries allowed are identical to the queries allowed in Phase 1 of IND-CLSC-TKEM-
CCA2-II game.

Forgery: At the end of the Training Phase (which is decided by FII), FII sends to C an encapsulation
〈τ∗, ψ∗, IDA∗ , IDB∗〉, where IDA∗ is the sender identity and IDB∗ is the receiver identity. It is to be
noted that FII should not be query the secret value xA∗ of the sender IDA∗ and should not replace the
public key of IDA∗ during the Training Phase. In addition ψ∗ should not be the response for any key
encapsulation queries by FII during the Training Phase.

FII wins the game if the output of Decap(ψ∗, τ∗, IDA∗ , PKA∗ , IDB∗ , PKB∗ , SB∗) is not invalid. The ad-
vantage of FII is defined as the probability with which it wins the EUF-CLSC-TKEM-CMA-II game.

3 Review and Attack of Fagen Li et al.’s CLSC-TKEM

In this section we review the CLSC-TKEM scheme of Fagen Li et al, presented in [12]. We also show that
[12] does not provide both confidentiality and unforgeability.

3.1 Review of the scheme

This scheme has the following seven algorithms.

1. Setup: Given κ the security parameter, the KGC chooses two groups G1 and G2 of prime order q, a
bilinear map ê : G1 ×G1 → G2 and a generator P ∈R G1. It then chooses a master private key s ∈R Z∗q ,
a sets a system-wide public key Ppub = sP and chooses four cryptographic hash functions defined as
H1 : {0, 1}∗ → G1, H2 : {0, 1}∗ → {0, 1}n, H3 : {0, 1}∗ → G1 and H4 : {0, 1}∗ → G1. Here n is the key
length of a DEM. The public parameters Params= 〈G1,G2, P, ê,H1,H2,H3,H4, Ppub〉.



2. Partial Private Key Extract: Given an identity IDA ∈ {0, 1}∗, the KGC does the following to extract
the private key corresponding to IDA:
– Computes QA = H1(IDA) ∈ G1.
– Sets the partial private key DA = sQA.

3. Generate User Key: An user with identity IDA chooses xA ∈R Z∗
q and sets the public key PKA =

xAP .
4. Set Private Key: The full private key of an user A is set to be SA = (xA, DA).
5. Sym (IDA, PKA, SA, IDB , PKB). Given the sender’s identity IDA, public key PKA, private key SA,

the receiver’s identity IDB and public key PKB as input, the algorithm produces the symmetric key K
as follows:
– The sender A chooses r ∈R Z∗

q ,
– Computes U = rP and T = ê(Ppub, QB)r,
– Computes K = H2(U, T, r(PKB), IDB , PKB),
– Outputs K and a set ω = (r, U, IDA, PKA, SA, IDB , PKB)

6. Encap (ω, τ). Given a state information ω and an arbitrary tag τ , the sender A obtains the encapsulation
ψ by performing the following:
– Computes H = H3(U, τ, IDA, PKA).
– Computes H ′ = H4(U, τ, IDA, PKA).
– Computes W = DA + rH + xAH

′.
– Output ψ = 〈U,W 〉

7. Decap (ψ, τ, IDA, PKA, IDB , PKB , SB). Given the encapsulation ψ, a tag τ , the sender’s identity IDA,
public key PKA, the receiver’s identity IDB , public key PKB and private key SB the key K is computed
as follows:
– Computes H = H3(U, τ, IDA, PKA).
– Computes H ′ = H4(U, τ, IDA, PKA).
– If ê(Ppub, QA)ê(U,H)ê(PKA,H

′) ?= ê(P,W ), computes the value T = ê(DB , U) and outputs K =
H2(U, T, xBU, IDB , PKB), otherwise outputs invalid.

3.2 Attack of Fagen Li et al.’s CLSC-TKEM

We launch an attack on the scheme to show the weakness in unforgeability of Fagen Li et al.’s [12] CLSC-
TKEM.

Attack on Unforgeability: Fagen Li et al. [12] have claimed that their scheme is existentially unforgeable
against both Type-I and Type-II attacks. We show that the scheme does not resist both Type-I and Type-
II attacks. In the unforgeability games, EUF-CLSC-TKEM-CMA-I and EUF-CLSC-TKEM-CMA-II the
corresponding forgers FI and FII have access to the full private key of the receiver B and are not allowed to
extract the full private keys of the sender A inorder to ensure insider security. The weakness of the system
is observed due to this constraint.
Attack by Type-I forger FI : During the EUF-CLSC-TKEM-CMA-I game, the forger FI interacts with the
challenger C during the Training Phase. FI has access to the various oracles offered by C also as mentioned
above FI has access to the full private key of the receiver too.

– During the Training Phase FI queries C for an encapsulation with IDA as sender and IDB as receiver
with an arbitrary tag τ .

– Here, the private key of IDA is not queried by FI and the corresponding public key is not replaced.
– C responds with ψ = 〈U,W 〉.

Now, FI obtains a forged encapsulation from the encapsulation ψ received during the Training Phase for
the same tag τ , by performs the following steps:

– Let IDB∗ be an user for which FI knows the full private key SB∗ .
– FI computes a new key K ′ = H2(U, T ′, xB∗U, IDB∗ , PKB∗), where T ′ = ê(DB∗ , U).
– Now, ψ∗ = 〈U,W 〉 is a valid encapsulation of the key K ′ from the sender IDA to a new receiver IDB∗ .



The correctness of the attack can be easily verified because Decap (ψ∗, τ, IDA, PKA, IDB∗ , PKB∗ , SB∗)
passes the verification and yields a different key K ′ as follows.

– The computation of H = H3(U, τ, IDA, PKA), H ′ = H4(U, τ, IDA, PKA) will output the same value
because it depends only upon the sender identity and public key.

– The validity check ê(Ppub, QA)ê(U,H)ê(PKA,H
′) ?= ê(P,W ) also holds because this verification is also

dependent on the sender’s identity and public key alone.

The value T ∗ = ê(DB∗ , U) is computed and K ′ = H2(U, T ′, xB∗U, IDB∗ , PKB∗) is output as the key. Thus
ψ∗ is a valid forgery with respect to the new key K ′.
Attack by Type-II forger FII : The attack by Type-II forger is identical to that of the attack by the
Type-I forger FI because as mentioned above a Type-II forger FII also has access to the full private key of
the receiver. The forgery can be done in a similar way as described in Attack by Type-I forger FI .

4 Improved CLSC-TKEM Scheme (ICLSC-TKEM)

In the preceding section we saw that the CLSC-TKEM scheme proposed by Fagen Li et al. does not withstand
chosen message attack. The weakness of the scheme was due to the lack of binding between the receiver
identity and the signature generated by the sender. This is the reason, for an encapsulation ψ to act as a
valid encapsulation for different keys Ki (for i = 1 to n, where n is the number of forged keys) from a single
sender to n different receivers. This weakness can be easily countered by making the following changes in
the Sym, Encap and Decap algorithms in Fagen Li et al’s [12] scheme.
Sym (IDA, PKA, SA, IDB , PKB). Given the sender’s identity IDA, public key PKA, private key SA, the
receiver’s identity IDB and public key PKB as input, the algorithm produces the symmetric key K as
follows:

– The sender A chooses r ∈R Z∗
q ,

– Computes U = rP and T = ê(Ppub, QB)r,
– Computes K = H2(U, T, r(PKB), IDB , PKB),
– Outputs K and a set ω = (r, U, T, IDA, PKA, SA, IDB , PKB)

Encap (ω, τ). Given a state information ω and an arbitrary tag τ , the sender A obtains the encapsulation
ψ by performing the following:

– Computes H = H3(U, τ, T, IDA, PKA, IDB , PKB).
– Computes H ′ = H4(U, τ, T, IDA, PKA, IDB , PKB).
– Computes W = DS + rH + xAH

′.
– Output ψ = 〈U,W 〉

Now, it is not possible for FI and FII to generate different forged keys from a sender IDA, whose secret key
is not known to any receivers as the identity IDB and the public key PKB of the receiver is bound to the
signature part of the encapsulation ψ which cannot be altered.

Decap (ψ, τ, IDA, PKA, IDB , PKB , SB). Given the encapsulation ψ, a tag τ , the sender’s identity IDA,
public key PKA, the receiver’s identity IDB , public key PKB and private key SB the key K is computed
as follows:

– Computes the value T = ê(DB , U).
– Computes H = H3(U, τ, T, IDA, PKA, IDB , PKB).
– Computes H ′ = H4(U, τ, T, IDA, PKA, IDB , PKB).
– If ê(Ppub, QA)ê(U,H)ê(PKA,H

′) ?= ê(P,W ) and outputs K = H2(U, T, xBU, IDB , PKB), otherwise
outputs invalid.

5 Security of the Improved ICLSC-TKEM Scheme

In this section we provide the formal proof for the unforgeability of the improved CLSC-TKEM. The proof
for confidentiality will be appended soon.



5.1 Type-I Unforgeability

Theorem 1. The improved certificateless signcryption scheme ICLSC-TKEM is EUF-ICLSC-TKEM-CMA-
I secure in the random oracle model, if the CDH problem is intractable in G1.

Proof: A challenger C is challenged with an instance of the CDH problem say 〈P, aP, bP 〉 ∈ G1. Let FI be
a forger who is capable of breaking the EUF-ICLSC-TKEM-CMA-I security of the ICLSC-TKEM scheme.
C can make use of FI to compute the solution abP of the CDH instance by playing the following interactive
game with FI .

Setup: C sets the master public key Ppub as aP , designs the hash functions Hi (i =1 to 4) as random
oracles OHi

(i =1 to 4) respectively. Inorder to maintain the consistancy between the responses to the
hash queries, C maintains lists Li (i =1 to 4) and to maintain the list of issued private keys and public
keys, C maintains a list LK . C gives the public parameters params to FI .

Training Phase: FI performs a series of polynomially bounded number of queries in an adaptive fashion
in this phase. The oracles and queries allowed are described below.
– OH1(IDi): To respond to this query, C checks whether a tuple 〈IDi, biP, coin, bi〉 already exists in

the list L1. If a tuple of this form exists, C returns the corresponding biP . Otherwise, C chooses a
random coin coinR{0, 1}, chooses bi ∈R Z∗q , if coin = 1 adds the tuple 〈IDi, Qi = biP, coin = 1, bi〉
to the list L1 else adds 〈IDi, Qi = bibP, coin = 0, bi〉 and returns Qi to FI .

– OH2(U, T, r(PKB), IDB , PKB): To respond to this query, C checks whether a tuple of the form
〈U, T, r(PKB), IDB , PKB ,K〉 exists in list L2. If so, returns K to FI else chooses K ∈R Z∗q , adds
the tuple 〈U, T, r(PKB), IDB , PKB ,K〉 to the list L2 and returns K to FI .

– OH3(U, τ, T, IDA, PKA, IDB , PKB): To respond to this query, C checks whether a tuple of the form
〈U, τ, T, IDA, PKA, IDB , PKB , l,H〉 exists in the list L3. If so, returns H to FI else chooses l ∈R Z∗q ,
adds the tuple 〈U, τ, T, IDA, PKA, IDB , PKB , l,H = lP 〉 to the list L3 and returns H to FI .

– OH4(U, τ, T, IDA, PKA, IDB , PKB): To respond to this query, C checks whether a tuple of the form
〈U, τ, T, IDA, PKA, IDB , PKB , l

′,H ′〉 exists in the list L4. If so, returns H ′ to FI else chooses l′ ∈R

Z∗q , adds the tuple 〈U, τ, T, IDA, PKA, IDB , PKB , l
′,H ′ = l′P 〉 to the list L4 and returns H ′ to FI .

– OExtractPartialPrivateKey: FI chooses an identity IDi and gives it to C. Now, C checks whether the
value coin = 1 for IDi in list L1, if so searches for a tuple of the form 〈IDi, xi, Di, PKi〉 in the list
LK . If it is present then C responds with the corresponding Di value else, retrieves the corresponding
bi value from the list L1, computes Di = biaP , updates the list LK with the tuple 〈IDi,−, Di,−〉
and sends Di to FI . If coin = 0, C aborts the game.

– ORequestPublicKey: FI produces an identity IDi to C and requests IDi’s public key. C checks in the
list LK for an entry of the type 〈IDi, xi, Di, PKi〉. If an entry exists, then responds by returning
the corresponding public key PKi to FI . If it does not exist, C chooses xi ∈R Z∗q , sets PKi = xiP ,
computes Di, adds the tuple 〈IDi, xi, Di, PKi〉 to the list LK and sends the corresponding PKi to
FI .

– OExtractPrivateKey: FI produces an identity IDi and requests the corresponding full private key. If
IDi’s public key has not been replaced and the entry for coin = 1, corresponding to IDi in the list
L1 then C responds with the full private key Si = 〈xi, Di〉 retrieving it from the list LK . If FI has
already replaced IDi’s public key or the correspondinf value of coin = 0, then C does not provide
the corresponding private key to FI .

– OReplacePublicKey: Inorder to replace the public key PKi of an user IDi with any value PK ′
i of FI ’s

choice, C updates the corresponding tuple in the list LK as 〈IDi,−, Si, PK
′
i〉. The current value of

the user’s public key is used by C in for computations or responses to any queries made by FI .

– OSymmetricKeyGeneration: FI produces a sender’s identity IDA, public key PKA, the receiver’s iden-
tity IDB and public key PKB to C. If the value of coin = 1 in list L1 for the identity IDA, the
private key SA of the sender is obtained from the list LK and the algorithm works in the normal
way. If coin = 0, C computes the symmetric key K and an internal state information ω, stores and



keeps ω secret from the view of FI and sends the symmetric key K to FI . It is to be noted that C
may not be aware of the corresponding private key if the public key of IDA is replaced. In this case
FI provides the secret value of IDA to C.

– OKeyEncapsulation: FI produces an arbitrary tag τ , the sender’s identity IDA, public key PKA, the
receiver’s identity IDB and public key PKB to C. The private key of the sender SA is obtained from
the list LK . C checks whether a corresponding ω value is stored previously.
• If ω exists and the value of coin = 1, corresponding to IDA in the list L1, then C computes the

encapsulation ψ with ω and τ as per the actual encapsulation algorithm, and deletes ω.
• If ω exists and the value of coin = 0, corresponding to IDA in the list L1, then C performs the

following to compute ψ:
∗ Chooses r ∈R Z∗

q and computes U = raP .
∗ Sets H = −r−1bAbP and adds the tuple 〈U, τ, T, IDA, PKA, IDB , PKB , r,H = −r−1bAbP 〉

to the list L3, where bAbP is retrieved from the list L1.
∗ Sets H ′ = l′P and adds the tuple 〈U, τ, T, IDA, PKA, IDB , PKB , l

′,H ′ = l′P 〉 to the list L3.
∗ Computes W = l′xAP (This is possible C knows the public key PKA of the sender A which

is xAP ).
∗ Outputs, ψ = 〈U,W 〉 as the encapsulation.

We show that, ψ = 〈U,W 〉 passes the verification done inorder to validate the encapsulation by
FI because the equality ê(Ppub, QA) ê(U,H) ê(PKA,H

′) ?= ê(P,W ) holds.

Correctness:
ê(Ppub, QA)ê(U,H)ê(PKA,H

′)= ê(aP, bAbP )ê(raP,−r−1bAbP )ê(xAP, l
′P )

= ê(aP, bAbP )ê(raP, r−1bAbP )−1ê(xAP, l
′P )

= ê(P, bAabP )ê(P, bAabP )−1ê(P, xAl
′P )

= ê(P, xAl
′P )

= ê(P,W )
• Else, if ω doesnot exist, C returns invalid.

– OKeyDecapsulation: FI produces an encapsulation ψ, a tag τ , the sender’s identity IDA, public key
PKA, the receiver’s identity IDB and public key PKB to C. The private key of the receiver SB is
obtained from the list LK . It is to be noted that C may not be aware of the corresponding private
key if the public key of IDB is replaced. In this case FI provides the private key of IDB to C.
• C returns the key K by computing it as per the Decap algorithm if the value of coin = 1

corresponding to IDB in the list L1.
• If the value of coin = 0, corresponding to IDB in the list L1, C computes K from ψ as follows:

∗ Searches in the list L3 and L4 for entries of the type 〈U, τ, T, IDA, PKA, IDB , PKB , l,H〉
and 〈U, T, τ, IDA, PKA, IDB , PKB , l

′,H ′〉 respectively.
∗ If entriesH andH ′ exist then C checks whether the equality ê(Ppub, QA) ê(U,H) ê(PKA,H

′) ?=
ê(P,W ) holds.

∗ If the above equality holds, then retrieves the corresponding T value from the lists L3 and
L4 (note that both the T values should be equal).

∗ Now, C checks whether a tuple of the form 〈U, T, xBU, IDB , PKB ,K〉 exists in the list L2.
If it exists output the corresponding K value as the decapsulation of ψ.

Forgery: At the end of the Training Phase (which is decided by FI), FI sends to C an encapsulation
〈τ∗, ψ∗, IDA∗ , IDB∗〉, where IDA∗ is the sender identity and IDB∗ is the receiver identity. It is to be
noted that the partial private key of the sender IDA∗ should not be queried and the public key of IDA∗

should not be replaced during the Training Phase simultaneously. In addition, ψ∗ should not be the
response for any key encapsulation queries by FI during the Training Phase. If ψ∗ is generated with
the above restrictions, then C can obtain the solution for the CDH instance by performing the following
steps.
–
–



5.2 Type-II Unforgeability

Theorem 2. The improved certificateless signcryption scheme ICLSC-TKEM is EUF-ICLSC-TKEM-CMA-
II secure in the random oracle model, if the CDH problem is intractable in G1.

Proof: A challenger C is challenged with an instance of the CDH problem say 〈P, aP, bP 〉 ∈ G1. Let FII be
a forger who is capable of breaking the EUF-ICLSC-TKEM-CMA-II security of the ICLSC-TKEM scheme.
C can make use of FII to compute the solution abP of the CDH instance by playing the following interactive
game with FII .

Setup: C chooses s ∈R Z∗q and sets the master public key Ppub = sP , designs the hash functions Hi (i =1
to 4) as random oracles OHi

(i =1 to 4) respectively. Inorder to maintain the consistancy between the
responses to the hash queries, C maintains lists Li (i =1 to 4) and to maintain the list of issued private
keys and public keys, C maintains a list LK . C gives the public parameters params and the master private
key s to FII .

Training Phase: FII performs a series of polynomially bounded number of queries in an adaptive fashion
in this phase. The oracles and queries allowed are described below.
– OH1(IDi): To respond to this query, C checks whether a tuple 〈IDi, aiP, coin, ai〉 already exists in

the list L1. If a tuple of this form exists, C returns the corresponding aiP . Otherwise, C chooses a
random coin coinR{0, 1}, chooses ai ∈R Z∗q , if coin = 1 adds the tuple 〈IDi, Qi = aiP, coin = 1, ai〉
to the list L1 else adds 〈IDi, Qi = aiaP, coin = 0, ai〉 and returns Qi to FII .

– OH2(U, T, r(PKB), IDB , PKB): Identical to that of OH2 query in the EUF-ICLSC-TKEM-CMA-I
game.

– OH3(U, τ, T, IDA, PKA, IDB , PKB): Identical to that of OH3 query in the EUF-ICLSC-TKEM-
CMA-I game.

– OH4(U, τ, T, IDA, PKA, IDB , PKB): To respond to this query, C checks whether a tuple of the form
〈U, τ, T, IDA, PKA, IDB , PKB , l

′,H ′〉 exists in the list L4. If so, returns H ′ to FII else, chooses
l′ ∈R Z∗q , adds the tuple 〈U, τ, T, IDA, PKA, IDB , PKB , l

′,H ′ = l′P 〉 to the list L4 and returns H ′

to FI .

– OExtractPartialPrivateKey: FI chooses an identity IDi and gives it to C. Now, C checks whether the
value coin = 1 for IDi in list L1, if so searches for a tuple of the form 〈IDi, xi, Di, PKi〉 in the list
LK . If it is present then C responds with the corresponding Di value else, retrieves the corresponding
bi value from the list L1, computes Di = biaP , updates the list LK with the tuple 〈IDi,−, Di,−〉
and sends Di to FI . If coin = 0, C aborts the game.

– ORequestPublicKey: FI produces an identity IDi to C and requests IDi’s public key. C checks in the
list LK for an entry of the type 〈IDi, xi, Di, PKi〉. If an entry exists, then responds by returning
the corresponding public key PKi to FI . If it does not exist, C chooses xi ∈R Z∗q , sets PKi = xiP ,
computes Di, adds the tuple 〈IDi, xi, Di, PKi〉 to the list LK and sends the corresponding PKi to
FI .

– OExtractPrivateKey: FI produces an identity IDi and requests the corresponding full private key. If
IDi’s public key has not been replaced and the entry for coin = 1, corresponding to IDi in the list
L1 then C responds with the full private key Si = 〈xi, Di〉 retrieving it from the list LK . If FI has
already replaced IDi’s public key or the correspondinf value of coin = 0, then C does not provide
the corresponding private key to FI .

– OReplacePublicKey: Inorder to replace the public key PKi of an user IDi with any value PK ′
i of FI ’s

choice, C updates the corresponding tuple in the list LK as 〈IDi,−, Si, PK
′
i〉. The current value of

the user’s public key is used by C in for computations or responses to any queries made by FI .

– OSymmetricKeyGeneration: FI produces a sender’s identity IDA, public key PKA, the receiver’s iden-
tity IDB and public key PKB to C. If the value of coin = 1 in list L1 for the identity IDA, the
private key SA of the sender is obtained from the list LK and the algorithm works in the normal
way. If coin = 0, C computes the symmetric key K and an internal state information ω, stores and



keeps ω secret from the view of FI and sends the symmetric key K to FI . It is to be noted that C
may not be aware of the corresponding private key if the public key of IDA is replaced. In this case
FI provides the secret value of IDA to C.

– OKeyEncapsulation: FI produces an arbitrary tag τ , the sender’s identity IDA, public key PKA, the
receiver’s identity IDB and public key PKB to C. The private key of the sender SA is obtained from
the list LK . C checks whether a corresponding ω value is stored previously.
• If ω exists and the value of coin = 1, corresponding to IDA in the list L1, then C computes the

encapsulation ψ with ω and τ as per the actual encapsulation algorithm, and deletes ω.
• If ω exists and the value of coin = 0, corresponding to IDA in the list L1, then C performs the

following to compute ψ:
∗ Chooses r ∈R Z∗

q and computes U = raP .
∗ Sets H = −r−1bAbP and adds the tuple 〈U, τ, T, IDA, PKA, IDB , PKB , r,H = −r−1bAbP 〉

to the list L3, where bAbP is retrieved from the list L1.
∗ Sets H ′ = l′P and adds the tuple 〈U, τ, T, IDA, PKA, IDB , PKB , l

′,H ′ = l′P 〉 to the list L3.
∗ Computes W = l′xAP (This is possible C knows the public key PKA of the sender A which

is xAP ).
∗ Outputs, ψ = 〈U,W 〉 as the encapsulation.

We show that, ψ = 〈U,W 〉 passes the verification done inorder to validate the encapsulation by
FI because the equality ê(Ppub, QA) ê(U,H) ê(PKA,H

′) ?= ê(P,W ) holds.

Correctness:
ê(Ppub, QA)ê(U,H)ê(PKA,H

′)= ê(aP, bAbP )ê(raP,−r−1bAbP )ê(xAP, l
′P )

= ê(aP, bAbP )ê(raP, r−1bAbP )−1ê(xAP, l
′P )

= ê(P, bAabP )ê(P, bAabP )−1ê(P, xAl
′P )

= ê(P, xAl
′P )

= ê(P,W )
• Else, if ω doesnot exist, C returns invalid.

– OKeyDecapsulation: FI produces an encapsulation ψ, a tag τ , the sender’s identity IDA, public key
PKA, the receiver’s identity IDB and public key PKB to C. The private key of the receiver SB is
obtained from the list LK . It is to be noted that C may not be aware of the corresponding private
key if the public key of IDB is replaced. In this case FI provides the private key of IDB to C.
• C returns the key K by computing it as per the Decap algorithm if the value of coin = 1

corresponding to IDB in the list L1.
• If the value of coin = 0, corresponding to IDB in the list L1, C computes K from ψ as follows:

∗ Searches in the list L3 and L4 for entries of the type 〈U, τ, T, IDA, PKA, IDB , PKB , l,H〉
and 〈U, T, τ, IDA, PKA, IDB , PKB , l

′,H ′〉 respectively.
∗ If entriesH andH ′ exist then C checks whether the equality ê(Ppub, QA) ê(U,H) ê(PKA,H

′) ?=
ê(P,W ) holds.

∗ If the above equality holds, then retrieves the corresponding T value from the lists L3 and
L4 (note that both the T values should be equal).

∗ Now, C checks whether a tuple of the form 〈U, T, xBU, IDB , PKB ,K〉 exists in the list L2.
If it exists output the corresponding K value as the decapsulation of ψ.

Forgery: At the end of the Training Phase (which is decided by FI), FI sends to C an encapsulation
〈τ∗, ψ∗, IDA∗ , IDB∗〉, where IDA∗ is the sender identity and IDB∗ is the receiver identity. It is to be
noted that the partial private key of the sender IDA∗ should not be queried and the public key of IDA∗

should not be replaced during the Training Phase simultaneously. In addition, ψ∗ should not be the
response for any key encapsulation queries by FI during the Training Phase. If ψ∗ is generated with
the above restrictions, then C can obtain the solution for the CDH instance by performing the following
steps.
–
–



6 Conclusion

In this paper, we have cryptanalized the certificateless hybrid signcryption scheme of Fagen Li et al.’s [12].
We have showed attacks on unforgeability of the scheme by both Type-I and Type-II forgers. We have also
provided a possible fix for Fagen Li et al.’s scheme with the proper binding, that provides adequate security
to the scheme. The proof of the improved scheme follows from the security proofs by Fagen Li et al.
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